xref: /dragonfly/sys/netinet/ip_input.c (revision bec93d3b)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. Neither the name of the University nor the names of its contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  *
62  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
63  * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
64  */
65 
66 #define	_IP_VHL
67 
68 #include "opt_bootp.h"
69 #include "opt_ipdn.h"
70 #include "opt_ipdivert.h"
71 #include "opt_ipstealth.h"
72 #include "opt_ipsec.h"
73 #include "opt_rss.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/mpipe.h>
80 #include <sys/domain.h>
81 #include <sys/protosw.h>
82 #include <sys/socket.h>
83 #include <sys/time.h>
84 #include <sys/globaldata.h>
85 #include <sys/thread.h>
86 #include <sys/kernel.h>
87 #include <sys/syslog.h>
88 #include <sys/sysctl.h>
89 #include <sys/in_cksum.h>
90 #include <sys/lock.h>
91 
92 #include <sys/mplock2.h>
93 
94 #include <machine/stdarg.h>
95 
96 #include <net/if.h>
97 #include <net/if_types.h>
98 #include <net/if_var.h>
99 #include <net/if_dl.h>
100 #include <net/pfil.h>
101 #include <net/route.h>
102 #include <net/netisr2.h>
103 
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/in_var.h>
107 #include <netinet/ip.h>
108 #include <netinet/in_pcb.h>
109 #include <netinet/ip_var.h>
110 #include <netinet/ip_icmp.h>
111 #include <netinet/ip_divert.h>
112 #include <netinet/ip_flow.h>
113 
114 #include <sys/thread2.h>
115 #include <sys/msgport2.h>
116 #include <net/netmsg2.h>
117 
118 #include <sys/socketvar.h>
119 
120 #include <net/ipfw/ip_fw.h>
121 #include <net/dummynet/ip_dummynet.h>
122 
123 #ifdef IPSEC
124 #include <netinet6/ipsec.h>
125 #include <netproto/key/key.h>
126 #endif
127 
128 #ifdef FAST_IPSEC
129 #include <netproto/ipsec/ipsec.h>
130 #include <netproto/ipsec/key.h>
131 #endif
132 
133 int rsvp_on = 0;
134 static int ip_rsvp_on;
135 struct socket *ip_rsvpd;
136 
137 int ipforwarding = 0;
138 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
139     &ipforwarding, 0, "Enable IP forwarding between interfaces");
140 
141 static int ipsendredirects = 1; /* XXX */
142 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
143     &ipsendredirects, 0, "Enable sending IP redirects");
144 
145 int ip_defttl = IPDEFTTL;
146 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
147     &ip_defttl, 0, "Maximum TTL on IP packets");
148 
149 static int ip_dosourceroute = 0;
150 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
151     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
152 
153 static int ip_acceptsourceroute = 0;
154 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
155     CTLFLAG_RW, &ip_acceptsourceroute, 0,
156     "Enable accepting source routed IP packets");
157 
158 static int maxnipq;
159 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
160     &maxnipq, 0,
161     "Maximum number of IPv4 fragment reassembly queue entries");
162 
163 static int maxfragsperpacket;
164 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
165     &maxfragsperpacket, 0,
166     "Maximum number of IPv4 fragments allowed per packet");
167 
168 static int ip_sendsourcequench = 0;
169 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
170     &ip_sendsourcequench, 0,
171     "Enable the transmission of source quench packets");
172 
173 int ip_do_randomid = 1;
174 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
175     &ip_do_randomid, 0,
176     "Assign random ip_id values");
177 /*
178  * XXX - Setting ip_checkinterface mostly implements the receive side of
179  * the Strong ES model described in RFC 1122, but since the routing table
180  * and transmit implementation do not implement the Strong ES model,
181  * setting this to 1 results in an odd hybrid.
182  *
183  * XXX - ip_checkinterface currently must be disabled if you use ipnat
184  * to translate the destination address to another local interface.
185  *
186  * XXX - ip_checkinterface must be disabled if you add IP aliases
187  * to the loopback interface instead of the interface where the
188  * packets for those addresses are received.
189  */
190 static int ip_checkinterface = 0;
191 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
192     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
193 
194 static u_long ip_hash_count = 0;
195 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, hash_count, CTLFLAG_RD,
196     &ip_hash_count, 0, "Number of packets hashed by IP");
197 
198 #ifdef RSS_DEBUG
199 static u_long ip_rehash_count = 0;
200 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, rehash_count, CTLFLAG_RD,
201     &ip_rehash_count, 0, "Number of packets rehashed by IP");
202 
203 static u_long ip_dispatch_fast = 0;
204 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, dispatch_fast_count, CTLFLAG_RD,
205     &ip_dispatch_fast, 0, "Number of packets handled on current CPU");
206 
207 static u_long ip_dispatch_slow = 0;
208 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, dispatch_slow_count, CTLFLAG_RD,
209     &ip_dispatch_slow, 0, "Number of packets messaged to another CPU");
210 #endif
211 
212 #ifdef DIAGNOSTIC
213 static int ipprintfs = 0;
214 #endif
215 
216 extern	struct domain inetdomain;
217 extern	struct protosw inetsw[];
218 u_char	ip_protox[IPPROTO_MAX];
219 struct	in_ifaddrhead in_ifaddrheads[MAXCPU];	/* first inet address */
220 struct	in_ifaddrhashhead *in_ifaddrhashtbls[MAXCPU];
221 						/* inet addr hash table */
222 u_long	in_ifaddrhmask;				/* mask for hash table */
223 
224 static struct mbuf *ipforward_mtemp[MAXCPU];
225 
226 struct ip_stats ipstats_percpu[MAXCPU] __cachealign;
227 
228 static int
229 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
230 {
231 	int cpu, error = 0;
232 
233 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
234 		if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
235 					sizeof(struct ip_stats))))
236 			break;
237 		if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
238 				       sizeof(struct ip_stats))))
239 			break;
240 	}
241 
242 	return (error);
243 }
244 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
245     0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
246 
247 /* Packet reassembly stuff */
248 #define	IPREASS_NHASH_LOG2	6
249 #define	IPREASS_NHASH		(1 << IPREASS_NHASH_LOG2)
250 #define	IPREASS_HMASK		(IPREASS_NHASH - 1)
251 #define	IPREASS_HASH(x,y)						\
252     (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
253 
254 TAILQ_HEAD(ipqhead, ipq);
255 struct ipfrag_queue {
256 	int			nipq;
257 	volatile int		draining;
258 	struct netmsg_base	timeo_netmsg;
259 	struct callout		timeo_ch;
260 	struct netmsg_base	drain_netmsg;
261 	struct ipqhead		ipq[IPREASS_NHASH];
262 } __cachealign;
263 
264 static struct ipfrag_queue	ipfrag_queue_pcpu[MAXCPU];
265 
266 #ifdef IPCTL_DEFMTU
267 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
268     &ip_mtu, 0, "Default MTU");
269 #endif
270 
271 #ifdef IPSTEALTH
272 static int ipstealth = 0;
273 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
274 #else
275 static const int ipstealth = 0;
276 #endif
277 
278 struct mbuf *(*ip_divert_p)(struct mbuf *, int, int);
279 
280 struct pfil_head inet_pfil_hook;
281 
282 /*
283  * struct ip_srcrt_opt is used to store packet state while it travels
284  * through the stack.
285  *
286  * XXX Note that the code even makes assumptions on the size and
287  * alignment of fields inside struct ip_srcrt so e.g. adding some
288  * fields will break the code.  This needs to be fixed.
289  *
290  * We need to save the IP options in case a protocol wants to respond
291  * to an incoming packet over the same route if the packet got here
292  * using IP source routing.  This allows connection establishment and
293  * maintenance when the remote end is on a network that is not known
294  * to us.
295  */
296 struct ip_srcrt {
297 	struct	in_addr dst;			/* final destination */
298 	char	nop;				/* one NOP to align */
299 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
300 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
301 };
302 
303 struct ip_srcrt_opt {
304 	int		ip_nhops;
305 	struct ip_srcrt	ip_srcrt;
306 };
307 
308 #define IPFRAG_MPIPE_MAX	4096
309 #define MAXIPFRAG_MIN		((IPFRAG_MPIPE_MAX * 2) / 256)
310 
311 #define IPFRAG_TIMEO		(hz / PR_SLOWHZ)
312 
313 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
314 static struct malloc_pipe ipq_mpipe;
315 
316 static void		save_rte(struct mbuf *, u_char *, struct in_addr);
317 static int		ip_dooptions(struct mbuf *m, int, struct sockaddr_in *);
318 static void		ip_freef(struct ipfrag_queue *, struct ipqhead *,
319 			    struct ipq *);
320 static void		ip_input_handler(netmsg_t);
321 
322 static void		ipfrag_timeo_dispatch(netmsg_t);
323 static void		ipfrag_timeo(void *);
324 static void		ipfrag_drain_dispatch(netmsg_t);
325 
326 /*
327  * IP initialization: fill in IP protocol switch table.
328  * All protocols not implemented in kernel go to raw IP protocol handler.
329  */
330 void
331 ip_init(void)
332 {
333 	struct ipfrag_queue *fragq;
334 	struct protosw *pr;
335 	int cpu, i;
336 
337 	/*
338 	 * Make sure we can handle a reasonable number of fragments but
339 	 * cap it at IPFRAG_MPIPE_MAX.
340 	 */
341 	mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
342 	    IFQ_MAXLEN, IPFRAG_MPIPE_MAX, 0, NULL, NULL, NULL);
343 
344 	/*
345 	 * Make in_ifaddrhead and in_ifaddrhashtbl available on all CPUs,
346 	 * since they could be accessed by any threads.
347 	 */
348 	for (cpu = 0; cpu < ncpus; ++cpu) {
349 		TAILQ_INIT(&in_ifaddrheads[cpu]);
350 		in_ifaddrhashtbls[cpu] =
351 		    hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
352 	}
353 
354 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
355 	if (pr == NULL)
356 		panic("ip_init");
357 	for (i = 0; i < IPPROTO_MAX; i++)
358 		ip_protox[i] = pr - inetsw;
359 	for (pr = inetdomain.dom_protosw;
360 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
361 		if (pr->pr_domain->dom_family == PF_INET && pr->pr_protocol) {
362 			if (pr->pr_protocol != IPPROTO_RAW)
363 				ip_protox[pr->pr_protocol] = pr - inetsw;
364 		}
365 	}
366 
367 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
368 	inet_pfil_hook.ph_af = AF_INET;
369 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
370 		kprintf("%s: WARNING: unable to register pfil hook, "
371 			"error %d\n", __func__, i);
372 	}
373 
374 	maxnipq = (nmbclusters / 32) / netisr_ncpus;
375 	if (maxnipq < MAXIPFRAG_MIN)
376 		maxnipq = MAXIPFRAG_MIN;
377 	maxfragsperpacket = 16;
378 
379 	ip_id = time_second & 0xffff;	/* time_second survives reboots */
380 
381 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
382 		/*
383 		 * Initialize IP statistics counters for each CPU.
384 		 */
385 		bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
386 
387 		/*
388 		 * Preallocate mbuf template for forwarding
389 		 */
390 		MGETHDR(ipforward_mtemp[cpu], M_WAITOK, MT_DATA);
391 
392 		/*
393 		 * Initialize per-cpu ip fragments queues
394 		 */
395 		fragq = &ipfrag_queue_pcpu[cpu];
396 		for (i = 0; i < IPREASS_NHASH; i++)
397 			TAILQ_INIT(&fragq->ipq[i]);
398 
399 		callout_init_mp(&fragq->timeo_ch);
400 		netmsg_init(&fragq->timeo_netmsg, NULL, &netisr_adone_rport,
401 		    MSGF_PRIORITY, ipfrag_timeo_dispatch);
402 		netmsg_init(&fragq->drain_netmsg, NULL, &netisr_adone_rport,
403 		    MSGF_PRIORITY, ipfrag_drain_dispatch);
404 	}
405 
406 	netisr_register(NETISR_IP, ip_input_handler, ip_hashfn);
407 	netisr_register_hashcheck(NETISR_IP, ip_hashcheck);
408 
409 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
410 		fragq = &ipfrag_queue_pcpu[cpu];
411 		callout_reset_bycpu(&fragq->timeo_ch, IPFRAG_TIMEO,
412 		    ipfrag_timeo, NULL, cpu);
413 	}
414 }
415 
416 /* Do transport protocol processing. */
417 static void
418 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip)
419 {
420 	const struct protosw *pr = &inetsw[ip_protox[ip->ip_p]];
421 
422 	/*
423 	 * Switch out to protocol's input routine.
424 	 */
425 	PR_GET_MPLOCK(pr);
426 	pr->pr_input(&m, &hlen, ip->ip_p);
427 	PR_REL_MPLOCK(pr);
428 }
429 
430 static void
431 transport_processing_handler(netmsg_t msg)
432 {
433 	struct netmsg_packet *pmsg = &msg->packet;
434 	struct ip *ip;
435 	int hlen;
436 
437 	ip = mtod(pmsg->nm_packet, struct ip *);
438 	hlen = pmsg->base.lmsg.u.ms_result;
439 
440 	transport_processing_oncpu(pmsg->nm_packet, hlen, ip);
441 	/* msg was embedded in the mbuf, do not reply! */
442 }
443 
444 static void
445 ip_input_handler(netmsg_t msg)
446 {
447 	ip_input(msg->packet.nm_packet);
448 	/* msg was embedded in the mbuf, do not reply! */
449 }
450 
451 /*
452  * IP input routine.  Checksum and byte swap header.  If fragmented
453  * try to reassemble.  Process options.  Pass to next level.
454  */
455 void
456 ip_input(struct mbuf *m)
457 {
458 	struct ip *ip;
459 	struct in_ifaddr *ia = NULL;
460 	struct in_ifaddr_container *iac;
461 	int hlen, checkif;
462 	u_short sum;
463 	struct in_addr pkt_dst;
464 	boolean_t using_srcrt = FALSE;		/* forward (by PFIL_HOOKS) */
465 	struct in_addr odst;			/* original dst address(NAT) */
466 	struct m_tag *mtag;
467 	struct sockaddr_in *next_hop = NULL;
468 	lwkt_port_t port;
469 #ifdef FAST_IPSEC
470 	struct tdb_ident *tdbi;
471 	struct secpolicy *sp;
472 	int error;
473 #endif
474 
475 	ASSERT_NETISR_NCPUS(mycpuid);
476 	M_ASSERTPKTHDR(m);
477 
478 	/* length checks already done in ip_hashfn() */
479 	KASSERT(m->m_len >= sizeof(struct ip), ("IP header not in one mbuf"));
480 
481 	/*
482 	 * This routine is called from numerous places which may not have
483 	 * characterized the packet.
484 	 */
485 	ip = mtod(m, struct ip *);
486 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
487 	    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK))) {
488 		/*
489 		 * Force hash recalculation for fragments and multicast
490 		 * packets; hardware may not do it correctly.
491 		 * XXX add flag to indicate the hash is from hardware
492 		 */
493 		m->m_flags &= ~M_HASH;
494 	}
495 	if ((m->m_flags & M_HASH) == 0) {
496 		ip_hashfn(&m, 0);
497 		if (m == NULL)
498 			return;
499 		KKASSERT(m->m_flags & M_HASH);
500 
501 		if (&curthread->td_msgport !=
502 		    netisr_hashport(m->m_pkthdr.hash)) {
503 			netisr_queue(NETISR_IP, m);
504 			/* Requeued to other netisr msgport; done */
505 			return;
506 		}
507 
508 		/* mbuf could have been changed */
509 		ip = mtod(m, struct ip *);
510 	}
511 
512 	/*
513 	 * Pull out certain tags
514 	 */
515 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
516 		/* Next hop */
517 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
518 		KKASSERT(mtag != NULL);
519 		next_hop = m_tag_data(mtag);
520 	}
521 
522 	if (m->m_pkthdr.fw_flags &
523 	    (DUMMYNET_MBUF_TAGGED | IPFW_MBUF_CONTINUE)) {
524 		/*
525 		 * - Dummynet already filtered this packet.
526 		 * - This packet was processed by ipfw on another
527 		 *   cpu, and the rest of the ipfw processing should
528 		 *   be carried out on this cpu.
529 		 */
530 		ip = mtod(m, struct ip *);
531 		ip->ip_len = ntohs(ip->ip_len);
532 		ip->ip_off = ntohs(ip->ip_off);
533 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
534 		goto iphack;
535 	}
536 
537 	ipstat.ips_total++;
538 
539 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
540 		ipstat.ips_badvers++;
541 		goto bad;
542 	}
543 
544 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
545 	/* length checks already done in ip_hashfn() */
546 	KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
547 	KASSERT(m->m_len >= hlen, ("complete IP header not in one mbuf"));
548 
549 	/* 127/8 must not appear on wire - RFC1122 */
550 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
551 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
552 		if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
553 			ipstat.ips_badaddr++;
554 			goto bad;
555 		}
556 	}
557 
558 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
559 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
560 	} else {
561 		if (hlen == sizeof(struct ip))
562 			sum = in_cksum_hdr(ip);
563 		else
564 			sum = in_cksum(m, hlen);
565 	}
566 	if (sum != 0) {
567 		ipstat.ips_badsum++;
568 		goto bad;
569 	}
570 
571 #ifdef ALTQ
572 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
573 		/* packet is dropped by traffic conditioner */
574 		return;
575 	}
576 #endif
577 	/*
578 	 * Convert fields to host representation.
579 	 */
580 	ip->ip_len = ntohs(ip->ip_len);
581 	ip->ip_off = ntohs(ip->ip_off);
582 
583 	/* length checks already done in ip_hashfn() */
584 	KASSERT(ip->ip_len >= hlen, ("total length less then header length"));
585 	KASSERT(m->m_pkthdr.len >= ip->ip_len, ("mbuf too short"));
586 
587 	/*
588 	 * Trim mbufs if longer than the IP header would have us expect.
589 	 */
590 	if (m->m_pkthdr.len > ip->ip_len) {
591 		if (m->m_len == m->m_pkthdr.len) {
592 			m->m_len = ip->ip_len;
593 			m->m_pkthdr.len = ip->ip_len;
594 		} else {
595 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
596 		}
597 	}
598 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
599 	/*
600 	 * Bypass packet filtering for packets from a tunnel (gif).
601 	 */
602 	if (ipsec_gethist(m, NULL))
603 		goto pass;
604 #endif
605 
606 	/*
607 	 * IpHack's section.
608 	 * Right now when no processing on packet has done
609 	 * and it is still fresh out of network we do our black
610 	 * deals with it.
611 	 * - Firewall: deny/allow/divert
612 	 * - Xlate: translate packet's addr/port (NAT).
613 	 * - Pipe: pass pkt through dummynet.
614 	 * - Wrap: fake packet's addr/port <unimpl.>
615 	 * - Encapsulate: put it in another IP and send out. <unimp.>
616 	 */
617 
618 iphack:
619 	/*
620 	 * If we've been forwarded from the output side, then
621 	 * skip the firewall a second time
622 	 */
623 	if (next_hop != NULL)
624 		goto ours;
625 
626 	/* No pfil hooks */
627 	if (!pfil_has_hooks(&inet_pfil_hook)) {
628 		if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
629 			/*
630 			 * Strip dummynet tags from stranded packets
631 			 */
632 			mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
633 			KKASSERT(mtag != NULL);
634 			m_tag_delete(m, mtag);
635 			m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
636 		}
637 		goto pass;
638 	}
639 
640 	/*
641 	 * Run through list of hooks for input packets.
642 	 *
643 	 * NOTE!  If the packet is rewritten pf/ipfw/whoever must
644 	 *	  clear M_HASH.
645 	 */
646 	odst = ip->ip_dst;
647 	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif, PFIL_IN))
648 		return;
649 	if (m == NULL)	/* consumed by filter */
650 		return;
651 	ip = mtod(m, struct ip *);
652 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
653 	using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
654 
655 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
656 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
657 		KKASSERT(mtag != NULL);
658 		next_hop = m_tag_data(mtag);
659 	}
660 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
661 		ip_dn_queue(m);
662 		return;
663 	}
664 	if (m->m_pkthdr.fw_flags & FW_MBUF_REDISPATCH)
665 		m->m_pkthdr.fw_flags &= ~FW_MBUF_REDISPATCH;
666 	if (m->m_pkthdr.fw_flags & IPFW_MBUF_CONTINUE) {
667 		/* ipfw was disabled/unloaded. */
668 		goto bad;
669 	}
670 pass:
671 	/*
672 	 * Process options and, if not destined for us,
673 	 * ship it on.  ip_dooptions returns 1 when an
674 	 * error was detected (causing an icmp message
675 	 * to be sent and the original packet to be freed).
676 	 */
677 	if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, next_hop))
678 		return;
679 
680 	/* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
681 	 * matter if it is destined to another node, or whether it is
682 	 * a multicast one, RSVP wants it! and prevents it from being forwarded
683 	 * anywhere else. Also checks if the rsvp daemon is running before
684 	 * grabbing the packet.
685 	 */
686 	if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
687 		goto ours;
688 
689 	/*
690 	 * Check our list of addresses, to see if the packet is for us.
691 	 * If we don't have any addresses, assume any unicast packet
692 	 * we receive might be for us (and let the upper layers deal
693 	 * with it).
694 	 */
695 	if (TAILQ_EMPTY(&in_ifaddrheads[mycpuid]) &&
696 	    !(m->m_flags & (M_MCAST | M_BCAST)))
697 		goto ours;
698 
699 	/*
700 	 * Cache the destination address of the packet; this may be
701 	 * changed by use of 'ipfw fwd'.
702 	 */
703 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
704 
705 	/*
706 	 * Enable a consistency check between the destination address
707 	 * and the arrival interface for a unicast packet (the RFC 1122
708 	 * strong ES model) if IP forwarding is disabled and the packet
709 	 * is not locally generated and the packet is not subject to
710 	 * 'ipfw fwd'.
711 	 *
712 	 * XXX - Checking also should be disabled if the destination
713 	 * address is ipnat'ed to a different interface.
714 	 *
715 	 * XXX - Checking is incompatible with IP aliases added
716 	 * to the loopback interface instead of the interface where
717 	 * the packets are received.
718 	 */
719 	checkif = ip_checkinterface &&
720 		  !ipforwarding &&
721 		  m->m_pkthdr.rcvif != NULL &&
722 		  !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
723 		  next_hop == NULL;
724 
725 	/*
726 	 * Check for exact addresses in the hash bucket.
727 	 */
728 	LIST_FOREACH(iac, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
729 		ia = iac->ia;
730 
731 		/*
732 		 * If the address matches, verify that the packet
733 		 * arrived via the correct interface if checking is
734 		 * enabled.
735 		 */
736 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
737 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
738 			goto ours;
739 	}
740 	ia = NULL;
741 
742 	/*
743 	 * Check for broadcast addresses.
744 	 *
745 	 * Only accept broadcast packets that arrive via the matching
746 	 * interface.  Reception of forwarded directed broadcasts would
747 	 * be handled via ip_forward() and ether_output() with the loopback
748 	 * into the stack for SIMPLEX interfaces handled by ether_output().
749 	 */
750 	if (m->m_pkthdr.rcvif != NULL &&
751 	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
752 		struct ifaddr_container *ifac;
753 
754 		TAILQ_FOREACH(ifac, &m->m_pkthdr.rcvif->if_addrheads[mycpuid],
755 			      ifa_link) {
756 			struct ifaddr *ifa = ifac->ifa;
757 
758 			if (ifa->ifa_addr == NULL) /* shutdown/startup race */
759 				continue;
760 			if (ifa->ifa_addr->sa_family != AF_INET)
761 				continue;
762 			ia = ifatoia(ifa);
763 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
764 								pkt_dst.s_addr)
765 				goto ours;
766 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
767 				goto ours;
768 #ifdef BOOTP_COMPAT
769 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
770 				goto ours;
771 #endif
772 		}
773 	}
774 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
775 		struct in_multi *inm;
776 
777 		if (ip_mrouter != NULL) {
778 			/* XXX Multicast routing is not MPSAFE yet */
779 			get_mplock();
780 
781 			/*
782 			 * If we are acting as a multicast router, all
783 			 * incoming multicast packets are passed to the
784 			 * kernel-level multicast forwarding function.
785 			 * The packet is returned (relatively) intact; if
786 			 * ip_mforward() returns a non-zero value, the packet
787 			 * must be discarded, else it may be accepted below.
788 			 */
789 			if (ip_mforward != NULL &&
790 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
791 				rel_mplock();
792 				ipstat.ips_cantforward++;
793 				m_freem(m);
794 				return;
795 			}
796 
797 			rel_mplock();
798 
799 			/*
800 			 * The process-level routing daemon needs to receive
801 			 * all multicast IGMP packets, whether or not this
802 			 * host belongs to their destination groups.
803 			 */
804 			if (ip->ip_p == IPPROTO_IGMP)
805 				goto ours;
806 			ipstat.ips_forward++;
807 		}
808 		/*
809 		 * See if we belong to the destination multicast group on the
810 		 * arrival interface.
811 		 */
812 		inm = IN_LOOKUP_MULTI(&ip->ip_dst, m->m_pkthdr.rcvif);
813 		if (inm == NULL) {
814 			ipstat.ips_notmember++;
815 			m_freem(m);
816 			return;
817 		}
818 		goto ours;
819 	}
820 	if (ip->ip_dst.s_addr == INADDR_BROADCAST)
821 		goto ours;
822 	if (ip->ip_dst.s_addr == INADDR_ANY)
823 		goto ours;
824 
825 	/*
826 	 * Not for us; forward if possible and desirable.
827 	 */
828 	if (!ipforwarding) {
829 		ipstat.ips_cantforward++;
830 		m_freem(m);
831 	} else {
832 #ifdef IPSEC
833 		/*
834 		 * Enforce inbound IPsec SPD.
835 		 */
836 		if (ipsec4_in_reject(m, NULL)) {
837 			ipsecstat.in_polvio++;
838 			goto bad;
839 		}
840 #endif
841 #ifdef FAST_IPSEC
842 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
843 		crit_enter();
844 		if (mtag != NULL) {
845 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
846 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
847 		} else {
848 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
849 						   IP_FORWARDING, &error);
850 		}
851 		if (sp == NULL) {	/* NB: can happen if error */
852 			crit_exit();
853 			/*XXX error stat???*/
854 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
855 			goto bad;
856 		}
857 
858 		/*
859 		 * Check security policy against packet attributes.
860 		 */
861 		error = ipsec_in_reject(sp, m);
862 		KEY_FREESP(&sp);
863 		crit_exit();
864 		if (error) {
865 			ipstat.ips_cantforward++;
866 			goto bad;
867 		}
868 #endif
869 		ip_forward(m, using_srcrt, next_hop);
870 	}
871 	return;
872 
873 ours:
874 
875 	/*
876 	 * IPSTEALTH: Process non-routing options only
877 	 * if the packet is destined for us.
878 	 */
879 	if (ipstealth &&
880 	    hlen > sizeof(struct ip) &&
881 	    ip_dooptions(m, 1, next_hop))
882 		return;
883 
884 	/* Count the packet in the ip address stats */
885 	if (ia != NULL) {
886 		IFA_STAT_INC(&ia->ia_ifa, ipackets, 1);
887 		IFA_STAT_INC(&ia->ia_ifa, ibytes, m->m_pkthdr.len);
888 	}
889 
890 	/*
891 	 * If offset or IP_MF are set, must reassemble.
892 	 * Otherwise, nothing need be done.
893 	 * (We could look in the reassembly queue to see
894 	 * if the packet was previously fragmented,
895 	 * but it's not worth the time; just let them time out.)
896 	 */
897 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
898 		/*
899 		 * Attempt reassembly; if it succeeds, proceed.  ip_reass()
900 		 * will return a different mbuf.
901 		 *
902 		 * NOTE: ip_reass() returns m with M_HASH cleared to force
903 		 *	 us to recharacterize the packet.
904 		 */
905 		m = ip_reass(m);
906 		if (m == NULL)
907 			return;
908 		ip = mtod(m, struct ip *);
909 
910 		/* Get the header length of the reassembled packet */
911 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
912 	} else {
913 		ip->ip_len -= hlen;
914 	}
915 
916 #ifdef IPSEC
917 	/*
918 	 * enforce IPsec policy checking if we are seeing last header.
919 	 * note that we do not visit this with protocols with pcb layer
920 	 * code - like udp/tcp/raw ip.
921 	 */
922 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
923 	    ipsec4_in_reject(m, NULL)) {
924 		ipsecstat.in_polvio++;
925 		goto bad;
926 	}
927 #endif
928 #ifdef FAST_IPSEC
929 	/*
930 	 * enforce IPsec policy checking if we are seeing last header.
931 	 * note that we do not visit this with protocols with pcb layer
932 	 * code - like udp/tcp/raw ip.
933 	 */
934 	if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
935 		/*
936 		 * Check if the packet has already had IPsec processing
937 		 * done.  If so, then just pass it along.  This tag gets
938 		 * set during AH, ESP, etc. input handling, before the
939 		 * packet is returned to the ip input queue for delivery.
940 		 */
941 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
942 		crit_enter();
943 		if (mtag != NULL) {
944 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
945 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
946 		} else {
947 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
948 						   IP_FORWARDING, &error);
949 		}
950 		if (sp != NULL) {
951 			/*
952 			 * Check security policy against packet attributes.
953 			 */
954 			error = ipsec_in_reject(sp, m);
955 			KEY_FREESP(&sp);
956 		} else {
957 			/* XXX error stat??? */
958 			error = EINVAL;
959 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
960 			crit_exit();
961 			goto bad;
962 		}
963 		crit_exit();
964 		if (error)
965 			goto bad;
966 	}
967 #endif /* FAST_IPSEC */
968 
969 	/*
970 	 * We must forward the packet to the correct protocol thread if
971 	 * we are not already in it.
972 	 *
973 	 * NOTE: ip_len is now in host form.  ip_len is not adjusted
974 	 *	 further for protocol processing, instead we pass hlen
975 	 *	 to the protosw and let it deal with it.
976 	 */
977 	ipstat.ips_delivered++;
978 
979 	if ((m->m_flags & M_HASH) == 0) {
980 #ifdef RSS_DEBUG
981 		atomic_add_long(&ip_rehash_count, 1);
982 #endif
983 		ip->ip_len = htons(ip->ip_len + hlen);
984 		ip->ip_off = htons(ip->ip_off);
985 
986 		ip_hashfn(&m, 0);
987 		if (m == NULL)
988 			return;
989 
990 		ip = mtod(m, struct ip *);
991 		ip->ip_len = ntohs(ip->ip_len) - hlen;
992 		ip->ip_off = ntohs(ip->ip_off);
993 		KKASSERT(m->m_flags & M_HASH);
994 	}
995 	port = netisr_hashport(m->m_pkthdr.hash);
996 
997 	if (port != &curthread->td_msgport) {
998 		struct netmsg_packet *pmsg;
999 
1000 #ifdef RSS_DEBUG
1001 		atomic_add_long(&ip_dispatch_slow, 1);
1002 #endif
1003 
1004 		pmsg = &m->m_hdr.mh_netmsg;
1005 		netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
1006 			    0, transport_processing_handler);
1007 		pmsg->nm_packet = m;
1008 		pmsg->base.lmsg.u.ms_result = hlen;
1009 		lwkt_sendmsg(port, &pmsg->base.lmsg);
1010 	} else {
1011 #ifdef RSS_DEBUG
1012 		atomic_add_long(&ip_dispatch_fast, 1);
1013 #endif
1014 		transport_processing_oncpu(m, hlen, ip);
1015 	}
1016 	return;
1017 
1018 bad:
1019 	m_freem(m);
1020 }
1021 
1022 /*
1023  * Take incoming datagram fragment and try to reassemble it into
1024  * whole datagram.  If a chain for reassembly of this datagram already
1025  * exists, then it is given as fp; otherwise have to make a chain.
1026  */
1027 struct mbuf *
1028 ip_reass(struct mbuf *m)
1029 {
1030 	struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[mycpuid];
1031 	struct ip *ip = mtod(m, struct ip *);
1032 	struct mbuf *p = NULL, *q, *nq;
1033 	struct mbuf *n;
1034 	struct ipq *fp = NULL;
1035 	struct ipqhead *head;
1036 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1037 	int i, next;
1038 	u_short sum;
1039 
1040 	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
1041 	if (maxnipq == 0 || maxfragsperpacket == 0) {
1042 		ipstat.ips_fragments++;
1043 		ipstat.ips_fragdropped++;
1044 		m_freem(m);
1045 		return NULL;
1046 	}
1047 
1048 	sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
1049 	/*
1050 	 * Look for queue of fragments of this datagram.
1051 	 */
1052 	head = &fragq->ipq[sum];
1053 	TAILQ_FOREACH(fp, head, ipq_list) {
1054 		if (ip->ip_id == fp->ipq_id &&
1055 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
1056 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
1057 		    ip->ip_p == fp->ipq_p)
1058 			goto found;
1059 	}
1060 
1061 	fp = NULL;
1062 
1063 	/*
1064 	 * Enforce upper bound on number of fragmented packets
1065 	 * for which we attempt reassembly;
1066 	 * If maxnipq is -1, accept all fragments without limitation.
1067 	 */
1068 	if (fragq->nipq > maxnipq && maxnipq > 0) {
1069 		/*
1070 		 * drop something from the tail of the current queue
1071 		 * before proceeding further
1072 		 */
1073 		struct ipq *q = TAILQ_LAST(head, ipqhead);
1074 		if (q == NULL) {
1075 			/*
1076 			 * The current queue is empty,
1077 			 * so drop from one of the others.
1078 			 */
1079 			for (i = 0; i < IPREASS_NHASH; i++) {
1080 				struct ipq *r = TAILQ_LAST(&fragq->ipq[i],
1081 				    ipqhead);
1082 				if (r) {
1083 					ipstat.ips_fragtimeout += r->ipq_nfrags;
1084 					ip_freef(fragq, &fragq->ipq[i], r);
1085 					break;
1086 				}
1087 			}
1088 		} else {
1089 			ipstat.ips_fragtimeout += q->ipq_nfrags;
1090 			ip_freef(fragq, head, q);
1091 		}
1092 	}
1093 found:
1094 	/*
1095 	 * Adjust ip_len to not reflect header,
1096 	 * convert offset of this to bytes.
1097 	 */
1098 	ip->ip_len -= hlen;
1099 	if (ip->ip_off & IP_MF) {
1100 		/*
1101 		 * Make sure that fragments have a data length
1102 		 * that's a non-zero multiple of 8 bytes.
1103 		 */
1104 		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
1105 			ipstat.ips_toosmall++; /* XXX */
1106 			m_freem(m);
1107 			goto done;
1108 		}
1109 		m->m_flags |= M_FRAG;
1110 	} else {
1111 		m->m_flags &= ~M_FRAG;
1112 	}
1113 	ip->ip_off <<= 3;
1114 
1115 	ipstat.ips_fragments++;
1116 	m->m_pkthdr.header = ip;
1117 
1118 	/*
1119 	 * If the hardware has not done csum over this fragment
1120 	 * then csum_data is not valid at all.
1121 	 */
1122 	if ((m->m_pkthdr.csum_flags & (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID))
1123 	    == (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID)) {
1124 		m->m_pkthdr.csum_data = 0;
1125 		m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1126 	}
1127 
1128 	/*
1129 	 * Presence of header sizes in mbufs
1130 	 * would confuse code below.
1131 	 */
1132 	m->m_data += hlen;
1133 	m->m_len -= hlen;
1134 
1135 	/*
1136 	 * If first fragment to arrive, create a reassembly queue.
1137 	 */
1138 	if (fp == NULL) {
1139 		if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1140 			goto dropfrag;
1141 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
1142 		fragq->nipq++;
1143 		fp->ipq_nfrags = 1;
1144 		fp->ipq_ttl = IPFRAGTTL;
1145 		fp->ipq_p = ip->ip_p;
1146 		fp->ipq_id = ip->ip_id;
1147 		fp->ipq_src = ip->ip_src;
1148 		fp->ipq_dst = ip->ip_dst;
1149 		fp->ipq_frags = m;
1150 		m->m_nextpkt = NULL;
1151 		goto inserted;
1152 	}
1153 	fp->ipq_nfrags++;
1154 
1155 #define	GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1156 
1157 	/*
1158 	 * Find a segment which begins after this one does.
1159 	 */
1160 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1161 		if (GETIP(q)->ip_off > ip->ip_off)
1162 			break;
1163 	}
1164 
1165 	/*
1166 	 * If there is a preceding segment, it may provide some of
1167 	 * our data already.  If so, drop the data from the incoming
1168 	 * segment.  If it provides all of our data, drop us, otherwise
1169 	 * stick new segment in the proper place.
1170 	 *
1171 	 * If some of the data is dropped from the the preceding
1172 	 * segment, then it's checksum is invalidated.
1173 	 */
1174 	if (p) {
1175 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1176 		if (i > 0) {
1177 			if (i >= ip->ip_len)
1178 				goto dropfrag;
1179 			m_adj(m, i);
1180 			m->m_pkthdr.csum_flags = 0;
1181 			ip->ip_off += i;
1182 			ip->ip_len -= i;
1183 		}
1184 		m->m_nextpkt = p->m_nextpkt;
1185 		p->m_nextpkt = m;
1186 	} else {
1187 		m->m_nextpkt = fp->ipq_frags;
1188 		fp->ipq_frags = m;
1189 	}
1190 
1191 	/*
1192 	 * While we overlap succeeding segments trim them or,
1193 	 * if they are completely covered, dequeue them.
1194 	 */
1195 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1196 	     q = nq) {
1197 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1198 		if (i < GETIP(q)->ip_len) {
1199 			GETIP(q)->ip_len -= i;
1200 			GETIP(q)->ip_off += i;
1201 			m_adj(q, i);
1202 			q->m_pkthdr.csum_flags = 0;
1203 			break;
1204 		}
1205 		nq = q->m_nextpkt;
1206 		m->m_nextpkt = nq;
1207 		ipstat.ips_fragdropped++;
1208 		fp->ipq_nfrags--;
1209 		q->m_nextpkt = NULL;
1210 		m_freem(q);
1211 	}
1212 
1213 inserted:
1214 	/*
1215 	 * Check for complete reassembly and perform frag per packet
1216 	 * limiting.
1217 	 *
1218 	 * Frag limiting is performed here so that the nth frag has
1219 	 * a chance to complete the packet before we drop the packet.
1220 	 * As a result, n+1 frags are actually allowed per packet, but
1221 	 * only n will ever be stored. (n = maxfragsperpacket.)
1222 	 *
1223 	 */
1224 	next = 0;
1225 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1226 		if (GETIP(q)->ip_off != next) {
1227 			if (fp->ipq_nfrags > maxfragsperpacket) {
1228 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1229 				ip_freef(fragq, head, fp);
1230 			}
1231 			goto done;
1232 		}
1233 		next += GETIP(q)->ip_len;
1234 	}
1235 	/* Make sure the last packet didn't have the IP_MF flag */
1236 	if (p->m_flags & M_FRAG) {
1237 		if (fp->ipq_nfrags > maxfragsperpacket) {
1238 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1239 			ip_freef(fragq, head, fp);
1240 		}
1241 		goto done;
1242 	}
1243 
1244 	/*
1245 	 * Reassembly is complete.  Make sure the packet is a sane size.
1246 	 */
1247 	q = fp->ipq_frags;
1248 	ip = GETIP(q);
1249 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1250 		ipstat.ips_toolong++;
1251 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1252 		ip_freef(fragq, head, fp);
1253 		goto done;
1254 	}
1255 
1256 	/*
1257 	 * Concatenate fragments.
1258 	 */
1259 	m = q;
1260 	n = m->m_next;
1261 	m->m_next = NULL;
1262 	m_cat(m, n);
1263 	nq = q->m_nextpkt;
1264 	q->m_nextpkt = NULL;
1265 	for (q = nq; q != NULL; q = nq) {
1266 		nq = q->m_nextpkt;
1267 		q->m_nextpkt = NULL;
1268 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1269 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1270 		m_cat(m, q);
1271 	}
1272 
1273 	/*
1274 	 * Clean up the 1's complement checksum.  Carry over 16 bits must
1275 	 * be added back.  This assumes no more then 65535 packet fragments
1276 	 * were reassembled.  A second carry can also occur (but not a third).
1277 	 */
1278 	m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1279 				(m->m_pkthdr.csum_data >> 16);
1280 	if (m->m_pkthdr.csum_data > 0xFFFF)
1281 		m->m_pkthdr.csum_data -= 0xFFFF;
1282 
1283 	/*
1284 	 * Create header for new ip packet by
1285 	 * modifying header of first packet;
1286 	 * dequeue and discard fragment reassembly header.
1287 	 * Make header visible.
1288 	 */
1289 	ip->ip_len = next;
1290 	ip->ip_src = fp->ipq_src;
1291 	ip->ip_dst = fp->ipq_dst;
1292 	TAILQ_REMOVE(head, fp, ipq_list);
1293 	fragq->nipq--;
1294 	mpipe_free(&ipq_mpipe, fp);
1295 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1296 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1297 	/* some debugging cruft by sklower, below, will go away soon */
1298 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1299 		int plen = 0;
1300 
1301 		for (n = m; n; n = n->m_next)
1302 			plen += n->m_len;
1303 		m->m_pkthdr.len = plen;
1304 	}
1305 
1306 	/*
1307 	 * Reassembly complete, return the next protocol.
1308 	 *
1309 	 * Be sure to clear M_HASH to force the packet
1310 	 * to be re-characterized.
1311 	 *
1312 	 * Clear M_FRAG, we are no longer a fragment.
1313 	 */
1314 	m->m_flags &= ~(M_HASH | M_FRAG);
1315 
1316 	ipstat.ips_reassembled++;
1317 	return (m);
1318 
1319 dropfrag:
1320 	ipstat.ips_fragdropped++;
1321 	if (fp != NULL)
1322 		fp->ipq_nfrags--;
1323 	m_freem(m);
1324 done:
1325 	return (NULL);
1326 
1327 #undef GETIP
1328 }
1329 
1330 /*
1331  * Free a fragment reassembly header and all
1332  * associated datagrams.
1333  */
1334 static void
1335 ip_freef(struct ipfrag_queue *fragq, struct ipqhead *fhp, struct ipq *fp)
1336 {
1337 	struct mbuf *q;
1338 
1339 	/*
1340 	 * Remove first to protect against blocking
1341 	 */
1342 	TAILQ_REMOVE(fhp, fp, ipq_list);
1343 
1344 	/*
1345 	 * Clean out at our leisure
1346 	 */
1347 	while (fp->ipq_frags) {
1348 		q = fp->ipq_frags;
1349 		fp->ipq_frags = q->m_nextpkt;
1350 		q->m_nextpkt = NULL;
1351 		m_freem(q);
1352 	}
1353 	mpipe_free(&ipq_mpipe, fp);
1354 	fragq->nipq--;
1355 }
1356 
1357 /*
1358  * If a timer expires on a reassembly queue, discard it.
1359  */
1360 static void
1361 ipfrag_timeo_dispatch(netmsg_t nmsg)
1362 {
1363 	struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[mycpuid];
1364 	struct ipq *fp, *fp_temp;
1365 	struct ipqhead *head;
1366 	int i;
1367 
1368 	crit_enter();
1369 	netisr_replymsg(&nmsg->base, 0);  /* reply ASAP */
1370 	crit_exit();
1371 
1372 	if (fragq->nipq == 0)
1373 		goto done;
1374 
1375 	for (i = 0; i < IPREASS_NHASH; i++) {
1376 		head = &fragq->ipq[i];
1377 		TAILQ_FOREACH_MUTABLE(fp, head, ipq_list, fp_temp) {
1378 			if (--fp->ipq_ttl == 0) {
1379 				ipstat.ips_fragtimeout += fp->ipq_nfrags;
1380 				ip_freef(fragq, head, fp);
1381 			}
1382 		}
1383 	}
1384 	/*
1385 	 * If we are over the maximum number of fragments
1386 	 * (due to the limit being lowered), drain off
1387 	 * enough to get down to the new limit.
1388 	 */
1389 	if (maxnipq >= 0 && fragq->nipq > maxnipq) {
1390 		for (i = 0; i < IPREASS_NHASH; i++) {
1391 			head = &fragq->ipq[i];
1392 			while (fragq->nipq > maxnipq && !TAILQ_EMPTY(head)) {
1393 				ipstat.ips_fragdropped +=
1394 				    TAILQ_FIRST(head)->ipq_nfrags;
1395 				ip_freef(fragq, head, TAILQ_FIRST(head));
1396 			}
1397 		}
1398 	}
1399 done:
1400 	callout_reset(&fragq->timeo_ch, IPFRAG_TIMEO, ipfrag_timeo, NULL);
1401 }
1402 
1403 static void
1404 ipfrag_timeo(void *dummy __unused)
1405 {
1406 	struct netmsg_base *msg = &ipfrag_queue_pcpu[mycpuid].timeo_netmsg;
1407 
1408 	crit_enter();
1409 	if (msg->lmsg.ms_flags & MSGF_DONE)
1410 		netisr_sendmsg_oncpu(msg);
1411 	crit_exit();
1412 }
1413 
1414 /*
1415  * Drain off all datagram fragments.
1416  */
1417 static void
1418 ipfrag_drain_oncpu(struct ipfrag_queue *fragq)
1419 {
1420 	struct ipqhead *head;
1421 	int i;
1422 
1423 	for (i = 0; i < IPREASS_NHASH; i++) {
1424 		head = &fragq->ipq[i];
1425 		while (!TAILQ_EMPTY(head)) {
1426 			ipstat.ips_fragdropped += TAILQ_FIRST(head)->ipq_nfrags;
1427 			ip_freef(fragq, head, TAILQ_FIRST(head));
1428 		}
1429 	}
1430 }
1431 
1432 static void
1433 ipfrag_drain_dispatch(netmsg_t nmsg)
1434 {
1435 	struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[mycpuid];
1436 
1437 	crit_enter();
1438 	lwkt_replymsg(&nmsg->lmsg, 0);  /* reply ASAP */
1439 	crit_exit();
1440 
1441 	ipfrag_drain_oncpu(fragq);
1442 	fragq->draining = 0;
1443 }
1444 
1445 static void
1446 ipfrag_drain_ipi(void *arg __unused)
1447 {
1448 	int cpu = mycpuid;
1449 	struct lwkt_msg *msg = &ipfrag_queue_pcpu[cpu].drain_netmsg.lmsg;
1450 
1451 	crit_enter();
1452 	if (msg->ms_flags & MSGF_DONE)
1453 		lwkt_sendmsg_oncpu(netisr_cpuport(cpu), msg);
1454 	crit_exit();
1455 }
1456 
1457 static void
1458 ipfrag_drain(void)
1459 {
1460 	cpumask_t mask;
1461 	int cpu;
1462 
1463 	CPUMASK_ASSBMASK(mask, netisr_ncpus);
1464 	CPUMASK_ANDMASK(mask, smp_active_mask);
1465 
1466 	if (IN_NETISR_NCPUS(mycpuid)) {
1467 		ipfrag_drain_oncpu(&ipfrag_queue_pcpu[mycpuid]);
1468 		CPUMASK_NANDBIT(mask, mycpuid);
1469 	}
1470 
1471 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
1472 		struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[cpu];
1473 
1474 		if (!CPUMASK_TESTBIT(mask, cpu))
1475 			continue;
1476 
1477 		if (fragq->nipq == 0 || fragq->draining) {
1478 			/* No fragments or is draining; skip this cpu. */
1479 			CPUMASK_NANDBIT(mask, cpu);
1480 			continue;
1481 		}
1482 		fragq->draining = 1;
1483 	}
1484 
1485 	if (CPUMASK_TESTNZERO(mask))
1486 		lwkt_send_ipiq_mask(mask, ipfrag_drain_ipi, NULL);
1487 }
1488 
1489 void
1490 ip_drain(void)
1491 {
1492 	ipfrag_drain();
1493 	in_rtqdrain();
1494 }
1495 
1496 /*
1497  * Do option processing on a datagram,
1498  * possibly discarding it if bad options are encountered,
1499  * or forwarding it if source-routed.
1500  * The pass argument is used when operating in the IPSTEALTH
1501  * mode to tell what options to process:
1502  * [LS]SRR (pass 0) or the others (pass 1).
1503  * The reason for as many as two passes is that when doing IPSTEALTH,
1504  * non-routing options should be processed only if the packet is for us.
1505  * Returns 1 if packet has been forwarded/freed,
1506  * 0 if the packet should be processed further.
1507  */
1508 static int
1509 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1510 {
1511 	struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1512 	struct ip *ip = mtod(m, struct ip *);
1513 	u_char *cp;
1514 	struct in_ifaddr *ia;
1515 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1516 	boolean_t forward = FALSE;
1517 	struct in_addr *sin, dst;
1518 	n_time ntime;
1519 
1520 	dst = ip->ip_dst;
1521 	cp = (u_char *)(ip + 1);
1522 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1523 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1524 		opt = cp[IPOPT_OPTVAL];
1525 		if (opt == IPOPT_EOL)
1526 			break;
1527 		if (opt == IPOPT_NOP)
1528 			optlen = 1;
1529 		else {
1530 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1531 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1532 				goto bad;
1533 			}
1534 			optlen = cp[IPOPT_OLEN];
1535 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1536 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1537 				goto bad;
1538 			}
1539 		}
1540 		switch (opt) {
1541 
1542 		default:
1543 			break;
1544 
1545 		/*
1546 		 * Source routing with record.
1547 		 * Find interface with current destination address.
1548 		 * If none on this machine then drop if strictly routed,
1549 		 * or do nothing if loosely routed.
1550 		 * Record interface address and bring up next address
1551 		 * component.  If strictly routed make sure next
1552 		 * address is on directly accessible net.
1553 		 */
1554 		case IPOPT_LSRR:
1555 		case IPOPT_SSRR:
1556 			if (ipstealth && pass > 0)
1557 				break;
1558 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1559 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1560 				goto bad;
1561 			}
1562 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1563 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1564 				goto bad;
1565 			}
1566 			ipaddr.sin_addr = ip->ip_dst;
1567 			ia = (struct in_ifaddr *)
1568 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1569 			if (ia == NULL) {
1570 				if (opt == IPOPT_SSRR) {
1571 					type = ICMP_UNREACH;
1572 					code = ICMP_UNREACH_SRCFAIL;
1573 					goto bad;
1574 				}
1575 				if (!ip_dosourceroute)
1576 					goto nosourcerouting;
1577 				/*
1578 				 * Loose routing, and not at next destination
1579 				 * yet; nothing to do except forward.
1580 				 */
1581 				break;
1582 			}
1583 			off--;			/* 0 origin */
1584 			if (off > optlen - (int)sizeof(struct in_addr)) {
1585 				/*
1586 				 * End of source route.  Should be for us.
1587 				 */
1588 				if (!ip_acceptsourceroute)
1589 					goto nosourcerouting;
1590 				save_rte(m, cp, ip->ip_src);
1591 				break;
1592 			}
1593 			if (ipstealth)
1594 				goto dropit;
1595 			if (!ip_dosourceroute) {
1596 				if (ipforwarding) {
1597 					char sbuf[INET_ADDRSTRLEN];
1598 					char dbuf[INET_ADDRSTRLEN];
1599 
1600 					/*
1601 					 * Acting as a router, so generate ICMP
1602 					 */
1603 nosourcerouting:
1604 					log(LOG_WARNING,
1605 					    "attempted source route from %s to %s\n",
1606 					    kinet_ntoa(ip->ip_src, sbuf),
1607 					    kinet_ntoa(ip->ip_dst, dbuf));
1608 					type = ICMP_UNREACH;
1609 					code = ICMP_UNREACH_SRCFAIL;
1610 					goto bad;
1611 				} else {
1612 					/*
1613 					 * Not acting as a router,
1614 					 * so silently drop.
1615 					 */
1616 dropit:
1617 					ipstat.ips_cantforward++;
1618 					m_freem(m);
1619 					return (1);
1620 				}
1621 			}
1622 
1623 			/*
1624 			 * locate outgoing interface
1625 			 */
1626 			memcpy(&ipaddr.sin_addr, cp + off,
1627 			    sizeof ipaddr.sin_addr);
1628 
1629 			if (opt == IPOPT_SSRR) {
1630 #define	INA	struct in_ifaddr *
1631 #define	SA	struct sockaddr *
1632 				if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1633 									== NULL)
1634 					ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1635 			} else {
1636 				ia = ip_rtaddr(ipaddr.sin_addr, NULL);
1637 			}
1638 			if (ia == NULL) {
1639 				type = ICMP_UNREACH;
1640 				code = ICMP_UNREACH_SRCFAIL;
1641 				goto bad;
1642 			}
1643 			ip->ip_dst = ipaddr.sin_addr;
1644 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1645 			    sizeof(struct in_addr));
1646 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1647 			/*
1648 			 * Let ip_intr's mcast routing check handle mcast pkts
1649 			 */
1650 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1651 			break;
1652 
1653 		case IPOPT_RR:
1654 			if (ipstealth && pass == 0)
1655 				break;
1656 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1657 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1658 				goto bad;
1659 			}
1660 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1661 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1662 				goto bad;
1663 			}
1664 			/*
1665 			 * If no space remains, ignore.
1666 			 */
1667 			off--;			/* 0 origin */
1668 			if (off > optlen - (int)sizeof(struct in_addr))
1669 				break;
1670 			memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1671 			    sizeof ipaddr.sin_addr);
1672 			/*
1673 			 * locate outgoing interface; if we're the destination,
1674 			 * use the incoming interface (should be same).
1675 			 */
1676 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1677 			    (ia = ip_rtaddr(ipaddr.sin_addr, NULL)) == NULL) {
1678 				type = ICMP_UNREACH;
1679 				code = ICMP_UNREACH_HOST;
1680 				goto bad;
1681 			}
1682 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1683 			    sizeof(struct in_addr));
1684 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1685 			break;
1686 
1687 		case IPOPT_TS:
1688 			if (ipstealth && pass == 0)
1689 				break;
1690 			code = cp - (u_char *)ip;
1691 			if (optlen < 4 || optlen > 40) {
1692 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1693 				goto bad;
1694 			}
1695 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1696 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1697 				goto bad;
1698 			}
1699 			if (off > optlen - (int)sizeof(int32_t)) {
1700 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1701 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1702 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1703 					goto bad;
1704 				}
1705 				break;
1706 			}
1707 			off--;				/* 0 origin */
1708 			sin = (struct in_addr *)(cp + off);
1709 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1710 
1711 			case IPOPT_TS_TSONLY:
1712 				break;
1713 
1714 			case IPOPT_TS_TSANDADDR:
1715 				if (off + sizeof(n_time) +
1716 				    sizeof(struct in_addr) > optlen) {
1717 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1718 					goto bad;
1719 				}
1720 				ipaddr.sin_addr = dst;
1721 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1722 							    m->m_pkthdr.rcvif);
1723 				if (ia == NULL)
1724 					continue;
1725 				memcpy(sin, &IA_SIN(ia)->sin_addr,
1726 				    sizeof(struct in_addr));
1727 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1728 				off += sizeof(struct in_addr);
1729 				break;
1730 
1731 			case IPOPT_TS_PRESPEC:
1732 				if (off + sizeof(n_time) +
1733 				    sizeof(struct in_addr) > optlen) {
1734 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1735 					goto bad;
1736 				}
1737 				memcpy(&ipaddr.sin_addr, sin,
1738 				    sizeof(struct in_addr));
1739 				if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1740 					continue;
1741 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1742 				off += sizeof(struct in_addr);
1743 				break;
1744 
1745 			default:
1746 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1747 				goto bad;
1748 			}
1749 			ntime = iptime();
1750 			memcpy(cp + off, &ntime, sizeof(n_time));
1751 			cp[IPOPT_OFFSET] += sizeof(n_time);
1752 		}
1753 	}
1754 	if (forward && ipforwarding) {
1755 		ip_forward(m, TRUE, next_hop);
1756 		return (1);
1757 	}
1758 	return (0);
1759 bad:
1760 	icmp_error(m, type, code, 0, 0);
1761 	ipstat.ips_badoptions++;
1762 	return (1);
1763 }
1764 
1765 /*
1766  * Given address of next destination (final or next hop),
1767  * return internet address info of interface to be used to get there.
1768  */
1769 struct in_ifaddr *
1770 ip_rtaddr(struct in_addr dst, struct route *ro0)
1771 {
1772 	struct route sro, *ro;
1773 	struct sockaddr_in *sin;
1774 	struct in_ifaddr *ia;
1775 
1776 	if (ro0 != NULL) {
1777 		ro = ro0;
1778 	} else {
1779 		bzero(&sro, sizeof(sro));
1780 		ro = &sro;
1781 	}
1782 
1783 	sin = (struct sockaddr_in *)&ro->ro_dst;
1784 
1785 	if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1786 		if (ro->ro_rt != NULL) {
1787 			RTFREE(ro->ro_rt);
1788 			ro->ro_rt = NULL;
1789 		}
1790 		sin->sin_family = AF_INET;
1791 		sin->sin_len = sizeof *sin;
1792 		sin->sin_addr = dst;
1793 		rtalloc_ign(ro, RTF_PRCLONING);
1794 	}
1795 
1796 	if (ro->ro_rt == NULL)
1797 		return (NULL);
1798 
1799 	ia = ifatoia(ro->ro_rt->rt_ifa);
1800 
1801 	if (ro == &sro)
1802 		RTFREE(ro->ro_rt);
1803 	return ia;
1804 }
1805 
1806 /*
1807  * Save incoming source route for use in replies,
1808  * to be picked up later by ip_srcroute if the receiver is interested.
1809  */
1810 static void
1811 save_rte(struct mbuf *m, u_char *option, struct in_addr dst)
1812 {
1813 	struct m_tag *mtag;
1814 	struct ip_srcrt_opt *opt;
1815 	unsigned olen;
1816 
1817 	mtag = m_tag_get(PACKET_TAG_IPSRCRT, sizeof(*opt), M_NOWAIT);
1818 	if (mtag == NULL)
1819 		return;
1820 	opt = m_tag_data(mtag);
1821 
1822 	olen = option[IPOPT_OLEN];
1823 #ifdef DIAGNOSTIC
1824 	if (ipprintfs)
1825 		kprintf("save_rte: olen %d\n", olen);
1826 #endif
1827 	if (olen > sizeof(opt->ip_srcrt) - (1 + sizeof(dst))) {
1828 		m_tag_free(mtag);
1829 		return;
1830 	}
1831 	bcopy(option, opt->ip_srcrt.srcopt, olen);
1832 	opt->ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1833 	opt->ip_srcrt.dst = dst;
1834 	m_tag_prepend(m, mtag);
1835 }
1836 
1837 /*
1838  * Retrieve incoming source route for use in replies,
1839  * in the same form used by setsockopt.
1840  * The first hop is placed before the options, will be removed later.
1841  */
1842 struct mbuf *
1843 ip_srcroute(struct mbuf *m0)
1844 {
1845 	struct in_addr *p, *q;
1846 	struct mbuf *m;
1847 	struct m_tag *mtag;
1848 	struct ip_srcrt_opt *opt;
1849 
1850 	if (m0 == NULL)
1851 		return NULL;
1852 
1853 	mtag = m_tag_find(m0, PACKET_TAG_IPSRCRT, NULL);
1854 	if (mtag == NULL)
1855 		return NULL;
1856 	opt = m_tag_data(mtag);
1857 
1858 	if (opt->ip_nhops == 0)
1859 		return (NULL);
1860 	m = m_get(M_NOWAIT, MT_HEADER);
1861 	if (m == NULL)
1862 		return (NULL);
1863 
1864 #define	OPTSIZ	(sizeof(opt->ip_srcrt.nop) + sizeof(opt->ip_srcrt.srcopt))
1865 
1866 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1867 	m->m_len = opt->ip_nhops * sizeof(struct in_addr) +
1868 		   sizeof(struct in_addr) + OPTSIZ;
1869 #ifdef DIAGNOSTIC
1870 	if (ipprintfs) {
1871 		kprintf("ip_srcroute: nhops %d mlen %d",
1872 			opt->ip_nhops, m->m_len);
1873 	}
1874 #endif
1875 
1876 	/*
1877 	 * First save first hop for return route
1878 	 */
1879 	p = &opt->ip_srcrt.route[opt->ip_nhops - 1];
1880 	*(mtod(m, struct in_addr *)) = *p--;
1881 #ifdef DIAGNOSTIC
1882 	if (ipprintfs)
1883 		kprintf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1884 #endif
1885 
1886 	/*
1887 	 * Copy option fields and padding (nop) to mbuf.
1888 	 */
1889 	opt->ip_srcrt.nop = IPOPT_NOP;
1890 	opt->ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1891 	memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &opt->ip_srcrt.nop,
1892 	    OPTSIZ);
1893 	q = (struct in_addr *)(mtod(m, caddr_t) +
1894 	    sizeof(struct in_addr) + OPTSIZ);
1895 #undef OPTSIZ
1896 	/*
1897 	 * Record return path as an IP source route,
1898 	 * reversing the path (pointers are now aligned).
1899 	 */
1900 	while (p >= opt->ip_srcrt.route) {
1901 #ifdef DIAGNOSTIC
1902 		if (ipprintfs)
1903 			kprintf(" %x", ntohl(q->s_addr));
1904 #endif
1905 		*q++ = *p--;
1906 	}
1907 	/*
1908 	 * Last hop goes to final destination.
1909 	 */
1910 	*q = opt->ip_srcrt.dst;
1911 	m_tag_delete(m0, mtag);
1912 #ifdef DIAGNOSTIC
1913 	if (ipprintfs)
1914 		kprintf(" %x\n", ntohl(q->s_addr));
1915 #endif
1916 	return (m);
1917 }
1918 
1919 /*
1920  * Strip out IP options.
1921  */
1922 void
1923 ip_stripoptions(struct mbuf *m)
1924 {
1925 	int datalen;
1926 	struct ip *ip = mtod(m, struct ip *);
1927 	caddr_t opts;
1928 	int optlen;
1929 
1930 	optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1931 	opts = (caddr_t)(ip + 1);
1932 	datalen = m->m_len - (sizeof(struct ip) + optlen);
1933 	bcopy(opts + optlen, opts, datalen);
1934 	m->m_len -= optlen;
1935 	if (m->m_flags & M_PKTHDR)
1936 		m->m_pkthdr.len -= optlen;
1937 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1938 }
1939 
1940 u_char inetctlerrmap[PRC_NCMDS] = {
1941 	0,		0,		0,		0,
1942 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1943 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1944 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1945 	0,		0,		0,		0,
1946 	ENOPROTOOPT,	ECONNREFUSED
1947 };
1948 
1949 /*
1950  * Forward a packet.  If some error occurs return the sender
1951  * an icmp packet.  Note we can't always generate a meaningful
1952  * icmp message because icmp doesn't have a large enough repertoire
1953  * of codes and types.
1954  *
1955  * If not forwarding, just drop the packet.  This could be confusing
1956  * if ipforwarding was zero but some routing protocol was advancing
1957  * us as a gateway to somewhere.  However, we must let the routing
1958  * protocol deal with that.
1959  *
1960  * The using_srcrt parameter indicates whether the packet is being forwarded
1961  * via a source route.
1962  */
1963 void
1964 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1965 {
1966 	struct ip *ip = mtod(m, struct ip *);
1967 	struct rtentry *rt;
1968 	struct route fwd_ro;
1969 	int error, type = 0, code = 0, destmtu = 0;
1970 	struct mbuf *mcopy, *mtemp = NULL;
1971 	n_long dest;
1972 	struct in_addr pkt_dst;
1973 
1974 	dest = INADDR_ANY;
1975 	/*
1976 	 * Cache the destination address of the packet; this may be
1977 	 * changed by use of 'ipfw fwd'.
1978 	 */
1979 	pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1980 
1981 #ifdef DIAGNOSTIC
1982 	if (ipprintfs)
1983 		kprintf("forward: src %x dst %x ttl %x\n",
1984 		       ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1985 #endif
1986 
1987 	if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1988 		ipstat.ips_cantforward++;
1989 		m_freem(m);
1990 		return;
1991 	}
1992 	if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1993 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1994 		return;
1995 	}
1996 
1997 	bzero(&fwd_ro, sizeof(fwd_ro));
1998 	ip_rtaddr(pkt_dst, &fwd_ro);
1999 	if (fwd_ro.ro_rt == NULL) {
2000 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
2001 		return;
2002 	}
2003 	rt = fwd_ro.ro_rt;
2004 
2005 	if (curthread->td_type == TD_TYPE_NETISR) {
2006 		/*
2007 		 * Save the IP header and at most 8 bytes of the payload,
2008 		 * in case we need to generate an ICMP message to the src.
2009 		 */
2010 		mtemp = ipforward_mtemp[mycpuid];
2011 		KASSERT((mtemp->m_flags & M_EXT) == 0 &&
2012 		    mtemp->m_data == mtemp->m_pktdat &&
2013 		    m_tag_first(mtemp) == NULL,
2014 		    ("ip_forward invalid mtemp1"));
2015 
2016 		if (!m_dup_pkthdr(mtemp, m, M_NOWAIT)) {
2017 			/*
2018 			 * It's probably ok if the pkthdr dup fails (because
2019 			 * the deep copy of the tag chain failed), but for now
2020 			 * be conservative and just discard the copy since
2021 			 * code below may some day want the tags.
2022 			 */
2023 			mtemp = NULL;
2024 		} else {
2025 			mtemp->m_type = m->m_type;
2026 			mtemp->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
2027 			    (int)ip->ip_len);
2028 			mtemp->m_pkthdr.len = mtemp->m_len;
2029 			m_copydata(m, 0, mtemp->m_len, mtod(mtemp, caddr_t));
2030 		}
2031 	}
2032 
2033 	if (!ipstealth)
2034 		ip->ip_ttl -= IPTTLDEC;
2035 
2036 	/*
2037 	 * If forwarding packet using same interface that it came in on,
2038 	 * perhaps should send a redirect to sender to shortcut a hop.
2039 	 * Only send redirect if source is sending directly to us,
2040 	 * and if packet was not source routed (or has any options).
2041 	 * Also, don't send redirect if forwarding using a default route
2042 	 * or a route modified by a redirect.
2043 	 */
2044 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
2045 	    !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
2046 	    satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
2047 	    ipsendredirects && !using_srcrt && next_hop == NULL) {
2048 		u_long src = ntohl(ip->ip_src.s_addr);
2049 		struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
2050 
2051 		if (rt_ifa != NULL &&
2052 		    (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
2053 			if (rt->rt_flags & RTF_GATEWAY)
2054 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
2055 			else
2056 				dest = pkt_dst.s_addr;
2057 			/*
2058 			 * Router requirements says to only send
2059 			 * host redirects.
2060 			 */
2061 			type = ICMP_REDIRECT;
2062 			code = ICMP_REDIRECT_HOST;
2063 #ifdef DIAGNOSTIC
2064 			if (ipprintfs)
2065 				kprintf("redirect (%d) to %x\n", code, dest);
2066 #endif
2067 		}
2068 	}
2069 
2070 	error = ip_output(m, NULL, &fwd_ro, IP_FORWARDING, NULL, NULL);
2071 	if (error == 0) {
2072 		ipstat.ips_forward++;
2073 		if (type == 0) {
2074 			if (mtemp)
2075 				ipflow_create(&fwd_ro, mtemp);
2076 			goto done;
2077 		}
2078 		ipstat.ips_redirectsent++;
2079 	} else {
2080 		ipstat.ips_cantforward++;
2081 	}
2082 
2083 	if (mtemp == NULL)
2084 		goto done;
2085 
2086 	/*
2087 	 * Errors that do not require generating ICMP message
2088 	 */
2089 	switch (error) {
2090 	case ENOBUFS:
2091 		/*
2092 		 * A router should not generate ICMP_SOURCEQUENCH as
2093 		 * required in RFC1812 Requirements for IP Version 4 Routers.
2094 		 * Source quench could be a big problem under DoS attacks,
2095 		 * or if the underlying interface is rate-limited.
2096 		 * Those who need source quench packets may re-enable them
2097 		 * via the net.inet.ip.sendsourcequench sysctl.
2098 		 */
2099 		if (!ip_sendsourcequench)
2100 			goto done;
2101 		break;
2102 
2103 	case EACCES:			/* ipfw denied packet */
2104 		goto done;
2105 	}
2106 
2107 	KASSERT((mtemp->m_flags & M_EXT) == 0 &&
2108 	    mtemp->m_data == mtemp->m_pktdat,
2109 	    ("ip_forward invalid mtemp2"));
2110 	mcopy = m_copym(mtemp, 0, mtemp->m_len, M_NOWAIT);
2111 	if (mcopy == NULL)
2112 		goto done;
2113 
2114 	/*
2115 	 * Send ICMP message.
2116 	 */
2117 	switch (error) {
2118 	case 0:				/* forwarded, but need redirect */
2119 		/* type, code set above */
2120 		break;
2121 
2122 	case ENETUNREACH:		/* shouldn't happen, checked above */
2123 	case EHOSTUNREACH:
2124 	case ENETDOWN:
2125 	case EHOSTDOWN:
2126 	default:
2127 		type = ICMP_UNREACH;
2128 		code = ICMP_UNREACH_HOST;
2129 		break;
2130 
2131 	case EMSGSIZE:
2132 		type = ICMP_UNREACH;
2133 		code = ICMP_UNREACH_NEEDFRAG;
2134 #ifdef IPSEC
2135 		/*
2136 		 * If the packet is routed over IPsec tunnel, tell the
2137 		 * originator the tunnel MTU.
2138 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2139 		 * XXX quickhack!!!
2140 		 */
2141 		if (fwd_ro.ro_rt != NULL) {
2142 			struct secpolicy *sp = NULL;
2143 			int ipsecerror;
2144 			int ipsechdr;
2145 			struct route *ro;
2146 
2147 			sp = ipsec4_getpolicybyaddr(mcopy,
2148 						    IPSEC_DIR_OUTBOUND,
2149 						    IP_FORWARDING,
2150 						    &ipsecerror);
2151 
2152 			if (sp == NULL)
2153 				destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2154 			else {
2155 				/* count IPsec header size */
2156 				ipsechdr = ipsec4_hdrsiz(mcopy,
2157 							 IPSEC_DIR_OUTBOUND,
2158 							 NULL);
2159 
2160 				/*
2161 				 * find the correct route for outer IPv4
2162 				 * header, compute tunnel MTU.
2163 				 *
2164 				 */
2165 				if (sp->req != NULL && sp->req->sav != NULL &&
2166 				    sp->req->sav->sah != NULL) {
2167 					ro = &sp->req->sav->sah->sa_route;
2168 					if (ro->ro_rt != NULL &&
2169 					    ro->ro_rt->rt_ifp != NULL) {
2170 						destmtu =
2171 						    ro->ro_rt->rt_ifp->if_mtu;
2172 						destmtu -= ipsechdr;
2173 					}
2174 				}
2175 
2176 				key_freesp(sp);
2177 			}
2178 		}
2179 #elif defined(FAST_IPSEC)
2180 		/*
2181 		 * If the packet is routed over IPsec tunnel, tell the
2182 		 * originator the tunnel MTU.
2183 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2184 		 * XXX quickhack!!!
2185 		 */
2186 		if (fwd_ro.ro_rt != NULL) {
2187 			struct secpolicy *sp = NULL;
2188 			int ipsecerror;
2189 			int ipsechdr;
2190 			struct route *ro;
2191 
2192 			sp = ipsec_getpolicybyaddr(mcopy,
2193 						   IPSEC_DIR_OUTBOUND,
2194 						   IP_FORWARDING,
2195 						   &ipsecerror);
2196 
2197 			if (sp == NULL)
2198 				destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2199 			else {
2200 				/* count IPsec header size */
2201 				ipsechdr = ipsec4_hdrsiz(mcopy,
2202 							 IPSEC_DIR_OUTBOUND,
2203 							 NULL);
2204 
2205 				/*
2206 				 * find the correct route for outer IPv4
2207 				 * header, compute tunnel MTU.
2208 				 */
2209 
2210 				if (sp->req != NULL &&
2211 				    sp->req->sav != NULL &&
2212 				    sp->req->sav->sah != NULL) {
2213 					ro = &sp->req->sav->sah->sa_route;
2214 					if (ro->ro_rt != NULL &&
2215 					    ro->ro_rt->rt_ifp != NULL) {
2216 						destmtu =
2217 						    ro->ro_rt->rt_ifp->if_mtu;
2218 						destmtu -= ipsechdr;
2219 					}
2220 				}
2221 
2222 				KEY_FREESP(&sp);
2223 			}
2224 		}
2225 #else /* !IPSEC && !FAST_IPSEC */
2226 		if (fwd_ro.ro_rt != NULL)
2227 			destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2228 #endif /*IPSEC*/
2229 		ipstat.ips_cantfrag++;
2230 		break;
2231 
2232 	case ENOBUFS:
2233 		type = ICMP_SOURCEQUENCH;
2234 		code = 0;
2235 		break;
2236 
2237 	case EACCES:			/* ipfw denied packet */
2238 		panic("ip_forward EACCES should not reach");
2239 	}
2240 	icmp_error(mcopy, type, code, dest, destmtu);
2241 done:
2242 	if (mtemp != NULL)
2243 		m_tag_delete_chain(mtemp);
2244 	if (fwd_ro.ro_rt != NULL)
2245 		RTFREE(fwd_ro.ro_rt);
2246 }
2247 
2248 void
2249 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2250 	       struct mbuf *m)
2251 {
2252 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2253 		struct timeval tv;
2254 
2255 		microtime(&tv);
2256 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2257 		    SCM_TIMESTAMP, SOL_SOCKET);
2258 		if (*mp)
2259 			mp = &(*mp)->m_next;
2260 	}
2261 	if (inp->inp_flags & INP_RECVDSTADDR) {
2262 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2263 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2264 		if (*mp)
2265 			mp = &(*mp)->m_next;
2266 	}
2267 	if (inp->inp_flags & INP_RECVTTL) {
2268 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2269 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2270 		if (*mp)
2271 			mp = &(*mp)->m_next;
2272 	}
2273 #ifdef notyet
2274 	/* XXX
2275 	 * Moving these out of udp_input() made them even more broken
2276 	 * than they already were.
2277 	 */
2278 	/* options were tossed already */
2279 	if (inp->inp_flags & INP_RECVOPTS) {
2280 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2281 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2282 		if (*mp)
2283 			mp = &(*mp)->m_next;
2284 	}
2285 	/* ip_srcroute doesn't do what we want here, need to fix */
2286 	if (inp->inp_flags & INP_RECVRETOPTS) {
2287 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
2288 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2289 		if (*mp)
2290 			mp = &(*mp)->m_next;
2291 	}
2292 #endif
2293 	if (inp->inp_flags & INP_RECVIF) {
2294 		struct ifnet *ifp;
2295 		struct sdlbuf {
2296 			struct sockaddr_dl sdl;
2297 			u_char	pad[32];
2298 		} sdlbuf;
2299 		struct sockaddr_dl *sdp;
2300 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2301 
2302 		if (((ifp = m->m_pkthdr.rcvif)) &&
2303 		    ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2304 			sdp = IF_LLSOCKADDR(ifp);
2305 			/*
2306 			 * Change our mind and don't try copy.
2307 			 */
2308 			if ((sdp->sdl_family != AF_LINK) ||
2309 			    (sdp->sdl_len > sizeof(sdlbuf))) {
2310 				goto makedummy;
2311 			}
2312 			bcopy(sdp, sdl2, sdp->sdl_len);
2313 		} else {
2314 makedummy:
2315 			sdl2->sdl_len =
2316 			    offsetof(struct sockaddr_dl, sdl_data[0]);
2317 			sdl2->sdl_family = AF_LINK;
2318 			sdl2->sdl_index = 0;
2319 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2320 		}
2321 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2322 			IP_RECVIF, IPPROTO_IP);
2323 		if (*mp)
2324 			mp = &(*mp)->m_next;
2325 	}
2326 }
2327 
2328 /*
2329  * XXX these routines are called from the upper part of the kernel.
2330  *
2331  * They could also be moved to ip_mroute.c, since all the RSVP
2332  *  handling is done there already.
2333  */
2334 int
2335 ip_rsvp_init(struct socket *so)
2336 {
2337 	if (so->so_type != SOCK_RAW ||
2338 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2339 		return EOPNOTSUPP;
2340 
2341 	if (ip_rsvpd != NULL)
2342 		return EADDRINUSE;
2343 
2344 	ip_rsvpd = so;
2345 	/*
2346 	 * This may seem silly, but we need to be sure we don't over-increment
2347 	 * the RSVP counter, in case something slips up.
2348 	 */
2349 	if (!ip_rsvp_on) {
2350 		ip_rsvp_on = 1;
2351 		rsvp_on++;
2352 	}
2353 
2354 	return 0;
2355 }
2356 
2357 int
2358 ip_rsvp_done(void)
2359 {
2360 	ip_rsvpd = NULL;
2361 	/*
2362 	 * This may seem silly, but we need to be sure we don't over-decrement
2363 	 * the RSVP counter, in case something slips up.
2364 	 */
2365 	if (ip_rsvp_on) {
2366 		ip_rsvp_on = 0;
2367 		rsvp_on--;
2368 	}
2369 	return 0;
2370 }
2371 
2372 int
2373 rsvp_input(struct mbuf **mp, int *offp, int proto)
2374 {
2375 	struct mbuf *m = *mp;
2376 
2377 	*mp = NULL;
2378 
2379 	if (rsvp_input_p) { /* call the real one if loaded */
2380 		*mp = m;
2381 		rsvp_input_p(mp, offp, proto);
2382 		return(IPPROTO_DONE);
2383 	}
2384 
2385 	/* Can still get packets with rsvp_on = 0 if there is a local member
2386 	 * of the group to which the RSVP packet is addressed.  But in this
2387 	 * case we want to throw the packet away.
2388 	 */
2389 
2390 	if (!rsvp_on) {
2391 		m_freem(m);
2392 		return(IPPROTO_DONE);
2393 	}
2394 
2395 	if (ip_rsvpd != NULL) {
2396 		*mp = m;
2397 		rip_input(mp, offp, proto);
2398 		return(IPPROTO_DONE);
2399 	}
2400 	/* Drop the packet */
2401 	m_freem(m);
2402 	return(IPPROTO_DONE);
2403 }
2404