xref: /dragonfly/sys/netinet/ip_input.c (revision a563ca70)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
67  * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
68  */
69 
70 #define	_IP_VHL
71 
72 #include "opt_bootp.h"
73 #include "opt_ipfw.h"
74 #include "opt_ipdn.h"
75 #include "opt_ipdivert.h"
76 #include "opt_ipstealth.h"
77 #include "opt_ipsec.h"
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/mpipe.h>
84 #include <sys/domain.h>
85 #include <sys/protosw.h>
86 #include <sys/socket.h>
87 #include <sys/time.h>
88 #include <sys/globaldata.h>
89 #include <sys/thread.h>
90 #include <sys/kernel.h>
91 #include <sys/syslog.h>
92 #include <sys/sysctl.h>
93 #include <sys/in_cksum.h>
94 #include <sys/lock.h>
95 
96 #include <sys/mplock2.h>
97 
98 #include <machine/stdarg.h>
99 
100 #include <net/if.h>
101 #include <net/if_types.h>
102 #include <net/if_var.h>
103 #include <net/if_dl.h>
104 #include <net/pfil.h>
105 #include <net/route.h>
106 #include <net/netisr.h>
107 
108 #include <netinet/in.h>
109 #include <netinet/in_systm.h>
110 #include <netinet/in_var.h>
111 #include <netinet/ip.h>
112 #include <netinet/in_pcb.h>
113 #include <netinet/ip_var.h>
114 #include <netinet/ip_icmp.h>
115 #include <netinet/ip_divert.h>
116 #include <netinet/ip_flow.h>
117 
118 #include <sys/thread2.h>
119 #include <sys/msgport2.h>
120 #include <net/netmsg2.h>
121 
122 #include <sys/socketvar.h>
123 
124 #include <net/ipfw/ip_fw.h>
125 #include <net/dummynet/ip_dummynet.h>
126 
127 #ifdef IPSEC
128 #include <netinet6/ipsec.h>
129 #include <netproto/key/key.h>
130 #endif
131 
132 #ifdef FAST_IPSEC
133 #include <netproto/ipsec/ipsec.h>
134 #include <netproto/ipsec/key.h>
135 #endif
136 
137 int rsvp_on = 0;
138 static int ip_rsvp_on;
139 struct socket *ip_rsvpd;
140 
141 int ipforwarding = 0;
142 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
143     &ipforwarding, 0, "Enable IP forwarding between interfaces");
144 
145 static int ipsendredirects = 1; /* XXX */
146 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
147     &ipsendredirects, 0, "Enable sending IP redirects");
148 
149 int ip_defttl = IPDEFTTL;
150 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
151     &ip_defttl, 0, "Maximum TTL on IP packets");
152 
153 static int ip_dosourceroute = 0;
154 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
155     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
156 
157 static int ip_acceptsourceroute = 0;
158 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
159     CTLFLAG_RW, &ip_acceptsourceroute, 0,
160     "Enable accepting source routed IP packets");
161 
162 static int ip_keepfaith = 0;
163 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
164     &ip_keepfaith, 0,
165     "Enable packet capture for FAITH IPv4->IPv6 translator daemon");
166 
167 static int nipq = 0;	/* total # of reass queues */
168 static int maxnipq;
169 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
170     &maxnipq, 0,
171     "Maximum number of IPv4 fragment reassembly queue entries");
172 
173 static int maxfragsperpacket;
174 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
175     &maxfragsperpacket, 0,
176     "Maximum number of IPv4 fragments allowed per packet");
177 
178 static int ip_sendsourcequench = 0;
179 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
180     &ip_sendsourcequench, 0,
181     "Enable the transmission of source quench packets");
182 
183 int ip_do_randomid = 1;
184 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
185     &ip_do_randomid, 0,
186     "Assign random ip_id values");
187 /*
188  * XXX - Setting ip_checkinterface mostly implements the receive side of
189  * the Strong ES model described in RFC 1122, but since the routing table
190  * and transmit implementation do not implement the Strong ES model,
191  * setting this to 1 results in an odd hybrid.
192  *
193  * XXX - ip_checkinterface currently must be disabled if you use ipnat
194  * to translate the destination address to another local interface.
195  *
196  * XXX - ip_checkinterface must be disabled if you add IP aliases
197  * to the loopback interface instead of the interface where the
198  * packets for those addresses are received.
199  */
200 static int ip_checkinterface = 0;
201 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
202     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
203 
204 static int ip_dispatch_fast = 0;
205 static int ip_dispatch_slow = 0;
206 static int ip_dispatch_recheck = 0;
207 static int ip_dispatch_software = 0;
208 SYSCTL_INT(_net_inet_ip, OID_AUTO, dispatch_fast_count, CTLFLAG_RD,
209     &ip_dispatch_fast, 0,
210     "Number of IP dispatches handled on current CPU");
211 SYSCTL_INT(_net_inet_ip, OID_AUTO, dispatch_slow_count, CTLFLAG_RD,
212     &ip_dispatch_slow, 0,
213     "Number of IP dispatches messaged to another CPU");
214 SYSCTL_INT(_net_inet_ip, OID_AUTO, dispatch_software_count, CTLFLAG_RD,
215     &ip_dispatch_software, 0, "");
216 SYSCTL_INT(_net_inet_ip, OID_AUTO, dispatch_recheck_count, CTLFLAG_RD,
217     &ip_dispatch_recheck, 0, "");
218 
219 static struct lwkt_token ipq_token = LWKT_TOKEN_INITIALIZER(ipq_token);
220 
221 #ifdef DIAGNOSTIC
222 static int ipprintfs = 0;
223 #endif
224 
225 extern	struct domain inetdomain;
226 extern	struct protosw inetsw[];
227 u_char	ip_protox[IPPROTO_MAX];
228 struct	in_ifaddrhead in_ifaddrheads[MAXCPU];	/* first inet address */
229 struct	in_ifaddrhashhead *in_ifaddrhashtbls[MAXCPU];
230 						/* inet addr hash table */
231 u_long	in_ifaddrhmask;				/* mask for hash table */
232 
233 struct ip_stats ipstats_percpu[MAXCPU];
234 #ifdef SMP
235 static int
236 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
237 {
238 	int cpu, error = 0;
239 
240 	for (cpu = 0; cpu < ncpus; ++cpu) {
241 		if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
242 					sizeof(struct ip_stats))))
243 			break;
244 		if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
245 				       sizeof(struct ip_stats))))
246 			break;
247 	}
248 
249 	return (error);
250 }
251 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
252     0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
253 #else
254 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
255     &ipstat, ip_stats, "IP statistics");
256 #endif
257 
258 /* Packet reassembly stuff */
259 #define	IPREASS_NHASH_LOG2	6
260 #define	IPREASS_NHASH		(1 << IPREASS_NHASH_LOG2)
261 #define	IPREASS_HMASK		(IPREASS_NHASH - 1)
262 #define	IPREASS_HASH(x,y)						\
263     (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
264 
265 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
266 
267 #ifdef IPCTL_DEFMTU
268 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
269     &ip_mtu, 0, "Default MTU");
270 #endif
271 
272 #ifdef IPSTEALTH
273 static int ipstealth = 0;
274 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
275 #else
276 static const int ipstealth = 0;
277 #endif
278 
279 struct mbuf *(*ip_divert_p)(struct mbuf *, int, int);
280 
281 struct pfil_head inet_pfil_hook;
282 
283 /*
284  * struct ip_srcrt_opt is used to store packet state while it travels
285  * through the stack.
286  *
287  * XXX Note that the code even makes assumptions on the size and
288  * alignment of fields inside struct ip_srcrt so e.g. adding some
289  * fields will break the code.  This needs to be fixed.
290  *
291  * We need to save the IP options in case a protocol wants to respond
292  * to an incoming packet over the same route if the packet got here
293  * using IP source routing.  This allows connection establishment and
294  * maintenance when the remote end is on a network that is not known
295  * to us.
296  */
297 struct ip_srcrt {
298 	struct	in_addr dst;			/* final destination */
299 	char	nop;				/* one NOP to align */
300 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
301 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
302 };
303 
304 struct ip_srcrt_opt {
305 	int		ip_nhops;
306 	struct ip_srcrt	ip_srcrt;
307 };
308 
309 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
310 static struct malloc_pipe ipq_mpipe;
311 
312 static void		save_rte(struct mbuf *, u_char *, struct in_addr);
313 static int		ip_dooptions(struct mbuf *m, int, struct sockaddr_in *);
314 static void		ip_freef(struct ipqhead *, struct ipq *);
315 static void		ip_input_handler(netmsg_t);
316 
317 /*
318  * IP initialization: fill in IP protocol switch table.
319  * All protocols not implemented in kernel go to raw IP protocol handler.
320  */
321 void
322 ip_init(void)
323 {
324 	struct protosw *pr;
325 	int i;
326 #ifdef SMP
327 	int cpu;
328 #endif
329 
330 	/*
331 	 * Make sure we can handle a reasonable number of fragments but
332 	 * cap it at 4000 (XXX).
333 	 */
334 	mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
335 		    IFQ_MAXLEN, 4000, 0, NULL, NULL, NULL);
336 	for (i = 0; i < ncpus; ++i) {
337 		TAILQ_INIT(&in_ifaddrheads[i]);
338 		in_ifaddrhashtbls[i] =
339 			hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
340 	}
341 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
342 	if (pr == NULL)
343 		panic("ip_init");
344 	for (i = 0; i < IPPROTO_MAX; i++)
345 		ip_protox[i] = pr - inetsw;
346 	for (pr = inetdomain.dom_protosw;
347 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
348 		if (pr->pr_domain->dom_family == PF_INET && pr->pr_protocol) {
349 			if (pr->pr_protocol != IPPROTO_RAW)
350 				ip_protox[pr->pr_protocol] = pr - inetsw;
351 		}
352 	}
353 
354 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
355 	inet_pfil_hook.ph_af = AF_INET;
356 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
357 		kprintf("%s: WARNING: unable to register pfil hook, "
358 			"error %d\n", __func__, i);
359 	}
360 
361 	for (i = 0; i < IPREASS_NHASH; i++)
362 		TAILQ_INIT(&ipq[i]);
363 
364 	maxnipq = nmbclusters / 32;
365 	maxfragsperpacket = 16;
366 
367 	ip_id = time_second & 0xffff;
368 
369 	/*
370 	 * Initialize IP statistics counters for each CPU.
371 	 *
372 	 */
373 #ifdef SMP
374 	for (cpu = 0; cpu < ncpus; ++cpu) {
375 		bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
376 	}
377 #else
378 	bzero(&ipstat, sizeof(struct ip_stats));
379 #endif
380 
381 	netisr_register(NETISR_IP, ip_input_handler, ip_cpufn_in);
382 	netisr_register_hashcheck(NETISR_IP, ip_hashcheck);
383 }
384 
385 /* Do transport protocol processing. */
386 static void
387 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip)
388 {
389 	const struct protosw *pr = &inetsw[ip_protox[ip->ip_p]];
390 
391 	/*
392 	 * Switch out to protocol's input routine.
393 	 */
394 	PR_GET_MPLOCK(pr);
395 	pr->pr_input(&m, &hlen, ip->ip_p);
396 	PR_REL_MPLOCK(pr);
397 }
398 
399 static void
400 transport_processing_handler(netmsg_t msg)
401 {
402 	struct netmsg_packet *pmsg = &msg->packet;
403 	struct ip *ip;
404 	int hlen;
405 
406 	ip = mtod(pmsg->nm_packet, struct ip *);
407 	hlen = pmsg->base.lmsg.u.ms_result;
408 
409 	transport_processing_oncpu(pmsg->nm_packet, hlen, ip);
410 	/* msg was embedded in the mbuf, do not reply! */
411 }
412 
413 static void
414 ip_input_handler(netmsg_t msg)
415 {
416 	ip_input(msg->packet.nm_packet);
417 	/* msg was embedded in the mbuf, do not reply! */
418 }
419 
420 /*
421  * IP input routine.  Checksum and byte swap header.  If fragmented
422  * try to reassemble.  Process options.  Pass to next level.
423  */
424 void
425 ip_input(struct mbuf *m)
426 {
427 	struct ip *ip;
428 	struct in_ifaddr *ia = NULL;
429 	struct in_ifaddr_container *iac;
430 	int hlen, checkif;
431 	u_short sum;
432 	struct in_addr pkt_dst;
433 	boolean_t using_srcrt = FALSE;		/* forward (by PFIL_HOOKS) */
434 	struct in_addr odst;			/* original dst address(NAT) */
435 	struct m_tag *mtag;
436 	struct sockaddr_in *next_hop = NULL;
437 	lwkt_port_t port;
438 #ifdef FAST_IPSEC
439 	struct tdb_ident *tdbi;
440 	struct secpolicy *sp;
441 	int error;
442 #endif
443 
444 	M_ASSERTPKTHDR(m);
445 
446 	/*
447 	 * This routine is called from numerous places which may not have
448 	 * characterized the packet.
449 	 */
450 	if ((m->m_flags & M_HASH) == 0) {
451 		++ip_dispatch_software;
452 		ip_cpufn(&m, 0, IP_MPORT_IN);
453 		if (m == NULL)
454 			return;
455 		KKASSERT(m->m_flags & M_HASH);
456 	}
457 	ip = mtod(m, struct ip *);
458 
459 	/*
460 	 * Pull out certain tags
461 	 */
462 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
463 		/* Next hop */
464 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
465 		KKASSERT(mtag != NULL);
466 		next_hop = m_tag_data(mtag);
467 	}
468 
469 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
470 		/* dummynet already filtered us */
471 		ip = mtod(m, struct ip *);
472 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
473 		goto iphack;
474 	}
475 
476 	ipstat.ips_total++;
477 
478 	/* length checks already done in ip_cpufn() */
479 	KASSERT(m->m_len >= sizeof(struct ip), ("IP header not in one mbuf"));
480 
481 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
482 		ipstat.ips_badvers++;
483 		goto bad;
484 	}
485 
486 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
487 	/* length checks already done in ip_cpufn() */
488 	KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
489 	KASSERT(m->m_len >= hlen, ("complete IP header not in one mbuf"));
490 
491 	/* 127/8 must not appear on wire - RFC1122 */
492 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
493 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
494 		if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
495 			ipstat.ips_badaddr++;
496 			goto bad;
497 		}
498 	}
499 
500 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
501 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
502 	} else {
503 		if (hlen == sizeof(struct ip))
504 			sum = in_cksum_hdr(ip);
505 		else
506 			sum = in_cksum(m, hlen);
507 	}
508 	if (sum != 0) {
509 		ipstat.ips_badsum++;
510 		goto bad;
511 	}
512 
513 #ifdef ALTQ
514 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
515 		/* packet is dropped by traffic conditioner */
516 		return;
517 	}
518 #endif
519 	/*
520 	 * Convert fields to host representation.
521 	 */
522 	ip->ip_len = ntohs(ip->ip_len);
523 	ip->ip_off = ntohs(ip->ip_off);
524 
525 	/* length checks already done in ip_cpufn() */
526 	KASSERT(ip->ip_len >= hlen, ("total length less then header length"));
527 	KASSERT(m->m_pkthdr.len >= ip->ip_len, ("mbuf too short"));
528 
529 	/*
530 	 * Trim mbufs if longer than the IP header would have us expect.
531 	 */
532 	if (m->m_pkthdr.len > ip->ip_len) {
533 		if (m->m_len == m->m_pkthdr.len) {
534 			m->m_len = ip->ip_len;
535 			m->m_pkthdr.len = ip->ip_len;
536 		} else {
537 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
538 		}
539 	}
540 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
541 	/*
542 	 * Bypass packet filtering for packets from a tunnel (gif).
543 	 */
544 	if (ipsec_gethist(m, NULL))
545 		goto pass;
546 #endif
547 
548 	/*
549 	 * IpHack's section.
550 	 * Right now when no processing on packet has done
551 	 * and it is still fresh out of network we do our black
552 	 * deals with it.
553 	 * - Firewall: deny/allow/divert
554 	 * - Xlate: translate packet's addr/port (NAT).
555 	 * - Pipe: pass pkt through dummynet.
556 	 * - Wrap: fake packet's addr/port <unimpl.>
557 	 * - Encapsulate: put it in another IP and send out. <unimp.>
558 	 */
559 
560 iphack:
561 	/*
562 	 * If we've been forwarded from the output side, then
563 	 * skip the firewall a second time
564 	 */
565 	if (next_hop != NULL)
566 		goto ours;
567 
568 	/* No pfil hooks */
569 	if (!pfil_has_hooks(&inet_pfil_hook)) {
570 		if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
571 			/*
572 			 * Strip dummynet tags from stranded packets
573 			 */
574 			mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
575 			KKASSERT(mtag != NULL);
576 			m_tag_delete(m, mtag);
577 			m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
578 		}
579 		goto pass;
580 	}
581 
582 	/*
583 	 * Run through list of hooks for input packets.
584 	 *
585 	 * NOTE!  If the packet is rewritten pf/ipfw/whoever must
586 	 *	  clear M_HASH.
587 	 */
588 	odst = ip->ip_dst;
589 	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif, PFIL_IN))
590 		return;
591 	if (m == NULL)	/* consumed by filter */
592 		return;
593 	ip = mtod(m, struct ip *);
594 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
595 	using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
596 
597 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
598 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
599 		KKASSERT(mtag != NULL);
600 		next_hop = m_tag_data(mtag);
601 	}
602 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
603 		ip_dn_queue(m);
604 		return;
605 	}
606 	if (m->m_pkthdr.fw_flags & FW_MBUF_REDISPATCH) {
607 		m->m_pkthdr.fw_flags &= ~FW_MBUF_REDISPATCH;
608 	}
609 pass:
610 	/*
611 	 * Process options and, if not destined for us,
612 	 * ship it on.  ip_dooptions returns 1 when an
613 	 * error was detected (causing an icmp message
614 	 * to be sent and the original packet to be freed).
615 	 */
616 	if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, next_hop))
617 		return;
618 
619 	/* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
620 	 * matter if it is destined to another node, or whether it is
621 	 * a multicast one, RSVP wants it! and prevents it from being forwarded
622 	 * anywhere else. Also checks if the rsvp daemon is running before
623 	 * grabbing the packet.
624 	 */
625 	if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
626 		goto ours;
627 
628 	/*
629 	 * Check our list of addresses, to see if the packet is for us.
630 	 * If we don't have any addresses, assume any unicast packet
631 	 * we receive might be for us (and let the upper layers deal
632 	 * with it).
633 	 */
634 	if (TAILQ_EMPTY(&in_ifaddrheads[mycpuid]) &&
635 	    !(m->m_flags & (M_MCAST | M_BCAST)))
636 		goto ours;
637 
638 	/*
639 	 * Cache the destination address of the packet; this may be
640 	 * changed by use of 'ipfw fwd'.
641 	 */
642 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
643 
644 	/*
645 	 * Enable a consistency check between the destination address
646 	 * and the arrival interface for a unicast packet (the RFC 1122
647 	 * strong ES model) if IP forwarding is disabled and the packet
648 	 * is not locally generated and the packet is not subject to
649 	 * 'ipfw fwd'.
650 	 *
651 	 * XXX - Checking also should be disabled if the destination
652 	 * address is ipnat'ed to a different interface.
653 	 *
654 	 * XXX - Checking is incompatible with IP aliases added
655 	 * to the loopback interface instead of the interface where
656 	 * the packets are received.
657 	 */
658 	checkif = ip_checkinterface &&
659 		  !ipforwarding &&
660 		  m->m_pkthdr.rcvif != NULL &&
661 		  !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
662 		  next_hop == NULL;
663 
664 	/*
665 	 * Check for exact addresses in the hash bucket.
666 	 */
667 	LIST_FOREACH(iac, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
668 		ia = iac->ia;
669 
670 		/*
671 		 * If the address matches, verify that the packet
672 		 * arrived via the correct interface if checking is
673 		 * enabled.
674 		 */
675 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
676 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
677 			goto ours;
678 	}
679 	ia = NULL;
680 
681 	/*
682 	 * Check for broadcast addresses.
683 	 *
684 	 * Only accept broadcast packets that arrive via the matching
685 	 * interface.  Reception of forwarded directed broadcasts would
686 	 * be handled via ip_forward() and ether_output() with the loopback
687 	 * into the stack for SIMPLEX interfaces handled by ether_output().
688 	 */
689 	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
690 		struct ifaddr_container *ifac;
691 
692 		TAILQ_FOREACH(ifac, &m->m_pkthdr.rcvif->if_addrheads[mycpuid],
693 			      ifa_link) {
694 			struct ifaddr *ifa = ifac->ifa;
695 
696 			if (ifa->ifa_addr == NULL) /* shutdown/startup race */
697 				continue;
698 			if (ifa->ifa_addr->sa_family != AF_INET)
699 				continue;
700 			ia = ifatoia(ifa);
701 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
702 								pkt_dst.s_addr)
703 				goto ours;
704 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
705 				goto ours;
706 #ifdef BOOTP_COMPAT
707 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
708 				goto ours;
709 #endif
710 		}
711 	}
712 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
713 		struct in_multi *inm;
714 
715 		/* XXX Multicast is not MPSAFE yet */
716 		get_mplock();
717 
718 		if (ip_mrouter != NULL) {
719 			/*
720 			 * If we are acting as a multicast router, all
721 			 * incoming multicast packets are passed to the
722 			 * kernel-level multicast forwarding function.
723 			 * The packet is returned (relatively) intact; if
724 			 * ip_mforward() returns a non-zero value, the packet
725 			 * must be discarded, else it may be accepted below.
726 			 */
727 			if (ip_mforward != NULL &&
728 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
729 				rel_mplock();
730 				ipstat.ips_cantforward++;
731 				m_freem(m);
732 				return;
733 			}
734 
735 			/*
736 			 * The process-level routing daemon needs to receive
737 			 * all multicast IGMP packets, whether or not this
738 			 * host belongs to their destination groups.
739 			 */
740 			if (ip->ip_p == IPPROTO_IGMP) {
741 				rel_mplock();
742 				goto ours;
743 			}
744 			ipstat.ips_forward++;
745 		}
746 		/*
747 		 * See if we belong to the destination multicast group on the
748 		 * arrival interface.
749 		 */
750 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
751 		if (inm == NULL) {
752 			rel_mplock();
753 			ipstat.ips_notmember++;
754 			m_freem(m);
755 			return;
756 		}
757 
758 		rel_mplock();
759 		goto ours;
760 	}
761 	if (ip->ip_dst.s_addr == INADDR_BROADCAST)
762 		goto ours;
763 	if (ip->ip_dst.s_addr == INADDR_ANY)
764 		goto ours;
765 
766 	/*
767 	 * FAITH(Firewall Aided Internet Translator)
768 	 */
769 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
770 		if (ip_keepfaith) {
771 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
772 				goto ours;
773 		}
774 		m_freem(m);
775 		return;
776 	}
777 
778 	/*
779 	 * Not for us; forward if possible and desirable.
780 	 */
781 	if (!ipforwarding) {
782 		ipstat.ips_cantforward++;
783 		m_freem(m);
784 	} else {
785 #ifdef IPSEC
786 		/*
787 		 * Enforce inbound IPsec SPD.
788 		 */
789 		if (ipsec4_in_reject(m, NULL)) {
790 			ipsecstat.in_polvio++;
791 			goto bad;
792 		}
793 #endif
794 #ifdef FAST_IPSEC
795 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
796 		crit_enter();
797 		if (mtag != NULL) {
798 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
799 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
800 		} else {
801 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
802 						   IP_FORWARDING, &error);
803 		}
804 		if (sp == NULL) {	/* NB: can happen if error */
805 			crit_exit();
806 			/*XXX error stat???*/
807 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
808 			goto bad;
809 		}
810 
811 		/*
812 		 * Check security policy against packet attributes.
813 		 */
814 		error = ipsec_in_reject(sp, m);
815 		KEY_FREESP(&sp);
816 		crit_exit();
817 		if (error) {
818 			ipstat.ips_cantforward++;
819 			goto bad;
820 		}
821 #endif
822 		ip_forward(m, using_srcrt, next_hop);
823 	}
824 	return;
825 
826 ours:
827 
828 	/*
829 	 * IPSTEALTH: Process non-routing options only
830 	 * if the packet is destined for us.
831 	 */
832 	if (ipstealth &&
833 	    hlen > sizeof(struct ip) &&
834 	    ip_dooptions(m, 1, next_hop))
835 		return;
836 
837 	/* Count the packet in the ip address stats */
838 	if (ia != NULL) {
839 		ia->ia_ifa.if_ipackets++;
840 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
841 	}
842 
843 	/*
844 	 * If offset or IP_MF are set, must reassemble.
845 	 * Otherwise, nothing need be done.
846 	 * (We could look in the reassembly queue to see
847 	 * if the packet was previously fragmented,
848 	 * but it's not worth the time; just let them time out.)
849 	 */
850 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
851 		/*
852 		 * Attempt reassembly; if it succeeds, proceed.  ip_reass()
853 		 * will return a different mbuf.
854 		 *
855 		 * NOTE: ip_reass() returns m with M_HASH cleared to force
856 		 *	 us to recharacterize the packet.
857 		 */
858 		m = ip_reass(m);
859 		if (m == NULL)
860 			return;
861 		ip = mtod(m, struct ip *);
862 
863 		/* Get the header length of the reassembled packet */
864 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
865 	} else {
866 		ip->ip_len -= hlen;
867 	}
868 
869 #ifdef IPSEC
870 	/*
871 	 * enforce IPsec policy checking if we are seeing last header.
872 	 * note that we do not visit this with protocols with pcb layer
873 	 * code - like udp/tcp/raw ip.
874 	 */
875 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
876 	    ipsec4_in_reject(m, NULL)) {
877 		ipsecstat.in_polvio++;
878 		goto bad;
879 	}
880 #endif
881 #if FAST_IPSEC
882 	/*
883 	 * enforce IPsec policy checking if we are seeing last header.
884 	 * note that we do not visit this with protocols with pcb layer
885 	 * code - like udp/tcp/raw ip.
886 	 */
887 	if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
888 		/*
889 		 * Check if the packet has already had IPsec processing
890 		 * done.  If so, then just pass it along.  This tag gets
891 		 * set during AH, ESP, etc. input handling, before the
892 		 * packet is returned to the ip input queue for delivery.
893 		 */
894 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
895 		crit_enter();
896 		if (mtag != NULL) {
897 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
898 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
899 		} else {
900 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
901 						   IP_FORWARDING, &error);
902 		}
903 		if (sp != NULL) {
904 			/*
905 			 * Check security policy against packet attributes.
906 			 */
907 			error = ipsec_in_reject(sp, m);
908 			KEY_FREESP(&sp);
909 		} else {
910 			/* XXX error stat??? */
911 			error = EINVAL;
912 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
913 			goto bad;
914 		}
915 		crit_exit();
916 		if (error)
917 			goto bad;
918 	}
919 #endif /* FAST_IPSEC */
920 
921 	/*
922 	 * We must forward the packet to the correct protocol thread if
923 	 * we are not already in it.
924 	 *
925 	 * NOTE: ip_len is now in host form.  ip_len is not adjusted
926 	 *	 further for protocol processing, instead we pass hlen
927 	 *	 to the protosw and let it deal with it.
928 	 */
929 	ipstat.ips_delivered++;
930 
931 	if ((m->m_flags & M_HASH) == 0) {
932 		++ip_dispatch_recheck;
933 		ip->ip_len = htons(ip->ip_len + hlen);
934 		ip->ip_off = htons(ip->ip_off);
935 
936 		ip_cpufn(&m, 0, IP_MPORT_IN);
937 		if (m == NULL)
938 			return;
939 
940 		ip = mtod(m, struct ip *);
941 		ip->ip_len = ntohs(ip->ip_len) - hlen;
942 		ip->ip_off = ntohs(ip->ip_off);
943 		KKASSERT(m->m_flags & M_HASH);
944 	}
945 	port = cpu_portfn(m->m_pkthdr.hash);
946 
947 	if (port != &curthread->td_msgport) {
948 		struct netmsg_packet *pmsg;
949 
950 		++ip_dispatch_slow;
951 
952 		pmsg = &m->m_hdr.mh_netmsg;
953 		netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
954 			    0, transport_processing_handler);
955 		pmsg->nm_packet = m;
956 		pmsg->base.lmsg.u.ms_result = hlen;
957 		lwkt_sendmsg(port, &pmsg->base.lmsg);
958 	} else {
959 		++ip_dispatch_fast;
960 		transport_processing_oncpu(m, hlen, ip);
961 	}
962 	return;
963 
964 bad:
965 	m_freem(m);
966 }
967 
968 /*
969  * Take incoming datagram fragment and try to reassemble it into
970  * whole datagram.  If a chain for reassembly of this datagram already
971  * exists, then it is given as fp; otherwise have to make a chain.
972  */
973 struct mbuf *
974 ip_reass(struct mbuf *m)
975 {
976 	struct ip *ip = mtod(m, struct ip *);
977 	struct mbuf *p = NULL, *q, *nq;
978 	struct mbuf *n;
979 	struct ipq *fp = NULL;
980 	struct ipqhead *head;
981 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
982 	int i, next;
983 	u_short sum;
984 
985 	/* If maxnipq is 0, never accept fragments. */
986 	if (maxnipq == 0) {
987 		ipstat.ips_fragments++;
988 		ipstat.ips_fragdropped++;
989 		m_freem(m);
990 		return NULL;
991 	}
992 
993 	sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
994 	/*
995 	 * Look for queue of fragments of this datagram.
996 	 */
997 	lwkt_gettoken(&ipq_token);
998 	head = &ipq[sum];
999 	TAILQ_FOREACH(fp, head, ipq_list) {
1000 		if (ip->ip_id == fp->ipq_id &&
1001 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
1002 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
1003 		    ip->ip_p == fp->ipq_p)
1004 			goto found;
1005 	}
1006 
1007 	fp = NULL;
1008 
1009 	/*
1010 	 * Enforce upper bound on number of fragmented packets
1011 	 * for which we attempt reassembly;
1012 	 * If maxnipq is -1, accept all fragments without limitation.
1013 	 */
1014 	if (nipq > maxnipq && maxnipq > 0) {
1015 		/*
1016 		 * drop something from the tail of the current queue
1017 		 * before proceeding further
1018 		 */
1019 		struct ipq *q = TAILQ_LAST(head, ipqhead);
1020 		if (q == NULL) {
1021 			/*
1022 			 * The current queue is empty,
1023 			 * so drop from one of the others.
1024 			 */
1025 			for (i = 0; i < IPREASS_NHASH; i++) {
1026 				struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
1027 				if (r) {
1028 					ipstat.ips_fragtimeout += r->ipq_nfrags;
1029 					ip_freef(&ipq[i], r);
1030 					break;
1031 				}
1032 			}
1033 		} else {
1034 			ipstat.ips_fragtimeout += q->ipq_nfrags;
1035 			ip_freef(head, q);
1036 		}
1037 	}
1038 found:
1039 	/*
1040 	 * Adjust ip_len to not reflect header,
1041 	 * convert offset of this to bytes.
1042 	 */
1043 	ip->ip_len -= hlen;
1044 	if (ip->ip_off & IP_MF) {
1045 		/*
1046 		 * Make sure that fragments have a data length
1047 		 * that's a non-zero multiple of 8 bytes.
1048 		 */
1049 		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
1050 			ipstat.ips_toosmall++; /* XXX */
1051 			m_freem(m);
1052 			goto done;
1053 		}
1054 		m->m_flags |= M_FRAG;
1055 	} else {
1056 		m->m_flags &= ~M_FRAG;
1057 	}
1058 	ip->ip_off <<= 3;
1059 
1060 	ipstat.ips_fragments++;
1061 	m->m_pkthdr.header = ip;
1062 
1063 	/*
1064 	 * If the hardware has not done csum over this fragment
1065 	 * then csum_data is not valid at all.
1066 	 */
1067 	if ((m->m_pkthdr.csum_flags & (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID))
1068 	    == (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID)) {
1069 		m->m_pkthdr.csum_data = 0;
1070 		m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1071 	}
1072 
1073 	/*
1074 	 * Presence of header sizes in mbufs
1075 	 * would confuse code below.
1076 	 */
1077 	m->m_data += hlen;
1078 	m->m_len -= hlen;
1079 
1080 	/*
1081 	 * If first fragment to arrive, create a reassembly queue.
1082 	 */
1083 	if (fp == NULL) {
1084 		if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1085 			goto dropfrag;
1086 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
1087 		nipq++;
1088 		fp->ipq_nfrags = 1;
1089 		fp->ipq_ttl = IPFRAGTTL;
1090 		fp->ipq_p = ip->ip_p;
1091 		fp->ipq_id = ip->ip_id;
1092 		fp->ipq_src = ip->ip_src;
1093 		fp->ipq_dst = ip->ip_dst;
1094 		fp->ipq_frags = m;
1095 		m->m_nextpkt = NULL;
1096 		goto inserted;
1097 	} else {
1098 		fp->ipq_nfrags++;
1099 	}
1100 
1101 #define	GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1102 
1103 	/*
1104 	 * Find a segment which begins after this one does.
1105 	 */
1106 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1107 		if (GETIP(q)->ip_off > ip->ip_off)
1108 			break;
1109 	}
1110 
1111 	/*
1112 	 * If there is a preceding segment, it may provide some of
1113 	 * our data already.  If so, drop the data from the incoming
1114 	 * segment.  If it provides all of our data, drop us, otherwise
1115 	 * stick new segment in the proper place.
1116 	 *
1117 	 * If some of the data is dropped from the the preceding
1118 	 * segment, then it's checksum is invalidated.
1119 	 */
1120 	if (p) {
1121 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1122 		if (i > 0) {
1123 			if (i >= ip->ip_len)
1124 				goto dropfrag;
1125 			m_adj(m, i);
1126 			m->m_pkthdr.csum_flags = 0;
1127 			ip->ip_off += i;
1128 			ip->ip_len -= i;
1129 		}
1130 		m->m_nextpkt = p->m_nextpkt;
1131 		p->m_nextpkt = m;
1132 	} else {
1133 		m->m_nextpkt = fp->ipq_frags;
1134 		fp->ipq_frags = m;
1135 	}
1136 
1137 	/*
1138 	 * While we overlap succeeding segments trim them or,
1139 	 * if they are completely covered, dequeue them.
1140 	 */
1141 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1142 	     q = nq) {
1143 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1144 		if (i < GETIP(q)->ip_len) {
1145 			GETIP(q)->ip_len -= i;
1146 			GETIP(q)->ip_off += i;
1147 			m_adj(q, i);
1148 			q->m_pkthdr.csum_flags = 0;
1149 			break;
1150 		}
1151 		nq = q->m_nextpkt;
1152 		m->m_nextpkt = nq;
1153 		ipstat.ips_fragdropped++;
1154 		fp->ipq_nfrags--;
1155 		q->m_nextpkt = NULL;
1156 		m_freem(q);
1157 	}
1158 
1159 inserted:
1160 	/*
1161 	 * Check for complete reassembly and perform frag per packet
1162 	 * limiting.
1163 	 *
1164 	 * Frag limiting is performed here so that the nth frag has
1165 	 * a chance to complete the packet before we drop the packet.
1166 	 * As a result, n+1 frags are actually allowed per packet, but
1167 	 * only n will ever be stored. (n = maxfragsperpacket.)
1168 	 *
1169 	 */
1170 	next = 0;
1171 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1172 		if (GETIP(q)->ip_off != next) {
1173 			if (fp->ipq_nfrags > maxfragsperpacket) {
1174 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1175 				ip_freef(head, fp);
1176 			}
1177 			goto done;
1178 		}
1179 		next += GETIP(q)->ip_len;
1180 	}
1181 	/* Make sure the last packet didn't have the IP_MF flag */
1182 	if (p->m_flags & M_FRAG) {
1183 		if (fp->ipq_nfrags > maxfragsperpacket) {
1184 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1185 			ip_freef(head, fp);
1186 		}
1187 		goto done;
1188 	}
1189 
1190 	/*
1191 	 * Reassembly is complete.  Make sure the packet is a sane size.
1192 	 */
1193 	q = fp->ipq_frags;
1194 	ip = GETIP(q);
1195 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1196 		ipstat.ips_toolong++;
1197 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1198 		ip_freef(head, fp);
1199 		goto done;
1200 	}
1201 
1202 	/*
1203 	 * Concatenate fragments.
1204 	 */
1205 	m = q;
1206 	n = m->m_next;
1207 	m->m_next = NULL;
1208 	m_cat(m, n);
1209 	nq = q->m_nextpkt;
1210 	q->m_nextpkt = NULL;
1211 	for (q = nq; q != NULL; q = nq) {
1212 		nq = q->m_nextpkt;
1213 		q->m_nextpkt = NULL;
1214 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1215 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1216 		m_cat(m, q);
1217 	}
1218 
1219 	/*
1220 	 * Clean up the 1's complement checksum.  Carry over 16 bits must
1221 	 * be added back.  This assumes no more then 65535 packet fragments
1222 	 * were reassembled.  A second carry can also occur (but not a third).
1223 	 */
1224 	m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1225 				(m->m_pkthdr.csum_data >> 16);
1226 	if (m->m_pkthdr.csum_data > 0xFFFF)
1227 		m->m_pkthdr.csum_data -= 0xFFFF;
1228 
1229 	/*
1230 	 * Create header for new ip packet by
1231 	 * modifying header of first packet;
1232 	 * dequeue and discard fragment reassembly header.
1233 	 * Make header visible.
1234 	 */
1235 	ip->ip_len = next;
1236 	ip->ip_src = fp->ipq_src;
1237 	ip->ip_dst = fp->ipq_dst;
1238 	TAILQ_REMOVE(head, fp, ipq_list);
1239 	nipq--;
1240 	mpipe_free(&ipq_mpipe, fp);
1241 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1242 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1243 	/* some debugging cruft by sklower, below, will go away soon */
1244 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1245 		int plen = 0;
1246 
1247 		for (n = m; n; n = n->m_next)
1248 			plen += n->m_len;
1249 		m->m_pkthdr.len = plen;
1250 	}
1251 
1252 	/*
1253 	 * Reassembly complete, return the next protocol.
1254 	 *
1255 	 * Be sure to clear M_HASH to force the packet
1256 	 * to be re-characterized.
1257 	 *
1258 	 * Clear M_FRAG, we are no longer a fragment.
1259 	 */
1260 	m->m_flags &= ~(M_HASH | M_FRAG);
1261 
1262 	ipstat.ips_reassembled++;
1263 	lwkt_reltoken(&ipq_token);
1264 	return (m);
1265 
1266 dropfrag:
1267 	ipstat.ips_fragdropped++;
1268 	if (fp != NULL)
1269 		fp->ipq_nfrags--;
1270 	m_freem(m);
1271 done:
1272 	lwkt_reltoken(&ipq_token);
1273 	return (NULL);
1274 
1275 #undef GETIP
1276 }
1277 
1278 /*
1279  * Free a fragment reassembly header and all
1280  * associated datagrams.
1281  *
1282  * Called with ipq_token held.
1283  */
1284 static void
1285 ip_freef(struct ipqhead *fhp, struct ipq *fp)
1286 {
1287 	struct mbuf *q;
1288 
1289 	/*
1290 	 * Remove first to protect against blocking
1291 	 */
1292 	TAILQ_REMOVE(fhp, fp, ipq_list);
1293 
1294 	/*
1295 	 * Clean out at our leisure
1296 	 */
1297 	while (fp->ipq_frags) {
1298 		q = fp->ipq_frags;
1299 		fp->ipq_frags = q->m_nextpkt;
1300 		q->m_nextpkt = NULL;
1301 		m_freem(q);
1302 	}
1303 	mpipe_free(&ipq_mpipe, fp);
1304 	nipq--;
1305 }
1306 
1307 /*
1308  * IP timer processing;
1309  * if a timer expires on a reassembly
1310  * queue, discard it.
1311  */
1312 void
1313 ip_slowtimo(void)
1314 {
1315 	struct ipq *fp, *fp_temp;
1316 	struct ipqhead *head;
1317 	int i;
1318 
1319 	lwkt_gettoken(&ipq_token);
1320 	for (i = 0; i < IPREASS_NHASH; i++) {
1321 		head = &ipq[i];
1322 		TAILQ_FOREACH_MUTABLE(fp, head, ipq_list, fp_temp) {
1323 			if (--fp->ipq_ttl == 0) {
1324 				ipstat.ips_fragtimeout += fp->ipq_nfrags;
1325 				ip_freef(head, fp);
1326 			}
1327 		}
1328 	}
1329 	/*
1330 	 * If we are over the maximum number of fragments
1331 	 * (due to the limit being lowered), drain off
1332 	 * enough to get down to the new limit.
1333 	 */
1334 	if (maxnipq >= 0 && nipq > maxnipq) {
1335 		for (i = 0; i < IPREASS_NHASH; i++) {
1336 			head = &ipq[i];
1337 			while (nipq > maxnipq && !TAILQ_EMPTY(head)) {
1338 				ipstat.ips_fragdropped +=
1339 				    TAILQ_FIRST(head)->ipq_nfrags;
1340 				ip_freef(head, TAILQ_FIRST(head));
1341 			}
1342 		}
1343 	}
1344 	lwkt_reltoken(&ipq_token);
1345 	ipflow_slowtimo();
1346 }
1347 
1348 /*
1349  * Drain off all datagram fragments.
1350  */
1351 void
1352 ip_drain(void)
1353 {
1354 	struct ipqhead *head;
1355 	int i;
1356 
1357 	lwkt_gettoken(&ipq_token);
1358 	for (i = 0; i < IPREASS_NHASH; i++) {
1359 		head = &ipq[i];
1360 		while (!TAILQ_EMPTY(head)) {
1361 			ipstat.ips_fragdropped += TAILQ_FIRST(head)->ipq_nfrags;
1362 			ip_freef(head, TAILQ_FIRST(head));
1363 		}
1364 	}
1365 	lwkt_reltoken(&ipq_token);
1366 	in_rtqdrain();
1367 }
1368 
1369 /*
1370  * Do option processing on a datagram,
1371  * possibly discarding it if bad options are encountered,
1372  * or forwarding it if source-routed.
1373  * The pass argument is used when operating in the IPSTEALTH
1374  * mode to tell what options to process:
1375  * [LS]SRR (pass 0) or the others (pass 1).
1376  * The reason for as many as two passes is that when doing IPSTEALTH,
1377  * non-routing options should be processed only if the packet is for us.
1378  * Returns 1 if packet has been forwarded/freed,
1379  * 0 if the packet should be processed further.
1380  */
1381 static int
1382 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1383 {
1384 	struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1385 	struct ip *ip = mtod(m, struct ip *);
1386 	u_char *cp;
1387 	struct in_ifaddr *ia;
1388 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1389 	boolean_t forward = FALSE;
1390 	struct in_addr *sin, dst;
1391 	n_time ntime;
1392 
1393 	dst = ip->ip_dst;
1394 	cp = (u_char *)(ip + 1);
1395 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1396 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1397 		opt = cp[IPOPT_OPTVAL];
1398 		if (opt == IPOPT_EOL)
1399 			break;
1400 		if (opt == IPOPT_NOP)
1401 			optlen = 1;
1402 		else {
1403 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1404 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1405 				goto bad;
1406 			}
1407 			optlen = cp[IPOPT_OLEN];
1408 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1409 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1410 				goto bad;
1411 			}
1412 		}
1413 		switch (opt) {
1414 
1415 		default:
1416 			break;
1417 
1418 		/*
1419 		 * Source routing with record.
1420 		 * Find interface with current destination address.
1421 		 * If none on this machine then drop if strictly routed,
1422 		 * or do nothing if loosely routed.
1423 		 * Record interface address and bring up next address
1424 		 * component.  If strictly routed make sure next
1425 		 * address is on directly accessible net.
1426 		 */
1427 		case IPOPT_LSRR:
1428 		case IPOPT_SSRR:
1429 			if (ipstealth && pass > 0)
1430 				break;
1431 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1432 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1433 				goto bad;
1434 			}
1435 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1436 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1437 				goto bad;
1438 			}
1439 			ipaddr.sin_addr = ip->ip_dst;
1440 			ia = (struct in_ifaddr *)
1441 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1442 			if (ia == NULL) {
1443 				if (opt == IPOPT_SSRR) {
1444 					type = ICMP_UNREACH;
1445 					code = ICMP_UNREACH_SRCFAIL;
1446 					goto bad;
1447 				}
1448 				if (!ip_dosourceroute)
1449 					goto nosourcerouting;
1450 				/*
1451 				 * Loose routing, and not at next destination
1452 				 * yet; nothing to do except forward.
1453 				 */
1454 				break;
1455 			}
1456 			off--;			/* 0 origin */
1457 			if (off > optlen - (int)sizeof(struct in_addr)) {
1458 				/*
1459 				 * End of source route.  Should be for us.
1460 				 */
1461 				if (!ip_acceptsourceroute)
1462 					goto nosourcerouting;
1463 				save_rte(m, cp, ip->ip_src);
1464 				break;
1465 			}
1466 			if (ipstealth)
1467 				goto dropit;
1468 			if (!ip_dosourceroute) {
1469 				if (ipforwarding) {
1470 					char buf[sizeof "aaa.bbb.ccc.ddd"];
1471 
1472 					/*
1473 					 * Acting as a router, so generate ICMP
1474 					 */
1475 nosourcerouting:
1476 					strcpy(buf, inet_ntoa(ip->ip_dst));
1477 					log(LOG_WARNING,
1478 					    "attempted source route from %s to %s\n",
1479 					    inet_ntoa(ip->ip_src), buf);
1480 					type = ICMP_UNREACH;
1481 					code = ICMP_UNREACH_SRCFAIL;
1482 					goto bad;
1483 				} else {
1484 					/*
1485 					 * Not acting as a router,
1486 					 * so silently drop.
1487 					 */
1488 dropit:
1489 					ipstat.ips_cantforward++;
1490 					m_freem(m);
1491 					return (1);
1492 				}
1493 			}
1494 
1495 			/*
1496 			 * locate outgoing interface
1497 			 */
1498 			memcpy(&ipaddr.sin_addr, cp + off,
1499 			    sizeof ipaddr.sin_addr);
1500 
1501 			if (opt == IPOPT_SSRR) {
1502 #define	INA	struct in_ifaddr *
1503 #define	SA	struct sockaddr *
1504 				if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1505 									== NULL)
1506 					ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1507 			} else {
1508 				ia = ip_rtaddr(ipaddr.sin_addr, NULL);
1509 			}
1510 			if (ia == NULL) {
1511 				type = ICMP_UNREACH;
1512 				code = ICMP_UNREACH_SRCFAIL;
1513 				goto bad;
1514 			}
1515 			ip->ip_dst = ipaddr.sin_addr;
1516 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1517 			    sizeof(struct in_addr));
1518 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1519 			/*
1520 			 * Let ip_intr's mcast routing check handle mcast pkts
1521 			 */
1522 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1523 			break;
1524 
1525 		case IPOPT_RR:
1526 			if (ipstealth && pass == 0)
1527 				break;
1528 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1529 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1530 				goto bad;
1531 			}
1532 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1533 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1534 				goto bad;
1535 			}
1536 			/*
1537 			 * If no space remains, ignore.
1538 			 */
1539 			off--;			/* 0 origin */
1540 			if (off > optlen - (int)sizeof(struct in_addr))
1541 				break;
1542 			memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1543 			    sizeof ipaddr.sin_addr);
1544 			/*
1545 			 * locate outgoing interface; if we're the destination,
1546 			 * use the incoming interface (should be same).
1547 			 */
1548 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1549 			    (ia = ip_rtaddr(ipaddr.sin_addr, NULL)) == NULL) {
1550 				type = ICMP_UNREACH;
1551 				code = ICMP_UNREACH_HOST;
1552 				goto bad;
1553 			}
1554 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1555 			    sizeof(struct in_addr));
1556 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1557 			break;
1558 
1559 		case IPOPT_TS:
1560 			if (ipstealth && pass == 0)
1561 				break;
1562 			code = cp - (u_char *)ip;
1563 			if (optlen < 4 || optlen > 40) {
1564 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1565 				goto bad;
1566 			}
1567 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1568 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1569 				goto bad;
1570 			}
1571 			if (off > optlen - (int)sizeof(int32_t)) {
1572 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1573 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1574 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1575 					goto bad;
1576 				}
1577 				break;
1578 			}
1579 			off--;				/* 0 origin */
1580 			sin = (struct in_addr *)(cp + off);
1581 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1582 
1583 			case IPOPT_TS_TSONLY:
1584 				break;
1585 
1586 			case IPOPT_TS_TSANDADDR:
1587 				if (off + sizeof(n_time) +
1588 				    sizeof(struct in_addr) > optlen) {
1589 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1590 					goto bad;
1591 				}
1592 				ipaddr.sin_addr = dst;
1593 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1594 							    m->m_pkthdr.rcvif);
1595 				if (ia == NULL)
1596 					continue;
1597 				memcpy(sin, &IA_SIN(ia)->sin_addr,
1598 				    sizeof(struct in_addr));
1599 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1600 				off += sizeof(struct in_addr);
1601 				break;
1602 
1603 			case IPOPT_TS_PRESPEC:
1604 				if (off + sizeof(n_time) +
1605 				    sizeof(struct in_addr) > optlen) {
1606 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1607 					goto bad;
1608 				}
1609 				memcpy(&ipaddr.sin_addr, sin,
1610 				    sizeof(struct in_addr));
1611 				if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1612 					continue;
1613 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1614 				off += sizeof(struct in_addr);
1615 				break;
1616 
1617 			default:
1618 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1619 				goto bad;
1620 			}
1621 			ntime = iptime();
1622 			memcpy(cp + off, &ntime, sizeof(n_time));
1623 			cp[IPOPT_OFFSET] += sizeof(n_time);
1624 		}
1625 	}
1626 	if (forward && ipforwarding) {
1627 		ip_forward(m, TRUE, next_hop);
1628 		return (1);
1629 	}
1630 	return (0);
1631 bad:
1632 	icmp_error(m, type, code, 0, 0);
1633 	ipstat.ips_badoptions++;
1634 	return (1);
1635 }
1636 
1637 /*
1638  * Given address of next destination (final or next hop),
1639  * return internet address info of interface to be used to get there.
1640  */
1641 struct in_ifaddr *
1642 ip_rtaddr(struct in_addr dst, struct route *ro0)
1643 {
1644 	struct route sro, *ro;
1645 	struct sockaddr_in *sin;
1646 	struct in_ifaddr *ia;
1647 
1648 	if (ro0 != NULL) {
1649 		ro = ro0;
1650 	} else {
1651 		bzero(&sro, sizeof(sro));
1652 		ro = &sro;
1653 	}
1654 
1655 	sin = (struct sockaddr_in *)&ro->ro_dst;
1656 
1657 	if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1658 		if (ro->ro_rt != NULL) {
1659 			RTFREE(ro->ro_rt);
1660 			ro->ro_rt = NULL;
1661 		}
1662 		sin->sin_family = AF_INET;
1663 		sin->sin_len = sizeof *sin;
1664 		sin->sin_addr = dst;
1665 		rtalloc_ign(ro, RTF_PRCLONING);
1666 	}
1667 
1668 	if (ro->ro_rt == NULL)
1669 		return (NULL);
1670 
1671 	ia = ifatoia(ro->ro_rt->rt_ifa);
1672 
1673 	if (ro == &sro)
1674 		RTFREE(ro->ro_rt);
1675 	return ia;
1676 }
1677 
1678 /*
1679  * Save incoming source route for use in replies,
1680  * to be picked up later by ip_srcroute if the receiver is interested.
1681  */
1682 static void
1683 save_rte(struct mbuf *m, u_char *option, struct in_addr dst)
1684 {
1685 	struct m_tag *mtag;
1686 	struct ip_srcrt_opt *opt;
1687 	unsigned olen;
1688 
1689 	mtag = m_tag_get(PACKET_TAG_IPSRCRT, sizeof(*opt), MB_DONTWAIT);
1690 	if (mtag == NULL)
1691 		return;
1692 	opt = m_tag_data(mtag);
1693 
1694 	olen = option[IPOPT_OLEN];
1695 #ifdef DIAGNOSTIC
1696 	if (ipprintfs)
1697 		kprintf("save_rte: olen %d\n", olen);
1698 #endif
1699 	if (olen > sizeof(opt->ip_srcrt) - (1 + sizeof(dst))) {
1700 		m_tag_free(mtag);
1701 		return;
1702 	}
1703 	bcopy(option, opt->ip_srcrt.srcopt, olen);
1704 	opt->ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1705 	opt->ip_srcrt.dst = dst;
1706 	m_tag_prepend(m, mtag);
1707 }
1708 
1709 /*
1710  * Retrieve incoming source route for use in replies,
1711  * in the same form used by setsockopt.
1712  * The first hop is placed before the options, will be removed later.
1713  */
1714 struct mbuf *
1715 ip_srcroute(struct mbuf *m0)
1716 {
1717 	struct in_addr *p, *q;
1718 	struct mbuf *m;
1719 	struct m_tag *mtag;
1720 	struct ip_srcrt_opt *opt;
1721 
1722 	if (m0 == NULL)
1723 		return NULL;
1724 
1725 	mtag = m_tag_find(m0, PACKET_TAG_IPSRCRT, NULL);
1726 	if (mtag == NULL)
1727 		return NULL;
1728 	opt = m_tag_data(mtag);
1729 
1730 	if (opt->ip_nhops == 0)
1731 		return (NULL);
1732 	m = m_get(MB_DONTWAIT, MT_HEADER);
1733 	if (m == NULL)
1734 		return (NULL);
1735 
1736 #define	OPTSIZ	(sizeof(opt->ip_srcrt.nop) + sizeof(opt->ip_srcrt.srcopt))
1737 
1738 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1739 	m->m_len = opt->ip_nhops * sizeof(struct in_addr) +
1740 		   sizeof(struct in_addr) + OPTSIZ;
1741 #ifdef DIAGNOSTIC
1742 	if (ipprintfs) {
1743 		kprintf("ip_srcroute: nhops %d mlen %d",
1744 			opt->ip_nhops, m->m_len);
1745 	}
1746 #endif
1747 
1748 	/*
1749 	 * First save first hop for return route
1750 	 */
1751 	p = &opt->ip_srcrt.route[opt->ip_nhops - 1];
1752 	*(mtod(m, struct in_addr *)) = *p--;
1753 #ifdef DIAGNOSTIC
1754 	if (ipprintfs)
1755 		kprintf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1756 #endif
1757 
1758 	/*
1759 	 * Copy option fields and padding (nop) to mbuf.
1760 	 */
1761 	opt->ip_srcrt.nop = IPOPT_NOP;
1762 	opt->ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1763 	memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &opt->ip_srcrt.nop,
1764 	    OPTSIZ);
1765 	q = (struct in_addr *)(mtod(m, caddr_t) +
1766 	    sizeof(struct in_addr) + OPTSIZ);
1767 #undef OPTSIZ
1768 	/*
1769 	 * Record return path as an IP source route,
1770 	 * reversing the path (pointers are now aligned).
1771 	 */
1772 	while (p >= opt->ip_srcrt.route) {
1773 #ifdef DIAGNOSTIC
1774 		if (ipprintfs)
1775 			kprintf(" %x", ntohl(q->s_addr));
1776 #endif
1777 		*q++ = *p--;
1778 	}
1779 	/*
1780 	 * Last hop goes to final destination.
1781 	 */
1782 	*q = opt->ip_srcrt.dst;
1783 	m_tag_delete(m0, mtag);
1784 #ifdef DIAGNOSTIC
1785 	if (ipprintfs)
1786 		kprintf(" %x\n", ntohl(q->s_addr));
1787 #endif
1788 	return (m);
1789 }
1790 
1791 /*
1792  * Strip out IP options.
1793  */
1794 void
1795 ip_stripoptions(struct mbuf *m)
1796 {
1797 	int datalen;
1798 	struct ip *ip = mtod(m, struct ip *);
1799 	caddr_t opts;
1800 	int optlen;
1801 
1802 	optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1803 	opts = (caddr_t)(ip + 1);
1804 	datalen = m->m_len - (sizeof(struct ip) + optlen);
1805 	bcopy(opts + optlen, opts, datalen);
1806 	m->m_len -= optlen;
1807 	if (m->m_flags & M_PKTHDR)
1808 		m->m_pkthdr.len -= optlen;
1809 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1810 }
1811 
1812 u_char inetctlerrmap[PRC_NCMDS] = {
1813 	0,		0,		0,		0,
1814 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1815 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1816 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1817 	0,		0,		0,		0,
1818 	ENOPROTOOPT,	ECONNREFUSED
1819 };
1820 
1821 /*
1822  * Forward a packet.  If some error occurs return the sender
1823  * an icmp packet.  Note we can't always generate a meaningful
1824  * icmp message because icmp doesn't have a large enough repertoire
1825  * of codes and types.
1826  *
1827  * If not forwarding, just drop the packet.  This could be confusing
1828  * if ipforwarding was zero but some routing protocol was advancing
1829  * us as a gateway to somewhere.  However, we must let the routing
1830  * protocol deal with that.
1831  *
1832  * The using_srcrt parameter indicates whether the packet is being forwarded
1833  * via a source route.
1834  */
1835 void
1836 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1837 {
1838 	struct ip *ip = mtod(m, struct ip *);
1839 	struct rtentry *rt;
1840 	struct route fwd_ro;
1841 	int error, type = 0, code = 0, destmtu = 0;
1842 	struct mbuf *mcopy;
1843 	n_long dest;
1844 	struct in_addr pkt_dst;
1845 
1846 	dest = INADDR_ANY;
1847 	/*
1848 	 * Cache the destination address of the packet; this may be
1849 	 * changed by use of 'ipfw fwd'.
1850 	 */
1851 	pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1852 
1853 #ifdef DIAGNOSTIC
1854 	if (ipprintfs)
1855 		kprintf("forward: src %x dst %x ttl %x\n",
1856 		       ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1857 #endif
1858 
1859 	if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1860 		ipstat.ips_cantforward++;
1861 		m_freem(m);
1862 		return;
1863 	}
1864 	if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1865 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1866 		return;
1867 	}
1868 
1869 	bzero(&fwd_ro, sizeof(fwd_ro));
1870 	ip_rtaddr(pkt_dst, &fwd_ro);
1871 	if (fwd_ro.ro_rt == NULL) {
1872 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1873 		return;
1874 	}
1875 	rt = fwd_ro.ro_rt;
1876 
1877 	/*
1878 	 * Save the IP header and at most 8 bytes of the payload,
1879 	 * in case we need to generate an ICMP message to the src.
1880 	 *
1881 	 * XXX this can be optimized a lot by saving the data in a local
1882 	 * buffer on the stack (72 bytes at most), and only allocating the
1883 	 * mbuf if really necessary. The vast majority of the packets
1884 	 * are forwarded without having to send an ICMP back (either
1885 	 * because unnecessary, or because rate limited), so we are
1886 	 * really we are wasting a lot of work here.
1887 	 *
1888 	 * We don't use m_copy() because it might return a reference
1889 	 * to a shared cluster. Both this function and ip_output()
1890 	 * assume exclusive access to the IP header in `m', so any
1891 	 * data in a cluster may change before we reach icmp_error().
1892 	 */
1893 	MGETHDR(mcopy, MB_DONTWAIT, m->m_type);
1894 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, MB_DONTWAIT)) {
1895 		/*
1896 		 * It's probably ok if the pkthdr dup fails (because
1897 		 * the deep copy of the tag chain failed), but for now
1898 		 * be conservative and just discard the copy since
1899 		 * code below may some day want the tags.
1900 		 */
1901 		m_free(mcopy);
1902 		mcopy = NULL;
1903 	}
1904 	if (mcopy != NULL) {
1905 		mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1906 		    (int)ip->ip_len);
1907 		mcopy->m_pkthdr.len = mcopy->m_len;
1908 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1909 	}
1910 
1911 	if (!ipstealth)
1912 		ip->ip_ttl -= IPTTLDEC;
1913 
1914 	/*
1915 	 * If forwarding packet using same interface that it came in on,
1916 	 * perhaps should send a redirect to sender to shortcut a hop.
1917 	 * Only send redirect if source is sending directly to us,
1918 	 * and if packet was not source routed (or has any options).
1919 	 * Also, don't send redirect if forwarding using a default route
1920 	 * or a route modified by a redirect.
1921 	 */
1922 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1923 	    !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
1924 	    satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
1925 	    ipsendredirects && !using_srcrt && next_hop == NULL) {
1926 		u_long src = ntohl(ip->ip_src.s_addr);
1927 		struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
1928 
1929 		if (rt_ifa != NULL &&
1930 		    (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
1931 			if (rt->rt_flags & RTF_GATEWAY)
1932 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1933 			else
1934 				dest = pkt_dst.s_addr;
1935 			/*
1936 			 * Router requirements says to only send
1937 			 * host redirects.
1938 			 */
1939 			type = ICMP_REDIRECT;
1940 			code = ICMP_REDIRECT_HOST;
1941 #ifdef DIAGNOSTIC
1942 			if (ipprintfs)
1943 				kprintf("redirect (%d) to %x\n", code, dest);
1944 #endif
1945 		}
1946 	}
1947 
1948 	error = ip_output(m, NULL, &fwd_ro, IP_FORWARDING, NULL, NULL);
1949 	if (error == 0) {
1950 		ipstat.ips_forward++;
1951 		if (type == 0) {
1952 			if (mcopy) {
1953 				ipflow_create(&fwd_ro, mcopy);
1954 				m_freem(mcopy);
1955 			}
1956 			goto done;
1957 		} else {
1958 			ipstat.ips_redirectsent++;
1959 		}
1960 	} else {
1961 		ipstat.ips_cantforward++;
1962 	}
1963 
1964 	if (mcopy == NULL)
1965 		goto done;
1966 
1967 	/*
1968 	 * Send ICMP message.
1969 	 */
1970 
1971 	switch (error) {
1972 
1973 	case 0:				/* forwarded, but need redirect */
1974 		/* type, code set above */
1975 		break;
1976 
1977 	case ENETUNREACH:		/* shouldn't happen, checked above */
1978 	case EHOSTUNREACH:
1979 	case ENETDOWN:
1980 	case EHOSTDOWN:
1981 	default:
1982 		type = ICMP_UNREACH;
1983 		code = ICMP_UNREACH_HOST;
1984 		break;
1985 
1986 	case EMSGSIZE:
1987 		type = ICMP_UNREACH;
1988 		code = ICMP_UNREACH_NEEDFRAG;
1989 #ifdef IPSEC
1990 		/*
1991 		 * If the packet is routed over IPsec tunnel, tell the
1992 		 * originator the tunnel MTU.
1993 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1994 		 * XXX quickhack!!!
1995 		 */
1996 		if (fwd_ro.ro_rt != NULL) {
1997 			struct secpolicy *sp = NULL;
1998 			int ipsecerror;
1999 			int ipsechdr;
2000 			struct route *ro;
2001 
2002 			sp = ipsec4_getpolicybyaddr(mcopy,
2003 						    IPSEC_DIR_OUTBOUND,
2004 						    IP_FORWARDING,
2005 						    &ipsecerror);
2006 
2007 			if (sp == NULL)
2008 				destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2009 			else {
2010 				/* count IPsec header size */
2011 				ipsechdr = ipsec4_hdrsiz(mcopy,
2012 							 IPSEC_DIR_OUTBOUND,
2013 							 NULL);
2014 
2015 				/*
2016 				 * find the correct route for outer IPv4
2017 				 * header, compute tunnel MTU.
2018 				 *
2019 				 */
2020 				if (sp->req != NULL && sp->req->sav != NULL &&
2021 				    sp->req->sav->sah != NULL) {
2022 					ro = &sp->req->sav->sah->sa_route;
2023 					if (ro->ro_rt != NULL &&
2024 					    ro->ro_rt->rt_ifp != NULL) {
2025 						destmtu =
2026 						    ro->ro_rt->rt_ifp->if_mtu;
2027 						destmtu -= ipsechdr;
2028 					}
2029 				}
2030 
2031 				key_freesp(sp);
2032 			}
2033 		}
2034 #elif FAST_IPSEC
2035 		/*
2036 		 * If the packet is routed over IPsec tunnel, tell the
2037 		 * originator the tunnel MTU.
2038 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2039 		 * XXX quickhack!!!
2040 		 */
2041 		if (fwd_ro.ro_rt != NULL) {
2042 			struct secpolicy *sp = NULL;
2043 			int ipsecerror;
2044 			int ipsechdr;
2045 			struct route *ro;
2046 
2047 			sp = ipsec_getpolicybyaddr(mcopy,
2048 						   IPSEC_DIR_OUTBOUND,
2049 						   IP_FORWARDING,
2050 						   &ipsecerror);
2051 
2052 			if (sp == NULL)
2053 				destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2054 			else {
2055 				/* count IPsec header size */
2056 				ipsechdr = ipsec4_hdrsiz(mcopy,
2057 							 IPSEC_DIR_OUTBOUND,
2058 							 NULL);
2059 
2060 				/*
2061 				 * find the correct route for outer IPv4
2062 				 * header, compute tunnel MTU.
2063 				 */
2064 
2065 				if (sp->req != NULL &&
2066 				    sp->req->sav != NULL &&
2067 				    sp->req->sav->sah != NULL) {
2068 					ro = &sp->req->sav->sah->sa_route;
2069 					if (ro->ro_rt != NULL &&
2070 					    ro->ro_rt->rt_ifp != NULL) {
2071 						destmtu =
2072 						    ro->ro_rt->rt_ifp->if_mtu;
2073 						destmtu -= ipsechdr;
2074 					}
2075 				}
2076 
2077 				KEY_FREESP(&sp);
2078 			}
2079 		}
2080 #else /* !IPSEC && !FAST_IPSEC */
2081 		if (fwd_ro.ro_rt != NULL)
2082 			destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2083 #endif /*IPSEC*/
2084 		ipstat.ips_cantfrag++;
2085 		break;
2086 
2087 	case ENOBUFS:
2088 		/*
2089 		 * A router should not generate ICMP_SOURCEQUENCH as
2090 		 * required in RFC1812 Requirements for IP Version 4 Routers.
2091 		 * Source quench could be a big problem under DoS attacks,
2092 		 * or if the underlying interface is rate-limited.
2093 		 * Those who need source quench packets may re-enable them
2094 		 * via the net.inet.ip.sendsourcequench sysctl.
2095 		 */
2096 		if (!ip_sendsourcequench) {
2097 			m_freem(mcopy);
2098 			goto done;
2099 		} else {
2100 			type = ICMP_SOURCEQUENCH;
2101 			code = 0;
2102 		}
2103 		break;
2104 
2105 	case EACCES:			/* ipfw denied packet */
2106 		m_freem(mcopy);
2107 		goto done;
2108 	}
2109 	icmp_error(mcopy, type, code, dest, destmtu);
2110 done:
2111 	if (fwd_ro.ro_rt != NULL)
2112 		RTFREE(fwd_ro.ro_rt);
2113 }
2114 
2115 void
2116 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2117 	       struct mbuf *m)
2118 {
2119 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2120 		struct timeval tv;
2121 
2122 		microtime(&tv);
2123 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2124 		    SCM_TIMESTAMP, SOL_SOCKET);
2125 		if (*mp)
2126 			mp = &(*mp)->m_next;
2127 	}
2128 	if (inp->inp_flags & INP_RECVDSTADDR) {
2129 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2130 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2131 		if (*mp)
2132 			mp = &(*mp)->m_next;
2133 	}
2134 	if (inp->inp_flags & INP_RECVTTL) {
2135 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2136 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2137 		if (*mp)
2138 			mp = &(*mp)->m_next;
2139 	}
2140 #ifdef notyet
2141 	/* XXX
2142 	 * Moving these out of udp_input() made them even more broken
2143 	 * than they already were.
2144 	 */
2145 	/* options were tossed already */
2146 	if (inp->inp_flags & INP_RECVOPTS) {
2147 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2148 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2149 		if (*mp)
2150 			mp = &(*mp)->m_next;
2151 	}
2152 	/* ip_srcroute doesn't do what we want here, need to fix */
2153 	if (inp->inp_flags & INP_RECVRETOPTS) {
2154 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
2155 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2156 		if (*mp)
2157 			mp = &(*mp)->m_next;
2158 	}
2159 #endif
2160 	if (inp->inp_flags & INP_RECVIF) {
2161 		struct ifnet *ifp;
2162 		struct sdlbuf {
2163 			struct sockaddr_dl sdl;
2164 			u_char	pad[32];
2165 		} sdlbuf;
2166 		struct sockaddr_dl *sdp;
2167 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2168 
2169 		if (((ifp = m->m_pkthdr.rcvif)) &&
2170 		    ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2171 			sdp = IF_LLSOCKADDR(ifp);
2172 			/*
2173 			 * Change our mind and don't try copy.
2174 			 */
2175 			if ((sdp->sdl_family != AF_LINK) ||
2176 			    (sdp->sdl_len > sizeof(sdlbuf))) {
2177 				goto makedummy;
2178 			}
2179 			bcopy(sdp, sdl2, sdp->sdl_len);
2180 		} else {
2181 makedummy:
2182 			sdl2->sdl_len =
2183 			    offsetof(struct sockaddr_dl, sdl_data[0]);
2184 			sdl2->sdl_family = AF_LINK;
2185 			sdl2->sdl_index = 0;
2186 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2187 		}
2188 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2189 			IP_RECVIF, IPPROTO_IP);
2190 		if (*mp)
2191 			mp = &(*mp)->m_next;
2192 	}
2193 }
2194 
2195 /*
2196  * XXX these routines are called from the upper part of the kernel.
2197  *
2198  * They could also be moved to ip_mroute.c, since all the RSVP
2199  *  handling is done there already.
2200  */
2201 int
2202 ip_rsvp_init(struct socket *so)
2203 {
2204 	if (so->so_type != SOCK_RAW ||
2205 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2206 		return EOPNOTSUPP;
2207 
2208 	if (ip_rsvpd != NULL)
2209 		return EADDRINUSE;
2210 
2211 	ip_rsvpd = so;
2212 	/*
2213 	 * This may seem silly, but we need to be sure we don't over-increment
2214 	 * the RSVP counter, in case something slips up.
2215 	 */
2216 	if (!ip_rsvp_on) {
2217 		ip_rsvp_on = 1;
2218 		rsvp_on++;
2219 	}
2220 
2221 	return 0;
2222 }
2223 
2224 int
2225 ip_rsvp_done(void)
2226 {
2227 	ip_rsvpd = NULL;
2228 	/*
2229 	 * This may seem silly, but we need to be sure we don't over-decrement
2230 	 * the RSVP counter, in case something slips up.
2231 	 */
2232 	if (ip_rsvp_on) {
2233 		ip_rsvp_on = 0;
2234 		rsvp_on--;
2235 	}
2236 	return 0;
2237 }
2238 
2239 int
2240 rsvp_input(struct mbuf **mp, int *offp, int proto)
2241 {
2242 	struct mbuf *m = *mp;
2243 	int off;
2244 
2245 	off = *offp;
2246 	*mp = NULL;
2247 
2248 	if (rsvp_input_p) { /* call the real one if loaded */
2249 		*mp = m;
2250 		rsvp_input_p(mp, offp, proto);
2251 		return(IPPROTO_DONE);
2252 	}
2253 
2254 	/* Can still get packets with rsvp_on = 0 if there is a local member
2255 	 * of the group to which the RSVP packet is addressed.  But in this
2256 	 * case we want to throw the packet away.
2257 	 */
2258 
2259 	if (!rsvp_on) {
2260 		m_freem(m);
2261 		return(IPPROTO_DONE);
2262 	}
2263 
2264 	if (ip_rsvpd != NULL) {
2265 		*mp = m;
2266 		rip_input(mp, offp, proto);
2267 		return(IPPROTO_DONE);
2268 	}
2269 	/* Drop the packet */
2270 	m_freem(m);
2271 	return(IPPROTO_DONE);
2272 }
2273