xref: /dragonfly/sys/netinet/ip_input.c (revision db299a73)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. Neither the name of the University nor the names of its contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  *
62  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
63  * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
64  */
65 
66 #define	_IP_VHL
67 
68 #include "opt_bootp.h"
69 #include "opt_ipdn.h"
70 #include "opt_ipdivert.h"
71 #include "opt_ipstealth.h"
72 #include "opt_ipsec.h"
73 #include "opt_rss.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/mpipe.h>
80 #include <sys/domain.h>
81 #include <sys/protosw.h>
82 #include <sys/socket.h>
83 #include <sys/time.h>
84 #include <sys/globaldata.h>
85 #include <sys/thread.h>
86 #include <sys/kernel.h>
87 #include <sys/syslog.h>
88 #include <sys/sysctl.h>
89 #include <sys/in_cksum.h>
90 #include <sys/lock.h>
91 
92 #include <sys/mplock2.h>
93 
94 #include <machine/stdarg.h>
95 
96 #include <net/if.h>
97 #include <net/if_types.h>
98 #include <net/if_var.h>
99 #include <net/if_dl.h>
100 #include <net/pfil.h>
101 #include <net/route.h>
102 #include <net/netisr2.h>
103 
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/in_var.h>
107 #include <netinet/ip.h>
108 #include <netinet/in_pcb.h>
109 #include <netinet/ip_var.h>
110 #include <netinet/ip_icmp.h>
111 #include <netinet/ip_divert.h>
112 #include <netinet/ip_flow.h>
113 
114 #include <sys/thread2.h>
115 #include <sys/msgport2.h>
116 #include <net/netmsg2.h>
117 
118 #include <sys/socketvar.h>
119 
120 #include <net/ipfw/ip_fw.h>
121 #include <net/dummynet/ip_dummynet.h>
122 
123 #ifdef IPSEC
124 #include <netinet6/ipsec.h>
125 #include <netproto/key/key.h>
126 #endif
127 
128 #ifdef FAST_IPSEC
129 #include <netproto/ipsec/ipsec.h>
130 #include <netproto/ipsec/key.h>
131 #endif
132 
133 int rsvp_on = 0;
134 static int ip_rsvp_on;
135 struct socket *ip_rsvpd;
136 
137 int ipforwarding = 0;
138 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
139     &ipforwarding, 0, "Enable IP forwarding between interfaces");
140 
141 static int ipsendredirects = 1; /* XXX */
142 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
143     &ipsendredirects, 0, "Enable sending IP redirects");
144 
145 int ip_defttl = IPDEFTTL;
146 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
147     &ip_defttl, 0, "Maximum TTL on IP packets");
148 
149 static int ip_dosourceroute = 0;
150 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
151     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
152 
153 static int ip_acceptsourceroute = 0;
154 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
155     CTLFLAG_RW, &ip_acceptsourceroute, 0,
156     "Enable accepting source routed IP packets");
157 
158 static int ip_keepfaith = 0;
159 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
160     &ip_keepfaith, 0,
161     "Enable packet capture for FAITH IPv4->IPv6 translator daemon");
162 
163 static int nipq = 0;	/* total # of reass queues */
164 static int maxnipq;
165 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
166     &maxnipq, 0,
167     "Maximum number of IPv4 fragment reassembly queue entries");
168 
169 static int maxfragsperpacket;
170 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
171     &maxfragsperpacket, 0,
172     "Maximum number of IPv4 fragments allowed per packet");
173 
174 static int ip_sendsourcequench = 0;
175 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
176     &ip_sendsourcequench, 0,
177     "Enable the transmission of source quench packets");
178 
179 int ip_do_randomid = 1;
180 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
181     &ip_do_randomid, 0,
182     "Assign random ip_id values");
183 /*
184  * XXX - Setting ip_checkinterface mostly implements the receive side of
185  * the Strong ES model described in RFC 1122, but since the routing table
186  * and transmit implementation do not implement the Strong ES model,
187  * setting this to 1 results in an odd hybrid.
188  *
189  * XXX - ip_checkinterface currently must be disabled if you use ipnat
190  * to translate the destination address to another local interface.
191  *
192  * XXX - ip_checkinterface must be disabled if you add IP aliases
193  * to the loopback interface instead of the interface where the
194  * packets for those addresses are received.
195  */
196 static int ip_checkinterface = 0;
197 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
198     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
199 
200 static u_long ip_hash_count = 0;
201 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, hash_count, CTLFLAG_RD,
202     &ip_hash_count, 0, "Number of packets hashed by IP");
203 
204 #ifdef RSS_DEBUG
205 static u_long ip_rehash_count = 0;
206 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, rehash_count, CTLFLAG_RD,
207     &ip_rehash_count, 0, "Number of packets rehashed by IP");
208 
209 static u_long ip_dispatch_fast = 0;
210 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, dispatch_fast_count, CTLFLAG_RD,
211     &ip_dispatch_fast, 0, "Number of packets handled on current CPU");
212 
213 static u_long ip_dispatch_slow = 0;
214 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, dispatch_slow_count, CTLFLAG_RD,
215     &ip_dispatch_slow, 0, "Number of packets messaged to another CPU");
216 #endif
217 
218 static struct lwkt_token ipq_token = LWKT_TOKEN_INITIALIZER(ipq_token);
219 
220 #ifdef DIAGNOSTIC
221 static int ipprintfs = 0;
222 #endif
223 
224 extern	struct domain inetdomain;
225 extern	struct protosw inetsw[];
226 u_char	ip_protox[IPPROTO_MAX];
227 struct	in_ifaddrhead in_ifaddrheads[MAXCPU];	/* first inet address */
228 struct	in_ifaddrhashhead *in_ifaddrhashtbls[MAXCPU];
229 						/* inet addr hash table */
230 u_long	in_ifaddrhmask;				/* mask for hash table */
231 
232 static struct mbuf *ipforward_mtemp[MAXCPU];
233 
234 struct ip_stats ipstats_percpu[MAXCPU] __cachealign;
235 
236 static int
237 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
238 {
239 	int cpu, error = 0;
240 
241 	for (cpu = 0; cpu < ncpus; ++cpu) {
242 		if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
243 					sizeof(struct ip_stats))))
244 			break;
245 		if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
246 				       sizeof(struct ip_stats))))
247 			break;
248 	}
249 
250 	return (error);
251 }
252 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
253     0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
254 
255 /* Packet reassembly stuff */
256 #define	IPREASS_NHASH_LOG2	6
257 #define	IPREASS_NHASH		(1 << IPREASS_NHASH_LOG2)
258 #define	IPREASS_HMASK		(IPREASS_NHASH - 1)
259 #define	IPREASS_HASH(x,y)						\
260     (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
261 
262 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
263 
264 #ifdef IPCTL_DEFMTU
265 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
266     &ip_mtu, 0, "Default MTU");
267 #endif
268 
269 #ifdef IPSTEALTH
270 static int ipstealth = 0;
271 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
272 #else
273 static const int ipstealth = 0;
274 #endif
275 
276 struct mbuf *(*ip_divert_p)(struct mbuf *, int, int);
277 
278 struct pfil_head inet_pfil_hook;
279 
280 /*
281  * struct ip_srcrt_opt is used to store packet state while it travels
282  * through the stack.
283  *
284  * XXX Note that the code even makes assumptions on the size and
285  * alignment of fields inside struct ip_srcrt so e.g. adding some
286  * fields will break the code.  This needs to be fixed.
287  *
288  * We need to save the IP options in case a protocol wants to respond
289  * to an incoming packet over the same route if the packet got here
290  * using IP source routing.  This allows connection establishment and
291  * maintenance when the remote end is on a network that is not known
292  * to us.
293  */
294 struct ip_srcrt {
295 	struct	in_addr dst;			/* final destination */
296 	char	nop;				/* one NOP to align */
297 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
298 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
299 };
300 
301 struct ip_srcrt_opt {
302 	int		ip_nhops;
303 	struct ip_srcrt	ip_srcrt;
304 };
305 
306 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
307 static struct malloc_pipe ipq_mpipe;
308 
309 static void		save_rte(struct mbuf *, u_char *, struct in_addr);
310 static int		ip_dooptions(struct mbuf *m, int, struct sockaddr_in *);
311 static void		ip_freef(struct ipqhead *, struct ipq *);
312 static void		ip_input_handler(netmsg_t);
313 
314 /*
315  * IP initialization: fill in IP protocol switch table.
316  * All protocols not implemented in kernel go to raw IP protocol handler.
317  */
318 void
319 ip_init(void)
320 {
321 	struct protosw *pr;
322 	int i;
323 	int cpu;
324 
325 	/*
326 	 * Make sure we can handle a reasonable number of fragments but
327 	 * cap it at 4000 (XXX).
328 	 */
329 	mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
330 		    IFQ_MAXLEN, 4000, 0, NULL, NULL, NULL);
331 	for (i = 0; i < ncpus; ++i) {
332 		TAILQ_INIT(&in_ifaddrheads[i]);
333 		in_ifaddrhashtbls[i] =
334 			hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
335 	}
336 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
337 	if (pr == NULL)
338 		panic("ip_init");
339 	for (i = 0; i < IPPROTO_MAX; i++)
340 		ip_protox[i] = pr - inetsw;
341 	for (pr = inetdomain.dom_protosw;
342 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
343 		if (pr->pr_domain->dom_family == PF_INET && pr->pr_protocol) {
344 			if (pr->pr_protocol != IPPROTO_RAW)
345 				ip_protox[pr->pr_protocol] = pr - inetsw;
346 		}
347 	}
348 
349 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
350 	inet_pfil_hook.ph_af = AF_INET;
351 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
352 		kprintf("%s: WARNING: unable to register pfil hook, "
353 			"error %d\n", __func__, i);
354 	}
355 
356 	for (i = 0; i < IPREASS_NHASH; i++)
357 		TAILQ_INIT(&ipq[i]);
358 
359 	maxnipq = nmbclusters / 32;
360 	maxfragsperpacket = 16;
361 
362 	ip_id = time_second & 0xffff;	/* time_second survives reboots */
363 
364 	for (cpu = 0; cpu < ncpus; ++cpu) {
365 		/*
366 		 * Initialize IP statistics counters for each CPU.
367 		 */
368 		bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
369 
370 		/*
371 		 * Preallocate mbuf template for forwarding
372 		 */
373 		MGETHDR(ipforward_mtemp[cpu], MB_WAIT, MT_DATA);
374 	}
375 
376 	netisr_register(NETISR_IP, ip_input_handler, ip_hashfn_in);
377 	netisr_register_hashcheck(NETISR_IP, ip_hashcheck);
378 }
379 
380 /* Do transport protocol processing. */
381 static void
382 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip)
383 {
384 	const struct protosw *pr = &inetsw[ip_protox[ip->ip_p]];
385 
386 	/*
387 	 * Switch out to protocol's input routine.
388 	 */
389 	PR_GET_MPLOCK(pr);
390 	pr->pr_input(&m, &hlen, ip->ip_p);
391 	PR_REL_MPLOCK(pr);
392 }
393 
394 static void
395 transport_processing_handler(netmsg_t msg)
396 {
397 	struct netmsg_packet *pmsg = &msg->packet;
398 	struct ip *ip;
399 	int hlen;
400 
401 	ip = mtod(pmsg->nm_packet, struct ip *);
402 	hlen = pmsg->base.lmsg.u.ms_result;
403 
404 	transport_processing_oncpu(pmsg->nm_packet, hlen, ip);
405 	/* msg was embedded in the mbuf, do not reply! */
406 }
407 
408 static void
409 ip_input_handler(netmsg_t msg)
410 {
411 	ip_input(msg->packet.nm_packet);
412 	/* msg was embedded in the mbuf, do not reply! */
413 }
414 
415 /*
416  * IP input routine.  Checksum and byte swap header.  If fragmented
417  * try to reassemble.  Process options.  Pass to next level.
418  */
419 void
420 ip_input(struct mbuf *m)
421 {
422 	struct ip *ip;
423 	struct in_ifaddr *ia = NULL;
424 	struct in_ifaddr_container *iac;
425 	int hlen, checkif;
426 	u_short sum;
427 	struct in_addr pkt_dst;
428 	boolean_t check_msgport = FALSE;
429 	boolean_t using_srcrt = FALSE;		/* forward (by PFIL_HOOKS) */
430 	struct in_addr odst;			/* original dst address(NAT) */
431 	struct m_tag *mtag;
432 	struct sockaddr_in *next_hop = NULL;
433 	lwkt_port_t port;
434 #ifdef FAST_IPSEC
435 	struct tdb_ident *tdbi;
436 	struct secpolicy *sp;
437 	int error;
438 #endif
439 
440 	M_ASSERTPKTHDR(m);
441 
442 	/*
443 	 * This routine is called from numerous places which may not have
444 	 * characterized the packet.
445 	 */
446 	if ((m->m_flags & M_HASH) == 0) {
447 		atomic_add_long(&ip_hash_count, 1);
448 		ip_hashfn(&m, 0, IP_MPORT_IN);
449 		if (m == NULL)
450 			return;
451 		KKASSERT(m->m_flags & M_HASH);
452 		check_msgport = TRUE;
453 	}
454 	ip = mtod(m, struct ip *);
455 
456 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
457 		/*
458 		 * XXX handle multicast on CPU0 for now.
459 		 *
460 		 * This could happen for packets hashed by hardware
461 		 * using RSS, which does not differentiate multicast
462 		 * packets from unicast packets.
463 		 */
464 		m->m_pkthdr.hash = 0;
465 		check_msgport = TRUE;
466 	}
467 
468 	if (check_msgport &&
469 	    &curthread->td_msgport != netisr_hashport(m->m_pkthdr.hash)) {
470 		netisr_queue(NETISR_IP, m);
471 		/* Requeued to other netisr msgport; done */
472 		return;
473 	}
474 
475 	/*
476 	 * Pull out certain tags
477 	 */
478 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
479 		/* Next hop */
480 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
481 		KKASSERT(mtag != NULL);
482 		next_hop = m_tag_data(mtag);
483 	}
484 
485 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
486 		/* dummynet already filtered us */
487 		ip = mtod(m, struct ip *);
488 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
489 		goto iphack;
490 	}
491 
492 	ipstat.ips_total++;
493 
494 	/* length checks already done in ip_hashfn() */
495 	KASSERT(m->m_len >= sizeof(struct ip), ("IP header not in one mbuf"));
496 
497 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
498 		ipstat.ips_badvers++;
499 		goto bad;
500 	}
501 
502 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
503 	/* length checks already done in ip_hashfn() */
504 	KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
505 	KASSERT(m->m_len >= hlen, ("complete IP header not in one mbuf"));
506 
507 	/* 127/8 must not appear on wire - RFC1122 */
508 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
509 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
510 		if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
511 			ipstat.ips_badaddr++;
512 			goto bad;
513 		}
514 	}
515 
516 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
517 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
518 	} else {
519 		if (hlen == sizeof(struct ip))
520 			sum = in_cksum_hdr(ip);
521 		else
522 			sum = in_cksum(m, hlen);
523 	}
524 	if (sum != 0) {
525 		ipstat.ips_badsum++;
526 		goto bad;
527 	}
528 
529 #ifdef ALTQ
530 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
531 		/* packet is dropped by traffic conditioner */
532 		return;
533 	}
534 #endif
535 	/*
536 	 * Convert fields to host representation.
537 	 */
538 	ip->ip_len = ntohs(ip->ip_len);
539 	ip->ip_off = ntohs(ip->ip_off);
540 
541 	/* length checks already done in ip_hashfn() */
542 	KASSERT(ip->ip_len >= hlen, ("total length less then header length"));
543 	KASSERT(m->m_pkthdr.len >= ip->ip_len, ("mbuf too short"));
544 
545 	/*
546 	 * Trim mbufs if longer than the IP header would have us expect.
547 	 */
548 	if (m->m_pkthdr.len > ip->ip_len) {
549 		if (m->m_len == m->m_pkthdr.len) {
550 			m->m_len = ip->ip_len;
551 			m->m_pkthdr.len = ip->ip_len;
552 		} else {
553 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
554 		}
555 	}
556 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
557 	/*
558 	 * Bypass packet filtering for packets from a tunnel (gif).
559 	 */
560 	if (ipsec_gethist(m, NULL))
561 		goto pass;
562 #endif
563 
564 	/*
565 	 * IpHack's section.
566 	 * Right now when no processing on packet has done
567 	 * and it is still fresh out of network we do our black
568 	 * deals with it.
569 	 * - Firewall: deny/allow/divert
570 	 * - Xlate: translate packet's addr/port (NAT).
571 	 * - Pipe: pass pkt through dummynet.
572 	 * - Wrap: fake packet's addr/port <unimpl.>
573 	 * - Encapsulate: put it in another IP and send out. <unimp.>
574 	 */
575 
576 iphack:
577 	/*
578 	 * If we've been forwarded from the output side, then
579 	 * skip the firewall a second time
580 	 */
581 	if (next_hop != NULL)
582 		goto ours;
583 
584 	/* No pfil hooks */
585 	if (!pfil_has_hooks(&inet_pfil_hook)) {
586 		if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
587 			/*
588 			 * Strip dummynet tags from stranded packets
589 			 */
590 			mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
591 			KKASSERT(mtag != NULL);
592 			m_tag_delete(m, mtag);
593 			m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
594 		}
595 		goto pass;
596 	}
597 
598 	/*
599 	 * Run through list of hooks for input packets.
600 	 *
601 	 * NOTE!  If the packet is rewritten pf/ipfw/whoever must
602 	 *	  clear M_HASH.
603 	 */
604 	odst = ip->ip_dst;
605 	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif, PFIL_IN))
606 		return;
607 	if (m == NULL)	/* consumed by filter */
608 		return;
609 	ip = mtod(m, struct ip *);
610 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
611 	using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
612 
613 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
614 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
615 		KKASSERT(mtag != NULL);
616 		next_hop = m_tag_data(mtag);
617 	}
618 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
619 		ip_dn_queue(m);
620 		return;
621 	}
622 	if (m->m_pkthdr.fw_flags & FW_MBUF_REDISPATCH) {
623 		m->m_pkthdr.fw_flags &= ~FW_MBUF_REDISPATCH;
624 	}
625 pass:
626 	/*
627 	 * Process options and, if not destined for us,
628 	 * ship it on.  ip_dooptions returns 1 when an
629 	 * error was detected (causing an icmp message
630 	 * to be sent and the original packet to be freed).
631 	 */
632 	if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, next_hop))
633 		return;
634 
635 	/* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
636 	 * matter if it is destined to another node, or whether it is
637 	 * a multicast one, RSVP wants it! and prevents it from being forwarded
638 	 * anywhere else. Also checks if the rsvp daemon is running before
639 	 * grabbing the packet.
640 	 */
641 	if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
642 		goto ours;
643 
644 	/*
645 	 * Check our list of addresses, to see if the packet is for us.
646 	 * If we don't have any addresses, assume any unicast packet
647 	 * we receive might be for us (and let the upper layers deal
648 	 * with it).
649 	 */
650 	if (TAILQ_EMPTY(&in_ifaddrheads[mycpuid]) &&
651 	    !(m->m_flags & (M_MCAST | M_BCAST)))
652 		goto ours;
653 
654 	/*
655 	 * Cache the destination address of the packet; this may be
656 	 * changed by use of 'ipfw fwd'.
657 	 */
658 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
659 
660 	/*
661 	 * Enable a consistency check between the destination address
662 	 * and the arrival interface for a unicast packet (the RFC 1122
663 	 * strong ES model) if IP forwarding is disabled and the packet
664 	 * is not locally generated and the packet is not subject to
665 	 * 'ipfw fwd'.
666 	 *
667 	 * XXX - Checking also should be disabled if the destination
668 	 * address is ipnat'ed to a different interface.
669 	 *
670 	 * XXX - Checking is incompatible with IP aliases added
671 	 * to the loopback interface instead of the interface where
672 	 * the packets are received.
673 	 */
674 	checkif = ip_checkinterface &&
675 		  !ipforwarding &&
676 		  m->m_pkthdr.rcvif != NULL &&
677 		  !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
678 		  next_hop == NULL;
679 
680 	/*
681 	 * Check for exact addresses in the hash bucket.
682 	 */
683 	LIST_FOREACH(iac, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
684 		ia = iac->ia;
685 
686 		/*
687 		 * If the address matches, verify that the packet
688 		 * arrived via the correct interface if checking is
689 		 * enabled.
690 		 */
691 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
692 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
693 			goto ours;
694 	}
695 	ia = NULL;
696 
697 	/*
698 	 * Check for broadcast addresses.
699 	 *
700 	 * Only accept broadcast packets that arrive via the matching
701 	 * interface.  Reception of forwarded directed broadcasts would
702 	 * be handled via ip_forward() and ether_output() with the loopback
703 	 * into the stack for SIMPLEX interfaces handled by ether_output().
704 	 */
705 	if (m->m_pkthdr.rcvif != NULL &&
706 	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
707 		struct ifaddr_container *ifac;
708 
709 		TAILQ_FOREACH(ifac, &m->m_pkthdr.rcvif->if_addrheads[mycpuid],
710 			      ifa_link) {
711 			struct ifaddr *ifa = ifac->ifa;
712 
713 			if (ifa->ifa_addr == NULL) /* shutdown/startup race */
714 				continue;
715 			if (ifa->ifa_addr->sa_family != AF_INET)
716 				continue;
717 			ia = ifatoia(ifa);
718 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
719 								pkt_dst.s_addr)
720 				goto ours;
721 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
722 				goto ours;
723 #ifdef BOOTP_COMPAT
724 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
725 				goto ours;
726 #endif
727 		}
728 	}
729 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
730 		struct in_multi *inm;
731 
732 		if (ip_mrouter != NULL) {
733 			/* XXX Multicast routing is not MPSAFE yet */
734 			get_mplock();
735 
736 			/*
737 			 * If we are acting as a multicast router, all
738 			 * incoming multicast packets are passed to the
739 			 * kernel-level multicast forwarding function.
740 			 * The packet is returned (relatively) intact; if
741 			 * ip_mforward() returns a non-zero value, the packet
742 			 * must be discarded, else it may be accepted below.
743 			 */
744 			if (ip_mforward != NULL &&
745 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
746 				rel_mplock();
747 				ipstat.ips_cantforward++;
748 				m_freem(m);
749 				return;
750 			}
751 
752 			rel_mplock();
753 
754 			/*
755 			 * The process-level routing daemon needs to receive
756 			 * all multicast IGMP packets, whether or not this
757 			 * host belongs to their destination groups.
758 			 */
759 			if (ip->ip_p == IPPROTO_IGMP)
760 				goto ours;
761 			ipstat.ips_forward++;
762 		}
763 		/*
764 		 * See if we belong to the destination multicast group on the
765 		 * arrival interface.
766 		 */
767 		inm = IN_LOOKUP_MULTI(&ip->ip_dst, m->m_pkthdr.rcvif);
768 		if (inm == NULL) {
769 			ipstat.ips_notmember++;
770 			m_freem(m);
771 			return;
772 		}
773 		goto ours;
774 	}
775 	if (ip->ip_dst.s_addr == INADDR_BROADCAST)
776 		goto ours;
777 	if (ip->ip_dst.s_addr == INADDR_ANY)
778 		goto ours;
779 
780 	/*
781 	 * FAITH(Firewall Aided Internet Translator)
782 	 */
783 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
784 		if (ip_keepfaith) {
785 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
786 				goto ours;
787 		}
788 		m_freem(m);
789 		return;
790 	}
791 
792 	/*
793 	 * Not for us; forward if possible and desirable.
794 	 */
795 	if (!ipforwarding) {
796 		ipstat.ips_cantforward++;
797 		m_freem(m);
798 	} else {
799 #ifdef IPSEC
800 		/*
801 		 * Enforce inbound IPsec SPD.
802 		 */
803 		if (ipsec4_in_reject(m, NULL)) {
804 			ipsecstat.in_polvio++;
805 			goto bad;
806 		}
807 #endif
808 #ifdef FAST_IPSEC
809 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
810 		crit_enter();
811 		if (mtag != NULL) {
812 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
813 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
814 		} else {
815 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
816 						   IP_FORWARDING, &error);
817 		}
818 		if (sp == NULL) {	/* NB: can happen if error */
819 			crit_exit();
820 			/*XXX error stat???*/
821 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
822 			goto bad;
823 		}
824 
825 		/*
826 		 * Check security policy against packet attributes.
827 		 */
828 		error = ipsec_in_reject(sp, m);
829 		KEY_FREESP(&sp);
830 		crit_exit();
831 		if (error) {
832 			ipstat.ips_cantforward++;
833 			goto bad;
834 		}
835 #endif
836 		ip_forward(m, using_srcrt, next_hop);
837 	}
838 	return;
839 
840 ours:
841 
842 	/*
843 	 * IPSTEALTH: Process non-routing options only
844 	 * if the packet is destined for us.
845 	 */
846 	if (ipstealth &&
847 	    hlen > sizeof(struct ip) &&
848 	    ip_dooptions(m, 1, next_hop))
849 		return;
850 
851 	/* Count the packet in the ip address stats */
852 	if (ia != NULL) {
853 		IFA_STAT_INC(&ia->ia_ifa, ipackets, 1);
854 		IFA_STAT_INC(&ia->ia_ifa, ibytes, m->m_pkthdr.len);
855 	}
856 
857 	/*
858 	 * If offset or IP_MF are set, must reassemble.
859 	 * Otherwise, nothing need be done.
860 	 * (We could look in the reassembly queue to see
861 	 * if the packet was previously fragmented,
862 	 * but it's not worth the time; just let them time out.)
863 	 */
864 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
865 		/*
866 		 * Attempt reassembly; if it succeeds, proceed.  ip_reass()
867 		 * will return a different mbuf.
868 		 *
869 		 * NOTE: ip_reass() returns m with M_HASH cleared to force
870 		 *	 us to recharacterize the packet.
871 		 */
872 		m = ip_reass(m);
873 		if (m == NULL)
874 			return;
875 		ip = mtod(m, struct ip *);
876 
877 		/* Get the header length of the reassembled packet */
878 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
879 	} else {
880 		ip->ip_len -= hlen;
881 	}
882 
883 #ifdef IPSEC
884 	/*
885 	 * enforce IPsec policy checking if we are seeing last header.
886 	 * note that we do not visit this with protocols with pcb layer
887 	 * code - like udp/tcp/raw ip.
888 	 */
889 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
890 	    ipsec4_in_reject(m, NULL)) {
891 		ipsecstat.in_polvio++;
892 		goto bad;
893 	}
894 #endif
895 #if FAST_IPSEC
896 	/*
897 	 * enforce IPsec policy checking if we are seeing last header.
898 	 * note that we do not visit this with protocols with pcb layer
899 	 * code - like udp/tcp/raw ip.
900 	 */
901 	if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
902 		/*
903 		 * Check if the packet has already had IPsec processing
904 		 * done.  If so, then just pass it along.  This tag gets
905 		 * set during AH, ESP, etc. input handling, before the
906 		 * packet is returned to the ip input queue for delivery.
907 		 */
908 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
909 		crit_enter();
910 		if (mtag != NULL) {
911 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
912 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
913 		} else {
914 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
915 						   IP_FORWARDING, &error);
916 		}
917 		if (sp != NULL) {
918 			/*
919 			 * Check security policy against packet attributes.
920 			 */
921 			error = ipsec_in_reject(sp, m);
922 			KEY_FREESP(&sp);
923 		} else {
924 			/* XXX error stat??? */
925 			error = EINVAL;
926 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
927 			goto bad;
928 		}
929 		crit_exit();
930 		if (error)
931 			goto bad;
932 	}
933 #endif /* FAST_IPSEC */
934 
935 	/*
936 	 * We must forward the packet to the correct protocol thread if
937 	 * we are not already in it.
938 	 *
939 	 * NOTE: ip_len is now in host form.  ip_len is not adjusted
940 	 *	 further for protocol processing, instead we pass hlen
941 	 *	 to the protosw and let it deal with it.
942 	 */
943 	ipstat.ips_delivered++;
944 
945 	if ((m->m_flags & M_HASH) == 0) {
946 #ifdef RSS_DEBUG
947 		atomic_add_long(&ip_rehash_count, 1);
948 #endif
949 		ip->ip_len = htons(ip->ip_len + hlen);
950 		ip->ip_off = htons(ip->ip_off);
951 
952 		ip_hashfn(&m, 0, IP_MPORT_IN);
953 		if (m == NULL)
954 			return;
955 
956 		ip = mtod(m, struct ip *);
957 		ip->ip_len = ntohs(ip->ip_len) - hlen;
958 		ip->ip_off = ntohs(ip->ip_off);
959 		KKASSERT(m->m_flags & M_HASH);
960 	}
961 	port = netisr_hashport(m->m_pkthdr.hash);
962 
963 	if (port != &curthread->td_msgport) {
964 		struct netmsg_packet *pmsg;
965 
966 #ifdef RSS_DEBUG
967 		atomic_add_long(&ip_dispatch_slow, 1);
968 #endif
969 
970 		pmsg = &m->m_hdr.mh_netmsg;
971 		netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
972 			    0, transport_processing_handler);
973 		pmsg->nm_packet = m;
974 		pmsg->base.lmsg.u.ms_result = hlen;
975 		lwkt_sendmsg(port, &pmsg->base.lmsg);
976 	} else {
977 #ifdef RSS_DEBUG
978 		atomic_add_long(&ip_dispatch_fast, 1);
979 #endif
980 		transport_processing_oncpu(m, hlen, ip);
981 	}
982 	return;
983 
984 bad:
985 	m_freem(m);
986 }
987 
988 /*
989  * Take incoming datagram fragment and try to reassemble it into
990  * whole datagram.  If a chain for reassembly of this datagram already
991  * exists, then it is given as fp; otherwise have to make a chain.
992  */
993 struct mbuf *
994 ip_reass(struct mbuf *m)
995 {
996 	struct ip *ip = mtod(m, struct ip *);
997 	struct mbuf *p = NULL, *q, *nq;
998 	struct mbuf *n;
999 	struct ipq *fp = NULL;
1000 	struct ipqhead *head;
1001 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1002 	int i, next;
1003 	u_short sum;
1004 
1005 	/* If maxnipq is 0, never accept fragments. */
1006 	if (maxnipq == 0) {
1007 		ipstat.ips_fragments++;
1008 		ipstat.ips_fragdropped++;
1009 		m_freem(m);
1010 		return NULL;
1011 	}
1012 
1013 	sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
1014 	/*
1015 	 * Look for queue of fragments of this datagram.
1016 	 */
1017 	lwkt_gettoken(&ipq_token);
1018 	head = &ipq[sum];
1019 	TAILQ_FOREACH(fp, head, ipq_list) {
1020 		if (ip->ip_id == fp->ipq_id &&
1021 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
1022 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
1023 		    ip->ip_p == fp->ipq_p)
1024 			goto found;
1025 	}
1026 
1027 	fp = NULL;
1028 
1029 	/*
1030 	 * Enforce upper bound on number of fragmented packets
1031 	 * for which we attempt reassembly;
1032 	 * If maxnipq is -1, accept all fragments without limitation.
1033 	 */
1034 	if (nipq > maxnipq && maxnipq > 0) {
1035 		/*
1036 		 * drop something from the tail of the current queue
1037 		 * before proceeding further
1038 		 */
1039 		struct ipq *q = TAILQ_LAST(head, ipqhead);
1040 		if (q == NULL) {
1041 			/*
1042 			 * The current queue is empty,
1043 			 * so drop from one of the others.
1044 			 */
1045 			for (i = 0; i < IPREASS_NHASH; i++) {
1046 				struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
1047 				if (r) {
1048 					ipstat.ips_fragtimeout += r->ipq_nfrags;
1049 					ip_freef(&ipq[i], r);
1050 					break;
1051 				}
1052 			}
1053 		} else {
1054 			ipstat.ips_fragtimeout += q->ipq_nfrags;
1055 			ip_freef(head, q);
1056 		}
1057 	}
1058 found:
1059 	/*
1060 	 * Adjust ip_len to not reflect header,
1061 	 * convert offset of this to bytes.
1062 	 */
1063 	ip->ip_len -= hlen;
1064 	if (ip->ip_off & IP_MF) {
1065 		/*
1066 		 * Make sure that fragments have a data length
1067 		 * that's a non-zero multiple of 8 bytes.
1068 		 */
1069 		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
1070 			ipstat.ips_toosmall++; /* XXX */
1071 			m_freem(m);
1072 			goto done;
1073 		}
1074 		m->m_flags |= M_FRAG;
1075 	} else {
1076 		m->m_flags &= ~M_FRAG;
1077 	}
1078 	ip->ip_off <<= 3;
1079 
1080 	ipstat.ips_fragments++;
1081 	m->m_pkthdr.header = ip;
1082 
1083 	/*
1084 	 * If the hardware has not done csum over this fragment
1085 	 * then csum_data is not valid at all.
1086 	 */
1087 	if ((m->m_pkthdr.csum_flags & (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID))
1088 	    == (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID)) {
1089 		m->m_pkthdr.csum_data = 0;
1090 		m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1091 	}
1092 
1093 	/*
1094 	 * Presence of header sizes in mbufs
1095 	 * would confuse code below.
1096 	 */
1097 	m->m_data += hlen;
1098 	m->m_len -= hlen;
1099 
1100 	/*
1101 	 * If first fragment to arrive, create a reassembly queue.
1102 	 */
1103 	if (fp == NULL) {
1104 		if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1105 			goto dropfrag;
1106 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
1107 		nipq++;
1108 		fp->ipq_nfrags = 1;
1109 		fp->ipq_ttl = IPFRAGTTL;
1110 		fp->ipq_p = ip->ip_p;
1111 		fp->ipq_id = ip->ip_id;
1112 		fp->ipq_src = ip->ip_src;
1113 		fp->ipq_dst = ip->ip_dst;
1114 		fp->ipq_frags = m;
1115 		m->m_nextpkt = NULL;
1116 		goto inserted;
1117 	} else {
1118 		fp->ipq_nfrags++;
1119 	}
1120 
1121 #define	GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1122 
1123 	/*
1124 	 * Find a segment which begins after this one does.
1125 	 */
1126 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1127 		if (GETIP(q)->ip_off > ip->ip_off)
1128 			break;
1129 	}
1130 
1131 	/*
1132 	 * If there is a preceding segment, it may provide some of
1133 	 * our data already.  If so, drop the data from the incoming
1134 	 * segment.  If it provides all of our data, drop us, otherwise
1135 	 * stick new segment in the proper place.
1136 	 *
1137 	 * If some of the data is dropped from the the preceding
1138 	 * segment, then it's checksum is invalidated.
1139 	 */
1140 	if (p) {
1141 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1142 		if (i > 0) {
1143 			if (i >= ip->ip_len)
1144 				goto dropfrag;
1145 			m_adj(m, i);
1146 			m->m_pkthdr.csum_flags = 0;
1147 			ip->ip_off += i;
1148 			ip->ip_len -= i;
1149 		}
1150 		m->m_nextpkt = p->m_nextpkt;
1151 		p->m_nextpkt = m;
1152 	} else {
1153 		m->m_nextpkt = fp->ipq_frags;
1154 		fp->ipq_frags = m;
1155 	}
1156 
1157 	/*
1158 	 * While we overlap succeeding segments trim them or,
1159 	 * if they are completely covered, dequeue them.
1160 	 */
1161 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1162 	     q = nq) {
1163 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1164 		if (i < GETIP(q)->ip_len) {
1165 			GETIP(q)->ip_len -= i;
1166 			GETIP(q)->ip_off += i;
1167 			m_adj(q, i);
1168 			q->m_pkthdr.csum_flags = 0;
1169 			break;
1170 		}
1171 		nq = q->m_nextpkt;
1172 		m->m_nextpkt = nq;
1173 		ipstat.ips_fragdropped++;
1174 		fp->ipq_nfrags--;
1175 		q->m_nextpkt = NULL;
1176 		m_freem(q);
1177 	}
1178 
1179 inserted:
1180 	/*
1181 	 * Check for complete reassembly and perform frag per packet
1182 	 * limiting.
1183 	 *
1184 	 * Frag limiting is performed here so that the nth frag has
1185 	 * a chance to complete the packet before we drop the packet.
1186 	 * As a result, n+1 frags are actually allowed per packet, but
1187 	 * only n will ever be stored. (n = maxfragsperpacket.)
1188 	 *
1189 	 */
1190 	next = 0;
1191 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1192 		if (GETIP(q)->ip_off != next) {
1193 			if (fp->ipq_nfrags > maxfragsperpacket) {
1194 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1195 				ip_freef(head, fp);
1196 			}
1197 			goto done;
1198 		}
1199 		next += GETIP(q)->ip_len;
1200 	}
1201 	/* Make sure the last packet didn't have the IP_MF flag */
1202 	if (p->m_flags & M_FRAG) {
1203 		if (fp->ipq_nfrags > maxfragsperpacket) {
1204 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1205 			ip_freef(head, fp);
1206 		}
1207 		goto done;
1208 	}
1209 
1210 	/*
1211 	 * Reassembly is complete.  Make sure the packet is a sane size.
1212 	 */
1213 	q = fp->ipq_frags;
1214 	ip = GETIP(q);
1215 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1216 		ipstat.ips_toolong++;
1217 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1218 		ip_freef(head, fp);
1219 		goto done;
1220 	}
1221 
1222 	/*
1223 	 * Concatenate fragments.
1224 	 */
1225 	m = q;
1226 	n = m->m_next;
1227 	m->m_next = NULL;
1228 	m_cat(m, n);
1229 	nq = q->m_nextpkt;
1230 	q->m_nextpkt = NULL;
1231 	for (q = nq; q != NULL; q = nq) {
1232 		nq = q->m_nextpkt;
1233 		q->m_nextpkt = NULL;
1234 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1235 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1236 		m_cat(m, q);
1237 	}
1238 
1239 	/*
1240 	 * Clean up the 1's complement checksum.  Carry over 16 bits must
1241 	 * be added back.  This assumes no more then 65535 packet fragments
1242 	 * were reassembled.  A second carry can also occur (but not a third).
1243 	 */
1244 	m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1245 				(m->m_pkthdr.csum_data >> 16);
1246 	if (m->m_pkthdr.csum_data > 0xFFFF)
1247 		m->m_pkthdr.csum_data -= 0xFFFF;
1248 
1249 	/*
1250 	 * Create header for new ip packet by
1251 	 * modifying header of first packet;
1252 	 * dequeue and discard fragment reassembly header.
1253 	 * Make header visible.
1254 	 */
1255 	ip->ip_len = next;
1256 	ip->ip_src = fp->ipq_src;
1257 	ip->ip_dst = fp->ipq_dst;
1258 	TAILQ_REMOVE(head, fp, ipq_list);
1259 	nipq--;
1260 	mpipe_free(&ipq_mpipe, fp);
1261 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1262 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1263 	/* some debugging cruft by sklower, below, will go away soon */
1264 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1265 		int plen = 0;
1266 
1267 		for (n = m; n; n = n->m_next)
1268 			plen += n->m_len;
1269 		m->m_pkthdr.len = plen;
1270 	}
1271 
1272 	/*
1273 	 * Reassembly complete, return the next protocol.
1274 	 *
1275 	 * Be sure to clear M_HASH to force the packet
1276 	 * to be re-characterized.
1277 	 *
1278 	 * Clear M_FRAG, we are no longer a fragment.
1279 	 */
1280 	m->m_flags &= ~(M_HASH | M_FRAG);
1281 
1282 	ipstat.ips_reassembled++;
1283 	lwkt_reltoken(&ipq_token);
1284 	return (m);
1285 
1286 dropfrag:
1287 	ipstat.ips_fragdropped++;
1288 	if (fp != NULL)
1289 		fp->ipq_nfrags--;
1290 	m_freem(m);
1291 done:
1292 	lwkt_reltoken(&ipq_token);
1293 	return (NULL);
1294 
1295 #undef GETIP
1296 }
1297 
1298 /*
1299  * Free a fragment reassembly header and all
1300  * associated datagrams.
1301  *
1302  * Called with ipq_token held.
1303  */
1304 static void
1305 ip_freef(struct ipqhead *fhp, struct ipq *fp)
1306 {
1307 	struct mbuf *q;
1308 
1309 	/*
1310 	 * Remove first to protect against blocking
1311 	 */
1312 	TAILQ_REMOVE(fhp, fp, ipq_list);
1313 
1314 	/*
1315 	 * Clean out at our leisure
1316 	 */
1317 	while (fp->ipq_frags) {
1318 		q = fp->ipq_frags;
1319 		fp->ipq_frags = q->m_nextpkt;
1320 		q->m_nextpkt = NULL;
1321 		m_freem(q);
1322 	}
1323 	mpipe_free(&ipq_mpipe, fp);
1324 	nipq--;
1325 }
1326 
1327 /*
1328  * IP timer processing;
1329  * if a timer expires on a reassembly
1330  * queue, discard it.
1331  */
1332 void
1333 ip_slowtimo(void)
1334 {
1335 	struct ipq *fp, *fp_temp;
1336 	struct ipqhead *head;
1337 	int i;
1338 
1339 	lwkt_gettoken(&ipq_token);
1340 	for (i = 0; i < IPREASS_NHASH; i++) {
1341 		head = &ipq[i];
1342 		TAILQ_FOREACH_MUTABLE(fp, head, ipq_list, fp_temp) {
1343 			if (--fp->ipq_ttl == 0) {
1344 				ipstat.ips_fragtimeout += fp->ipq_nfrags;
1345 				ip_freef(head, fp);
1346 			}
1347 		}
1348 	}
1349 	/*
1350 	 * If we are over the maximum number of fragments
1351 	 * (due to the limit being lowered), drain off
1352 	 * enough to get down to the new limit.
1353 	 */
1354 	if (maxnipq >= 0 && nipq > maxnipq) {
1355 		for (i = 0; i < IPREASS_NHASH; i++) {
1356 			head = &ipq[i];
1357 			while (nipq > maxnipq && !TAILQ_EMPTY(head)) {
1358 				ipstat.ips_fragdropped +=
1359 				    TAILQ_FIRST(head)->ipq_nfrags;
1360 				ip_freef(head, TAILQ_FIRST(head));
1361 			}
1362 		}
1363 	}
1364 	lwkt_reltoken(&ipq_token);
1365 	ipflow_slowtimo();
1366 }
1367 
1368 /*
1369  * Drain off all datagram fragments.
1370  */
1371 void
1372 ip_drain(void)
1373 {
1374 	struct ipqhead *head;
1375 	int i;
1376 
1377 	lwkt_gettoken(&ipq_token);
1378 	for (i = 0; i < IPREASS_NHASH; i++) {
1379 		head = &ipq[i];
1380 		while (!TAILQ_EMPTY(head)) {
1381 			ipstat.ips_fragdropped += TAILQ_FIRST(head)->ipq_nfrags;
1382 			ip_freef(head, TAILQ_FIRST(head));
1383 		}
1384 	}
1385 	lwkt_reltoken(&ipq_token);
1386 	in_rtqdrain();
1387 }
1388 
1389 /*
1390  * Do option processing on a datagram,
1391  * possibly discarding it if bad options are encountered,
1392  * or forwarding it if source-routed.
1393  * The pass argument is used when operating in the IPSTEALTH
1394  * mode to tell what options to process:
1395  * [LS]SRR (pass 0) or the others (pass 1).
1396  * The reason for as many as two passes is that when doing IPSTEALTH,
1397  * non-routing options should be processed only if the packet is for us.
1398  * Returns 1 if packet has been forwarded/freed,
1399  * 0 if the packet should be processed further.
1400  */
1401 static int
1402 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1403 {
1404 	struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1405 	struct ip *ip = mtod(m, struct ip *);
1406 	u_char *cp;
1407 	struct in_ifaddr *ia;
1408 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1409 	boolean_t forward = FALSE;
1410 	struct in_addr *sin, dst;
1411 	n_time ntime;
1412 
1413 	dst = ip->ip_dst;
1414 	cp = (u_char *)(ip + 1);
1415 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1416 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1417 		opt = cp[IPOPT_OPTVAL];
1418 		if (opt == IPOPT_EOL)
1419 			break;
1420 		if (opt == IPOPT_NOP)
1421 			optlen = 1;
1422 		else {
1423 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1424 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1425 				goto bad;
1426 			}
1427 			optlen = cp[IPOPT_OLEN];
1428 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1429 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1430 				goto bad;
1431 			}
1432 		}
1433 		switch (opt) {
1434 
1435 		default:
1436 			break;
1437 
1438 		/*
1439 		 * Source routing with record.
1440 		 * Find interface with current destination address.
1441 		 * If none on this machine then drop if strictly routed,
1442 		 * or do nothing if loosely routed.
1443 		 * Record interface address and bring up next address
1444 		 * component.  If strictly routed make sure next
1445 		 * address is on directly accessible net.
1446 		 */
1447 		case IPOPT_LSRR:
1448 		case IPOPT_SSRR:
1449 			if (ipstealth && pass > 0)
1450 				break;
1451 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1452 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1453 				goto bad;
1454 			}
1455 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1456 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1457 				goto bad;
1458 			}
1459 			ipaddr.sin_addr = ip->ip_dst;
1460 			ia = (struct in_ifaddr *)
1461 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1462 			if (ia == NULL) {
1463 				if (opt == IPOPT_SSRR) {
1464 					type = ICMP_UNREACH;
1465 					code = ICMP_UNREACH_SRCFAIL;
1466 					goto bad;
1467 				}
1468 				if (!ip_dosourceroute)
1469 					goto nosourcerouting;
1470 				/*
1471 				 * Loose routing, and not at next destination
1472 				 * yet; nothing to do except forward.
1473 				 */
1474 				break;
1475 			}
1476 			off--;			/* 0 origin */
1477 			if (off > optlen - (int)sizeof(struct in_addr)) {
1478 				/*
1479 				 * End of source route.  Should be for us.
1480 				 */
1481 				if (!ip_acceptsourceroute)
1482 					goto nosourcerouting;
1483 				save_rte(m, cp, ip->ip_src);
1484 				break;
1485 			}
1486 			if (ipstealth)
1487 				goto dropit;
1488 			if (!ip_dosourceroute) {
1489 				if (ipforwarding) {
1490 					char buf[sizeof "aaa.bbb.ccc.ddd"];
1491 
1492 					/*
1493 					 * Acting as a router, so generate ICMP
1494 					 */
1495 nosourcerouting:
1496 					strcpy(buf, inet_ntoa(ip->ip_dst));
1497 					log(LOG_WARNING,
1498 					    "attempted source route from %s to %s\n",
1499 					    inet_ntoa(ip->ip_src), buf);
1500 					type = ICMP_UNREACH;
1501 					code = ICMP_UNREACH_SRCFAIL;
1502 					goto bad;
1503 				} else {
1504 					/*
1505 					 * Not acting as a router,
1506 					 * so silently drop.
1507 					 */
1508 dropit:
1509 					ipstat.ips_cantforward++;
1510 					m_freem(m);
1511 					return (1);
1512 				}
1513 			}
1514 
1515 			/*
1516 			 * locate outgoing interface
1517 			 */
1518 			memcpy(&ipaddr.sin_addr, cp + off,
1519 			    sizeof ipaddr.sin_addr);
1520 
1521 			if (opt == IPOPT_SSRR) {
1522 #define	INA	struct in_ifaddr *
1523 #define	SA	struct sockaddr *
1524 				if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1525 									== NULL)
1526 					ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1527 			} else {
1528 				ia = ip_rtaddr(ipaddr.sin_addr, NULL);
1529 			}
1530 			if (ia == NULL) {
1531 				type = ICMP_UNREACH;
1532 				code = ICMP_UNREACH_SRCFAIL;
1533 				goto bad;
1534 			}
1535 			ip->ip_dst = ipaddr.sin_addr;
1536 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1537 			    sizeof(struct in_addr));
1538 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1539 			/*
1540 			 * Let ip_intr's mcast routing check handle mcast pkts
1541 			 */
1542 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1543 			break;
1544 
1545 		case IPOPT_RR:
1546 			if (ipstealth && pass == 0)
1547 				break;
1548 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1549 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1550 				goto bad;
1551 			}
1552 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1553 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1554 				goto bad;
1555 			}
1556 			/*
1557 			 * If no space remains, ignore.
1558 			 */
1559 			off--;			/* 0 origin */
1560 			if (off > optlen - (int)sizeof(struct in_addr))
1561 				break;
1562 			memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1563 			    sizeof ipaddr.sin_addr);
1564 			/*
1565 			 * locate outgoing interface; if we're the destination,
1566 			 * use the incoming interface (should be same).
1567 			 */
1568 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1569 			    (ia = ip_rtaddr(ipaddr.sin_addr, NULL)) == NULL) {
1570 				type = ICMP_UNREACH;
1571 				code = ICMP_UNREACH_HOST;
1572 				goto bad;
1573 			}
1574 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1575 			    sizeof(struct in_addr));
1576 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1577 			break;
1578 
1579 		case IPOPT_TS:
1580 			if (ipstealth && pass == 0)
1581 				break;
1582 			code = cp - (u_char *)ip;
1583 			if (optlen < 4 || optlen > 40) {
1584 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1585 				goto bad;
1586 			}
1587 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1588 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1589 				goto bad;
1590 			}
1591 			if (off > optlen - (int)sizeof(int32_t)) {
1592 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1593 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1594 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1595 					goto bad;
1596 				}
1597 				break;
1598 			}
1599 			off--;				/* 0 origin */
1600 			sin = (struct in_addr *)(cp + off);
1601 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1602 
1603 			case IPOPT_TS_TSONLY:
1604 				break;
1605 
1606 			case IPOPT_TS_TSANDADDR:
1607 				if (off + sizeof(n_time) +
1608 				    sizeof(struct in_addr) > optlen) {
1609 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1610 					goto bad;
1611 				}
1612 				ipaddr.sin_addr = dst;
1613 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1614 							    m->m_pkthdr.rcvif);
1615 				if (ia == NULL)
1616 					continue;
1617 				memcpy(sin, &IA_SIN(ia)->sin_addr,
1618 				    sizeof(struct in_addr));
1619 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1620 				off += sizeof(struct in_addr);
1621 				break;
1622 
1623 			case IPOPT_TS_PRESPEC:
1624 				if (off + sizeof(n_time) +
1625 				    sizeof(struct in_addr) > optlen) {
1626 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1627 					goto bad;
1628 				}
1629 				memcpy(&ipaddr.sin_addr, sin,
1630 				    sizeof(struct in_addr));
1631 				if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1632 					continue;
1633 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1634 				off += sizeof(struct in_addr);
1635 				break;
1636 
1637 			default:
1638 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1639 				goto bad;
1640 			}
1641 			ntime = iptime();
1642 			memcpy(cp + off, &ntime, sizeof(n_time));
1643 			cp[IPOPT_OFFSET] += sizeof(n_time);
1644 		}
1645 	}
1646 	if (forward && ipforwarding) {
1647 		ip_forward(m, TRUE, next_hop);
1648 		return (1);
1649 	}
1650 	return (0);
1651 bad:
1652 	icmp_error(m, type, code, 0, 0);
1653 	ipstat.ips_badoptions++;
1654 	return (1);
1655 }
1656 
1657 /*
1658  * Given address of next destination (final or next hop),
1659  * return internet address info of interface to be used to get there.
1660  */
1661 struct in_ifaddr *
1662 ip_rtaddr(struct in_addr dst, struct route *ro0)
1663 {
1664 	struct route sro, *ro;
1665 	struct sockaddr_in *sin;
1666 	struct in_ifaddr *ia;
1667 
1668 	if (ro0 != NULL) {
1669 		ro = ro0;
1670 	} else {
1671 		bzero(&sro, sizeof(sro));
1672 		ro = &sro;
1673 	}
1674 
1675 	sin = (struct sockaddr_in *)&ro->ro_dst;
1676 
1677 	if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1678 		if (ro->ro_rt != NULL) {
1679 			RTFREE(ro->ro_rt);
1680 			ro->ro_rt = NULL;
1681 		}
1682 		sin->sin_family = AF_INET;
1683 		sin->sin_len = sizeof *sin;
1684 		sin->sin_addr = dst;
1685 		rtalloc_ign(ro, RTF_PRCLONING);
1686 	}
1687 
1688 	if (ro->ro_rt == NULL)
1689 		return (NULL);
1690 
1691 	ia = ifatoia(ro->ro_rt->rt_ifa);
1692 
1693 	if (ro == &sro)
1694 		RTFREE(ro->ro_rt);
1695 	return ia;
1696 }
1697 
1698 /*
1699  * Save incoming source route for use in replies,
1700  * to be picked up later by ip_srcroute if the receiver is interested.
1701  */
1702 static void
1703 save_rte(struct mbuf *m, u_char *option, struct in_addr dst)
1704 {
1705 	struct m_tag *mtag;
1706 	struct ip_srcrt_opt *opt;
1707 	unsigned olen;
1708 
1709 	mtag = m_tag_get(PACKET_TAG_IPSRCRT, sizeof(*opt), MB_DONTWAIT);
1710 	if (mtag == NULL)
1711 		return;
1712 	opt = m_tag_data(mtag);
1713 
1714 	olen = option[IPOPT_OLEN];
1715 #ifdef DIAGNOSTIC
1716 	if (ipprintfs)
1717 		kprintf("save_rte: olen %d\n", olen);
1718 #endif
1719 	if (olen > sizeof(opt->ip_srcrt) - (1 + sizeof(dst))) {
1720 		m_tag_free(mtag);
1721 		return;
1722 	}
1723 	bcopy(option, opt->ip_srcrt.srcopt, olen);
1724 	opt->ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1725 	opt->ip_srcrt.dst = dst;
1726 	m_tag_prepend(m, mtag);
1727 }
1728 
1729 /*
1730  * Retrieve incoming source route for use in replies,
1731  * in the same form used by setsockopt.
1732  * The first hop is placed before the options, will be removed later.
1733  */
1734 struct mbuf *
1735 ip_srcroute(struct mbuf *m0)
1736 {
1737 	struct in_addr *p, *q;
1738 	struct mbuf *m;
1739 	struct m_tag *mtag;
1740 	struct ip_srcrt_opt *opt;
1741 
1742 	if (m0 == NULL)
1743 		return NULL;
1744 
1745 	mtag = m_tag_find(m0, PACKET_TAG_IPSRCRT, NULL);
1746 	if (mtag == NULL)
1747 		return NULL;
1748 	opt = m_tag_data(mtag);
1749 
1750 	if (opt->ip_nhops == 0)
1751 		return (NULL);
1752 	m = m_get(MB_DONTWAIT, MT_HEADER);
1753 	if (m == NULL)
1754 		return (NULL);
1755 
1756 #define	OPTSIZ	(sizeof(opt->ip_srcrt.nop) + sizeof(opt->ip_srcrt.srcopt))
1757 
1758 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1759 	m->m_len = opt->ip_nhops * sizeof(struct in_addr) +
1760 		   sizeof(struct in_addr) + OPTSIZ;
1761 #ifdef DIAGNOSTIC
1762 	if (ipprintfs) {
1763 		kprintf("ip_srcroute: nhops %d mlen %d",
1764 			opt->ip_nhops, m->m_len);
1765 	}
1766 #endif
1767 
1768 	/*
1769 	 * First save first hop for return route
1770 	 */
1771 	p = &opt->ip_srcrt.route[opt->ip_nhops - 1];
1772 	*(mtod(m, struct in_addr *)) = *p--;
1773 #ifdef DIAGNOSTIC
1774 	if (ipprintfs)
1775 		kprintf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1776 #endif
1777 
1778 	/*
1779 	 * Copy option fields and padding (nop) to mbuf.
1780 	 */
1781 	opt->ip_srcrt.nop = IPOPT_NOP;
1782 	opt->ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1783 	memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &opt->ip_srcrt.nop,
1784 	    OPTSIZ);
1785 	q = (struct in_addr *)(mtod(m, caddr_t) +
1786 	    sizeof(struct in_addr) + OPTSIZ);
1787 #undef OPTSIZ
1788 	/*
1789 	 * Record return path as an IP source route,
1790 	 * reversing the path (pointers are now aligned).
1791 	 */
1792 	while (p >= opt->ip_srcrt.route) {
1793 #ifdef DIAGNOSTIC
1794 		if (ipprintfs)
1795 			kprintf(" %x", ntohl(q->s_addr));
1796 #endif
1797 		*q++ = *p--;
1798 	}
1799 	/*
1800 	 * Last hop goes to final destination.
1801 	 */
1802 	*q = opt->ip_srcrt.dst;
1803 	m_tag_delete(m0, mtag);
1804 #ifdef DIAGNOSTIC
1805 	if (ipprintfs)
1806 		kprintf(" %x\n", ntohl(q->s_addr));
1807 #endif
1808 	return (m);
1809 }
1810 
1811 /*
1812  * Strip out IP options.
1813  */
1814 void
1815 ip_stripoptions(struct mbuf *m)
1816 {
1817 	int datalen;
1818 	struct ip *ip = mtod(m, struct ip *);
1819 	caddr_t opts;
1820 	int optlen;
1821 
1822 	optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1823 	opts = (caddr_t)(ip + 1);
1824 	datalen = m->m_len - (sizeof(struct ip) + optlen);
1825 	bcopy(opts + optlen, opts, datalen);
1826 	m->m_len -= optlen;
1827 	if (m->m_flags & M_PKTHDR)
1828 		m->m_pkthdr.len -= optlen;
1829 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1830 }
1831 
1832 u_char inetctlerrmap[PRC_NCMDS] = {
1833 	0,		0,		0,		0,
1834 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1835 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1836 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1837 	0,		0,		0,		0,
1838 	ENOPROTOOPT,	ECONNREFUSED
1839 };
1840 
1841 /*
1842  * Forward a packet.  If some error occurs return the sender
1843  * an icmp packet.  Note we can't always generate a meaningful
1844  * icmp message because icmp doesn't have a large enough repertoire
1845  * of codes and types.
1846  *
1847  * If not forwarding, just drop the packet.  This could be confusing
1848  * if ipforwarding was zero but some routing protocol was advancing
1849  * us as a gateway to somewhere.  However, we must let the routing
1850  * protocol deal with that.
1851  *
1852  * The using_srcrt parameter indicates whether the packet is being forwarded
1853  * via a source route.
1854  */
1855 void
1856 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1857 {
1858 	struct ip *ip = mtod(m, struct ip *);
1859 	struct rtentry *rt;
1860 	struct route fwd_ro;
1861 	int error, type = 0, code = 0, destmtu = 0;
1862 	struct mbuf *mcopy, *mtemp = NULL;
1863 	n_long dest;
1864 	struct in_addr pkt_dst;
1865 
1866 	dest = INADDR_ANY;
1867 	/*
1868 	 * Cache the destination address of the packet; this may be
1869 	 * changed by use of 'ipfw fwd'.
1870 	 */
1871 	pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1872 
1873 #ifdef DIAGNOSTIC
1874 	if (ipprintfs)
1875 		kprintf("forward: src %x dst %x ttl %x\n",
1876 		       ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1877 #endif
1878 
1879 	if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1880 		ipstat.ips_cantforward++;
1881 		m_freem(m);
1882 		return;
1883 	}
1884 	if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1885 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1886 		return;
1887 	}
1888 
1889 	bzero(&fwd_ro, sizeof(fwd_ro));
1890 	ip_rtaddr(pkt_dst, &fwd_ro);
1891 	if (fwd_ro.ro_rt == NULL) {
1892 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1893 		return;
1894 	}
1895 	rt = fwd_ro.ro_rt;
1896 
1897 	if (curthread->td_type == TD_TYPE_NETISR) {
1898 		/*
1899 		 * Save the IP header and at most 8 bytes of the payload,
1900 		 * in case we need to generate an ICMP message to the src.
1901 		 */
1902 		mtemp = ipforward_mtemp[mycpuid];
1903 		KASSERT((mtemp->m_flags & M_EXT) == 0 &&
1904 		    mtemp->m_data == mtemp->m_pktdat &&
1905 		    m_tag_first(mtemp) == NULL,
1906 		    ("ip_forward invalid mtemp1"));
1907 
1908 		if (!m_dup_pkthdr(mtemp, m, MB_DONTWAIT)) {
1909 			/*
1910 			 * It's probably ok if the pkthdr dup fails (because
1911 			 * the deep copy of the tag chain failed), but for now
1912 			 * be conservative and just discard the copy since
1913 			 * code below may some day want the tags.
1914 			 */
1915 			mtemp = NULL;
1916 		} else {
1917 			mtemp->m_type = m->m_type;
1918 			mtemp->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1919 			    (int)ip->ip_len);
1920 			mtemp->m_pkthdr.len = mtemp->m_len;
1921 			m_copydata(m, 0, mtemp->m_len, mtod(mtemp, caddr_t));
1922 		}
1923 	}
1924 
1925 	if (!ipstealth)
1926 		ip->ip_ttl -= IPTTLDEC;
1927 
1928 	/*
1929 	 * If forwarding packet using same interface that it came in on,
1930 	 * perhaps should send a redirect to sender to shortcut a hop.
1931 	 * Only send redirect if source is sending directly to us,
1932 	 * and if packet was not source routed (or has any options).
1933 	 * Also, don't send redirect if forwarding using a default route
1934 	 * or a route modified by a redirect.
1935 	 */
1936 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1937 	    !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
1938 	    satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
1939 	    ipsendredirects && !using_srcrt && next_hop == NULL) {
1940 		u_long src = ntohl(ip->ip_src.s_addr);
1941 		struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
1942 
1943 		if (rt_ifa != NULL &&
1944 		    (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
1945 			if (rt->rt_flags & RTF_GATEWAY)
1946 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1947 			else
1948 				dest = pkt_dst.s_addr;
1949 			/*
1950 			 * Router requirements says to only send
1951 			 * host redirects.
1952 			 */
1953 			type = ICMP_REDIRECT;
1954 			code = ICMP_REDIRECT_HOST;
1955 #ifdef DIAGNOSTIC
1956 			if (ipprintfs)
1957 				kprintf("redirect (%d) to %x\n", code, dest);
1958 #endif
1959 		}
1960 	}
1961 
1962 	error = ip_output(m, NULL, &fwd_ro, IP_FORWARDING, NULL, NULL);
1963 	if (error == 0) {
1964 		ipstat.ips_forward++;
1965 		if (type == 0) {
1966 			if (mtemp)
1967 				ipflow_create(&fwd_ro, mtemp);
1968 			goto done;
1969 		} else {
1970 			ipstat.ips_redirectsent++;
1971 		}
1972 	} else {
1973 		ipstat.ips_cantforward++;
1974 	}
1975 
1976 	if (mtemp == NULL)
1977 		goto done;
1978 
1979 	/*
1980 	 * Errors that do not require generating ICMP message
1981 	 */
1982 	switch (error) {
1983 	case ENOBUFS:
1984 		/*
1985 		 * A router should not generate ICMP_SOURCEQUENCH as
1986 		 * required in RFC1812 Requirements for IP Version 4 Routers.
1987 		 * Source quench could be a big problem under DoS attacks,
1988 		 * or if the underlying interface is rate-limited.
1989 		 * Those who need source quench packets may re-enable them
1990 		 * via the net.inet.ip.sendsourcequench sysctl.
1991 		 */
1992 		if (!ip_sendsourcequench)
1993 			goto done;
1994 		break;
1995 
1996 	case EACCES:			/* ipfw denied packet */
1997 		goto done;
1998 	}
1999 
2000 	KASSERT((mtemp->m_flags & M_EXT) == 0 &&
2001 	    mtemp->m_data == mtemp->m_pktdat,
2002 	    ("ip_forward invalid mtemp2"));
2003 	mcopy = m_copym(mtemp, 0, mtemp->m_len, MB_DONTWAIT);
2004 	if (mcopy == NULL)
2005 		goto done;
2006 
2007 	/*
2008 	 * Send ICMP message.
2009 	 */
2010 	switch (error) {
2011 	case 0:				/* forwarded, but need redirect */
2012 		/* type, code set above */
2013 		break;
2014 
2015 	case ENETUNREACH:		/* shouldn't happen, checked above */
2016 	case EHOSTUNREACH:
2017 	case ENETDOWN:
2018 	case EHOSTDOWN:
2019 	default:
2020 		type = ICMP_UNREACH;
2021 		code = ICMP_UNREACH_HOST;
2022 		break;
2023 
2024 	case EMSGSIZE:
2025 		type = ICMP_UNREACH;
2026 		code = ICMP_UNREACH_NEEDFRAG;
2027 #ifdef IPSEC
2028 		/*
2029 		 * If the packet is routed over IPsec tunnel, tell the
2030 		 * originator the tunnel MTU.
2031 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2032 		 * XXX quickhack!!!
2033 		 */
2034 		if (fwd_ro.ro_rt != NULL) {
2035 			struct secpolicy *sp = NULL;
2036 			int ipsecerror;
2037 			int ipsechdr;
2038 			struct route *ro;
2039 
2040 			sp = ipsec4_getpolicybyaddr(mcopy,
2041 						    IPSEC_DIR_OUTBOUND,
2042 						    IP_FORWARDING,
2043 						    &ipsecerror);
2044 
2045 			if (sp == NULL)
2046 				destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2047 			else {
2048 				/* count IPsec header size */
2049 				ipsechdr = ipsec4_hdrsiz(mcopy,
2050 							 IPSEC_DIR_OUTBOUND,
2051 							 NULL);
2052 
2053 				/*
2054 				 * find the correct route for outer IPv4
2055 				 * header, compute tunnel MTU.
2056 				 *
2057 				 */
2058 				if (sp->req != NULL && sp->req->sav != NULL &&
2059 				    sp->req->sav->sah != NULL) {
2060 					ro = &sp->req->sav->sah->sa_route;
2061 					if (ro->ro_rt != NULL &&
2062 					    ro->ro_rt->rt_ifp != NULL) {
2063 						destmtu =
2064 						    ro->ro_rt->rt_ifp->if_mtu;
2065 						destmtu -= ipsechdr;
2066 					}
2067 				}
2068 
2069 				key_freesp(sp);
2070 			}
2071 		}
2072 #elif FAST_IPSEC
2073 		/*
2074 		 * If the packet is routed over IPsec tunnel, tell the
2075 		 * originator the tunnel MTU.
2076 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2077 		 * XXX quickhack!!!
2078 		 */
2079 		if (fwd_ro.ro_rt != NULL) {
2080 			struct secpolicy *sp = NULL;
2081 			int ipsecerror;
2082 			int ipsechdr;
2083 			struct route *ro;
2084 
2085 			sp = ipsec_getpolicybyaddr(mcopy,
2086 						   IPSEC_DIR_OUTBOUND,
2087 						   IP_FORWARDING,
2088 						   &ipsecerror);
2089 
2090 			if (sp == NULL)
2091 				destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2092 			else {
2093 				/* count IPsec header size */
2094 				ipsechdr = ipsec4_hdrsiz(mcopy,
2095 							 IPSEC_DIR_OUTBOUND,
2096 							 NULL);
2097 
2098 				/*
2099 				 * find the correct route for outer IPv4
2100 				 * header, compute tunnel MTU.
2101 				 */
2102 
2103 				if (sp->req != NULL &&
2104 				    sp->req->sav != NULL &&
2105 				    sp->req->sav->sah != NULL) {
2106 					ro = &sp->req->sav->sah->sa_route;
2107 					if (ro->ro_rt != NULL &&
2108 					    ro->ro_rt->rt_ifp != NULL) {
2109 						destmtu =
2110 						    ro->ro_rt->rt_ifp->if_mtu;
2111 						destmtu -= ipsechdr;
2112 					}
2113 				}
2114 
2115 				KEY_FREESP(&sp);
2116 			}
2117 		}
2118 #else /* !IPSEC && !FAST_IPSEC */
2119 		if (fwd_ro.ro_rt != NULL)
2120 			destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2121 #endif /*IPSEC*/
2122 		ipstat.ips_cantfrag++;
2123 		break;
2124 
2125 	case ENOBUFS:
2126 		type = ICMP_SOURCEQUENCH;
2127 		code = 0;
2128 		break;
2129 
2130 	case EACCES:			/* ipfw denied packet */
2131 		panic("ip_forward EACCES should not reach");
2132 	}
2133 	icmp_error(mcopy, type, code, dest, destmtu);
2134 done:
2135 	if (mtemp != NULL)
2136 		m_tag_delete_chain(mtemp);
2137 	if (fwd_ro.ro_rt != NULL)
2138 		RTFREE(fwd_ro.ro_rt);
2139 }
2140 
2141 void
2142 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2143 	       struct mbuf *m)
2144 {
2145 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2146 		struct timeval tv;
2147 
2148 		microtime(&tv);
2149 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2150 		    SCM_TIMESTAMP, SOL_SOCKET);
2151 		if (*mp)
2152 			mp = &(*mp)->m_next;
2153 	}
2154 	if (inp->inp_flags & INP_RECVDSTADDR) {
2155 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2156 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2157 		if (*mp)
2158 			mp = &(*mp)->m_next;
2159 	}
2160 	if (inp->inp_flags & INP_RECVTTL) {
2161 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2162 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2163 		if (*mp)
2164 			mp = &(*mp)->m_next;
2165 	}
2166 #ifdef notyet
2167 	/* XXX
2168 	 * Moving these out of udp_input() made them even more broken
2169 	 * than they already were.
2170 	 */
2171 	/* options were tossed already */
2172 	if (inp->inp_flags & INP_RECVOPTS) {
2173 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2174 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2175 		if (*mp)
2176 			mp = &(*mp)->m_next;
2177 	}
2178 	/* ip_srcroute doesn't do what we want here, need to fix */
2179 	if (inp->inp_flags & INP_RECVRETOPTS) {
2180 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
2181 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2182 		if (*mp)
2183 			mp = &(*mp)->m_next;
2184 	}
2185 #endif
2186 	if (inp->inp_flags & INP_RECVIF) {
2187 		struct ifnet *ifp;
2188 		struct sdlbuf {
2189 			struct sockaddr_dl sdl;
2190 			u_char	pad[32];
2191 		} sdlbuf;
2192 		struct sockaddr_dl *sdp;
2193 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2194 
2195 		if (((ifp = m->m_pkthdr.rcvif)) &&
2196 		    ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2197 			sdp = IF_LLSOCKADDR(ifp);
2198 			/*
2199 			 * Change our mind and don't try copy.
2200 			 */
2201 			if ((sdp->sdl_family != AF_LINK) ||
2202 			    (sdp->sdl_len > sizeof(sdlbuf))) {
2203 				goto makedummy;
2204 			}
2205 			bcopy(sdp, sdl2, sdp->sdl_len);
2206 		} else {
2207 makedummy:
2208 			sdl2->sdl_len =
2209 			    offsetof(struct sockaddr_dl, sdl_data[0]);
2210 			sdl2->sdl_family = AF_LINK;
2211 			sdl2->sdl_index = 0;
2212 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2213 		}
2214 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2215 			IP_RECVIF, IPPROTO_IP);
2216 		if (*mp)
2217 			mp = &(*mp)->m_next;
2218 	}
2219 }
2220 
2221 /*
2222  * XXX these routines are called from the upper part of the kernel.
2223  *
2224  * They could also be moved to ip_mroute.c, since all the RSVP
2225  *  handling is done there already.
2226  */
2227 int
2228 ip_rsvp_init(struct socket *so)
2229 {
2230 	if (so->so_type != SOCK_RAW ||
2231 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2232 		return EOPNOTSUPP;
2233 
2234 	if (ip_rsvpd != NULL)
2235 		return EADDRINUSE;
2236 
2237 	ip_rsvpd = so;
2238 	/*
2239 	 * This may seem silly, but we need to be sure we don't over-increment
2240 	 * the RSVP counter, in case something slips up.
2241 	 */
2242 	if (!ip_rsvp_on) {
2243 		ip_rsvp_on = 1;
2244 		rsvp_on++;
2245 	}
2246 
2247 	return 0;
2248 }
2249 
2250 int
2251 ip_rsvp_done(void)
2252 {
2253 	ip_rsvpd = NULL;
2254 	/*
2255 	 * This may seem silly, but we need to be sure we don't over-decrement
2256 	 * the RSVP counter, in case something slips up.
2257 	 */
2258 	if (ip_rsvp_on) {
2259 		ip_rsvp_on = 0;
2260 		rsvp_on--;
2261 	}
2262 	return 0;
2263 }
2264 
2265 int
2266 rsvp_input(struct mbuf **mp, int *offp, int proto)
2267 {
2268 	struct mbuf *m = *mp;
2269 
2270 	*mp = NULL;
2271 
2272 	if (rsvp_input_p) { /* call the real one if loaded */
2273 		*mp = m;
2274 		rsvp_input_p(mp, offp, proto);
2275 		return(IPPROTO_DONE);
2276 	}
2277 
2278 	/* Can still get packets with rsvp_on = 0 if there is a local member
2279 	 * of the group to which the RSVP packet is addressed.  But in this
2280 	 * case we want to throw the packet away.
2281 	 */
2282 
2283 	if (!rsvp_on) {
2284 		m_freem(m);
2285 		return(IPPROTO_DONE);
2286 	}
2287 
2288 	if (ip_rsvpd != NULL) {
2289 		*mp = m;
2290 		rip_input(mp, offp, proto);
2291 		return(IPPROTO_DONE);
2292 	}
2293 	/* Drop the packet */
2294 	m_freem(m);
2295 	return(IPPROTO_DONE);
2296 }
2297