xref: /dragonfly/sys/netinet/ip_input.c (revision b29f78b5)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. Neither the name of the University nor the names of its contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  *
62  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
63  * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
64  */
65 
66 #define	_IP_VHL
67 
68 #include "opt_bootp.h"
69 #include "opt_ipdn.h"
70 #include "opt_ipdivert.h"
71 #include "opt_ipstealth.h"
72 #include "opt_ipsec.h"
73 #include "opt_rss.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/mpipe.h>
80 #include <sys/domain.h>
81 #include <sys/protosw.h>
82 #include <sys/socket.h>
83 #include <sys/time.h>
84 #include <sys/globaldata.h>
85 #include <sys/thread.h>
86 #include <sys/kernel.h>
87 #include <sys/syslog.h>
88 #include <sys/sysctl.h>
89 #include <sys/in_cksum.h>
90 #include <sys/lock.h>
91 
92 #include <sys/mplock2.h>
93 
94 #include <machine/stdarg.h>
95 
96 #include <net/if.h>
97 #include <net/if_types.h>
98 #include <net/if_var.h>
99 #include <net/if_dl.h>
100 #include <net/pfil.h>
101 #include <net/route.h>
102 #include <net/netisr2.h>
103 
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/in_var.h>
107 #include <netinet/ip.h>
108 #include <netinet/in_pcb.h>
109 #include <netinet/ip_var.h>
110 #include <netinet/ip_icmp.h>
111 #include <netinet/ip_divert.h>
112 #include <netinet/ip_flow.h>
113 
114 #include <sys/thread2.h>
115 #include <sys/msgport2.h>
116 #include <net/netmsg2.h>
117 
118 #include <sys/socketvar.h>
119 
120 #include <net/ipfw/ip_fw.h>
121 #include <net/dummynet/ip_dummynet.h>
122 
123 #ifdef IPSEC
124 #include <netinet6/ipsec.h>
125 #include <netproto/key/key.h>
126 #endif
127 
128 #ifdef FAST_IPSEC
129 #include <netproto/ipsec/ipsec.h>
130 #include <netproto/ipsec/key.h>
131 #endif
132 
133 int rsvp_on = 0;
134 static int ip_rsvp_on;
135 struct socket *ip_rsvpd;
136 
137 int ipforwarding = 0;
138 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
139     &ipforwarding, 0, "Enable IP forwarding between interfaces");
140 
141 static int ipsendredirects = 1; /* XXX */
142 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
143     &ipsendredirects, 0, "Enable sending IP redirects");
144 
145 int ip_defttl = IPDEFTTL;
146 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
147     &ip_defttl, 0, "Maximum TTL on IP packets");
148 
149 static int ip_dosourceroute = 0;
150 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
151     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
152 
153 static int ip_acceptsourceroute = 0;
154 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
155     CTLFLAG_RW, &ip_acceptsourceroute, 0,
156     "Enable accepting source routed IP packets");
157 
158 static int ip_keepfaith = 0;
159 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
160     &ip_keepfaith, 0,
161     "Enable packet capture for FAITH IPv4->IPv6 translator daemon");
162 
163 static int maxnipq;
164 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
165     &maxnipq, 0,
166     "Maximum number of IPv4 fragment reassembly queue entries");
167 
168 static int maxfragsperpacket;
169 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
170     &maxfragsperpacket, 0,
171     "Maximum number of IPv4 fragments allowed per packet");
172 
173 static int ip_sendsourcequench = 0;
174 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
175     &ip_sendsourcequench, 0,
176     "Enable the transmission of source quench packets");
177 
178 int ip_do_randomid = 1;
179 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
180     &ip_do_randomid, 0,
181     "Assign random ip_id values");
182 /*
183  * XXX - Setting ip_checkinterface mostly implements the receive side of
184  * the Strong ES model described in RFC 1122, but since the routing table
185  * and transmit implementation do not implement the Strong ES model,
186  * setting this to 1 results in an odd hybrid.
187  *
188  * XXX - ip_checkinterface currently must be disabled if you use ipnat
189  * to translate the destination address to another local interface.
190  *
191  * XXX - ip_checkinterface must be disabled if you add IP aliases
192  * to the loopback interface instead of the interface where the
193  * packets for those addresses are received.
194  */
195 static int ip_checkinterface = 0;
196 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
197     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
198 
199 static u_long ip_hash_count = 0;
200 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, hash_count, CTLFLAG_RD,
201     &ip_hash_count, 0, "Number of packets hashed by IP");
202 
203 #ifdef RSS_DEBUG
204 static u_long ip_rehash_count = 0;
205 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, rehash_count, CTLFLAG_RD,
206     &ip_rehash_count, 0, "Number of packets rehashed by IP");
207 
208 static u_long ip_dispatch_fast = 0;
209 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, dispatch_fast_count, CTLFLAG_RD,
210     &ip_dispatch_fast, 0, "Number of packets handled on current CPU");
211 
212 static u_long ip_dispatch_slow = 0;
213 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, dispatch_slow_count, CTLFLAG_RD,
214     &ip_dispatch_slow, 0, "Number of packets messaged to another CPU");
215 #endif
216 
217 #ifdef DIAGNOSTIC
218 static int ipprintfs = 0;
219 #endif
220 
221 extern	struct domain inetdomain;
222 extern	struct protosw inetsw[];
223 u_char	ip_protox[IPPROTO_MAX];
224 struct	in_ifaddrhead in_ifaddrheads[MAXCPU];	/* first inet address */
225 struct	in_ifaddrhashhead *in_ifaddrhashtbls[MAXCPU];
226 						/* inet addr hash table */
227 u_long	in_ifaddrhmask;				/* mask for hash table */
228 
229 static struct mbuf *ipforward_mtemp[MAXCPU];
230 
231 struct ip_stats ipstats_percpu[MAXCPU] __cachealign;
232 
233 static int
234 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
235 {
236 	int cpu, error = 0;
237 
238 	for (cpu = 0; cpu < ncpus; ++cpu) {
239 		if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
240 					sizeof(struct ip_stats))))
241 			break;
242 		if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
243 				       sizeof(struct ip_stats))))
244 			break;
245 	}
246 
247 	return (error);
248 }
249 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
250     0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
251 
252 /* Packet reassembly stuff */
253 #define	IPREASS_NHASH_LOG2	6
254 #define	IPREASS_NHASH		(1 << IPREASS_NHASH_LOG2)
255 #define	IPREASS_HMASK		(IPREASS_NHASH - 1)
256 #define	IPREASS_HASH(x,y)						\
257     (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
258 
259 TAILQ_HEAD(ipqhead, ipq);
260 struct ipfrag_queue {
261 	int			nipq;
262 	struct netmsg_base	timeo_netmsg;
263 	struct netmsg_base	drain_netmsg;
264 	struct ipqhead		ipq[IPREASS_NHASH];
265 } __cachealign;
266 
267 static struct ipfrag_queue	ipfrag_queue_pcpu[MAXCPU];
268 
269 #ifdef IPCTL_DEFMTU
270 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
271     &ip_mtu, 0, "Default MTU");
272 #endif
273 
274 #ifdef IPSTEALTH
275 static int ipstealth = 0;
276 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
277 #else
278 static const int ipstealth = 0;
279 #endif
280 
281 struct mbuf *(*ip_divert_p)(struct mbuf *, int, int);
282 
283 struct pfil_head inet_pfil_hook;
284 
285 /*
286  * struct ip_srcrt_opt is used to store packet state while it travels
287  * through the stack.
288  *
289  * XXX Note that the code even makes assumptions on the size and
290  * alignment of fields inside struct ip_srcrt so e.g. adding some
291  * fields will break the code.  This needs to be fixed.
292  *
293  * We need to save the IP options in case a protocol wants to respond
294  * to an incoming packet over the same route if the packet got here
295  * using IP source routing.  This allows connection establishment and
296  * maintenance when the remote end is on a network that is not known
297  * to us.
298  */
299 struct ip_srcrt {
300 	struct	in_addr dst;			/* final destination */
301 	char	nop;				/* one NOP to align */
302 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
303 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
304 };
305 
306 struct ip_srcrt_opt {
307 	int		ip_nhops;
308 	struct ip_srcrt	ip_srcrt;
309 };
310 
311 #define IPFRAG_MPIPE_MAX	4096
312 #define MAXIPFRAG_MIN		((IPFRAG_MPIPE_MAX * 2) / 256)
313 
314 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
315 static struct malloc_pipe ipq_mpipe;
316 
317 static void		save_rte(struct mbuf *, u_char *, struct in_addr);
318 static int		ip_dooptions(struct mbuf *m, int, struct sockaddr_in *);
319 static void		ip_freef(struct ipfrag_queue *, struct ipqhead *,
320 			    struct ipq *);
321 static void		ip_input_handler(netmsg_t);
322 
323 static void		ipfrag_timeo_dispatch(netmsg_t);
324 static void		ipfrag_drain_dispatch(netmsg_t);
325 
326 /*
327  * IP initialization: fill in IP protocol switch table.
328  * All protocols not implemented in kernel go to raw IP protocol handler.
329  */
330 void
331 ip_init(void)
332 {
333 	struct protosw *pr;
334 	int cpu, i;
335 
336 	/*
337 	 * Make sure we can handle a reasonable number of fragments but
338 	 * cap it at IPFRAG_MPIPE_MAX.
339 	 */
340 	mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
341 	    IFQ_MAXLEN, IPFRAG_MPIPE_MAX, 0, NULL, NULL, NULL);
342 	for (cpu = 0; cpu < ncpus; ++cpu) {
343 		TAILQ_INIT(&in_ifaddrheads[cpu]);
344 		in_ifaddrhashtbls[cpu] =
345 		    hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
346 	}
347 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
348 	if (pr == NULL)
349 		panic("ip_init");
350 	for (i = 0; i < IPPROTO_MAX; i++)
351 		ip_protox[i] = pr - inetsw;
352 	for (pr = inetdomain.dom_protosw;
353 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
354 		if (pr->pr_domain->dom_family == PF_INET && pr->pr_protocol) {
355 			if (pr->pr_protocol != IPPROTO_RAW)
356 				ip_protox[pr->pr_protocol] = pr - inetsw;
357 		}
358 	}
359 
360 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
361 	inet_pfil_hook.ph_af = AF_INET;
362 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
363 		kprintf("%s: WARNING: unable to register pfil hook, "
364 			"error %d\n", __func__, i);
365 	}
366 
367 	maxnipq = (nmbclusters / 32) / ncpus2;
368 	if (maxnipq < MAXIPFRAG_MIN)
369 		maxnipq = MAXIPFRAG_MIN;
370 	maxfragsperpacket = 16;
371 
372 	ip_id = time_second & 0xffff;	/* time_second survives reboots */
373 
374 	for (cpu = 0; cpu < ncpus; ++cpu) {
375 		/*
376 		 * Initialize IP statistics counters for each CPU.
377 		 */
378 		bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
379 
380 		/*
381 		 * Preallocate mbuf template for forwarding
382 		 */
383 		MGETHDR(ipforward_mtemp[cpu], M_WAITOK, MT_DATA);
384 
385 		/*
386 		 * Initialize per-cpu ip fragments queues
387 		 */
388 		for (i = 0; i < IPREASS_NHASH; i++) {
389 			struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[cpu];
390 
391 			TAILQ_INIT(&fragq->ipq[i]);
392 			netmsg_init(&fragq->timeo_netmsg, NULL,
393 			    &netisr_adone_rport, MSGF_PRIORITY,
394 			    ipfrag_timeo_dispatch);
395 			netmsg_init(&fragq->drain_netmsg, NULL,
396 			    &netisr_adone_rport, MSGF_PRIORITY,
397 			    ipfrag_drain_dispatch);
398 		}
399 	}
400 
401 	netisr_register(NETISR_IP, ip_input_handler, ip_hashfn);
402 	netisr_register_hashcheck(NETISR_IP, ip_hashcheck);
403 }
404 
405 /* Do transport protocol processing. */
406 static void
407 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip)
408 {
409 	const struct protosw *pr = &inetsw[ip_protox[ip->ip_p]];
410 
411 	/*
412 	 * Switch out to protocol's input routine.
413 	 */
414 	PR_GET_MPLOCK(pr);
415 	pr->pr_input(&m, &hlen, ip->ip_p);
416 	PR_REL_MPLOCK(pr);
417 }
418 
419 static void
420 transport_processing_handler(netmsg_t msg)
421 {
422 	struct netmsg_packet *pmsg = &msg->packet;
423 	struct ip *ip;
424 	int hlen;
425 
426 	ip = mtod(pmsg->nm_packet, struct ip *);
427 	hlen = pmsg->base.lmsg.u.ms_result;
428 
429 	transport_processing_oncpu(pmsg->nm_packet, hlen, ip);
430 	/* msg was embedded in the mbuf, do not reply! */
431 }
432 
433 static void
434 ip_input_handler(netmsg_t msg)
435 {
436 	ip_input(msg->packet.nm_packet);
437 	/* msg was embedded in the mbuf, do not reply! */
438 }
439 
440 /*
441  * IP input routine.  Checksum and byte swap header.  If fragmented
442  * try to reassemble.  Process options.  Pass to next level.
443  */
444 void
445 ip_input(struct mbuf *m)
446 {
447 	struct ip *ip;
448 	struct in_ifaddr *ia = NULL;
449 	struct in_ifaddr_container *iac;
450 	int hlen, checkif;
451 	u_short sum;
452 	struct in_addr pkt_dst;
453 	boolean_t using_srcrt = FALSE;		/* forward (by PFIL_HOOKS) */
454 	struct in_addr odst;			/* original dst address(NAT) */
455 	struct m_tag *mtag;
456 	struct sockaddr_in *next_hop = NULL;
457 	lwkt_port_t port;
458 #ifdef FAST_IPSEC
459 	struct tdb_ident *tdbi;
460 	struct secpolicy *sp;
461 	int error;
462 #endif
463 
464 	M_ASSERTPKTHDR(m);
465 
466 	/*
467 	 * This routine is called from numerous places which may not have
468 	 * characterized the packet.
469 	 */
470 	ip = mtod(m, struct ip *);
471 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
472 	    ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) {
473 		/*
474 		 * Force hash recalculation for fragments and multicast
475 		 * packets; hardware may not do it correctly.
476 		 * XXX add flag to indicate the hash is from hardware
477 		 */
478 		m->m_flags &= ~M_HASH;
479 	}
480 	if ((m->m_flags & M_HASH) == 0) {
481 		ip_hashfn(&m, 0);
482 		if (m == NULL)
483 			return;
484 		KKASSERT(m->m_flags & M_HASH);
485 
486 		if (&curthread->td_msgport !=
487 		    netisr_hashport(m->m_pkthdr.hash)) {
488 			netisr_queue(NETISR_IP, m);
489 			/* Requeued to other netisr msgport; done */
490 			return;
491 		}
492 
493 		/* mbuf could have been changed */
494 		ip = mtod(m, struct ip *);
495 	}
496 
497 	/*
498 	 * Pull out certain tags
499 	 */
500 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
501 		/* Next hop */
502 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
503 		KKASSERT(mtag != NULL);
504 		next_hop = m_tag_data(mtag);
505 	}
506 
507 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
508 		/* dummynet already filtered us */
509 		ip = mtod(m, struct ip *);
510 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
511 		goto iphack;
512 	}
513 
514 	ipstat.ips_total++;
515 
516 	/* length checks already done in ip_hashfn() */
517 	KASSERT(m->m_len >= sizeof(struct ip), ("IP header not in one mbuf"));
518 
519 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
520 		ipstat.ips_badvers++;
521 		goto bad;
522 	}
523 
524 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
525 	/* length checks already done in ip_hashfn() */
526 	KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
527 	KASSERT(m->m_len >= hlen, ("complete IP header not in one mbuf"));
528 
529 	/* 127/8 must not appear on wire - RFC1122 */
530 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
531 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
532 		if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
533 			ipstat.ips_badaddr++;
534 			goto bad;
535 		}
536 	}
537 
538 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
539 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
540 	} else {
541 		if (hlen == sizeof(struct ip))
542 			sum = in_cksum_hdr(ip);
543 		else
544 			sum = in_cksum(m, hlen);
545 	}
546 	if (sum != 0) {
547 		ipstat.ips_badsum++;
548 		goto bad;
549 	}
550 
551 #ifdef ALTQ
552 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
553 		/* packet is dropped by traffic conditioner */
554 		return;
555 	}
556 #endif
557 	/*
558 	 * Convert fields to host representation.
559 	 */
560 	ip->ip_len = ntohs(ip->ip_len);
561 	ip->ip_off = ntohs(ip->ip_off);
562 
563 	/* length checks already done in ip_hashfn() */
564 	KASSERT(ip->ip_len >= hlen, ("total length less then header length"));
565 	KASSERT(m->m_pkthdr.len >= ip->ip_len, ("mbuf too short"));
566 
567 	/*
568 	 * Trim mbufs if longer than the IP header would have us expect.
569 	 */
570 	if (m->m_pkthdr.len > ip->ip_len) {
571 		if (m->m_len == m->m_pkthdr.len) {
572 			m->m_len = ip->ip_len;
573 			m->m_pkthdr.len = ip->ip_len;
574 		} else {
575 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
576 		}
577 	}
578 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
579 	/*
580 	 * Bypass packet filtering for packets from a tunnel (gif).
581 	 */
582 	if (ipsec_gethist(m, NULL))
583 		goto pass;
584 #endif
585 
586 	/*
587 	 * IpHack's section.
588 	 * Right now when no processing on packet has done
589 	 * and it is still fresh out of network we do our black
590 	 * deals with it.
591 	 * - Firewall: deny/allow/divert
592 	 * - Xlate: translate packet's addr/port (NAT).
593 	 * - Pipe: pass pkt through dummynet.
594 	 * - Wrap: fake packet's addr/port <unimpl.>
595 	 * - Encapsulate: put it in another IP and send out. <unimp.>
596 	 */
597 
598 iphack:
599 	/*
600 	 * If we've been forwarded from the output side, then
601 	 * skip the firewall a second time
602 	 */
603 	if (next_hop != NULL)
604 		goto ours;
605 
606 	/* No pfil hooks */
607 	if (!pfil_has_hooks(&inet_pfil_hook)) {
608 		if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
609 			/*
610 			 * Strip dummynet tags from stranded packets
611 			 */
612 			mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
613 			KKASSERT(mtag != NULL);
614 			m_tag_delete(m, mtag);
615 			m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
616 		}
617 		goto pass;
618 	}
619 
620 	/*
621 	 * Run through list of hooks for input packets.
622 	 *
623 	 * NOTE!  If the packet is rewritten pf/ipfw/whoever must
624 	 *	  clear M_HASH.
625 	 */
626 	odst = ip->ip_dst;
627 	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif, PFIL_IN))
628 		return;
629 	if (m == NULL)	/* consumed by filter */
630 		return;
631 	ip = mtod(m, struct ip *);
632 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
633 	using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
634 
635 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
636 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
637 		KKASSERT(mtag != NULL);
638 		next_hop = m_tag_data(mtag);
639 	}
640 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
641 		ip_dn_queue(m);
642 		return;
643 	}
644 	if (m->m_pkthdr.fw_flags & FW_MBUF_REDISPATCH) {
645 		m->m_pkthdr.fw_flags &= ~FW_MBUF_REDISPATCH;
646 	}
647 pass:
648 	/*
649 	 * Process options and, if not destined for us,
650 	 * ship it on.  ip_dooptions returns 1 when an
651 	 * error was detected (causing an icmp message
652 	 * to be sent and the original packet to be freed).
653 	 */
654 	if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, next_hop))
655 		return;
656 
657 	/* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
658 	 * matter if it is destined to another node, or whether it is
659 	 * a multicast one, RSVP wants it! and prevents it from being forwarded
660 	 * anywhere else. Also checks if the rsvp daemon is running before
661 	 * grabbing the packet.
662 	 */
663 	if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
664 		goto ours;
665 
666 	/*
667 	 * Check our list of addresses, to see if the packet is for us.
668 	 * If we don't have any addresses, assume any unicast packet
669 	 * we receive might be for us (and let the upper layers deal
670 	 * with it).
671 	 */
672 	if (TAILQ_EMPTY(&in_ifaddrheads[mycpuid]) &&
673 	    !(m->m_flags & (M_MCAST | M_BCAST)))
674 		goto ours;
675 
676 	/*
677 	 * Cache the destination address of the packet; this may be
678 	 * changed by use of 'ipfw fwd'.
679 	 */
680 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
681 
682 	/*
683 	 * Enable a consistency check between the destination address
684 	 * and the arrival interface for a unicast packet (the RFC 1122
685 	 * strong ES model) if IP forwarding is disabled and the packet
686 	 * is not locally generated and the packet is not subject to
687 	 * 'ipfw fwd'.
688 	 *
689 	 * XXX - Checking also should be disabled if the destination
690 	 * address is ipnat'ed to a different interface.
691 	 *
692 	 * XXX - Checking is incompatible with IP aliases added
693 	 * to the loopback interface instead of the interface where
694 	 * the packets are received.
695 	 */
696 	checkif = ip_checkinterface &&
697 		  !ipforwarding &&
698 		  m->m_pkthdr.rcvif != NULL &&
699 		  !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
700 		  next_hop == NULL;
701 
702 	/*
703 	 * Check for exact addresses in the hash bucket.
704 	 */
705 	LIST_FOREACH(iac, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
706 		ia = iac->ia;
707 
708 		/*
709 		 * If the address matches, verify that the packet
710 		 * arrived via the correct interface if checking is
711 		 * enabled.
712 		 */
713 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
714 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
715 			goto ours;
716 	}
717 	ia = NULL;
718 
719 	/*
720 	 * Check for broadcast addresses.
721 	 *
722 	 * Only accept broadcast packets that arrive via the matching
723 	 * interface.  Reception of forwarded directed broadcasts would
724 	 * be handled via ip_forward() and ether_output() with the loopback
725 	 * into the stack for SIMPLEX interfaces handled by ether_output().
726 	 */
727 	if (m->m_pkthdr.rcvif != NULL &&
728 	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
729 		struct ifaddr_container *ifac;
730 
731 		TAILQ_FOREACH(ifac, &m->m_pkthdr.rcvif->if_addrheads[mycpuid],
732 			      ifa_link) {
733 			struct ifaddr *ifa = ifac->ifa;
734 
735 			if (ifa->ifa_addr == NULL) /* shutdown/startup race */
736 				continue;
737 			if (ifa->ifa_addr->sa_family != AF_INET)
738 				continue;
739 			ia = ifatoia(ifa);
740 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
741 								pkt_dst.s_addr)
742 				goto ours;
743 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
744 				goto ours;
745 #ifdef BOOTP_COMPAT
746 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
747 				goto ours;
748 #endif
749 		}
750 	}
751 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
752 		struct in_multi *inm;
753 
754 		if (ip_mrouter != NULL) {
755 			/* XXX Multicast routing is not MPSAFE yet */
756 			get_mplock();
757 
758 			/*
759 			 * If we are acting as a multicast router, all
760 			 * incoming multicast packets are passed to the
761 			 * kernel-level multicast forwarding function.
762 			 * The packet is returned (relatively) intact; if
763 			 * ip_mforward() returns a non-zero value, the packet
764 			 * must be discarded, else it may be accepted below.
765 			 */
766 			if (ip_mforward != NULL &&
767 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
768 				rel_mplock();
769 				ipstat.ips_cantforward++;
770 				m_freem(m);
771 				return;
772 			}
773 
774 			rel_mplock();
775 
776 			/*
777 			 * The process-level routing daemon needs to receive
778 			 * all multicast IGMP packets, whether or not this
779 			 * host belongs to their destination groups.
780 			 */
781 			if (ip->ip_p == IPPROTO_IGMP)
782 				goto ours;
783 			ipstat.ips_forward++;
784 		}
785 		/*
786 		 * See if we belong to the destination multicast group on the
787 		 * arrival interface.
788 		 */
789 		inm = IN_LOOKUP_MULTI(&ip->ip_dst, m->m_pkthdr.rcvif);
790 		if (inm == NULL) {
791 			ipstat.ips_notmember++;
792 			m_freem(m);
793 			return;
794 		}
795 		goto ours;
796 	}
797 	if (ip->ip_dst.s_addr == INADDR_BROADCAST)
798 		goto ours;
799 	if (ip->ip_dst.s_addr == INADDR_ANY)
800 		goto ours;
801 
802 	/*
803 	 * FAITH(Firewall Aided Internet Translator)
804 	 */
805 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
806 		if (ip_keepfaith) {
807 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
808 				goto ours;
809 		}
810 		m_freem(m);
811 		return;
812 	}
813 
814 	/*
815 	 * Not for us; forward if possible and desirable.
816 	 */
817 	if (!ipforwarding) {
818 		ipstat.ips_cantforward++;
819 		m_freem(m);
820 	} else {
821 #ifdef IPSEC
822 		/*
823 		 * Enforce inbound IPsec SPD.
824 		 */
825 		if (ipsec4_in_reject(m, NULL)) {
826 			ipsecstat.in_polvio++;
827 			goto bad;
828 		}
829 #endif
830 #ifdef FAST_IPSEC
831 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
832 		crit_enter();
833 		if (mtag != NULL) {
834 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
835 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
836 		} else {
837 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
838 						   IP_FORWARDING, &error);
839 		}
840 		if (sp == NULL) {	/* NB: can happen if error */
841 			crit_exit();
842 			/*XXX error stat???*/
843 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
844 			goto bad;
845 		}
846 
847 		/*
848 		 * Check security policy against packet attributes.
849 		 */
850 		error = ipsec_in_reject(sp, m);
851 		KEY_FREESP(&sp);
852 		crit_exit();
853 		if (error) {
854 			ipstat.ips_cantforward++;
855 			goto bad;
856 		}
857 #endif
858 		ip_forward(m, using_srcrt, next_hop);
859 	}
860 	return;
861 
862 ours:
863 
864 	/*
865 	 * IPSTEALTH: Process non-routing options only
866 	 * if the packet is destined for us.
867 	 */
868 	if (ipstealth &&
869 	    hlen > sizeof(struct ip) &&
870 	    ip_dooptions(m, 1, next_hop))
871 		return;
872 
873 	/* Count the packet in the ip address stats */
874 	if (ia != NULL) {
875 		IFA_STAT_INC(&ia->ia_ifa, ipackets, 1);
876 		IFA_STAT_INC(&ia->ia_ifa, ibytes, m->m_pkthdr.len);
877 	}
878 
879 	/*
880 	 * If offset or IP_MF are set, must reassemble.
881 	 * Otherwise, nothing need be done.
882 	 * (We could look in the reassembly queue to see
883 	 * if the packet was previously fragmented,
884 	 * but it's not worth the time; just let them time out.)
885 	 */
886 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
887 		/*
888 		 * Attempt reassembly; if it succeeds, proceed.  ip_reass()
889 		 * will return a different mbuf.
890 		 *
891 		 * NOTE: ip_reass() returns m with M_HASH cleared to force
892 		 *	 us to recharacterize the packet.
893 		 */
894 		m = ip_reass(m);
895 		if (m == NULL)
896 			return;
897 		ip = mtod(m, struct ip *);
898 
899 		/* Get the header length of the reassembled packet */
900 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
901 	} else {
902 		ip->ip_len -= hlen;
903 	}
904 
905 #ifdef IPSEC
906 	/*
907 	 * enforce IPsec policy checking if we are seeing last header.
908 	 * note that we do not visit this with protocols with pcb layer
909 	 * code - like udp/tcp/raw ip.
910 	 */
911 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
912 	    ipsec4_in_reject(m, NULL)) {
913 		ipsecstat.in_polvio++;
914 		goto bad;
915 	}
916 #endif
917 #ifdef FAST_IPSEC
918 	/*
919 	 * enforce IPsec policy checking if we are seeing last header.
920 	 * note that we do not visit this with protocols with pcb layer
921 	 * code - like udp/tcp/raw ip.
922 	 */
923 	if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
924 		/*
925 		 * Check if the packet has already had IPsec processing
926 		 * done.  If so, then just pass it along.  This tag gets
927 		 * set during AH, ESP, etc. input handling, before the
928 		 * packet is returned to the ip input queue for delivery.
929 		 */
930 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
931 		crit_enter();
932 		if (mtag != NULL) {
933 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
934 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
935 		} else {
936 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
937 						   IP_FORWARDING, &error);
938 		}
939 		if (sp != NULL) {
940 			/*
941 			 * Check security policy against packet attributes.
942 			 */
943 			error = ipsec_in_reject(sp, m);
944 			KEY_FREESP(&sp);
945 		} else {
946 			/* XXX error stat??? */
947 			error = EINVAL;
948 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
949 			crit_exit();
950 			goto bad;
951 		}
952 		crit_exit();
953 		if (error)
954 			goto bad;
955 	}
956 #endif /* FAST_IPSEC */
957 
958 	/*
959 	 * We must forward the packet to the correct protocol thread if
960 	 * we are not already in it.
961 	 *
962 	 * NOTE: ip_len is now in host form.  ip_len is not adjusted
963 	 *	 further for protocol processing, instead we pass hlen
964 	 *	 to the protosw and let it deal with it.
965 	 */
966 	ipstat.ips_delivered++;
967 
968 	if ((m->m_flags & M_HASH) == 0) {
969 #ifdef RSS_DEBUG
970 		atomic_add_long(&ip_rehash_count, 1);
971 #endif
972 		ip->ip_len = htons(ip->ip_len + hlen);
973 		ip->ip_off = htons(ip->ip_off);
974 
975 		ip_hashfn(&m, 0);
976 		if (m == NULL)
977 			return;
978 
979 		ip = mtod(m, struct ip *);
980 		ip->ip_len = ntohs(ip->ip_len) - hlen;
981 		ip->ip_off = ntohs(ip->ip_off);
982 		KKASSERT(m->m_flags & M_HASH);
983 	}
984 	port = netisr_hashport(m->m_pkthdr.hash);
985 
986 	if (port != &curthread->td_msgport) {
987 		struct netmsg_packet *pmsg;
988 
989 #ifdef RSS_DEBUG
990 		atomic_add_long(&ip_dispatch_slow, 1);
991 #endif
992 
993 		pmsg = &m->m_hdr.mh_netmsg;
994 		netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
995 			    0, transport_processing_handler);
996 		pmsg->nm_packet = m;
997 		pmsg->base.lmsg.u.ms_result = hlen;
998 		lwkt_sendmsg(port, &pmsg->base.lmsg);
999 	} else {
1000 #ifdef RSS_DEBUG
1001 		atomic_add_long(&ip_dispatch_fast, 1);
1002 #endif
1003 		transport_processing_oncpu(m, hlen, ip);
1004 	}
1005 	return;
1006 
1007 bad:
1008 	m_freem(m);
1009 }
1010 
1011 /*
1012  * Take incoming datagram fragment and try to reassemble it into
1013  * whole datagram.  If a chain for reassembly of this datagram already
1014  * exists, then it is given as fp; otherwise have to make a chain.
1015  */
1016 struct mbuf *
1017 ip_reass(struct mbuf *m)
1018 {
1019 	struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[mycpuid];
1020 	struct ip *ip = mtod(m, struct ip *);
1021 	struct mbuf *p = NULL, *q, *nq;
1022 	struct mbuf *n;
1023 	struct ipq *fp = NULL;
1024 	struct ipqhead *head;
1025 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1026 	int i, next;
1027 	u_short sum;
1028 
1029 	/* If maxnipq is 0, never accept fragments. */
1030 	if (maxnipq == 0) {
1031 		ipstat.ips_fragments++;
1032 		ipstat.ips_fragdropped++;
1033 		m_freem(m);
1034 		return NULL;
1035 	}
1036 
1037 	sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
1038 	/*
1039 	 * Look for queue of fragments of this datagram.
1040 	 */
1041 	head = &fragq->ipq[sum];
1042 	TAILQ_FOREACH(fp, head, ipq_list) {
1043 		if (ip->ip_id == fp->ipq_id &&
1044 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
1045 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
1046 		    ip->ip_p == fp->ipq_p)
1047 			goto found;
1048 	}
1049 
1050 	fp = NULL;
1051 
1052 	/*
1053 	 * Enforce upper bound on number of fragmented packets
1054 	 * for which we attempt reassembly;
1055 	 * If maxnipq is -1, accept all fragments without limitation.
1056 	 */
1057 	if (fragq->nipq > maxnipq && maxnipq > 0) {
1058 		/*
1059 		 * drop something from the tail of the current queue
1060 		 * before proceeding further
1061 		 */
1062 		struct ipq *q = TAILQ_LAST(head, ipqhead);
1063 		if (q == NULL) {
1064 			/*
1065 			 * The current queue is empty,
1066 			 * so drop from one of the others.
1067 			 */
1068 			for (i = 0; i < IPREASS_NHASH; i++) {
1069 				struct ipq *r = TAILQ_LAST(&fragq->ipq[i],
1070 				    ipqhead);
1071 				if (r) {
1072 					ipstat.ips_fragtimeout += r->ipq_nfrags;
1073 					ip_freef(fragq, &fragq->ipq[i], r);
1074 					break;
1075 				}
1076 			}
1077 		} else {
1078 			ipstat.ips_fragtimeout += q->ipq_nfrags;
1079 			ip_freef(fragq, head, q);
1080 		}
1081 	}
1082 found:
1083 	/*
1084 	 * Adjust ip_len to not reflect header,
1085 	 * convert offset of this to bytes.
1086 	 */
1087 	ip->ip_len -= hlen;
1088 	if (ip->ip_off & IP_MF) {
1089 		/*
1090 		 * Make sure that fragments have a data length
1091 		 * that's a non-zero multiple of 8 bytes.
1092 		 */
1093 		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
1094 			ipstat.ips_toosmall++; /* XXX */
1095 			m_freem(m);
1096 			goto done;
1097 		}
1098 		m->m_flags |= M_FRAG;
1099 	} else {
1100 		m->m_flags &= ~M_FRAG;
1101 	}
1102 	ip->ip_off <<= 3;
1103 
1104 	ipstat.ips_fragments++;
1105 	m->m_pkthdr.header = ip;
1106 
1107 	/*
1108 	 * If the hardware has not done csum over this fragment
1109 	 * then csum_data is not valid at all.
1110 	 */
1111 	if ((m->m_pkthdr.csum_flags & (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID))
1112 	    == (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID)) {
1113 		m->m_pkthdr.csum_data = 0;
1114 		m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1115 	}
1116 
1117 	/*
1118 	 * Presence of header sizes in mbufs
1119 	 * would confuse code below.
1120 	 */
1121 	m->m_data += hlen;
1122 	m->m_len -= hlen;
1123 
1124 	/*
1125 	 * If first fragment to arrive, create a reassembly queue.
1126 	 */
1127 	if (fp == NULL) {
1128 		if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1129 			goto dropfrag;
1130 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
1131 		fragq->nipq++;
1132 		fp->ipq_nfrags = 1;
1133 		fp->ipq_ttl = IPFRAGTTL;
1134 		fp->ipq_p = ip->ip_p;
1135 		fp->ipq_id = ip->ip_id;
1136 		fp->ipq_src = ip->ip_src;
1137 		fp->ipq_dst = ip->ip_dst;
1138 		fp->ipq_frags = m;
1139 		m->m_nextpkt = NULL;
1140 		goto inserted;
1141 	} else {
1142 		fp->ipq_nfrags++;
1143 	}
1144 
1145 #define	GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1146 
1147 	/*
1148 	 * Find a segment which begins after this one does.
1149 	 */
1150 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1151 		if (GETIP(q)->ip_off > ip->ip_off)
1152 			break;
1153 	}
1154 
1155 	/*
1156 	 * If there is a preceding segment, it may provide some of
1157 	 * our data already.  If so, drop the data from the incoming
1158 	 * segment.  If it provides all of our data, drop us, otherwise
1159 	 * stick new segment in the proper place.
1160 	 *
1161 	 * If some of the data is dropped from the the preceding
1162 	 * segment, then it's checksum is invalidated.
1163 	 */
1164 	if (p) {
1165 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1166 		if (i > 0) {
1167 			if (i >= ip->ip_len)
1168 				goto dropfrag;
1169 			m_adj(m, i);
1170 			m->m_pkthdr.csum_flags = 0;
1171 			ip->ip_off += i;
1172 			ip->ip_len -= i;
1173 		}
1174 		m->m_nextpkt = p->m_nextpkt;
1175 		p->m_nextpkt = m;
1176 	} else {
1177 		m->m_nextpkt = fp->ipq_frags;
1178 		fp->ipq_frags = m;
1179 	}
1180 
1181 	/*
1182 	 * While we overlap succeeding segments trim them or,
1183 	 * if they are completely covered, dequeue them.
1184 	 */
1185 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1186 	     q = nq) {
1187 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1188 		if (i < GETIP(q)->ip_len) {
1189 			GETIP(q)->ip_len -= i;
1190 			GETIP(q)->ip_off += i;
1191 			m_adj(q, i);
1192 			q->m_pkthdr.csum_flags = 0;
1193 			break;
1194 		}
1195 		nq = q->m_nextpkt;
1196 		m->m_nextpkt = nq;
1197 		ipstat.ips_fragdropped++;
1198 		fp->ipq_nfrags--;
1199 		q->m_nextpkt = NULL;
1200 		m_freem(q);
1201 	}
1202 
1203 inserted:
1204 	/*
1205 	 * Check for complete reassembly and perform frag per packet
1206 	 * limiting.
1207 	 *
1208 	 * Frag limiting is performed here so that the nth frag has
1209 	 * a chance to complete the packet before we drop the packet.
1210 	 * As a result, n+1 frags are actually allowed per packet, but
1211 	 * only n will ever be stored. (n = maxfragsperpacket.)
1212 	 *
1213 	 */
1214 	next = 0;
1215 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1216 		if (GETIP(q)->ip_off != next) {
1217 			if (fp->ipq_nfrags > maxfragsperpacket) {
1218 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1219 				ip_freef(fragq, head, fp);
1220 			}
1221 			goto done;
1222 		}
1223 		next += GETIP(q)->ip_len;
1224 	}
1225 	/* Make sure the last packet didn't have the IP_MF flag */
1226 	if (p->m_flags & M_FRAG) {
1227 		if (fp->ipq_nfrags > maxfragsperpacket) {
1228 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1229 			ip_freef(fragq, head, fp);
1230 		}
1231 		goto done;
1232 	}
1233 
1234 	/*
1235 	 * Reassembly is complete.  Make sure the packet is a sane size.
1236 	 */
1237 	q = fp->ipq_frags;
1238 	ip = GETIP(q);
1239 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1240 		ipstat.ips_toolong++;
1241 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1242 		ip_freef(fragq, head, fp);
1243 		goto done;
1244 	}
1245 
1246 	/*
1247 	 * Concatenate fragments.
1248 	 */
1249 	m = q;
1250 	n = m->m_next;
1251 	m->m_next = NULL;
1252 	m_cat(m, n);
1253 	nq = q->m_nextpkt;
1254 	q->m_nextpkt = NULL;
1255 	for (q = nq; q != NULL; q = nq) {
1256 		nq = q->m_nextpkt;
1257 		q->m_nextpkt = NULL;
1258 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1259 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1260 		m_cat(m, q);
1261 	}
1262 
1263 	/*
1264 	 * Clean up the 1's complement checksum.  Carry over 16 bits must
1265 	 * be added back.  This assumes no more then 65535 packet fragments
1266 	 * were reassembled.  A second carry can also occur (but not a third).
1267 	 */
1268 	m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1269 				(m->m_pkthdr.csum_data >> 16);
1270 	if (m->m_pkthdr.csum_data > 0xFFFF)
1271 		m->m_pkthdr.csum_data -= 0xFFFF;
1272 
1273 	/*
1274 	 * Create header for new ip packet by
1275 	 * modifying header of first packet;
1276 	 * dequeue and discard fragment reassembly header.
1277 	 * Make header visible.
1278 	 */
1279 	ip->ip_len = next;
1280 	ip->ip_src = fp->ipq_src;
1281 	ip->ip_dst = fp->ipq_dst;
1282 	TAILQ_REMOVE(head, fp, ipq_list);
1283 	fragq->nipq--;
1284 	mpipe_free(&ipq_mpipe, fp);
1285 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1286 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1287 	/* some debugging cruft by sklower, below, will go away soon */
1288 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1289 		int plen = 0;
1290 
1291 		for (n = m; n; n = n->m_next)
1292 			plen += n->m_len;
1293 		m->m_pkthdr.len = plen;
1294 	}
1295 
1296 	/*
1297 	 * Reassembly complete, return the next protocol.
1298 	 *
1299 	 * Be sure to clear M_HASH to force the packet
1300 	 * to be re-characterized.
1301 	 *
1302 	 * Clear M_FRAG, we are no longer a fragment.
1303 	 */
1304 	m->m_flags &= ~(M_HASH | M_FRAG);
1305 
1306 	ipstat.ips_reassembled++;
1307 	return (m);
1308 
1309 dropfrag:
1310 	ipstat.ips_fragdropped++;
1311 	if (fp != NULL)
1312 		fp->ipq_nfrags--;
1313 	m_freem(m);
1314 done:
1315 	return (NULL);
1316 
1317 #undef GETIP
1318 }
1319 
1320 /*
1321  * Free a fragment reassembly header and all
1322  * associated datagrams.
1323  */
1324 static void
1325 ip_freef(struct ipfrag_queue *fragq, struct ipqhead *fhp, struct ipq *fp)
1326 {
1327 	struct mbuf *q;
1328 
1329 	/*
1330 	 * Remove first to protect against blocking
1331 	 */
1332 	TAILQ_REMOVE(fhp, fp, ipq_list);
1333 
1334 	/*
1335 	 * Clean out at our leisure
1336 	 */
1337 	while (fp->ipq_frags) {
1338 		q = fp->ipq_frags;
1339 		fp->ipq_frags = q->m_nextpkt;
1340 		q->m_nextpkt = NULL;
1341 		m_freem(q);
1342 	}
1343 	mpipe_free(&ipq_mpipe, fp);
1344 	fragq->nipq--;
1345 }
1346 
1347 /*
1348  * If a timer expires on a reassembly queue, discard it.
1349  */
1350 static void
1351 ipfrag_timeo_dispatch(netmsg_t nmsg)
1352 {
1353 	struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[mycpuid];
1354 	struct ipq *fp, *fp_temp;
1355 	struct ipqhead *head;
1356 	int i;
1357 
1358 	crit_enter();
1359 	lwkt_replymsg(&nmsg->lmsg, 0);  /* reply ASAP */
1360 	crit_exit();
1361 
1362 	for (i = 0; i < IPREASS_NHASH; i++) {
1363 		head = &fragq->ipq[i];
1364 		TAILQ_FOREACH_MUTABLE(fp, head, ipq_list, fp_temp) {
1365 			if (--fp->ipq_ttl == 0) {
1366 				ipstat.ips_fragtimeout += fp->ipq_nfrags;
1367 				ip_freef(fragq, head, fp);
1368 			}
1369 		}
1370 	}
1371 	/*
1372 	 * If we are over the maximum number of fragments
1373 	 * (due to the limit being lowered), drain off
1374 	 * enough to get down to the new limit.
1375 	 */
1376 	if (maxnipq >= 0 && fragq->nipq > maxnipq) {
1377 		for (i = 0; i < IPREASS_NHASH; i++) {
1378 			head = &fragq->ipq[i];
1379 			while (fragq->nipq > maxnipq && !TAILQ_EMPTY(head)) {
1380 				ipstat.ips_fragdropped +=
1381 				    TAILQ_FIRST(head)->ipq_nfrags;
1382 				ip_freef(fragq, head, TAILQ_FIRST(head));
1383 			}
1384 		}
1385 	}
1386 }
1387 
1388 static void
1389 ipfrag_timeo_ipi(void *arg __unused)
1390 {
1391 	int cpu = mycpuid;
1392 	struct lwkt_msg *msg = &ipfrag_queue_pcpu[cpu].timeo_netmsg.lmsg;
1393 
1394 	crit_enter();
1395 	if (msg->ms_flags & MSGF_DONE)
1396 		lwkt_sendmsg_oncpu(netisr_cpuport(cpu), msg);
1397 	crit_exit();
1398 }
1399 
1400 static void
1401 ipfrag_slowtimo(void)
1402 {
1403 	cpumask_t mask;
1404 
1405 	CPUMASK_ASSBMASK(mask, ncpus);
1406 	CPUMASK_ANDMASK(mask, smp_active_mask);
1407 	if (CPUMASK_TESTNZERO(mask))
1408 		lwkt_send_ipiq_mask(mask, ipfrag_timeo_ipi, NULL);
1409 }
1410 
1411 /*
1412  * IP timer processing
1413  */
1414 void
1415 ip_slowtimo(void)
1416 {
1417 	ipfrag_slowtimo();
1418 	ipflow_slowtimo();
1419 }
1420 
1421 /*
1422  * Drain off all datagram fragments.
1423  */
1424 static void
1425 ipfrag_drain_dispatch(netmsg_t nmsg)
1426 {
1427 	struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[mycpuid];
1428 	struct ipqhead *head;
1429 	int i;
1430 
1431 	crit_enter();
1432 	lwkt_replymsg(&nmsg->lmsg, 0);  /* reply ASAP */
1433 	crit_exit();
1434 
1435 	for (i = 0; i < IPREASS_NHASH; i++) {
1436 		head = &fragq->ipq[i];
1437 		while (!TAILQ_EMPTY(head)) {
1438 			ipstat.ips_fragdropped += TAILQ_FIRST(head)->ipq_nfrags;
1439 			ip_freef(fragq, head, TAILQ_FIRST(head));
1440 		}
1441 	}
1442 }
1443 
1444 static void
1445 ipfrag_drain_ipi(void *arg __unused)
1446 {
1447 	int cpu = mycpuid;
1448 	struct lwkt_msg *msg = &ipfrag_queue_pcpu[cpu].drain_netmsg.lmsg;
1449 
1450 	crit_enter();
1451 	if (msg->ms_flags & MSGF_DONE)
1452 		lwkt_sendmsg_oncpu(netisr_cpuport(cpu), msg);
1453 	crit_exit();
1454 }
1455 
1456 static void
1457 ipfrag_drain(void)
1458 {
1459 	cpumask_t mask;
1460 
1461 	CPUMASK_ASSBMASK(mask, ncpus);
1462 	CPUMASK_ANDMASK(mask, smp_active_mask);
1463 	if (CPUMASK_TESTNZERO(mask))
1464 		lwkt_send_ipiq_mask(mask, ipfrag_drain_ipi, NULL);
1465 }
1466 
1467 void
1468 ip_drain(void)
1469 {
1470 	ipfrag_drain();
1471 	in_rtqdrain();
1472 }
1473 
1474 /*
1475  * Do option processing on a datagram,
1476  * possibly discarding it if bad options are encountered,
1477  * or forwarding it if source-routed.
1478  * The pass argument is used when operating in the IPSTEALTH
1479  * mode to tell what options to process:
1480  * [LS]SRR (pass 0) or the others (pass 1).
1481  * The reason for as many as two passes is that when doing IPSTEALTH,
1482  * non-routing options should be processed only if the packet is for us.
1483  * Returns 1 if packet has been forwarded/freed,
1484  * 0 if the packet should be processed further.
1485  */
1486 static int
1487 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1488 {
1489 	struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1490 	struct ip *ip = mtod(m, struct ip *);
1491 	u_char *cp;
1492 	struct in_ifaddr *ia;
1493 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1494 	boolean_t forward = FALSE;
1495 	struct in_addr *sin, dst;
1496 	n_time ntime;
1497 
1498 	dst = ip->ip_dst;
1499 	cp = (u_char *)(ip + 1);
1500 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1501 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1502 		opt = cp[IPOPT_OPTVAL];
1503 		if (opt == IPOPT_EOL)
1504 			break;
1505 		if (opt == IPOPT_NOP)
1506 			optlen = 1;
1507 		else {
1508 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1509 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1510 				goto bad;
1511 			}
1512 			optlen = cp[IPOPT_OLEN];
1513 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1514 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1515 				goto bad;
1516 			}
1517 		}
1518 		switch (opt) {
1519 
1520 		default:
1521 			break;
1522 
1523 		/*
1524 		 * Source routing with record.
1525 		 * Find interface with current destination address.
1526 		 * If none on this machine then drop if strictly routed,
1527 		 * or do nothing if loosely routed.
1528 		 * Record interface address and bring up next address
1529 		 * component.  If strictly routed make sure next
1530 		 * address is on directly accessible net.
1531 		 */
1532 		case IPOPT_LSRR:
1533 		case IPOPT_SSRR:
1534 			if (ipstealth && pass > 0)
1535 				break;
1536 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1537 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1538 				goto bad;
1539 			}
1540 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1541 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1542 				goto bad;
1543 			}
1544 			ipaddr.sin_addr = ip->ip_dst;
1545 			ia = (struct in_ifaddr *)
1546 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1547 			if (ia == NULL) {
1548 				if (opt == IPOPT_SSRR) {
1549 					type = ICMP_UNREACH;
1550 					code = ICMP_UNREACH_SRCFAIL;
1551 					goto bad;
1552 				}
1553 				if (!ip_dosourceroute)
1554 					goto nosourcerouting;
1555 				/*
1556 				 * Loose routing, and not at next destination
1557 				 * yet; nothing to do except forward.
1558 				 */
1559 				break;
1560 			}
1561 			off--;			/* 0 origin */
1562 			if (off > optlen - (int)sizeof(struct in_addr)) {
1563 				/*
1564 				 * End of source route.  Should be for us.
1565 				 */
1566 				if (!ip_acceptsourceroute)
1567 					goto nosourcerouting;
1568 				save_rte(m, cp, ip->ip_src);
1569 				break;
1570 			}
1571 			if (ipstealth)
1572 				goto dropit;
1573 			if (!ip_dosourceroute) {
1574 				if (ipforwarding) {
1575 					char buf[sizeof "aaa.bbb.ccc.ddd"];
1576 
1577 					/*
1578 					 * Acting as a router, so generate ICMP
1579 					 */
1580 nosourcerouting:
1581 					strcpy(buf, inet_ntoa(ip->ip_dst));
1582 					log(LOG_WARNING,
1583 					    "attempted source route from %s to %s\n",
1584 					    inet_ntoa(ip->ip_src), buf);
1585 					type = ICMP_UNREACH;
1586 					code = ICMP_UNREACH_SRCFAIL;
1587 					goto bad;
1588 				} else {
1589 					/*
1590 					 * Not acting as a router,
1591 					 * so silently drop.
1592 					 */
1593 dropit:
1594 					ipstat.ips_cantforward++;
1595 					m_freem(m);
1596 					return (1);
1597 				}
1598 			}
1599 
1600 			/*
1601 			 * locate outgoing interface
1602 			 */
1603 			memcpy(&ipaddr.sin_addr, cp + off,
1604 			    sizeof ipaddr.sin_addr);
1605 
1606 			if (opt == IPOPT_SSRR) {
1607 #define	INA	struct in_ifaddr *
1608 #define	SA	struct sockaddr *
1609 				if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1610 									== NULL)
1611 					ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1612 			} else {
1613 				ia = ip_rtaddr(ipaddr.sin_addr, NULL);
1614 			}
1615 			if (ia == NULL) {
1616 				type = ICMP_UNREACH;
1617 				code = ICMP_UNREACH_SRCFAIL;
1618 				goto bad;
1619 			}
1620 			ip->ip_dst = ipaddr.sin_addr;
1621 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1622 			    sizeof(struct in_addr));
1623 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1624 			/*
1625 			 * Let ip_intr's mcast routing check handle mcast pkts
1626 			 */
1627 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1628 			break;
1629 
1630 		case IPOPT_RR:
1631 			if (ipstealth && pass == 0)
1632 				break;
1633 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1634 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1635 				goto bad;
1636 			}
1637 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1638 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1639 				goto bad;
1640 			}
1641 			/*
1642 			 * If no space remains, ignore.
1643 			 */
1644 			off--;			/* 0 origin */
1645 			if (off > optlen - (int)sizeof(struct in_addr))
1646 				break;
1647 			memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1648 			    sizeof ipaddr.sin_addr);
1649 			/*
1650 			 * locate outgoing interface; if we're the destination,
1651 			 * use the incoming interface (should be same).
1652 			 */
1653 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1654 			    (ia = ip_rtaddr(ipaddr.sin_addr, NULL)) == NULL) {
1655 				type = ICMP_UNREACH;
1656 				code = ICMP_UNREACH_HOST;
1657 				goto bad;
1658 			}
1659 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1660 			    sizeof(struct in_addr));
1661 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1662 			break;
1663 
1664 		case IPOPT_TS:
1665 			if (ipstealth && pass == 0)
1666 				break;
1667 			code = cp - (u_char *)ip;
1668 			if (optlen < 4 || optlen > 40) {
1669 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1670 				goto bad;
1671 			}
1672 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1673 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1674 				goto bad;
1675 			}
1676 			if (off > optlen - (int)sizeof(int32_t)) {
1677 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1678 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1679 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1680 					goto bad;
1681 				}
1682 				break;
1683 			}
1684 			off--;				/* 0 origin */
1685 			sin = (struct in_addr *)(cp + off);
1686 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1687 
1688 			case IPOPT_TS_TSONLY:
1689 				break;
1690 
1691 			case IPOPT_TS_TSANDADDR:
1692 				if (off + sizeof(n_time) +
1693 				    sizeof(struct in_addr) > optlen) {
1694 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1695 					goto bad;
1696 				}
1697 				ipaddr.sin_addr = dst;
1698 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1699 							    m->m_pkthdr.rcvif);
1700 				if (ia == NULL)
1701 					continue;
1702 				memcpy(sin, &IA_SIN(ia)->sin_addr,
1703 				    sizeof(struct in_addr));
1704 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1705 				off += sizeof(struct in_addr);
1706 				break;
1707 
1708 			case IPOPT_TS_PRESPEC:
1709 				if (off + sizeof(n_time) +
1710 				    sizeof(struct in_addr) > optlen) {
1711 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1712 					goto bad;
1713 				}
1714 				memcpy(&ipaddr.sin_addr, sin,
1715 				    sizeof(struct in_addr));
1716 				if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1717 					continue;
1718 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1719 				off += sizeof(struct in_addr);
1720 				break;
1721 
1722 			default:
1723 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1724 				goto bad;
1725 			}
1726 			ntime = iptime();
1727 			memcpy(cp + off, &ntime, sizeof(n_time));
1728 			cp[IPOPT_OFFSET] += sizeof(n_time);
1729 		}
1730 	}
1731 	if (forward && ipforwarding) {
1732 		ip_forward(m, TRUE, next_hop);
1733 		return (1);
1734 	}
1735 	return (0);
1736 bad:
1737 	icmp_error(m, type, code, 0, 0);
1738 	ipstat.ips_badoptions++;
1739 	return (1);
1740 }
1741 
1742 /*
1743  * Given address of next destination (final or next hop),
1744  * return internet address info of interface to be used to get there.
1745  */
1746 struct in_ifaddr *
1747 ip_rtaddr(struct in_addr dst, struct route *ro0)
1748 {
1749 	struct route sro, *ro;
1750 	struct sockaddr_in *sin;
1751 	struct in_ifaddr *ia;
1752 
1753 	if (ro0 != NULL) {
1754 		ro = ro0;
1755 	} else {
1756 		bzero(&sro, sizeof(sro));
1757 		ro = &sro;
1758 	}
1759 
1760 	sin = (struct sockaddr_in *)&ro->ro_dst;
1761 
1762 	if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1763 		if (ro->ro_rt != NULL) {
1764 			RTFREE(ro->ro_rt);
1765 			ro->ro_rt = NULL;
1766 		}
1767 		sin->sin_family = AF_INET;
1768 		sin->sin_len = sizeof *sin;
1769 		sin->sin_addr = dst;
1770 		rtalloc_ign(ro, RTF_PRCLONING);
1771 	}
1772 
1773 	if (ro->ro_rt == NULL)
1774 		return (NULL);
1775 
1776 	ia = ifatoia(ro->ro_rt->rt_ifa);
1777 
1778 	if (ro == &sro)
1779 		RTFREE(ro->ro_rt);
1780 	return ia;
1781 }
1782 
1783 /*
1784  * Save incoming source route for use in replies,
1785  * to be picked up later by ip_srcroute if the receiver is interested.
1786  */
1787 static void
1788 save_rte(struct mbuf *m, u_char *option, struct in_addr dst)
1789 {
1790 	struct m_tag *mtag;
1791 	struct ip_srcrt_opt *opt;
1792 	unsigned olen;
1793 
1794 	mtag = m_tag_get(PACKET_TAG_IPSRCRT, sizeof(*opt), M_NOWAIT);
1795 	if (mtag == NULL)
1796 		return;
1797 	opt = m_tag_data(mtag);
1798 
1799 	olen = option[IPOPT_OLEN];
1800 #ifdef DIAGNOSTIC
1801 	if (ipprintfs)
1802 		kprintf("save_rte: olen %d\n", olen);
1803 #endif
1804 	if (olen > sizeof(opt->ip_srcrt) - (1 + sizeof(dst))) {
1805 		m_tag_free(mtag);
1806 		return;
1807 	}
1808 	bcopy(option, opt->ip_srcrt.srcopt, olen);
1809 	opt->ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1810 	opt->ip_srcrt.dst = dst;
1811 	m_tag_prepend(m, mtag);
1812 }
1813 
1814 /*
1815  * Retrieve incoming source route for use in replies,
1816  * in the same form used by setsockopt.
1817  * The first hop is placed before the options, will be removed later.
1818  */
1819 struct mbuf *
1820 ip_srcroute(struct mbuf *m0)
1821 {
1822 	struct in_addr *p, *q;
1823 	struct mbuf *m;
1824 	struct m_tag *mtag;
1825 	struct ip_srcrt_opt *opt;
1826 
1827 	if (m0 == NULL)
1828 		return NULL;
1829 
1830 	mtag = m_tag_find(m0, PACKET_TAG_IPSRCRT, NULL);
1831 	if (mtag == NULL)
1832 		return NULL;
1833 	opt = m_tag_data(mtag);
1834 
1835 	if (opt->ip_nhops == 0)
1836 		return (NULL);
1837 	m = m_get(M_NOWAIT, MT_HEADER);
1838 	if (m == NULL)
1839 		return (NULL);
1840 
1841 #define	OPTSIZ	(sizeof(opt->ip_srcrt.nop) + sizeof(opt->ip_srcrt.srcopt))
1842 
1843 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1844 	m->m_len = opt->ip_nhops * sizeof(struct in_addr) +
1845 		   sizeof(struct in_addr) + OPTSIZ;
1846 #ifdef DIAGNOSTIC
1847 	if (ipprintfs) {
1848 		kprintf("ip_srcroute: nhops %d mlen %d",
1849 			opt->ip_nhops, m->m_len);
1850 	}
1851 #endif
1852 
1853 	/*
1854 	 * First save first hop for return route
1855 	 */
1856 	p = &opt->ip_srcrt.route[opt->ip_nhops - 1];
1857 	*(mtod(m, struct in_addr *)) = *p--;
1858 #ifdef DIAGNOSTIC
1859 	if (ipprintfs)
1860 		kprintf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1861 #endif
1862 
1863 	/*
1864 	 * Copy option fields and padding (nop) to mbuf.
1865 	 */
1866 	opt->ip_srcrt.nop = IPOPT_NOP;
1867 	opt->ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1868 	memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &opt->ip_srcrt.nop,
1869 	    OPTSIZ);
1870 	q = (struct in_addr *)(mtod(m, caddr_t) +
1871 	    sizeof(struct in_addr) + OPTSIZ);
1872 #undef OPTSIZ
1873 	/*
1874 	 * Record return path as an IP source route,
1875 	 * reversing the path (pointers are now aligned).
1876 	 */
1877 	while (p >= opt->ip_srcrt.route) {
1878 #ifdef DIAGNOSTIC
1879 		if (ipprintfs)
1880 			kprintf(" %x", ntohl(q->s_addr));
1881 #endif
1882 		*q++ = *p--;
1883 	}
1884 	/*
1885 	 * Last hop goes to final destination.
1886 	 */
1887 	*q = opt->ip_srcrt.dst;
1888 	m_tag_delete(m0, mtag);
1889 #ifdef DIAGNOSTIC
1890 	if (ipprintfs)
1891 		kprintf(" %x\n", ntohl(q->s_addr));
1892 #endif
1893 	return (m);
1894 }
1895 
1896 /*
1897  * Strip out IP options.
1898  */
1899 void
1900 ip_stripoptions(struct mbuf *m)
1901 {
1902 	int datalen;
1903 	struct ip *ip = mtod(m, struct ip *);
1904 	caddr_t opts;
1905 	int optlen;
1906 
1907 	optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1908 	opts = (caddr_t)(ip + 1);
1909 	datalen = m->m_len - (sizeof(struct ip) + optlen);
1910 	bcopy(opts + optlen, opts, datalen);
1911 	m->m_len -= optlen;
1912 	if (m->m_flags & M_PKTHDR)
1913 		m->m_pkthdr.len -= optlen;
1914 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1915 }
1916 
1917 u_char inetctlerrmap[PRC_NCMDS] = {
1918 	0,		0,		0,		0,
1919 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1920 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1921 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1922 	0,		0,		0,		0,
1923 	ENOPROTOOPT,	ECONNREFUSED
1924 };
1925 
1926 /*
1927  * Forward a packet.  If some error occurs return the sender
1928  * an icmp packet.  Note we can't always generate a meaningful
1929  * icmp message because icmp doesn't have a large enough repertoire
1930  * of codes and types.
1931  *
1932  * If not forwarding, just drop the packet.  This could be confusing
1933  * if ipforwarding was zero but some routing protocol was advancing
1934  * us as a gateway to somewhere.  However, we must let the routing
1935  * protocol deal with that.
1936  *
1937  * The using_srcrt parameter indicates whether the packet is being forwarded
1938  * via a source route.
1939  */
1940 void
1941 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1942 {
1943 	struct ip *ip = mtod(m, struct ip *);
1944 	struct rtentry *rt;
1945 	struct route fwd_ro;
1946 	int error, type = 0, code = 0, destmtu = 0;
1947 	struct mbuf *mcopy, *mtemp = NULL;
1948 	n_long dest;
1949 	struct in_addr pkt_dst;
1950 
1951 	dest = INADDR_ANY;
1952 	/*
1953 	 * Cache the destination address of the packet; this may be
1954 	 * changed by use of 'ipfw fwd'.
1955 	 */
1956 	pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1957 
1958 #ifdef DIAGNOSTIC
1959 	if (ipprintfs)
1960 		kprintf("forward: src %x dst %x ttl %x\n",
1961 		       ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1962 #endif
1963 
1964 	if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1965 		ipstat.ips_cantforward++;
1966 		m_freem(m);
1967 		return;
1968 	}
1969 	if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1970 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1971 		return;
1972 	}
1973 
1974 	bzero(&fwd_ro, sizeof(fwd_ro));
1975 	ip_rtaddr(pkt_dst, &fwd_ro);
1976 	if (fwd_ro.ro_rt == NULL) {
1977 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1978 		return;
1979 	}
1980 	rt = fwd_ro.ro_rt;
1981 
1982 	if (curthread->td_type == TD_TYPE_NETISR) {
1983 		/*
1984 		 * Save the IP header and at most 8 bytes of the payload,
1985 		 * in case we need to generate an ICMP message to the src.
1986 		 */
1987 		mtemp = ipforward_mtemp[mycpuid];
1988 		KASSERT((mtemp->m_flags & M_EXT) == 0 &&
1989 		    mtemp->m_data == mtemp->m_pktdat &&
1990 		    m_tag_first(mtemp) == NULL,
1991 		    ("ip_forward invalid mtemp1"));
1992 
1993 		if (!m_dup_pkthdr(mtemp, m, M_NOWAIT)) {
1994 			/*
1995 			 * It's probably ok if the pkthdr dup fails (because
1996 			 * the deep copy of the tag chain failed), but for now
1997 			 * be conservative and just discard the copy since
1998 			 * code below may some day want the tags.
1999 			 */
2000 			mtemp = NULL;
2001 		} else {
2002 			mtemp->m_type = m->m_type;
2003 			mtemp->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
2004 			    (int)ip->ip_len);
2005 			mtemp->m_pkthdr.len = mtemp->m_len;
2006 			m_copydata(m, 0, mtemp->m_len, mtod(mtemp, caddr_t));
2007 		}
2008 	}
2009 
2010 	if (!ipstealth)
2011 		ip->ip_ttl -= IPTTLDEC;
2012 
2013 	/*
2014 	 * If forwarding packet using same interface that it came in on,
2015 	 * perhaps should send a redirect to sender to shortcut a hop.
2016 	 * Only send redirect if source is sending directly to us,
2017 	 * and if packet was not source routed (or has any options).
2018 	 * Also, don't send redirect if forwarding using a default route
2019 	 * or a route modified by a redirect.
2020 	 */
2021 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
2022 	    !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
2023 	    satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
2024 	    ipsendredirects && !using_srcrt && next_hop == NULL) {
2025 		u_long src = ntohl(ip->ip_src.s_addr);
2026 		struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
2027 
2028 		if (rt_ifa != NULL &&
2029 		    (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
2030 			if (rt->rt_flags & RTF_GATEWAY)
2031 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
2032 			else
2033 				dest = pkt_dst.s_addr;
2034 			/*
2035 			 * Router requirements says to only send
2036 			 * host redirects.
2037 			 */
2038 			type = ICMP_REDIRECT;
2039 			code = ICMP_REDIRECT_HOST;
2040 #ifdef DIAGNOSTIC
2041 			if (ipprintfs)
2042 				kprintf("redirect (%d) to %x\n", code, dest);
2043 #endif
2044 		}
2045 	}
2046 
2047 	error = ip_output(m, NULL, &fwd_ro, IP_FORWARDING, NULL, NULL);
2048 	if (error == 0) {
2049 		ipstat.ips_forward++;
2050 		if (type == 0) {
2051 			if (mtemp)
2052 				ipflow_create(&fwd_ro, mtemp);
2053 			goto done;
2054 		} else {
2055 			ipstat.ips_redirectsent++;
2056 		}
2057 	} else {
2058 		ipstat.ips_cantforward++;
2059 	}
2060 
2061 	if (mtemp == NULL)
2062 		goto done;
2063 
2064 	/*
2065 	 * Errors that do not require generating ICMP message
2066 	 */
2067 	switch (error) {
2068 	case ENOBUFS:
2069 		/*
2070 		 * A router should not generate ICMP_SOURCEQUENCH as
2071 		 * required in RFC1812 Requirements for IP Version 4 Routers.
2072 		 * Source quench could be a big problem under DoS attacks,
2073 		 * or if the underlying interface is rate-limited.
2074 		 * Those who need source quench packets may re-enable them
2075 		 * via the net.inet.ip.sendsourcequench sysctl.
2076 		 */
2077 		if (!ip_sendsourcequench)
2078 			goto done;
2079 		break;
2080 
2081 	case EACCES:			/* ipfw denied packet */
2082 		goto done;
2083 	}
2084 
2085 	KASSERT((mtemp->m_flags & M_EXT) == 0 &&
2086 	    mtemp->m_data == mtemp->m_pktdat,
2087 	    ("ip_forward invalid mtemp2"));
2088 	mcopy = m_copym(mtemp, 0, mtemp->m_len, M_NOWAIT);
2089 	if (mcopy == NULL)
2090 		goto done;
2091 
2092 	/*
2093 	 * Send ICMP message.
2094 	 */
2095 	switch (error) {
2096 	case 0:				/* forwarded, but need redirect */
2097 		/* type, code set above */
2098 		break;
2099 
2100 	case ENETUNREACH:		/* shouldn't happen, checked above */
2101 	case EHOSTUNREACH:
2102 	case ENETDOWN:
2103 	case EHOSTDOWN:
2104 	default:
2105 		type = ICMP_UNREACH;
2106 		code = ICMP_UNREACH_HOST;
2107 		break;
2108 
2109 	case EMSGSIZE:
2110 		type = ICMP_UNREACH;
2111 		code = ICMP_UNREACH_NEEDFRAG;
2112 #ifdef IPSEC
2113 		/*
2114 		 * If the packet is routed over IPsec tunnel, tell the
2115 		 * originator the tunnel MTU.
2116 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2117 		 * XXX quickhack!!!
2118 		 */
2119 		if (fwd_ro.ro_rt != NULL) {
2120 			struct secpolicy *sp = NULL;
2121 			int ipsecerror;
2122 			int ipsechdr;
2123 			struct route *ro;
2124 
2125 			sp = ipsec4_getpolicybyaddr(mcopy,
2126 						    IPSEC_DIR_OUTBOUND,
2127 						    IP_FORWARDING,
2128 						    &ipsecerror);
2129 
2130 			if (sp == NULL)
2131 				destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2132 			else {
2133 				/* count IPsec header size */
2134 				ipsechdr = ipsec4_hdrsiz(mcopy,
2135 							 IPSEC_DIR_OUTBOUND,
2136 							 NULL);
2137 
2138 				/*
2139 				 * find the correct route for outer IPv4
2140 				 * header, compute tunnel MTU.
2141 				 *
2142 				 */
2143 				if (sp->req != NULL && sp->req->sav != NULL &&
2144 				    sp->req->sav->sah != NULL) {
2145 					ro = &sp->req->sav->sah->sa_route;
2146 					if (ro->ro_rt != NULL &&
2147 					    ro->ro_rt->rt_ifp != NULL) {
2148 						destmtu =
2149 						    ro->ro_rt->rt_ifp->if_mtu;
2150 						destmtu -= ipsechdr;
2151 					}
2152 				}
2153 
2154 				key_freesp(sp);
2155 			}
2156 		}
2157 #elif defined(FAST_IPSEC)
2158 		/*
2159 		 * If the packet is routed over IPsec tunnel, tell the
2160 		 * originator the tunnel MTU.
2161 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2162 		 * XXX quickhack!!!
2163 		 */
2164 		if (fwd_ro.ro_rt != NULL) {
2165 			struct secpolicy *sp = NULL;
2166 			int ipsecerror;
2167 			int ipsechdr;
2168 			struct route *ro;
2169 
2170 			sp = ipsec_getpolicybyaddr(mcopy,
2171 						   IPSEC_DIR_OUTBOUND,
2172 						   IP_FORWARDING,
2173 						   &ipsecerror);
2174 
2175 			if (sp == NULL)
2176 				destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2177 			else {
2178 				/* count IPsec header size */
2179 				ipsechdr = ipsec4_hdrsiz(mcopy,
2180 							 IPSEC_DIR_OUTBOUND,
2181 							 NULL);
2182 
2183 				/*
2184 				 * find the correct route for outer IPv4
2185 				 * header, compute tunnel MTU.
2186 				 */
2187 
2188 				if (sp->req != NULL &&
2189 				    sp->req->sav != NULL &&
2190 				    sp->req->sav->sah != NULL) {
2191 					ro = &sp->req->sav->sah->sa_route;
2192 					if (ro->ro_rt != NULL &&
2193 					    ro->ro_rt->rt_ifp != NULL) {
2194 						destmtu =
2195 						    ro->ro_rt->rt_ifp->if_mtu;
2196 						destmtu -= ipsechdr;
2197 					}
2198 				}
2199 
2200 				KEY_FREESP(&sp);
2201 			}
2202 		}
2203 #else /* !IPSEC && !FAST_IPSEC */
2204 		if (fwd_ro.ro_rt != NULL)
2205 			destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2206 #endif /*IPSEC*/
2207 		ipstat.ips_cantfrag++;
2208 		break;
2209 
2210 	case ENOBUFS:
2211 		type = ICMP_SOURCEQUENCH;
2212 		code = 0;
2213 		break;
2214 
2215 	case EACCES:			/* ipfw denied packet */
2216 		panic("ip_forward EACCES should not reach");
2217 	}
2218 	icmp_error(mcopy, type, code, dest, destmtu);
2219 done:
2220 	if (mtemp != NULL)
2221 		m_tag_delete_chain(mtemp);
2222 	if (fwd_ro.ro_rt != NULL)
2223 		RTFREE(fwd_ro.ro_rt);
2224 }
2225 
2226 void
2227 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2228 	       struct mbuf *m)
2229 {
2230 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2231 		struct timeval tv;
2232 
2233 		microtime(&tv);
2234 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2235 		    SCM_TIMESTAMP, SOL_SOCKET);
2236 		if (*mp)
2237 			mp = &(*mp)->m_next;
2238 	}
2239 	if (inp->inp_flags & INP_RECVDSTADDR) {
2240 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2241 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2242 		if (*mp)
2243 			mp = &(*mp)->m_next;
2244 	}
2245 	if (inp->inp_flags & INP_RECVTTL) {
2246 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2247 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2248 		if (*mp)
2249 			mp = &(*mp)->m_next;
2250 	}
2251 #ifdef notyet
2252 	/* XXX
2253 	 * Moving these out of udp_input() made them even more broken
2254 	 * than they already were.
2255 	 */
2256 	/* options were tossed already */
2257 	if (inp->inp_flags & INP_RECVOPTS) {
2258 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2259 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2260 		if (*mp)
2261 			mp = &(*mp)->m_next;
2262 	}
2263 	/* ip_srcroute doesn't do what we want here, need to fix */
2264 	if (inp->inp_flags & INP_RECVRETOPTS) {
2265 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
2266 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2267 		if (*mp)
2268 			mp = &(*mp)->m_next;
2269 	}
2270 #endif
2271 	if (inp->inp_flags & INP_RECVIF) {
2272 		struct ifnet *ifp;
2273 		struct sdlbuf {
2274 			struct sockaddr_dl sdl;
2275 			u_char	pad[32];
2276 		} sdlbuf;
2277 		struct sockaddr_dl *sdp;
2278 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2279 
2280 		if (((ifp = m->m_pkthdr.rcvif)) &&
2281 		    ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2282 			sdp = IF_LLSOCKADDR(ifp);
2283 			/*
2284 			 * Change our mind and don't try copy.
2285 			 */
2286 			if ((sdp->sdl_family != AF_LINK) ||
2287 			    (sdp->sdl_len > sizeof(sdlbuf))) {
2288 				goto makedummy;
2289 			}
2290 			bcopy(sdp, sdl2, sdp->sdl_len);
2291 		} else {
2292 makedummy:
2293 			sdl2->sdl_len =
2294 			    offsetof(struct sockaddr_dl, sdl_data[0]);
2295 			sdl2->sdl_family = AF_LINK;
2296 			sdl2->sdl_index = 0;
2297 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2298 		}
2299 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2300 			IP_RECVIF, IPPROTO_IP);
2301 		if (*mp)
2302 			mp = &(*mp)->m_next;
2303 	}
2304 }
2305 
2306 /*
2307  * XXX these routines are called from the upper part of the kernel.
2308  *
2309  * They could also be moved to ip_mroute.c, since all the RSVP
2310  *  handling is done there already.
2311  */
2312 int
2313 ip_rsvp_init(struct socket *so)
2314 {
2315 	if (so->so_type != SOCK_RAW ||
2316 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2317 		return EOPNOTSUPP;
2318 
2319 	if (ip_rsvpd != NULL)
2320 		return EADDRINUSE;
2321 
2322 	ip_rsvpd = so;
2323 	/*
2324 	 * This may seem silly, but we need to be sure we don't over-increment
2325 	 * the RSVP counter, in case something slips up.
2326 	 */
2327 	if (!ip_rsvp_on) {
2328 		ip_rsvp_on = 1;
2329 		rsvp_on++;
2330 	}
2331 
2332 	return 0;
2333 }
2334 
2335 int
2336 ip_rsvp_done(void)
2337 {
2338 	ip_rsvpd = NULL;
2339 	/*
2340 	 * This may seem silly, but we need to be sure we don't over-decrement
2341 	 * the RSVP counter, in case something slips up.
2342 	 */
2343 	if (ip_rsvp_on) {
2344 		ip_rsvp_on = 0;
2345 		rsvp_on--;
2346 	}
2347 	return 0;
2348 }
2349 
2350 int
2351 rsvp_input(struct mbuf **mp, int *offp, int proto)
2352 {
2353 	struct mbuf *m = *mp;
2354 
2355 	*mp = NULL;
2356 
2357 	if (rsvp_input_p) { /* call the real one if loaded */
2358 		*mp = m;
2359 		rsvp_input_p(mp, offp, proto);
2360 		return(IPPROTO_DONE);
2361 	}
2362 
2363 	/* Can still get packets with rsvp_on = 0 if there is a local member
2364 	 * of the group to which the RSVP packet is addressed.  But in this
2365 	 * case we want to throw the packet away.
2366 	 */
2367 
2368 	if (!rsvp_on) {
2369 		m_freem(m);
2370 		return(IPPROTO_DONE);
2371 	}
2372 
2373 	if (ip_rsvpd != NULL) {
2374 		*mp = m;
2375 		rip_input(mp, offp, proto);
2376 		return(IPPROTO_DONE);
2377 	}
2378 	/* Drop the packet */
2379 	m_freem(m);
2380 	return(IPPROTO_DONE);
2381 }
2382