xref: /dragonfly/sys/netinet/ip_input.c (revision af79c6e5)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34  * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
35  * $DragonFly: src/sys/netinet/ip_input.c,v 1.9 2003/12/02 08:00:22 asmodai Exp $
36  */
37 
38 #define	_IP_VHL
39 
40 #include "opt_bootp.h"
41 #include "opt_ipfw.h"
42 #include "opt_ipdn.h"
43 #include "opt_ipdivert.h"
44 #include "opt_ipfilter.h"
45 #include "opt_ipstealth.h"
46 #include "opt_ipsec.h"
47 #include "opt_pfil_hooks.h"
48 #include "opt_random_ip_id.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/domain.h>
55 #include <sys/protosw.h>
56 #include <sys/socket.h>
57 #include <sys/time.h>
58 #include <sys/kernel.h>
59 #include <sys/syslog.h>
60 #include <sys/sysctl.h>
61 
62 #include <net/if.h>
63 #include <net/if_types.h>
64 #include <net/if_var.h>
65 #include <net/if_dl.h>
66 #ifdef PFIL_HOOKS
67 #include <net/pfil.h>
68 #endif
69 #include <net/route.h>
70 #include <net/netisr.h>
71 #include <net/intrq.h>
72 
73 #include <netinet/in.h>
74 #include <netinet/in_systm.h>
75 #include <netinet/in_var.h>
76 #include <netinet/ip.h>
77 #include <netinet/in_pcb.h>
78 #include <netinet/ip_var.h>
79 #include <netinet/ip_icmp.h>
80 #include <machine/in_cksum.h>
81 
82 #include <netinet/ipprotosw.h>
83 
84 #include <sys/socketvar.h>
85 
86 #include <net/ipfw/ip_fw.h>
87 #include <net/dummynet/ip_dummynet.h>
88 
89 #ifdef IPSEC
90 #include <netinet6/ipsec.h>
91 #include <netproto/key/key.h>
92 #endif
93 
94 #ifdef FAST_IPSEC
95 #include <netipsec/ipsec.h>
96 #include <netipsec/key.h>
97 #endif
98 
99 int rsvp_on = 0;
100 static int ip_rsvp_on;
101 struct socket *ip_rsvpd;
102 
103 int	ipforwarding = 0;
104 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
105     &ipforwarding, 0, "Enable IP forwarding between interfaces");
106 
107 static int	ipsendredirects = 1; /* XXX */
108 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
109     &ipsendredirects, 0, "Enable sending IP redirects");
110 
111 int	ip_defttl = IPDEFTTL;
112 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
113     &ip_defttl, 0, "Maximum TTL on IP packets");
114 
115 static int	ip_dosourceroute = 0;
116 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
117     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
118 
119 static int	ip_acceptsourceroute = 0;
120 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
121     CTLFLAG_RW, &ip_acceptsourceroute, 0,
122     "Enable accepting source routed IP packets");
123 
124 static int	ip_keepfaith = 0;
125 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
126 	&ip_keepfaith,	0,
127 	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
128 
129 static int	nipq = 0;	/* total # of reass queues */
130 static int	maxnipq;
131 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
132 	&maxnipq, 0,
133 	"Maximum number of IPv4 fragment reassembly queue entries");
134 
135 static int    maxfragsperpacket;
136 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
137 	&maxfragsperpacket, 0,
138 	"Maximum number of IPv4 fragments allowed per packet");
139 
140 static int	ip_sendsourcequench = 0;
141 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
142 	&ip_sendsourcequench, 0,
143 	"Enable the transmission of source quench packets");
144 
145 /*
146  * XXX - Setting ip_checkinterface mostly implements the receive side of
147  * the Strong ES model described in RFC 1122, but since the routing table
148  * and transmit implementation do not implement the Strong ES model,
149  * setting this to 1 results in an odd hybrid.
150  *
151  * XXX - ip_checkinterface currently must be disabled if you use ipnat
152  * to translate the destination address to another local interface.
153  *
154  * XXX - ip_checkinterface must be disabled if you add IP aliases
155  * to the loopback interface instead of the interface where the
156  * packets for those addresses are received.
157  */
158 static int	ip_checkinterface = 0;
159 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
160     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
161 
162 #ifdef DIAGNOSTIC
163 static int	ipprintfs = 0;
164 #endif
165 
166 static struct ifqueue ipintrq;
167 static int	ipqmaxlen = IFQ_MAXLEN;
168 
169 extern	struct domain inetdomain;
170 extern	struct ipprotosw inetsw[];
171 u_char	ip_protox[IPPROTO_MAX];
172 struct	in_ifaddrhead in_ifaddrhead;		/* first inet address */
173 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table */
174 u_long	in_ifaddrhmask;				/* mask for hash table */
175 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
176     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
177 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
178     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
179 
180 struct ipstat ipstat;
181 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
182     &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
183 
184 /* Packet reassembly stuff */
185 #define IPREASS_NHASH_LOG2      6
186 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
187 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
188 #define IPREASS_HASH(x,y) \
189 	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
190 
191 static struct ipq ipq[IPREASS_NHASH];
192 const  int    ipintrq_present = 1;
193 
194 #ifdef IPCTL_DEFMTU
195 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
196     &ip_mtu, 0, "Default MTU");
197 #endif
198 
199 #ifdef IPSTEALTH
200 static int	ipstealth = 0;
201 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
202     &ipstealth, 0, "");
203 #endif
204 
205 
206 /* Firewall hooks */
207 ip_fw_chk_t *ip_fw_chk_ptr;
208 int fw_enable = 1 ;
209 int fw_one_pass = 1;
210 
211 /* Dummynet hooks */
212 ip_dn_io_t *ip_dn_io_ptr;
213 
214 #ifdef PFIL_HOOKS
215 struct pfil_head inet_pfil_hook;
216 #endif /* PFIL_HOOKS */
217 
218 /*
219  * XXX this is ugly -- the following two global variables are
220  * used to store packet state while it travels through the stack.
221  * Note that the code even makes assumptions on the size and
222  * alignment of fields inside struct ip_srcrt so e.g. adding some
223  * fields will break the code. This needs to be fixed.
224  *
225  * We need to save the IP options in case a protocol wants to respond
226  * to an incoming packet over the same route if the packet got here
227  * using IP source routing.  This allows connection establishment and
228  * maintenance when the remote end is on a network that is not known
229  * to us.
230  */
231 static int	ip_nhops = 0;
232 static	struct ip_srcrt {
233 	struct	in_addr dst;			/* final destination */
234 	char	nop;				/* one NOP to align */
235 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
236 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
237 } ip_srcrt;
238 
239 static void	save_rte(u_char *, struct in_addr);
240 static int	ip_dooptions(struct mbuf *m, int,
241 			struct sockaddr_in *next_hop);
242 static void	ip_forward(struct mbuf *m, int srcrt,
243 			struct sockaddr_in *next_hop);
244 static void	ip_freef(struct ipq *);
245 static struct	mbuf *ip_reass(struct mbuf *, struct ipq *,
246 		struct ipq *, u_int32_t *, u_int16_t *);
247 
248 /*
249  * IP initialization: fill in IP protocol switch table.
250  * All protocols not implemented in kernel go to raw IP protocol handler.
251  */
252 void
253 ip_init()
254 {
255 	struct ipprotosw *pr;
256 	int i;
257 
258 	TAILQ_INIT(&in_ifaddrhead);
259 	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
260 	pr = (struct ipprotosw *)pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
261 	if (pr == 0)
262 		panic("ip_init");
263 	for (i = 0; i < IPPROTO_MAX; i++)
264 		ip_protox[i] = pr - inetsw;
265 	for (pr = (struct ipprotosw *)inetdomain.dom_protosw;
266 	    pr < (struct ipprotosw *)inetdomain.dom_protoswNPROTOSW; pr++)
267 		if (pr->pr_domain->dom_family == PF_INET &&
268 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
269 			ip_protox[pr->pr_protocol] = pr - inetsw;
270 
271 #ifdef PFIL_HOOKS
272 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
273 	inet_pfil_hook.ph_af = AF_INET;
274 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
275 		printf("%s: WARNING: unable to register pfil hook, "
276 			"error %d\n", __func__, i);
277 #endif /* PFIL_HOOKS */
278 
279 	for (i = 0; i < IPREASS_NHASH; i++)
280 	    ipq[i].next = ipq[i].prev = &ipq[i];
281 
282 	maxnipq = nmbclusters / 32;
283 	maxfragsperpacket = 16;
284 
285 #ifndef RANDOM_IP_ID
286 	ip_id = time_second & 0xffff;
287 #endif
288 	ipintrq.ifq_maxlen = ipqmaxlen;
289 
290 	netisr_register(NETISR_IP, ip_mport, ip_input);
291 }
292 
293 /*
294  * XXX watch out this one. It is perhaps used as a cache for
295  * the most recently used route ? it is cleared in in_addroute()
296  * when a new route is successfully created.
297  */
298 struct	route ipforward_rt;
299 static struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
300 
301 /*
302  * Ip input routine.  Checksum and byte swap header.  If fragmented
303  * try to reassemble.  Process options.  Pass to next level.
304  */
305 void
306 ip_input(struct mbuf *m)
307 {
308 	struct ip *ip;
309 	struct ipq *fp;
310 	struct in_ifaddr *ia = NULL;
311 	struct ifaddr *ifa;
312 	int    i, hlen, checkif;
313 	u_short sum;
314 	struct in_addr pkt_dst;
315 	u_int32_t divert_info = 0;		/* packet divert/tee info */
316 	struct ip_fw_args args;
317 	int srcrt = 0;				/* forward (by PFIL_HOOKS) */
318 #ifdef PFIL_HOOKS
319 	struct in_addr odst;			/* original dst address(NAT) */
320 #endif
321 #ifdef FAST_IPSEC
322 	struct m_tag *mtag;
323 	struct tdb_ident *tdbi;
324 	struct secpolicy *sp;
325 	int s, error;
326 #endif /* FAST_IPSEC */
327 
328 	args.eh = NULL;
329 	args.oif = NULL;
330 	args.rule = NULL;
331 	args.divert_rule = 0;			/* divert cookie */
332 	args.next_hop = NULL;
333 
334 	/* Grab info from MT_TAG mbufs prepended to the chain.	*/
335 	for (; m && m->m_type == MT_TAG; m = m->m_next) {
336 		switch(m->_m_tag_id) {
337 		default:
338 			printf("ip_input: unrecognised MT_TAG tag %d\n",
339 			    m->_m_tag_id);
340 			break;
341 
342 		case PACKET_TAG_DUMMYNET:
343 			args.rule = ((struct dn_pkt *)m)->rule;
344 			break;
345 
346 		case PACKET_TAG_DIVERT:
347 			args.divert_rule = (int)m->m_hdr.mh_data & 0xffff;
348 			break;
349 
350 		case PACKET_TAG_IPFORWARD:
351 			args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
352 			break;
353 		}
354 	}
355 
356 	KASSERT(m != NULL && (m->m_flags & M_PKTHDR) != 0,
357 	    ("ip_input: no HDR"));
358 
359 	if (args.rule) {	/* dummynet already filtered us */
360 		ip = mtod(m, struct ip *);
361 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
362 		goto iphack ;
363 	}
364 
365 	ipstat.ips_total++;
366 
367 	if (m->m_pkthdr.len < sizeof(struct ip))
368 		goto tooshort;
369 
370 	if (m->m_len < sizeof (struct ip) &&
371 	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
372 		ipstat.ips_toosmall++;
373 		return;
374 	}
375 	ip = mtod(m, struct ip *);
376 
377 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
378 		ipstat.ips_badvers++;
379 		goto bad;
380 	}
381 
382 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
383 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
384 		ipstat.ips_badhlen++;
385 		goto bad;
386 	}
387 	if (hlen > m->m_len) {
388 		if ((m = m_pullup(m, hlen)) == 0) {
389 			ipstat.ips_badhlen++;
390 			return;
391 		}
392 		ip = mtod(m, struct ip *);
393 	}
394 
395 	/* 127/8 must not appear on wire - RFC1122 */
396 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
397 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
398 		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
399 			ipstat.ips_badaddr++;
400 			goto bad;
401 		}
402 	}
403 
404 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
405 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
406 	} else {
407 		if (hlen == sizeof(struct ip)) {
408 			sum = in_cksum_hdr(ip);
409 		} else {
410 			sum = in_cksum(m, hlen);
411 		}
412 	}
413 	if (sum) {
414 		ipstat.ips_badsum++;
415 		goto bad;
416 	}
417 
418 	/*
419 	 * Convert fields to host representation.
420 	 */
421 	ip->ip_len = ntohs(ip->ip_len);
422 	if (ip->ip_len < hlen) {
423 		ipstat.ips_badlen++;
424 		goto bad;
425 	}
426 	ip->ip_off = ntohs(ip->ip_off);
427 
428 	/*
429 	 * Check that the amount of data in the buffers
430 	 * is as at least much as the IP header would have us expect.
431 	 * Trim mbufs if longer than we expect.
432 	 * Drop packet if shorter than we expect.
433 	 */
434 	if (m->m_pkthdr.len < ip->ip_len) {
435 tooshort:
436 		ipstat.ips_tooshort++;
437 		goto bad;
438 	}
439 	if (m->m_pkthdr.len > ip->ip_len) {
440 		if (m->m_len == m->m_pkthdr.len) {
441 			m->m_len = ip->ip_len;
442 			m->m_pkthdr.len = ip->ip_len;
443 		} else
444 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
445 	}
446 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
447 	/*
448 	 * Bypass packet filtering for packets from a tunnel (gif).
449 	 */
450 	if (ipsec_gethist(m, NULL))
451 		goto pass;
452 #endif
453 
454 	/*
455 	 * IpHack's section.
456 	 * Right now when no processing on packet has done
457 	 * and it is still fresh out of network we do our black
458 	 * deals with it.
459 	 * - Firewall: deny/allow/divert
460 	 * - Xlate: translate packet's addr/port (NAT).
461 	 * - Pipe: pass pkt through dummynet.
462 	 * - Wrap: fake packet's addr/port <unimpl.>
463 	 * - Encapsulate: put it in another IP and send out. <unimp.>
464  	 */
465 
466 iphack:
467 #ifdef PFIL_HOOKS
468 	/*
469 	 * Run through list of hooks for input packets.
470 	 *
471 	 * NB: Beware of the destination address changing (e.g.
472 	 *     by NAT rewriting). When this happens, tell
473 	 *     ip_forward to do the right thing.
474 	 */
475 	odst = ip->ip_dst;
476 	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
477 	    PFIL_IN) != 0)
478 	    	return;
479 	if (m == NULL)			/* consumed by filter */
480 		return;
481 	ip = mtod(m, struct ip *);
482 	srcrt = (odst.s_addr != ip->ip_dst.s_addr);
483 #endif /* PFIL_HOOKS */
484 	if (fw_enable && IPFW_LOADED) {
485 		/*
486 		 * If we've been forwarded from the output side, then
487 		 * skip the firewall a second time
488 		 */
489 		if (args.next_hop)
490 			goto ours;
491 
492 		args.m = m;
493 		i = ip_fw_chk_ptr(&args);
494 		m = args.m;
495 
496 		if ( (i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
497 			if (m)
498 				m_freem(m);
499 			return;
500 		}
501 		ip = mtod(m, struct ip *); /* just in case m changed */
502 		if (i == 0 && args.next_hop == NULL)	/* common case */
503 			goto pass;
504                 if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) {
505 			/* Send packet to the appropriate pipe */
506 			ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
507 			return;
508 		}
509 #ifdef IPDIVERT
510 		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
511 			/* Divert or tee packet */
512 			divert_info = i;
513 			goto ours;
514 		}
515 #endif
516 		if (i == 0 && args.next_hop != NULL)
517 			goto pass;
518 		/*
519 		 * if we get here, the packet must be dropped
520 		 */
521 		m_freem(m);
522 		return;
523 	}
524 pass:
525 
526 	/*
527 	 * Process options and, if not destined for us,
528 	 * ship it on.  ip_dooptions returns 1 when an
529 	 * error was detected (causing an icmp message
530 	 * to be sent and the original packet to be freed).
531 	 */
532 	ip_nhops = 0;		/* for source routed packets */
533 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, args.next_hop))
534 		return;
535 
536         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
537          * matter if it is destined to another node, or whether it is
538          * a multicast one, RSVP wants it! and prevents it from being forwarded
539          * anywhere else. Also checks if the rsvp daemon is running before
540 	 * grabbing the packet.
541          */
542 	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
543 		goto ours;
544 
545 	/*
546 	 * Check our list of addresses, to see if the packet is for us.
547 	 * If we don't have any addresses, assume any unicast packet
548 	 * we receive might be for us (and let the upper layers deal
549 	 * with it).
550 	 */
551 	if (TAILQ_EMPTY(&in_ifaddrhead) &&
552 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
553 		goto ours;
554 
555 	/*
556 	 * Cache the destination address of the packet; this may be
557 	 * changed by use of 'ipfw fwd'.
558 	 */
559 	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
560 
561 	/*
562 	 * Enable a consistency check between the destination address
563 	 * and the arrival interface for a unicast packet (the RFC 1122
564 	 * strong ES model) if IP forwarding is disabled and the packet
565 	 * is not locally generated and the packet is not subject to
566 	 * 'ipfw fwd'.
567 	 *
568 	 * XXX - Checking also should be disabled if the destination
569 	 * address is ipnat'ed to a different interface.
570 	 *
571 	 * XXX - Checking is incompatible with IP aliases added
572 	 * to the loopback interface instead of the interface where
573 	 * the packets are received.
574 	 */
575 	checkif = ip_checkinterface && (ipforwarding == 0) &&
576 	    m->m_pkthdr.rcvif != NULL &&
577 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
578 	    (args.next_hop == NULL);
579 
580 	/*
581 	 * Check for exact addresses in the hash bucket.
582 	 */
583 	LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
584 		/*
585 		 * If the address matches, verify that the packet
586 		 * arrived via the correct interface if checking is
587 		 * enabled.
588 		 */
589 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
590 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
591 			goto ours;
592 	}
593 	/*
594 	 * Check for broadcast addresses.
595 	 *
596 	 * Only accept broadcast packets that arrive via the matching
597 	 * interface.  Reception of forwarded directed broadcasts would
598 	 * be handled via ip_forward() and ether_output() with the loopback
599 	 * into the stack for SIMPLEX interfaces handled by ether_output().
600 	 */
601 	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
602 	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
603 			if (ifa->ifa_addr->sa_family != AF_INET)
604 				continue;
605 			ia = ifatoia(ifa);
606 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
607 			    pkt_dst.s_addr)
608 				goto ours;
609 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
610 				goto ours;
611 #ifdef BOOTP_COMPAT
612 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
613 				goto ours;
614 #endif
615 		}
616 	}
617 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
618 		struct in_multi *inm;
619 		if (ip_mrouter) {
620 			/*
621 			 * If we are acting as a multicast router, all
622 			 * incoming multicast packets are passed to the
623 			 * kernel-level multicast forwarding function.
624 			 * The packet is returned (relatively) intact; if
625 			 * ip_mforward() returns a non-zero value, the packet
626 			 * must be discarded, else it may be accepted below.
627 			 */
628 			if (ip_mforward &&
629 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
630 				ipstat.ips_cantforward++;
631 				m_freem(m);
632 				return;
633 			}
634 
635 			/*
636 			 * The process-level routing daemon needs to receive
637 			 * all multicast IGMP packets, whether or not this
638 			 * host belongs to their destination groups.
639 			 */
640 			if (ip->ip_p == IPPROTO_IGMP)
641 				goto ours;
642 			ipstat.ips_forward++;
643 		}
644 		/*
645 		 * See if we belong to the destination multicast group on the
646 		 * arrival interface.
647 		 */
648 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
649 		if (inm == NULL) {
650 			ipstat.ips_notmember++;
651 			m_freem(m);
652 			return;
653 		}
654 		goto ours;
655 	}
656 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
657 		goto ours;
658 	if (ip->ip_dst.s_addr == INADDR_ANY)
659 		goto ours;
660 
661 	/*
662 	 * FAITH(Firewall Aided Internet Translator)
663 	 */
664 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
665 		if (ip_keepfaith) {
666 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
667 				goto ours;
668 		}
669 		m_freem(m);
670 		return;
671 	}
672 
673 	/*
674 	 * Not for us; forward if possible and desirable.
675 	 */
676 	if (ipforwarding == 0) {
677 		ipstat.ips_cantforward++;
678 		m_freem(m);
679 	} else {
680 #ifdef IPSEC
681 		/*
682 		 * Enforce inbound IPsec SPD.
683 		 */
684 		if (ipsec4_in_reject(m, NULL)) {
685 			ipsecstat.in_polvio++;
686 			goto bad;
687 		}
688 #endif /* IPSEC */
689 #ifdef FAST_IPSEC
690 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
691 		s = splnet();
692 		if (mtag != NULL) {
693 			tdbi = (struct tdb_ident *)(mtag + 1);
694 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
695 		} else {
696 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
697 						   IP_FORWARDING, &error);
698 		}
699 		if (sp == NULL) {	/* NB: can happen if error */
700 			splx(s);
701 			/*XXX error stat???*/
702 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
703 			goto bad;
704 		}
705 
706 		/*
707 		 * Check security policy against packet attributes.
708 		 */
709 		error = ipsec_in_reject(sp, m);
710 		KEY_FREESP(&sp);
711 		splx(s);
712 		if (error) {
713 			ipstat.ips_cantforward++;
714 			goto bad;
715 		}
716 #endif /* FAST_IPSEC */
717 		ip_forward(m, srcrt, args.next_hop);
718 	}
719 	return;
720 
721 ours:
722 #ifdef IPSTEALTH
723 	/*
724 	 * IPSTEALTH: Process non-routing options only
725 	 * if the packet is destined for us.
726 	 */
727 	if (ipstealth && hlen > sizeof (struct ip) &&
728 	    ip_dooptions(m, 1, args.next_hop))
729 		return;
730 #endif /* IPSTEALTH */
731 
732 	/* Count the packet in the ip address stats */
733 	if (ia != NULL) {
734 		ia->ia_ifa.if_ipackets++;
735 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
736 	}
737 
738 	/*
739 	 * If offset or IP_MF are set, must reassemble.
740 	 * Otherwise, nothing need be done.
741 	 * (We could look in the reassembly queue to see
742 	 * if the packet was previously fragmented,
743 	 * but it's not worth the time; just let them time out.)
744 	 */
745 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
746 
747 		/* If maxnipq is 0, never accept fragments. */
748 		if (maxnipq == 0) {
749                 	ipstat.ips_fragments++;
750 			ipstat.ips_fragdropped++;
751 			goto bad;
752 		}
753 
754 		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
755 		/*
756 		 * Look for queue of fragments
757 		 * of this datagram.
758 		 */
759 		for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
760 			if (ip->ip_id == fp->ipq_id &&
761 			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
762 			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
763 			    ip->ip_p == fp->ipq_p)
764 				goto found;
765 
766 		fp = 0;
767 
768 		/*
769 		 * Enforce upper bound on number of fragmented packets
770 		 * for which we attempt reassembly;
771 		 * If maxnipq is -1, accept all fragments without limitation.
772 		 */
773 		if ((nipq > maxnipq) && (maxnipq > 0)) {
774 		    /*
775 		     * drop something from the tail of the current queue
776 		     * before proceeding further
777 		     */
778 		    if (ipq[sum].prev == &ipq[sum]) {   /* gak */
779 			for (i = 0; i < IPREASS_NHASH; i++) {
780 			    if (ipq[i].prev != &ipq[i]) {
781 				ipstat.ips_fragtimeout +=
782 				    ipq[i].prev->ipq_nfrags;
783 				ip_freef(ipq[i].prev);
784 				break;
785 			    }
786 			}
787 		    } else {
788 			ipstat.ips_fragtimeout += ipq[sum].prev->ipq_nfrags;
789 			ip_freef(ipq[sum].prev);
790 		    }
791 		}
792 found:
793 		/*
794 		 * Adjust ip_len to not reflect header,
795 		 * convert offset of this to bytes.
796 		 */
797 		ip->ip_len -= hlen;
798 		if (ip->ip_off & IP_MF) {
799 		        /*
800 		         * Make sure that fragments have a data length
801 			 * that's a non-zero multiple of 8 bytes.
802 		         */
803 			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
804 				ipstat.ips_toosmall++; /* XXX */
805 				goto bad;
806 			}
807 			m->m_flags |= M_FRAG;
808 		} else
809 			m->m_flags &= ~M_FRAG;
810 		ip->ip_off <<= 3;
811 
812 		/*
813 		 * Attempt reassembly; if it succeeds, proceed.
814 		 * ip_reass() will return a different mbuf, and update
815 		 * the divert info in divert_info and args.divert_rule.
816 		 */
817 		ipstat.ips_fragments++;
818 		m->m_pkthdr.header = ip;
819 		m = ip_reass(m,
820 		    fp, &ipq[sum], &divert_info, &args.divert_rule);
821 		if (m == 0)
822 			return;
823 		ipstat.ips_reassembled++;
824 		ip = mtod(m, struct ip *);
825 		/* Get the header length of the reassembled packet */
826 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
827 #ifdef IPDIVERT
828 		/* Restore original checksum before diverting packet */
829 		if (divert_info != 0) {
830 			ip->ip_len += hlen;
831 			ip->ip_len = htons(ip->ip_len);
832 			ip->ip_off = htons(ip->ip_off);
833 			ip->ip_sum = 0;
834 			if (hlen == sizeof(struct ip))
835 				ip->ip_sum = in_cksum_hdr(ip);
836 			else
837 				ip->ip_sum = in_cksum(m, hlen);
838 			ip->ip_off = ntohs(ip->ip_off);
839 			ip->ip_len = ntohs(ip->ip_len);
840 			ip->ip_len -= hlen;
841 		}
842 #endif
843 	} else {
844 		ip->ip_len -= hlen;
845 	}
846 
847 #ifdef IPDIVERT
848 	/*
849 	 * Divert or tee packet to the divert protocol if required.
850 	 */
851 	if (divert_info != 0) {
852 		struct mbuf *clone = NULL;
853 
854 		/* Clone packet if we're doing a 'tee' */
855 		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
856 			clone = m_dup(m, M_DONTWAIT);
857 
858 		/* Restore packet header fields to original values */
859 		ip->ip_len += hlen;
860 		ip->ip_len = htons(ip->ip_len);
861 		ip->ip_off = htons(ip->ip_off);
862 
863 		/* Deliver packet to divert input routine */
864 		divert_packet(m, 1, divert_info & 0xffff, args.divert_rule);
865 		ipstat.ips_delivered++;
866 
867 		/* If 'tee', continue with original packet */
868 		if (clone == NULL)
869 			return;
870 		m = clone;
871 		ip = mtod(m, struct ip *);
872 		ip->ip_len += hlen;
873 		/*
874 		 * Jump backwards to complete processing of the
875 		 * packet. But first clear divert_info to avoid
876 		 * entering this block again.
877 		 * We do not need to clear args.divert_rule
878 		 * or args.next_hop as they will not be used.
879 		 */
880 		divert_info = 0;
881 		goto pass;
882 	}
883 #endif
884 
885 #ifdef IPSEC
886 	/*
887 	 * enforce IPsec policy checking if we are seeing last header.
888 	 * note that we do not visit this with protocols with pcb layer
889 	 * code - like udp/tcp/raw ip.
890 	 */
891 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
892 	    ipsec4_in_reject(m, NULL)) {
893 		ipsecstat.in_polvio++;
894 		goto bad;
895 	}
896 #endif
897 #if FAST_IPSEC
898 	/*
899 	 * enforce IPsec policy checking if we are seeing last header.
900 	 * note that we do not visit this with protocols with pcb layer
901 	 * code - like udp/tcp/raw ip.
902 	 */
903 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
904 		/*
905 		 * Check if the packet has already had IPsec processing
906 		 * done.  If so, then just pass it along.  This tag gets
907 		 * set during AH, ESP, etc. input handling, before the
908 		 * packet is returned to the ip input queue for delivery.
909 		 */
910 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
911 		s = splnet();
912 		if (mtag != NULL) {
913 			tdbi = (struct tdb_ident *)(mtag + 1);
914 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
915 		} else {
916 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
917 						   IP_FORWARDING, &error);
918 		}
919 		if (sp != NULL) {
920 			/*
921 			 * Check security policy against packet attributes.
922 			 */
923 			error = ipsec_in_reject(sp, m);
924 			KEY_FREESP(&sp);
925 		} else {
926 			/* XXX error stat??? */
927 			error = EINVAL;
928 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
929 			goto bad;
930 		}
931 		splx(s);
932 		if (error)
933 			goto bad;
934 	}
935 #endif /* FAST_IPSEC */
936 
937 	/*
938 	 * Switch out to protocol's input routine.
939 	 *
940 	 * XXX queue packet to protocol's message port.
941 	 */
942 	ipstat.ips_delivered++;
943 	if (args.next_hop && ip->ip_p == IPPROTO_TCP) {
944 		/* TCP needs IPFORWARD info if available */
945 		struct m_hdr tag;
946 
947 		tag.mh_type = MT_TAG;
948 		tag.mh_flags = PACKET_TAG_IPFORWARD;
949 		tag.mh_data = (caddr_t)args.next_hop;
950 		tag.mh_next = m;
951 
952 		(*inetsw[ip_protox[ip->ip_p]].pr_input)(
953 			(struct mbuf *)&tag, hlen, ip->ip_p);
954     	} else {
955 		(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen, ip->ip_p);
956 	}
957 	return;
958 bad:
959 	m_freem(m);
960 }
961 
962 /*
963  * Take incoming datagram fragment and try to reassemble it into
964  * whole datagram.  If a chain for reassembly of this datagram already
965  * exists, then it is given as fp; otherwise have to make a chain.
966  *
967  * When IPDIVERT enabled, keep additional state with each packet that
968  * tells us if we need to divert or tee the packet we're building.
969  * In particular, *divinfo includes the port and TEE flag,
970  * *divert_rule is the number of the matching rule.
971  */
972 
973 static struct mbuf *
974 ip_reass(struct mbuf *m, struct ipq *fp, struct ipq *where,
975 	u_int32_t *divinfo, u_int16_t *divert_rule)
976 {
977 	struct ip *ip = mtod(m, struct ip *);
978 	struct mbuf *p = 0, *q, *nq;
979 	struct mbuf *t;
980 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
981 	int i, next;
982 
983 	/*
984 	 * Presence of header sizes in mbufs
985 	 * would confuse code below.
986 	 */
987 	m->m_data += hlen;
988 	m->m_len -= hlen;
989 
990 	/*
991 	 * If first fragment to arrive, create a reassembly queue.
992 	 */
993 	if (fp == 0) {
994 		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
995 			goto dropfrag;
996 		fp = mtod(t, struct ipq *);
997 		insque(fp, where);
998 		nipq++;
999 		fp->ipq_nfrags = 1;
1000 		fp->ipq_ttl = IPFRAGTTL;
1001 		fp->ipq_p = ip->ip_p;
1002 		fp->ipq_id = ip->ip_id;
1003 		fp->ipq_src = ip->ip_src;
1004 		fp->ipq_dst = ip->ip_dst;
1005 		fp->ipq_frags = m;
1006 		m->m_nextpkt = NULL;
1007 #ifdef IPDIVERT
1008 		fp->ipq_div_info = 0;
1009 		fp->ipq_div_cookie = 0;
1010 #endif
1011 		goto inserted;
1012 	} else {
1013 		fp->ipq_nfrags++;
1014 	}
1015 
1016 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1017 
1018 	/*
1019 	 * Find a segment which begins after this one does.
1020 	 */
1021 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1022 		if (GETIP(q)->ip_off > ip->ip_off)
1023 			break;
1024 
1025 	/*
1026 	 * If there is a preceding segment, it may provide some of
1027 	 * our data already.  If so, drop the data from the incoming
1028 	 * segment.  If it provides all of our data, drop us, otherwise
1029 	 * stick new segment in the proper place.
1030 	 *
1031 	 * If some of the data is dropped from the the preceding
1032 	 * segment, then it's checksum is invalidated.
1033 	 */
1034 	if (p) {
1035 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1036 		if (i > 0) {
1037 			if (i >= ip->ip_len)
1038 				goto dropfrag;
1039 			m_adj(m, i);
1040 			m->m_pkthdr.csum_flags = 0;
1041 			ip->ip_off += i;
1042 			ip->ip_len -= i;
1043 		}
1044 		m->m_nextpkt = p->m_nextpkt;
1045 		p->m_nextpkt = m;
1046 	} else {
1047 		m->m_nextpkt = fp->ipq_frags;
1048 		fp->ipq_frags = m;
1049 	}
1050 
1051 	/*
1052 	 * While we overlap succeeding segments trim them or,
1053 	 * if they are completely covered, dequeue them.
1054 	 */
1055 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1056 	     q = nq) {
1057 		i = (ip->ip_off + ip->ip_len) -
1058 		    GETIP(q)->ip_off;
1059 		if (i < GETIP(q)->ip_len) {
1060 			GETIP(q)->ip_len -= i;
1061 			GETIP(q)->ip_off += i;
1062 			m_adj(q, i);
1063 			q->m_pkthdr.csum_flags = 0;
1064 			break;
1065 		}
1066 		nq = q->m_nextpkt;
1067 		m->m_nextpkt = nq;
1068 		ipstat.ips_fragdropped++;
1069 		fp->ipq_nfrags--;
1070 		m_freem(q);
1071 	}
1072 
1073 inserted:
1074 
1075 #ifdef IPDIVERT
1076 	/*
1077 	 * Transfer firewall instructions to the fragment structure.
1078 	 * Only trust info in the fragment at offset 0.
1079 	 */
1080 	if (ip->ip_off == 0) {
1081 		fp->ipq_div_info = *divinfo;
1082 		fp->ipq_div_cookie = *divert_rule;
1083 	}
1084 	*divinfo = 0;
1085 	*divert_rule = 0;
1086 #endif
1087 
1088 	/*
1089 	 * Check for complete reassembly and perform frag per packet
1090 	 * limiting.
1091 	 *
1092 	 * Frag limiting is performed here so that the nth frag has
1093 	 * a chance to complete the packet before we drop the packet.
1094 	 * As a result, n+1 frags are actually allowed per packet, but
1095 	 * only n will ever be stored. (n = maxfragsperpacket.)
1096 	 *
1097 	 */
1098 	next = 0;
1099 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1100 		if (GETIP(q)->ip_off != next) {
1101 			if (fp->ipq_nfrags > maxfragsperpacket) {
1102 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1103 				ip_freef(fp);
1104 			}
1105 			return (0);
1106 		}
1107 		next += GETIP(q)->ip_len;
1108 	}
1109 	/* Make sure the last packet didn't have the IP_MF flag */
1110 	if (p->m_flags & M_FRAG) {
1111 		if (fp->ipq_nfrags > maxfragsperpacket) {
1112 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1113 			ip_freef(fp);
1114 		}
1115 		return (0);
1116 	}
1117 
1118 	/*
1119 	 * Reassembly is complete.  Make sure the packet is a sane size.
1120 	 */
1121 	q = fp->ipq_frags;
1122 	ip = GETIP(q);
1123 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1124 		ipstat.ips_toolong++;
1125 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1126 		ip_freef(fp);
1127 		return (0);
1128 	}
1129 
1130 	/*
1131 	 * Concatenate fragments.
1132 	 */
1133 	m = q;
1134 	t = m->m_next;
1135 	m->m_next = 0;
1136 	m_cat(m, t);
1137 	nq = q->m_nextpkt;
1138 	q->m_nextpkt = 0;
1139 	for (q = nq; q != NULL; q = nq) {
1140 		nq = q->m_nextpkt;
1141 		q->m_nextpkt = NULL;
1142 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1143 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1144 		m_cat(m, q);
1145 	}
1146 
1147 #ifdef IPDIVERT
1148 	/*
1149 	 * Extract firewall instructions from the fragment structure.
1150 	 */
1151 	*divinfo = fp->ipq_div_info;
1152 	*divert_rule = fp->ipq_div_cookie;
1153 #endif
1154 
1155 	/*
1156 	 * Create header for new ip packet by
1157 	 * modifying header of first packet;
1158 	 * dequeue and discard fragment reassembly header.
1159 	 * Make header visible.
1160 	 */
1161 	ip->ip_len = next;
1162 	ip->ip_src = fp->ipq_src;
1163 	ip->ip_dst = fp->ipq_dst;
1164 	remque(fp);
1165 	nipq--;
1166 	(void) m_free(dtom(fp));
1167 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1168 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1169 	/* some debugging cruft by sklower, below, will go away soon */
1170 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1171 		int plen = 0;
1172 		for (t = m; t; t = t->m_next)
1173 			plen += t->m_len;
1174 		m->m_pkthdr.len = plen;
1175 	}
1176 	return (m);
1177 
1178 dropfrag:
1179 #ifdef IPDIVERT
1180 	*divinfo = 0;
1181 	*divert_rule = 0;
1182 #endif
1183 	ipstat.ips_fragdropped++;
1184 	if (fp != 0)
1185 		fp->ipq_nfrags--;
1186 	m_freem(m);
1187 	return (0);
1188 
1189 #undef GETIP
1190 }
1191 
1192 /*
1193  * Free a fragment reassembly header and all
1194  * associated datagrams.
1195  */
1196 static void
1197 ip_freef(fp)
1198 	struct ipq *fp;
1199 {
1200 	struct mbuf *q;
1201 
1202 	while (fp->ipq_frags) {
1203 		q = fp->ipq_frags;
1204 		fp->ipq_frags = q->m_nextpkt;
1205 		m_freem(q);
1206 	}
1207 	remque(fp);
1208 	(void) m_free(dtom(fp));
1209 	nipq--;
1210 }
1211 
1212 /*
1213  * IP timer processing;
1214  * if a timer expires on a reassembly
1215  * queue, discard it.
1216  */
1217 void
1218 ip_slowtimo()
1219 {
1220 	struct ipq *fp;
1221 	int s = splnet();
1222 	int i;
1223 
1224 	for (i = 0; i < IPREASS_NHASH; i++) {
1225 		fp = ipq[i].next;
1226 		if (fp == 0)
1227 			continue;
1228 		while (fp != &ipq[i]) {
1229 			--fp->ipq_ttl;
1230 			fp = fp->next;
1231 			if (fp->prev->ipq_ttl == 0) {
1232 				ipstat.ips_fragtimeout += fp->prev->ipq_nfrags;
1233 				ip_freef(fp->prev);
1234 			}
1235 		}
1236 	}
1237 	/*
1238 	 * If we are over the maximum number of fragments
1239 	 * (due to the limit being lowered), drain off
1240 	 * enough to get down to the new limit.
1241 	 */
1242 	if (maxnipq >= 0 && nipq > maxnipq) {
1243 		for (i = 0; i < IPREASS_NHASH; i++) {
1244 			while (nipq > maxnipq &&
1245 				(ipq[i].next != &ipq[i])) {
1246 				ipstat.ips_fragdropped +=
1247 				    ipq[i].next->ipq_nfrags;
1248 				ip_freef(ipq[i].next);
1249 			}
1250 		}
1251 	}
1252 	ipflow_slowtimo();
1253 	splx(s);
1254 }
1255 
1256 /*
1257  * Drain off all datagram fragments.
1258  */
1259 void
1260 ip_drain()
1261 {
1262 	int     i;
1263 
1264 	for (i = 0; i < IPREASS_NHASH; i++) {
1265 		while (ipq[i].next != &ipq[i]) {
1266 			ipstat.ips_fragdropped += ipq[i].next->ipq_nfrags;
1267 			ip_freef(ipq[i].next);
1268 		}
1269 	}
1270 	in_rtqdrain();
1271 }
1272 
1273 /*
1274  * Do option processing on a datagram,
1275  * possibly discarding it if bad options are encountered,
1276  * or forwarding it if source-routed.
1277  * The pass argument is used when operating in the IPSTEALTH
1278  * mode to tell what options to process:
1279  * [LS]SRR (pass 0) or the others (pass 1).
1280  * The reason for as many as two passes is that when doing IPSTEALTH,
1281  * non-routing options should be processed only if the packet is for us.
1282  * Returns 1 if packet has been forwarded/freed,
1283  * 0 if the packet should be processed further.
1284  */
1285 static int
1286 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1287 {
1288 	struct ip *ip = mtod(m, struct ip *);
1289 	u_char *cp;
1290 	struct in_ifaddr *ia;
1291 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1292 	struct in_addr *sin, dst;
1293 	n_time ntime;
1294 
1295 	dst = ip->ip_dst;
1296 	cp = (u_char *)(ip + 1);
1297 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1298 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1299 		opt = cp[IPOPT_OPTVAL];
1300 		if (opt == IPOPT_EOL)
1301 			break;
1302 		if (opt == IPOPT_NOP)
1303 			optlen = 1;
1304 		else {
1305 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1306 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1307 				goto bad;
1308 			}
1309 			optlen = cp[IPOPT_OLEN];
1310 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1311 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1312 				goto bad;
1313 			}
1314 		}
1315 		switch (opt) {
1316 
1317 		default:
1318 			break;
1319 
1320 		/*
1321 		 * Source routing with record.
1322 		 * Find interface with current destination address.
1323 		 * If none on this machine then drop if strictly routed,
1324 		 * or do nothing if loosely routed.
1325 		 * Record interface address and bring up next address
1326 		 * component.  If strictly routed make sure next
1327 		 * address is on directly accessible net.
1328 		 */
1329 		case IPOPT_LSRR:
1330 		case IPOPT_SSRR:
1331 #ifdef IPSTEALTH
1332 			if (ipstealth && pass > 0)
1333 				break;
1334 #endif
1335 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1336 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1337 				goto bad;
1338 			}
1339 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1340 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1341 				goto bad;
1342 			}
1343 			ipaddr.sin_addr = ip->ip_dst;
1344 			ia = (struct in_ifaddr *)
1345 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1346 			if (ia == 0) {
1347 				if (opt == IPOPT_SSRR) {
1348 					type = ICMP_UNREACH;
1349 					code = ICMP_UNREACH_SRCFAIL;
1350 					goto bad;
1351 				}
1352 				if (!ip_dosourceroute)
1353 					goto nosourcerouting;
1354 				/*
1355 				 * Loose routing, and not at next destination
1356 				 * yet; nothing to do except forward.
1357 				 */
1358 				break;
1359 			}
1360 			off--;			/* 0 origin */
1361 			if (off > optlen - (int)sizeof(struct in_addr)) {
1362 				/*
1363 				 * End of source route.  Should be for us.
1364 				 */
1365 				if (!ip_acceptsourceroute)
1366 					goto nosourcerouting;
1367 				save_rte(cp, ip->ip_src);
1368 				break;
1369 			}
1370 #ifdef IPSTEALTH
1371 			if (ipstealth)
1372 				goto dropit;
1373 #endif
1374 			if (!ip_dosourceroute) {
1375 				if (ipforwarding) {
1376 					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1377 					/*
1378 					 * Acting as a router, so generate ICMP
1379 					 */
1380 nosourcerouting:
1381 					strcpy(buf, inet_ntoa(ip->ip_dst));
1382 					log(LOG_WARNING,
1383 					    "attempted source route from %s to %s\n",
1384 					    inet_ntoa(ip->ip_src), buf);
1385 					type = ICMP_UNREACH;
1386 					code = ICMP_UNREACH_SRCFAIL;
1387 					goto bad;
1388 				} else {
1389 					/*
1390 					 * Not acting as a router, so silently drop.
1391 					 */
1392 #ifdef IPSTEALTH
1393 dropit:
1394 #endif
1395 					ipstat.ips_cantforward++;
1396 					m_freem(m);
1397 					return (1);
1398 				}
1399 			}
1400 
1401 			/*
1402 			 * locate outgoing interface
1403 			 */
1404 			(void)memcpy(&ipaddr.sin_addr, cp + off,
1405 			    sizeof(ipaddr.sin_addr));
1406 
1407 			if (opt == IPOPT_SSRR) {
1408 #define	INA	struct in_ifaddr *
1409 #define	SA	struct sockaddr *
1410 			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1411 				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1412 			} else
1413 				ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt);
1414 			if (ia == 0) {
1415 				type = ICMP_UNREACH;
1416 				code = ICMP_UNREACH_SRCFAIL;
1417 				goto bad;
1418 			}
1419 			ip->ip_dst = ipaddr.sin_addr;
1420 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1421 			    sizeof(struct in_addr));
1422 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1423 			/*
1424 			 * Let ip_intr's mcast routing check handle mcast pkts
1425 			 */
1426 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1427 			break;
1428 
1429 		case IPOPT_RR:
1430 #ifdef IPSTEALTH
1431 			if (ipstealth && pass == 0)
1432 				break;
1433 #endif
1434 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1435 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1436 				goto bad;
1437 			}
1438 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1439 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1440 				goto bad;
1441 			}
1442 			/*
1443 			 * If no space remains, ignore.
1444 			 */
1445 			off--;			/* 0 origin */
1446 			if (off > optlen - (int)sizeof(struct in_addr))
1447 				break;
1448 			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1449 			    sizeof(ipaddr.sin_addr));
1450 			/*
1451 			 * locate outgoing interface; if we're the destination,
1452 			 * use the incoming interface (should be same).
1453 			 */
1454 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1455 			    (ia = ip_rtaddr(ipaddr.sin_addr,
1456 			    &ipforward_rt)) == 0) {
1457 				type = ICMP_UNREACH;
1458 				code = ICMP_UNREACH_HOST;
1459 				goto bad;
1460 			}
1461 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1462 			    sizeof(struct in_addr));
1463 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1464 			break;
1465 
1466 		case IPOPT_TS:
1467 #ifdef IPSTEALTH
1468 			if (ipstealth && pass == 0)
1469 				break;
1470 #endif
1471 			code = cp - (u_char *)ip;
1472 			if (optlen < 4 || optlen > 40) {
1473 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1474 				goto bad;
1475 			}
1476 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1477 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1478 				goto bad;
1479 			}
1480 			if (off > optlen - (int)sizeof(int32_t)) {
1481 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1482 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1483 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1484 					goto bad;
1485 				}
1486 				break;
1487 			}
1488 			off--;				/* 0 origin */
1489 			sin = (struct in_addr *)(cp + off);
1490 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1491 
1492 			case IPOPT_TS_TSONLY:
1493 				break;
1494 
1495 			case IPOPT_TS_TSANDADDR:
1496 				if (off + sizeof(n_time) +
1497 				    sizeof(struct in_addr) > optlen) {
1498 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1499 					goto bad;
1500 				}
1501 				ipaddr.sin_addr = dst;
1502 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1503 							    m->m_pkthdr.rcvif);
1504 				if (ia == 0)
1505 					continue;
1506 				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1507 				    sizeof(struct in_addr));
1508 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1509 				off += sizeof(struct in_addr);
1510 				break;
1511 
1512 			case IPOPT_TS_PRESPEC:
1513 				if (off + sizeof(n_time) +
1514 				    sizeof(struct in_addr) > optlen) {
1515 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1516 					goto bad;
1517 				}
1518 				(void)memcpy(&ipaddr.sin_addr, sin,
1519 				    sizeof(struct in_addr));
1520 				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1521 					continue;
1522 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1523 				off += sizeof(struct in_addr);
1524 				break;
1525 
1526 			default:
1527 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1528 				goto bad;
1529 			}
1530 			ntime = iptime();
1531 			(void)memcpy(cp + off, &ntime, sizeof(n_time));
1532 			cp[IPOPT_OFFSET] += sizeof(n_time);
1533 		}
1534 	}
1535 	if (forward && ipforwarding) {
1536 		ip_forward(m, 1, next_hop);
1537 		return (1);
1538 	}
1539 	return (0);
1540 bad:
1541 	icmp_error(m, type, code, 0, 0);
1542 	ipstat.ips_badoptions++;
1543 	return (1);
1544 }
1545 
1546 /*
1547  * Given address of next destination (final or next hop),
1548  * return internet address info of interface to be used to get there.
1549  */
1550 struct in_ifaddr *
1551 ip_rtaddr(dst, rt)
1552 	struct in_addr dst;
1553 	struct route *rt;
1554 {
1555 	struct sockaddr_in *sin;
1556 
1557 	sin = (struct sockaddr_in *)&rt->ro_dst;
1558 
1559 	if (rt->ro_rt == 0 ||
1560 	    dst.s_addr != sin->sin_addr.s_addr) {
1561 		if (rt->ro_rt) {
1562 			RTFREE(rt->ro_rt);
1563 			rt->ro_rt = 0;
1564 		}
1565 		sin->sin_family = AF_INET;
1566 		sin->sin_len = sizeof(*sin);
1567 		sin->sin_addr = dst;
1568 
1569 		rtalloc_ign(rt, RTF_PRCLONING);
1570 	}
1571 	if (rt->ro_rt == 0)
1572 		return ((struct in_ifaddr *)0);
1573 	return (ifatoia(rt->ro_rt->rt_ifa));
1574 }
1575 
1576 /*
1577  * Save incoming source route for use in replies,
1578  * to be picked up later by ip_srcroute if the receiver is interested.
1579  */
1580 void
1581 save_rte(option, dst)
1582 	u_char *option;
1583 	struct in_addr dst;
1584 {
1585 	unsigned olen;
1586 
1587 	olen = option[IPOPT_OLEN];
1588 #ifdef DIAGNOSTIC
1589 	if (ipprintfs)
1590 		printf("save_rte: olen %d\n", olen);
1591 #endif
1592 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1593 		return;
1594 	bcopy(option, ip_srcrt.srcopt, olen);
1595 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1596 	ip_srcrt.dst = dst;
1597 }
1598 
1599 /*
1600  * Retrieve incoming source route for use in replies,
1601  * in the same form used by setsockopt.
1602  * The first hop is placed before the options, will be removed later.
1603  */
1604 struct mbuf *
1605 ip_srcroute()
1606 {
1607 	struct in_addr *p, *q;
1608 	struct mbuf *m;
1609 
1610 	if (ip_nhops == 0)
1611 		return ((struct mbuf *)0);
1612 	m = m_get(M_DONTWAIT, MT_HEADER);
1613 	if (m == 0)
1614 		return ((struct mbuf *)0);
1615 
1616 #define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1617 
1618 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1619 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1620 	    OPTSIZ;
1621 #ifdef DIAGNOSTIC
1622 	if (ipprintfs)
1623 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1624 #endif
1625 
1626 	/*
1627 	 * First save first hop for return route
1628 	 */
1629 	p = &ip_srcrt.route[ip_nhops - 1];
1630 	*(mtod(m, struct in_addr *)) = *p--;
1631 #ifdef DIAGNOSTIC
1632 	if (ipprintfs)
1633 		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1634 #endif
1635 
1636 	/*
1637 	 * Copy option fields and padding (nop) to mbuf.
1638 	 */
1639 	ip_srcrt.nop = IPOPT_NOP;
1640 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1641 	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1642 	    &ip_srcrt.nop, OPTSIZ);
1643 	q = (struct in_addr *)(mtod(m, caddr_t) +
1644 	    sizeof(struct in_addr) + OPTSIZ);
1645 #undef OPTSIZ
1646 	/*
1647 	 * Record return path as an IP source route,
1648 	 * reversing the path (pointers are now aligned).
1649 	 */
1650 	while (p >= ip_srcrt.route) {
1651 #ifdef DIAGNOSTIC
1652 		if (ipprintfs)
1653 			printf(" %lx", (u_long)ntohl(q->s_addr));
1654 #endif
1655 		*q++ = *p--;
1656 	}
1657 	/*
1658 	 * Last hop goes to final destination.
1659 	 */
1660 	*q = ip_srcrt.dst;
1661 #ifdef DIAGNOSTIC
1662 	if (ipprintfs)
1663 		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1664 #endif
1665 	return (m);
1666 }
1667 
1668 /*
1669  * Strip out IP options, at higher
1670  * level protocol in the kernel.
1671  * Second argument is buffer to which options
1672  * will be moved, and return value is their length.
1673  * XXX should be deleted; last arg currently ignored.
1674  */
1675 void
1676 ip_stripoptions(m, mopt)
1677 	struct mbuf *m;
1678 	struct mbuf *mopt;
1679 {
1680 	int i;
1681 	struct ip *ip = mtod(m, struct ip *);
1682 	caddr_t opts;
1683 	int olen;
1684 
1685 	olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1686 	opts = (caddr_t)(ip + 1);
1687 	i = m->m_len - (sizeof (struct ip) + olen);
1688 	bcopy(opts + olen, opts, (unsigned)i);
1689 	m->m_len -= olen;
1690 	if (m->m_flags & M_PKTHDR)
1691 		m->m_pkthdr.len -= olen;
1692 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1693 }
1694 
1695 u_char inetctlerrmap[PRC_NCMDS] = {
1696 	0,		0,		0,		0,
1697 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1698 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1699 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1700 	0,		0,		0,		0,
1701 	ENOPROTOOPT,	ECONNREFUSED
1702 };
1703 
1704 /*
1705  * Forward a packet.  If some error occurs return the sender
1706  * an icmp packet.  Note we can't always generate a meaningful
1707  * icmp message because icmp doesn't have a large enough repertoire
1708  * of codes and types.
1709  *
1710  * If not forwarding, just drop the packet.  This could be confusing
1711  * if ipforwarding was zero but some routing protocol was advancing
1712  * us as a gateway to somewhere.  However, we must let the routing
1713  * protocol deal with that.
1714  *
1715  * The srcrt parameter indicates whether the packet is being forwarded
1716  * via a source route.
1717  */
1718 static void
1719 ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop)
1720 {
1721 	struct ip *ip = mtod(m, struct ip *);
1722 	struct sockaddr_in *sin;
1723 	struct rtentry *rt;
1724 	int error, type = 0, code = 0;
1725 	struct mbuf *mcopy;
1726 	n_long dest;
1727 	struct in_addr pkt_dst;
1728 	struct ifnet *destifp;
1729 #if defined(IPSEC) || defined(FAST_IPSEC)
1730 	struct ifnet dummyifp;
1731 #endif
1732 
1733 	dest = 0;
1734 	/*
1735 	 * Cache the destination address of the packet; this may be
1736 	 * changed by use of 'ipfw fwd'.
1737 	 */
1738 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
1739 
1740 #ifdef DIAGNOSTIC
1741 	if (ipprintfs)
1742 		printf("forward: src %lx dst %lx ttl %x\n",
1743 		    (u_long)ip->ip_src.s_addr, (u_long)pkt_dst.s_addr,
1744 		    ip->ip_ttl);
1745 #endif
1746 
1747 
1748 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(pkt_dst) == 0) {
1749 		ipstat.ips_cantforward++;
1750 		m_freem(m);
1751 		return;
1752 	}
1753 #ifdef IPSTEALTH
1754 	if (!ipstealth) {
1755 #endif
1756 		if (ip->ip_ttl <= IPTTLDEC) {
1757 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1758 			    dest, 0);
1759 			return;
1760 		}
1761 #ifdef IPSTEALTH
1762 	}
1763 #endif
1764 
1765 	sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
1766 	if ((rt = ipforward_rt.ro_rt) == 0 ||
1767 	    pkt_dst.s_addr != sin->sin_addr.s_addr) {
1768 		if (ipforward_rt.ro_rt) {
1769 			RTFREE(ipforward_rt.ro_rt);
1770 			ipforward_rt.ro_rt = 0;
1771 		}
1772 		sin->sin_family = AF_INET;
1773 		sin->sin_len = sizeof(*sin);
1774 		sin->sin_addr = pkt_dst;
1775 
1776 		rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1777 		if (ipforward_rt.ro_rt == 0) {
1778 			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1779 			return;
1780 		}
1781 		rt = ipforward_rt.ro_rt;
1782 	}
1783 
1784 	/*
1785 	 * Save the IP header and at most 8 bytes of the payload,
1786 	 * in case we need to generate an ICMP message to the src.
1787 	 *
1788 	 * XXX this can be optimized a lot by saving the data in a local
1789 	 * buffer on the stack (72 bytes at most), and only allocating the
1790 	 * mbuf if really necessary. The vast majority of the packets
1791 	 * are forwarded without having to send an ICMP back (either
1792 	 * because unnecessary, or because rate limited), so we are
1793 	 * really we are wasting a lot of work here.
1794 	 *
1795 	 * We don't use m_copy() because it might return a reference
1796 	 * to a shared cluster. Both this function and ip_output()
1797 	 * assume exclusive access to the IP header in `m', so any
1798 	 * data in a cluster may change before we reach icmp_error().
1799 	 */
1800 	MGET(mcopy, M_DONTWAIT, m->m_type);
1801 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1802 		/*
1803 		 * It's probably ok if the pkthdr dup fails (because
1804 		 * the deep copy of the tag chain failed), but for now
1805 		 * be conservative and just discard the copy since
1806 		 * code below may some day want the tags.
1807 		 */
1808 		m_free(mcopy);
1809 		mcopy = NULL;
1810 	}
1811 	if (mcopy != NULL) {
1812 		mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1813 		    (int)ip->ip_len);
1814 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1815 	}
1816 
1817 #ifdef IPSTEALTH
1818 	if (!ipstealth) {
1819 #endif
1820 		ip->ip_ttl -= IPTTLDEC;
1821 #ifdef IPSTEALTH
1822 	}
1823 #endif
1824 
1825 	/*
1826 	 * If forwarding packet using same interface that it came in on,
1827 	 * perhaps should send a redirect to sender to shortcut a hop.
1828 	 * Only send redirect if source is sending directly to us,
1829 	 * and if packet was not source routed (or has any options).
1830 	 * Also, don't send redirect if forwarding using a default route
1831 	 * or a route modified by a redirect.
1832 	 */
1833 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1834 	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1835 	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1836 	    ipsendredirects && !srcrt && !next_hop) {
1837 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1838 		u_long src = ntohl(ip->ip_src.s_addr);
1839 
1840 		if (RTA(rt) &&
1841 		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1842 		    if (rt->rt_flags & RTF_GATEWAY)
1843 			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1844 		    else
1845 			dest = pkt_dst.s_addr;
1846 		    /* Router requirements says to only send host redirects */
1847 		    type = ICMP_REDIRECT;
1848 		    code = ICMP_REDIRECT_HOST;
1849 #ifdef DIAGNOSTIC
1850 		    if (ipprintfs)
1851 		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1852 #endif
1853 		}
1854 	}
1855 
1856     {
1857 	struct m_hdr tag;
1858 
1859 	if (next_hop) {
1860 		/* Pass IPFORWARD info if available */
1861 
1862 		tag.mh_type = MT_TAG;
1863 		tag.mh_flags = PACKET_TAG_IPFORWARD;
1864 		tag.mh_data = (caddr_t)next_hop;
1865 		tag.mh_next = m;
1866 		m = (struct mbuf *)&tag;
1867 	}
1868 	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1869 			  IP_FORWARDING, 0, NULL);
1870     }
1871 	if (error)
1872 		ipstat.ips_cantforward++;
1873 	else {
1874 		ipstat.ips_forward++;
1875 		if (type)
1876 			ipstat.ips_redirectsent++;
1877 		else {
1878 			if (mcopy) {
1879 				ipflow_create(&ipforward_rt, mcopy);
1880 				m_freem(mcopy);
1881 			}
1882 			return;
1883 		}
1884 	}
1885 	if (mcopy == NULL)
1886 		return;
1887 	destifp = NULL;
1888 
1889 	switch (error) {
1890 
1891 	case 0:				/* forwarded, but need redirect */
1892 		/* type, code set above */
1893 		break;
1894 
1895 	case ENETUNREACH:		/* shouldn't happen, checked above */
1896 	case EHOSTUNREACH:
1897 	case ENETDOWN:
1898 	case EHOSTDOWN:
1899 	default:
1900 		type = ICMP_UNREACH;
1901 		code = ICMP_UNREACH_HOST;
1902 		break;
1903 
1904 	case EMSGSIZE:
1905 		type = ICMP_UNREACH;
1906 		code = ICMP_UNREACH_NEEDFRAG;
1907 #ifdef IPSEC
1908 		/*
1909 		 * If the packet is routed over IPsec tunnel, tell the
1910 		 * originator the tunnel MTU.
1911 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1912 		 * XXX quickhack!!!
1913 		 */
1914 		if (ipforward_rt.ro_rt) {
1915 			struct secpolicy *sp = NULL;
1916 			int ipsecerror;
1917 			int ipsechdr;
1918 			struct route *ro;
1919 
1920 			sp = ipsec4_getpolicybyaddr(mcopy,
1921 						    IPSEC_DIR_OUTBOUND,
1922 			                            IP_FORWARDING,
1923 			                            &ipsecerror);
1924 
1925 			if (sp == NULL)
1926 				destifp = ipforward_rt.ro_rt->rt_ifp;
1927 			else {
1928 				/* count IPsec header size */
1929 				ipsechdr = ipsec4_hdrsiz(mcopy,
1930 							 IPSEC_DIR_OUTBOUND,
1931 							 NULL);
1932 
1933 				/*
1934 				 * find the correct route for outer IPv4
1935 				 * header, compute tunnel MTU.
1936 				 *
1937 				 * XXX BUG ALERT
1938 				 * The "dummyifp" code relies upon the fact
1939 				 * that icmp_error() touches only ifp->if_mtu.
1940 				 */
1941 				/*XXX*/
1942 				destifp = NULL;
1943 				if (sp->req != NULL
1944 				 && sp->req->sav != NULL
1945 				 && sp->req->sav->sah != NULL) {
1946 					ro = &sp->req->sav->sah->sa_route;
1947 					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1948 						dummyifp.if_mtu =
1949 						    ro->ro_rt->rt_ifp->if_mtu;
1950 						dummyifp.if_mtu -= ipsechdr;
1951 						destifp = &dummyifp;
1952 					}
1953 				}
1954 
1955 				key_freesp(sp);
1956 			}
1957 		}
1958 #elif FAST_IPSEC
1959 		/*
1960 		 * If the packet is routed over IPsec tunnel, tell the
1961 		 * originator the tunnel MTU.
1962 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1963 		 * XXX quickhack!!!
1964 		 */
1965 		if (ipforward_rt.ro_rt) {
1966 			struct secpolicy *sp = NULL;
1967 			int ipsecerror;
1968 			int ipsechdr;
1969 			struct route *ro;
1970 
1971 			sp = ipsec_getpolicybyaddr(mcopy,
1972 						   IPSEC_DIR_OUTBOUND,
1973 			                           IP_FORWARDING,
1974 			                           &ipsecerror);
1975 
1976 			if (sp == NULL)
1977 				destifp = ipforward_rt.ro_rt->rt_ifp;
1978 			else {
1979 				/* count IPsec header size */
1980 				ipsechdr = ipsec4_hdrsiz(mcopy,
1981 							 IPSEC_DIR_OUTBOUND,
1982 							 NULL);
1983 
1984 				/*
1985 				 * find the correct route for outer IPv4
1986 				 * header, compute tunnel MTU.
1987 				 *
1988 				 * XXX BUG ALERT
1989 				 * The "dummyifp" code relies upon the fact
1990 				 * that icmp_error() touches only ifp->if_mtu.
1991 				 */
1992 				/*XXX*/
1993 				destifp = NULL;
1994 				if (sp->req != NULL
1995 				 && sp->req->sav != NULL
1996 				 && sp->req->sav->sah != NULL) {
1997 					ro = &sp->req->sav->sah->sa_route;
1998 					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1999 						dummyifp.if_mtu =
2000 						    ro->ro_rt->rt_ifp->if_mtu;
2001 						dummyifp.if_mtu -= ipsechdr;
2002 						destifp = &dummyifp;
2003 					}
2004 				}
2005 
2006 				KEY_FREESP(&sp);
2007 			}
2008 		}
2009 #else /* !IPSEC && !FAST_IPSEC */
2010 		if (ipforward_rt.ro_rt)
2011 			destifp = ipforward_rt.ro_rt->rt_ifp;
2012 #endif /*IPSEC*/
2013 		ipstat.ips_cantfrag++;
2014 		break;
2015 
2016 	case ENOBUFS:
2017 		/*
2018 		 * A router should not generate ICMP_SOURCEQUENCH as
2019 		 * required in RFC1812 Requirements for IP Version 4 Routers.
2020 		 * Source quench could be a big problem under DoS attacks,
2021 		 * or if the underlying interface is rate-limited.
2022 		 * Those who need source quench packets may re-enable them
2023 		 * via the net.inet.ip.sendsourcequench sysctl.
2024 		 */
2025 		if (ip_sendsourcequench == 0) {
2026 			m_freem(mcopy);
2027 			return;
2028 		} else {
2029 			type = ICMP_SOURCEQUENCH;
2030 			code = 0;
2031 		}
2032 		break;
2033 
2034 	case EACCES:			/* ipfw denied packet */
2035 		m_freem(mcopy);
2036 		return;
2037 	}
2038 	icmp_error(mcopy, type, code, dest, destifp);
2039 }
2040 
2041 void
2042 ip_savecontrol(inp, mp, ip, m)
2043 	struct inpcb *inp;
2044 	struct mbuf **mp;
2045 	struct ip *ip;
2046 	struct mbuf *m;
2047 {
2048 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2049 		struct timeval tv;
2050 
2051 		microtime(&tv);
2052 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2053 			SCM_TIMESTAMP, SOL_SOCKET);
2054 		if (*mp)
2055 			mp = &(*mp)->m_next;
2056 	}
2057 	if (inp->inp_flags & INP_RECVDSTADDR) {
2058 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2059 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2060 		if (*mp)
2061 			mp = &(*mp)->m_next;
2062 	}
2063 #ifdef notyet
2064 	/* XXX
2065 	 * Moving these out of udp_input() made them even more broken
2066 	 * than they already were.
2067 	 */
2068 	/* options were tossed already */
2069 	if (inp->inp_flags & INP_RECVOPTS) {
2070 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2071 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2072 		if (*mp)
2073 			mp = &(*mp)->m_next;
2074 	}
2075 	/* ip_srcroute doesn't do what we want here, need to fix */
2076 	if (inp->inp_flags & INP_RECVRETOPTS) {
2077 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2078 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2079 		if (*mp)
2080 			mp = &(*mp)->m_next;
2081 	}
2082 #endif
2083 	if (inp->inp_flags & INP_RECVIF) {
2084 		struct ifnet *ifp;
2085 		struct sdlbuf {
2086 			struct sockaddr_dl sdl;
2087 			u_char	pad[32];
2088 		} sdlbuf;
2089 		struct sockaddr_dl *sdp;
2090 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2091 
2092 		if (((ifp = m->m_pkthdr.rcvif))
2093 		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
2094 			sdp = (struct sockaddr_dl *)(ifnet_addrs
2095 					[ifp->if_index - 1]->ifa_addr);
2096 			/*
2097 			 * Change our mind and don't try copy.
2098 			 */
2099 			if ((sdp->sdl_family != AF_LINK)
2100 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
2101 				goto makedummy;
2102 			}
2103 			bcopy(sdp, sdl2, sdp->sdl_len);
2104 		} else {
2105 makedummy:
2106 			sdl2->sdl_len
2107 				= offsetof(struct sockaddr_dl, sdl_data[0]);
2108 			sdl2->sdl_family = AF_LINK;
2109 			sdl2->sdl_index = 0;
2110 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2111 		}
2112 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2113 			IP_RECVIF, IPPROTO_IP);
2114 		if (*mp)
2115 			mp = &(*mp)->m_next;
2116 	}
2117 }
2118 
2119 /*
2120  * XXX these routines are called from the upper part of the kernel.
2121  *
2122  * They could also be moved to ip_mroute.c, since all the RSVP
2123  *  handling is done there already.
2124  */
2125 int
2126 ip_rsvp_init(struct socket *so)
2127 {
2128 	if (so->so_type != SOCK_RAW ||
2129 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2130 		return EOPNOTSUPP;
2131 
2132 	if (ip_rsvpd != NULL)
2133 		return EADDRINUSE;
2134 
2135 	ip_rsvpd = so;
2136 	/*
2137 	 * This may seem silly, but we need to be sure we don't over-increment
2138 	 * the RSVP counter, in case something slips up.
2139 	 */
2140 	if (!ip_rsvp_on) {
2141 		ip_rsvp_on = 1;
2142 		rsvp_on++;
2143 	}
2144 
2145 	return 0;
2146 }
2147 
2148 int
2149 ip_rsvp_done(void)
2150 {
2151 	ip_rsvpd = NULL;
2152 	/*
2153 	 * This may seem silly, but we need to be sure we don't over-decrement
2154 	 * the RSVP counter, in case something slips up.
2155 	 */
2156 	if (ip_rsvp_on) {
2157 		ip_rsvp_on = 0;
2158 		rsvp_on--;
2159 	}
2160 	return 0;
2161 }
2162 
2163 void
2164 rsvp_input(struct mbuf *m, int off, int proto)	/* XXX must fixup manually */
2165 {
2166 	if (rsvp_input_p) { /* call the real one if loaded */
2167 		rsvp_input_p(m, off, proto);
2168 		return;
2169 	}
2170 
2171 	/* Can still get packets with rsvp_on = 0 if there is a local member
2172 	 * of the group to which the RSVP packet is addressed.  But in this
2173 	 * case we want to throw the packet away.
2174 	 */
2175 
2176 	if (!rsvp_on) {
2177 		m_freem(m);
2178 		return;
2179 	}
2180 
2181 	if (ip_rsvpd != NULL) {
2182 		rip_input(m, off, proto);
2183 		return;
2184 	}
2185 	/* Drop the packet */
2186 	m_freem(m);
2187 }
2188 
2189