xref: /dragonfly/sys/netinet/ip_input.c (revision dca3c15d)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
67  * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
68  * $DragonFly: src/sys/netinet/ip_input.c,v 1.115 2008/10/28 07:09:26 sephe Exp $
69  */
70 
71 #define	_IP_VHL
72 
73 #include "opt_bootp.h"
74 #include "opt_ipfw.h"
75 #include "opt_ipdn.h"
76 #include "opt_ipdivert.h"
77 #include "opt_ipfilter.h"
78 #include "opt_ipstealth.h"
79 #include "opt_ipsec.h"
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/mpipe.h>
86 #include <sys/domain.h>
87 #include <sys/protosw.h>
88 #include <sys/socket.h>
89 #include <sys/time.h>
90 #include <sys/globaldata.h>
91 #include <sys/thread.h>
92 #include <sys/kernel.h>
93 #include <sys/syslog.h>
94 #include <sys/sysctl.h>
95 #include <sys/in_cksum.h>
96 #include <sys/lock.h>
97 
98 #include <machine/stdarg.h>
99 
100 #include <net/if.h>
101 #include <net/if_types.h>
102 #include <net/if_var.h>
103 #include <net/if_dl.h>
104 #include <net/pfil.h>
105 #include <net/route.h>
106 #include <net/netisr.h>
107 
108 #include <netinet/in.h>
109 #include <netinet/in_systm.h>
110 #include <netinet/in_var.h>
111 #include <netinet/ip.h>
112 #include <netinet/in_pcb.h>
113 #include <netinet/ip_var.h>
114 #include <netinet/ip_icmp.h>
115 #include <netinet/ip_divert.h>
116 #include <netinet/ip_flow.h>
117 
118 #include <sys/thread2.h>
119 #include <sys/msgport2.h>
120 #include <net/netmsg2.h>
121 
122 #include <sys/socketvar.h>
123 
124 #include <net/ipfw/ip_fw.h>
125 #include <net/dummynet/ip_dummynet.h>
126 
127 #ifdef IPSEC
128 #include <netinet6/ipsec.h>
129 #include <netproto/key/key.h>
130 #endif
131 
132 #ifdef FAST_IPSEC
133 #include <netproto/ipsec/ipsec.h>
134 #include <netproto/ipsec/key.h>
135 #endif
136 
137 int rsvp_on = 0;
138 static int ip_rsvp_on;
139 struct socket *ip_rsvpd;
140 
141 int ip_mpsafe = 1;
142 TUNABLE_INT("net.inet.ip.mpsafe", &ip_mpsafe);
143 
144 int ipforwarding = 0;
145 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
146     &ipforwarding, 0, "Enable IP forwarding between interfaces");
147 
148 static int ipsendredirects = 1; /* XXX */
149 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
150     &ipsendredirects, 0, "Enable sending IP redirects");
151 
152 int ip_defttl = IPDEFTTL;
153 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
154     &ip_defttl, 0, "Maximum TTL on IP packets");
155 
156 static int ip_dosourceroute = 0;
157 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
158     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
159 
160 static int ip_acceptsourceroute = 0;
161 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
162     CTLFLAG_RW, &ip_acceptsourceroute, 0,
163     "Enable accepting source routed IP packets");
164 
165 static int ip_keepfaith = 0;
166 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
167     &ip_keepfaith, 0,
168     "Enable packet capture for FAITH IPv4->IPv6 translator daemon");
169 
170 static int nipq = 0;	/* total # of reass queues */
171 static int maxnipq;
172 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
173     &maxnipq, 0,
174     "Maximum number of IPv4 fragment reassembly queue entries");
175 
176 static int maxfragsperpacket;
177 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
178     &maxfragsperpacket, 0,
179     "Maximum number of IPv4 fragments allowed per packet");
180 
181 static int ip_sendsourcequench = 0;
182 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
183     &ip_sendsourcequench, 0,
184     "Enable the transmission of source quench packets");
185 
186 int ip_do_randomid = 1;
187 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
188     &ip_do_randomid, 0,
189     "Assign random ip_id values");
190 /*
191  * XXX - Setting ip_checkinterface mostly implements the receive side of
192  * the Strong ES model described in RFC 1122, but since the routing table
193  * and transmit implementation do not implement the Strong ES model,
194  * setting this to 1 results in an odd hybrid.
195  *
196  * XXX - ip_checkinterface currently must be disabled if you use ipnat
197  * to translate the destination address to another local interface.
198  *
199  * XXX - ip_checkinterface must be disabled if you add IP aliases
200  * to the loopback interface instead of the interface where the
201  * packets for those addresses are received.
202  */
203 static int ip_checkinterface = 0;
204 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
205     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
206 
207 #ifdef DIAGNOSTIC
208 static int ipprintfs = 0;
209 #endif
210 
211 extern	int udp_mpsafe_proto;
212 extern	int tcp_mpsafe_proto;
213 
214 extern	struct domain inetdomain;
215 extern	struct protosw inetsw[];
216 u_char	ip_protox[IPPROTO_MAX];
217 struct	in_ifaddrhead in_ifaddrheads[MAXCPU];	/* first inet address */
218 struct	in_ifaddrhashhead *in_ifaddrhashtbls[MAXCPU];
219 						/* inet addr hash table */
220 u_long	in_ifaddrhmask;				/* mask for hash table */
221 
222 struct ip_stats ipstats_percpu[MAXCPU];
223 #ifdef SMP
224 static int
225 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
226 {
227 	int cpu, error = 0;
228 
229 	for (cpu = 0; cpu < ncpus; ++cpu) {
230 		if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
231 					sizeof(struct ip_stats))))
232 			break;
233 		if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
234 				       sizeof(struct ip_stats))))
235 			break;
236 	}
237 
238 	return (error);
239 }
240 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
241     0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
242 #else
243 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
244     &ipstat, ip_stats, "IP statistics");
245 #endif
246 
247 /* Packet reassembly stuff */
248 #define	IPREASS_NHASH_LOG2	6
249 #define	IPREASS_NHASH		(1 << IPREASS_NHASH_LOG2)
250 #define	IPREASS_HMASK		(IPREASS_NHASH - 1)
251 #define	IPREASS_HASH(x,y)						\
252     (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
253 
254 static struct ipq ipq[IPREASS_NHASH];
255 
256 #ifdef IPCTL_DEFMTU
257 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
258     &ip_mtu, 0, "Default MTU");
259 #endif
260 
261 #ifdef IPSTEALTH
262 static int ipstealth = 0;
263 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
264 #else
265 static const int ipstealth = 0;
266 #endif
267 
268 struct mbuf *(*ip_divert_p)(struct mbuf *, int, int);
269 
270 struct pfil_head inet_pfil_hook;
271 
272 /*
273  * struct ip_srcrt_opt is used to store packet state while it travels
274  * through the stack.
275  *
276  * XXX Note that the code even makes assumptions on the size and
277  * alignment of fields inside struct ip_srcrt so e.g. adding some
278  * fields will break the code.  This needs to be fixed.
279  *
280  * We need to save the IP options in case a protocol wants to respond
281  * to an incoming packet over the same route if the packet got here
282  * using IP source routing.  This allows connection establishment and
283  * maintenance when the remote end is on a network that is not known
284  * to us.
285  */
286 struct ip_srcrt {
287 	struct	in_addr dst;			/* final destination */
288 	char	nop;				/* one NOP to align */
289 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
290 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
291 };
292 
293 struct ip_srcrt_opt {
294 	int		ip_nhops;
295 	struct ip_srcrt	ip_srcrt;
296 };
297 
298 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
299 static struct malloc_pipe ipq_mpipe;
300 
301 static void		save_rte(struct mbuf *, u_char *, struct in_addr);
302 static int		ip_dooptions(struct mbuf *m, int, struct sockaddr_in *);
303 static void		ip_freef(struct ipq *);
304 static void		ip_input_handler(struct netmsg *);
305 
306 /*
307  * IP initialization: fill in IP protocol switch table.
308  * All protocols not implemented in kernel go to raw IP protocol handler.
309  */
310 void
311 ip_init(void)
312 {
313 	struct protosw *pr;
314 	uint32_t flags;
315 	int i;
316 #ifdef SMP
317 	int cpu;
318 #endif
319 
320 	/*
321 	 * Make sure we can handle a reasonable number of fragments but
322 	 * cap it at 4000 (XXX).
323 	 */
324 	mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
325 		    IFQ_MAXLEN, 4000, 0, NULL);
326 	for (i = 0; i < ncpus; ++i) {
327 		TAILQ_INIT(&in_ifaddrheads[i]);
328 		in_ifaddrhashtbls[i] =
329 			hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
330 	}
331 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
332 	if (pr == NULL)
333 		panic("ip_init");
334 	for (i = 0; i < IPPROTO_MAX; i++)
335 		ip_protox[i] = pr - inetsw;
336 	for (pr = inetdomain.dom_protosw;
337 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
338 		if (pr->pr_domain->dom_family == PF_INET && pr->pr_protocol) {
339 			if (pr->pr_protocol != IPPROTO_RAW)
340 				ip_protox[pr->pr_protocol] = pr - inetsw;
341 
342 			/* XXX */
343 			switch (pr->pr_protocol) {
344 			case IPPROTO_TCP:
345 				if (tcp_mpsafe_proto)
346 					pr->pr_flags |= PR_MPSAFE;
347 				break;
348 
349 			case IPPROTO_UDP:
350 				if (udp_mpsafe_proto)
351 					pr->pr_flags |= PR_MPSAFE;
352 				break;
353 			}
354 		}
355 	}
356 
357 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
358 	inet_pfil_hook.ph_af = AF_INET;
359 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
360 		kprintf("%s: WARNING: unable to register pfil hook, "
361 			"error %d\n", __func__, i);
362 	}
363 
364 	for (i = 0; i < IPREASS_NHASH; i++)
365 		ipq[i].next = ipq[i].prev = &ipq[i];
366 
367 	maxnipq = nmbclusters / 32;
368 	maxfragsperpacket = 16;
369 
370 	ip_id = time_second & 0xffff;
371 
372 	/*
373 	 * Initialize IP statistics counters for each CPU.
374 	 *
375 	 */
376 #ifdef SMP
377 	for (cpu = 0; cpu < ncpus; ++cpu) {
378 		bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
379 	}
380 #else
381 	bzero(&ipstat, sizeof(struct ip_stats));
382 #endif
383 
384 #if defined(IPSEC) || defined(FAST_IPSEC)
385 	/* XXX IPSEC is not MPSAFE yet */
386 	flags = NETISR_FLAG_NOTMPSAFE;
387 #else
388 	if (ip_mpsafe) {
389 		kprintf("ip: MPSAFE\n");
390 		flags = NETISR_FLAG_MPSAFE;
391 	} else {
392 		flags = NETISR_FLAG_NOTMPSAFE;
393 	}
394 #endif
395 	netisr_register(NETISR_IP, ip_mport_in, ip_mport_pktinfo,
396 			ip_input_handler, flags);
397 }
398 
399 /* Do transport protocol processing. */
400 static void
401 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip)
402 {
403 	const struct protosw *pr = &inetsw[ip_protox[ip->ip_p]];
404 
405 	/*
406 	 * Switch out to protocol's input routine.
407 	 */
408 	PR_GET_MPLOCK(pr);
409 	pr->pr_input(m, hlen, ip->ip_p);
410 	PR_REL_MPLOCK(pr);
411 }
412 
413 static void
414 transport_processing_handler(netmsg_t netmsg)
415 {
416 	struct netmsg_packet *pmsg = (struct netmsg_packet *)netmsg;
417 	struct ip *ip;
418 	int hlen;
419 
420 	ip = mtod(pmsg->nm_packet, struct ip *);
421 	hlen = pmsg->nm_netmsg.nm_lmsg.u.ms_result;
422 
423 	transport_processing_oncpu(pmsg->nm_packet, hlen, ip);
424 	/* netmsg was embedded in the mbuf, do not reply! */
425 }
426 
427 static void
428 ip_input_handler(struct netmsg *msg0)
429 {
430 	struct mbuf *m = ((struct netmsg_packet *)msg0)->nm_packet;
431 
432 	ip_input(m);
433 	/* msg0 was embedded in the mbuf, do not reply! */
434 }
435 
436 /*
437  * IP input routine.  Checksum and byte swap header.  If fragmented
438  * try to reassemble.  Process options.  Pass to next level.
439  */
440 void
441 ip_input(struct mbuf *m)
442 {
443 	struct ip *ip;
444 	struct in_ifaddr *ia = NULL;
445 	struct in_ifaddr_container *iac;
446 	int hlen, checkif;
447 	u_short sum;
448 	struct in_addr pkt_dst;
449 	boolean_t using_srcrt = FALSE;		/* forward (by PFIL_HOOKS) */
450 	boolean_t needredispatch = FALSE;
451 	struct in_addr odst;			/* original dst address(NAT) */
452 	struct m_tag *mtag;
453 	struct sockaddr_in *next_hop = NULL;
454 #ifdef FAST_IPSEC
455 	struct tdb_ident *tdbi;
456 	struct secpolicy *sp;
457 	int error;
458 #endif
459 
460 	M_ASSERTPKTHDR(m);
461 
462 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
463 		/* Next hop */
464 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
465 		KKASSERT(mtag != NULL);
466 		next_hop = m_tag_data(mtag);
467 	}
468 
469 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
470 		/* dummynet already filtered us */
471 		ip = mtod(m, struct ip *);
472 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
473 		goto iphack;
474 	}
475 
476 	ipstat.ips_total++;
477 
478 	/* length checks already done in ip_mport() */
479 	KASSERT(m->m_len >= sizeof(struct ip), ("IP header not in one mbuf"));
480 	ip = mtod(m, struct ip *);
481 
482 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
483 		ipstat.ips_badvers++;
484 		goto bad;
485 	}
486 
487 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
488 	/* length checks already done in ip_mport() */
489 	KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
490 	KASSERT(m->m_len >= hlen, ("complete IP header not in one mbuf"));
491 
492 	/* 127/8 must not appear on wire - RFC1122 */
493 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
494 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
495 		if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
496 			ipstat.ips_badaddr++;
497 			goto bad;
498 		}
499 	}
500 
501 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
502 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
503 	} else {
504 		if (hlen == sizeof(struct ip))
505 			sum = in_cksum_hdr(ip);
506 		else
507 			sum = in_cksum(m, hlen);
508 	}
509 	if (sum != 0) {
510 		ipstat.ips_badsum++;
511 		goto bad;
512 	}
513 
514 #ifdef ALTQ
515 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
516 		/* packet is dropped by traffic conditioner */
517 		return;
518 	}
519 #endif
520 	/*
521 	 * Convert fields to host representation.
522 	 */
523 	ip->ip_len = ntohs(ip->ip_len);
524 	ip->ip_off = ntohs(ip->ip_off);
525 
526 	/* length checks already done in ip_mport() */
527 	KASSERT(ip->ip_len >= hlen, ("total length less then header length"));
528 	KASSERT(m->m_pkthdr.len >= ip->ip_len, ("mbuf too short"));
529 
530 	/*
531 	 * Trim mbufs if longer than the IP header would have us expect.
532 	 */
533 	if (m->m_pkthdr.len > ip->ip_len) {
534 		if (m->m_len == m->m_pkthdr.len) {
535 			m->m_len = ip->ip_len;
536 			m->m_pkthdr.len = ip->ip_len;
537 		} else {
538 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
539 		}
540 	}
541 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
542 	/*
543 	 * Bypass packet filtering for packets from a tunnel (gif).
544 	 */
545 	if (ipsec_gethist(m, NULL))
546 		goto pass;
547 #endif
548 
549 	/*
550 	 * IpHack's section.
551 	 * Right now when no processing on packet has done
552 	 * and it is still fresh out of network we do our black
553 	 * deals with it.
554 	 * - Firewall: deny/allow/divert
555 	 * - Xlate: translate packet's addr/port (NAT).
556 	 * - Pipe: pass pkt through dummynet.
557 	 * - Wrap: fake packet's addr/port <unimpl.>
558 	 * - Encapsulate: put it in another IP and send out. <unimp.>
559 	 */
560 
561 iphack:
562 	/*
563 	 * If we've been forwarded from the output side, then
564 	 * skip the firewall a second time
565 	 */
566 	if (next_hop != NULL)
567 		goto ours;
568 
569 	/* No pfil hooks */
570 	if (!pfil_has_hooks(&inet_pfil_hook)) {
571 		if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
572 			/*
573 			 * Strip dummynet tags from stranded packets
574 			 */
575 			mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
576 			KKASSERT(mtag != NULL);
577 			m_tag_delete(m, mtag);
578 			m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
579 		}
580 		goto pass;
581 	}
582 
583 	/*
584 	 * Run through list of hooks for input packets.
585 	 *
586 	 * NB: Beware of the destination address changing (e.g.
587 	 *     by NAT rewriting). When this happens, tell
588 	 *     ip_forward to do the right thing.
589 	 */
590 	odst = ip->ip_dst;
591 	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif, PFIL_IN))
592 		return;
593 	if (m == NULL)	/* consumed by filter */
594 		return;
595 	ip = mtod(m, struct ip *);
596 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
597 	using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
598 
599 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
600 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
601 		KKASSERT(mtag != NULL);
602 		next_hop = m_tag_data(mtag);
603 	}
604 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
605 		ip_dn_queue(m);
606 		return;
607 	}
608 	if (m->m_pkthdr.fw_flags & FW_MBUF_REDISPATCH) {
609 		needredispatch = TRUE;
610 		m->m_pkthdr.fw_flags &= ~FW_MBUF_REDISPATCH;
611 	}
612 pass:
613 	/*
614 	 * Process options and, if not destined for us,
615 	 * ship it on.  ip_dooptions returns 1 when an
616 	 * error was detected (causing an icmp message
617 	 * to be sent and the original packet to be freed).
618 	 */
619 	if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, next_hop))
620 		return;
621 
622 	/* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
623 	 * matter if it is destined to another node, or whether it is
624 	 * a multicast one, RSVP wants it! and prevents it from being forwarded
625 	 * anywhere else. Also checks if the rsvp daemon is running before
626 	 * grabbing the packet.
627 	 */
628 	if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
629 		goto ours;
630 
631 	/*
632 	 * Check our list of addresses, to see if the packet is for us.
633 	 * If we don't have any addresses, assume any unicast packet
634 	 * we receive might be for us (and let the upper layers deal
635 	 * with it).
636 	 */
637 	if (TAILQ_EMPTY(&in_ifaddrheads[mycpuid]) &&
638 	    !(m->m_flags & (M_MCAST | M_BCAST)))
639 		goto ours;
640 
641 	/*
642 	 * Cache the destination address of the packet; this may be
643 	 * changed by use of 'ipfw fwd'.
644 	 */
645 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
646 
647 	/*
648 	 * Enable a consistency check between the destination address
649 	 * and the arrival interface for a unicast packet (the RFC 1122
650 	 * strong ES model) if IP forwarding is disabled and the packet
651 	 * is not locally generated and the packet is not subject to
652 	 * 'ipfw fwd'.
653 	 *
654 	 * XXX - Checking also should be disabled if the destination
655 	 * address is ipnat'ed to a different interface.
656 	 *
657 	 * XXX - Checking is incompatible with IP aliases added
658 	 * to the loopback interface instead of the interface where
659 	 * the packets are received.
660 	 */
661 	checkif = ip_checkinterface &&
662 		  !ipforwarding &&
663 		  m->m_pkthdr.rcvif != NULL &&
664 		  !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
665 		  next_hop == NULL;
666 
667 	/*
668 	 * Check for exact addresses in the hash bucket.
669 	 */
670 	LIST_FOREACH(iac, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
671 		ia = iac->ia;
672 
673 		/*
674 		 * If the address matches, verify that the packet
675 		 * arrived via the correct interface if checking is
676 		 * enabled.
677 		 */
678 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
679 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
680 			goto ours;
681 	}
682 	ia = NULL;
683 
684 	/*
685 	 * Check for broadcast addresses.
686 	 *
687 	 * Only accept broadcast packets that arrive via the matching
688 	 * interface.  Reception of forwarded directed broadcasts would
689 	 * be handled via ip_forward() and ether_output() with the loopback
690 	 * into the stack for SIMPLEX interfaces handled by ether_output().
691 	 */
692 	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
693 		struct ifaddr_container *ifac;
694 
695 		TAILQ_FOREACH(ifac, &m->m_pkthdr.rcvif->if_addrheads[mycpuid],
696 			      ifa_link) {
697 			struct ifaddr *ifa = ifac->ifa;
698 
699 			if (ifa->ifa_addr == NULL) /* shutdown/startup race */
700 				continue;
701 			if (ifa->ifa_addr->sa_family != AF_INET)
702 				continue;
703 			ia = ifatoia(ifa);
704 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
705 								pkt_dst.s_addr)
706 				goto ours;
707 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
708 				goto ours;
709 #ifdef BOOTP_COMPAT
710 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
711 				goto ours;
712 #endif
713 		}
714 	}
715 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
716 		struct in_multi *inm;
717 
718 		/* XXX Multicast is not MPSAFE yet */
719 		get_mplock();
720 
721 		if (ip_mrouter != NULL) {
722 			/*
723 			 * If we are acting as a multicast router, all
724 			 * incoming multicast packets are passed to the
725 			 * kernel-level multicast forwarding function.
726 			 * The packet is returned (relatively) intact; if
727 			 * ip_mforward() returns a non-zero value, the packet
728 			 * must be discarded, else it may be accepted below.
729 			 */
730 			if (ip_mforward != NULL &&
731 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
732 				rel_mplock();
733 				ipstat.ips_cantforward++;
734 				m_freem(m);
735 				return;
736 			}
737 
738 			/*
739 			 * The process-level routing daemon needs to receive
740 			 * all multicast IGMP packets, whether or not this
741 			 * host belongs to their destination groups.
742 			 */
743 			if (ip->ip_p == IPPROTO_IGMP) {
744 				rel_mplock();
745 				goto ours;
746 			}
747 			ipstat.ips_forward++;
748 		}
749 		/*
750 		 * See if we belong to the destination multicast group on the
751 		 * arrival interface.
752 		 */
753 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
754 		if (inm == NULL) {
755 			rel_mplock();
756 			ipstat.ips_notmember++;
757 			m_freem(m);
758 			return;
759 		}
760 
761 		rel_mplock();
762 		goto ours;
763 	}
764 	if (ip->ip_dst.s_addr == INADDR_BROADCAST)
765 		goto ours;
766 	if (ip->ip_dst.s_addr == INADDR_ANY)
767 		goto ours;
768 
769 	/*
770 	 * FAITH(Firewall Aided Internet Translator)
771 	 */
772 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
773 		if (ip_keepfaith) {
774 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
775 				goto ours;
776 		}
777 		m_freem(m);
778 		return;
779 	}
780 
781 	/*
782 	 * Not for us; forward if possible and desirable.
783 	 */
784 	if (!ipforwarding) {
785 		ipstat.ips_cantforward++;
786 		m_freem(m);
787 	} else {
788 #ifdef IPSEC
789 		/*
790 		 * Enforce inbound IPsec SPD.
791 		 */
792 		if (ipsec4_in_reject(m, NULL)) {
793 			ipsecstat.in_polvio++;
794 			goto bad;
795 		}
796 #endif
797 #ifdef FAST_IPSEC
798 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
799 		crit_enter();
800 		if (mtag != NULL) {
801 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
802 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
803 		} else {
804 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
805 						   IP_FORWARDING, &error);
806 		}
807 		if (sp == NULL) {	/* NB: can happen if error */
808 			crit_exit();
809 			/*XXX error stat???*/
810 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
811 			goto bad;
812 		}
813 
814 		/*
815 		 * Check security policy against packet attributes.
816 		 */
817 		error = ipsec_in_reject(sp, m);
818 		KEY_FREESP(&sp);
819 		crit_exit();
820 		if (error) {
821 			ipstat.ips_cantforward++;
822 			goto bad;
823 		}
824 #endif
825 		ip_forward(m, using_srcrt, next_hop);
826 	}
827 	return;
828 
829 ours:
830 
831 	/*
832 	 * IPSTEALTH: Process non-routing options only
833 	 * if the packet is destined for us.
834 	 */
835 	if (ipstealth &&
836 	    hlen > sizeof(struct ip) &&
837 	    ip_dooptions(m, 1, next_hop))
838 		return;
839 
840 	/* Count the packet in the ip address stats */
841 	if (ia != NULL) {
842 		ia->ia_ifa.if_ipackets++;
843 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
844 	}
845 
846 	/*
847 	 * If offset or IP_MF are set, must reassemble.
848 	 * Otherwise, nothing need be done.
849 	 * (We could look in the reassembly queue to see
850 	 * if the packet was previously fragmented,
851 	 * but it's not worth the time; just let them time out.)
852 	 */
853 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
854 		/*
855 		 * Attempt reassembly; if it succeeds, proceed.
856 		 * ip_reass() will return a different mbuf.
857 		 */
858 		m = ip_reass(m);
859 		if (m == NULL)
860 			return;
861 		ip = mtod(m, struct ip *);
862 
863 		/* Get the header length of the reassembled packet */
864 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
865 
866 		needredispatch = TRUE;
867 	} else {
868 		ip->ip_len -= hlen;
869 	}
870 
871 #ifdef IPSEC
872 	/*
873 	 * enforce IPsec policy checking if we are seeing last header.
874 	 * note that we do not visit this with protocols with pcb layer
875 	 * code - like udp/tcp/raw ip.
876 	 */
877 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
878 	    ipsec4_in_reject(m, NULL)) {
879 		ipsecstat.in_polvio++;
880 		goto bad;
881 	}
882 #endif
883 #if FAST_IPSEC
884 	/*
885 	 * enforce IPsec policy checking if we are seeing last header.
886 	 * note that we do not visit this with protocols with pcb layer
887 	 * code - like udp/tcp/raw ip.
888 	 */
889 	if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
890 		/*
891 		 * Check if the packet has already had IPsec processing
892 		 * done.  If so, then just pass it along.  This tag gets
893 		 * set during AH, ESP, etc. input handling, before the
894 		 * packet is returned to the ip input queue for delivery.
895 		 */
896 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
897 		crit_enter();
898 		if (mtag != NULL) {
899 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
900 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
901 		} else {
902 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
903 						   IP_FORWARDING, &error);
904 		}
905 		if (sp != NULL) {
906 			/*
907 			 * Check security policy against packet attributes.
908 			 */
909 			error = ipsec_in_reject(sp, m);
910 			KEY_FREESP(&sp);
911 		} else {
912 			/* XXX error stat??? */
913 			error = EINVAL;
914 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
915 			goto bad;
916 		}
917 		crit_exit();
918 		if (error)
919 			goto bad;
920 	}
921 #endif /* FAST_IPSEC */
922 
923 	/*
924 	 * NOTE: ip_len in host form and adjusted down by hlen for
925 	 *	 protocol processing.
926 	 */
927 	ipstat.ips_delivered++;
928 	if (needredispatch) {
929 		struct netmsg_packet *pmsg;
930 		lwkt_port_t port;
931 
932 		ip->ip_off = htons(ip->ip_off);
933 		ip->ip_len = htons(ip->ip_len + hlen);
934 		port = ip_mport_in(&m);
935 		if (port == NULL)
936 			return;
937 
938 		pmsg = &m->m_hdr.mh_netmsg;
939 		netmsg_init(&pmsg->nm_netmsg, &netisr_apanic_rport, MSGF_MPSAFE,
940 			    transport_processing_handler);
941 		pmsg->nm_packet = m;
942 		pmsg->nm_netmsg.nm_lmsg.u.ms_result = hlen;
943 
944 		ip = mtod(m, struct ip *);
945 		ip->ip_len = ntohs(ip->ip_len) - hlen;
946 		ip->ip_off = ntohs(ip->ip_off);
947 		lwkt_sendmsg(port, &pmsg->nm_netmsg.nm_lmsg);
948 	} else {
949 		transport_processing_oncpu(m, hlen, ip);
950 	}
951 	return;
952 
953 bad:
954 	m_freem(m);
955 }
956 
957 /*
958  * Take incoming datagram fragment and try to reassemble it into
959  * whole datagram.  If a chain for reassembly of this datagram already
960  * exists, then it is given as fp; otherwise have to make a chain.
961  */
962 struct mbuf *
963 ip_reass(struct mbuf *m)
964 {
965 	struct ip *ip = mtod(m, struct ip *);
966 	struct mbuf *p = NULL, *q, *nq;
967 	struct mbuf *n;
968 	struct ipq *fp = NULL;
969 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
970 	int i, next;
971 	u_short sum;
972 
973 	/* If maxnipq is 0, never accept fragments. */
974 	if (maxnipq == 0) {
975 		ipstat.ips_fragments++;
976 		ipstat.ips_fragdropped++;
977 		m_freem(m);
978 		return NULL;
979 	}
980 
981 	sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
982 	/*
983 	 * Look for queue of fragments of this datagram.
984 	 */
985 	for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
986 		if (ip->ip_id == fp->ipq_id &&
987 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
988 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
989 		    ip->ip_p == fp->ipq_p)
990 			goto found;
991 
992 	fp = NULL;
993 
994 	/*
995 	 * Enforce upper bound on number of fragmented packets
996 	 * for which we attempt reassembly;
997 	 * If maxnipq is -1, accept all fragments without limitation.
998 	 */
999 	if (nipq > maxnipq && maxnipq > 0) {
1000 		/*
1001 		 * drop something from the tail of the current queue
1002 		 * before proceeding further
1003 		 */
1004 		if (ipq[sum].prev == &ipq[sum]) {   /* gak */
1005 			for (i = 0; i < IPREASS_NHASH; i++) {
1006 				if (ipq[i].prev != &ipq[i]) {
1007 					ipstat.ips_fragtimeout +=
1008 					    ipq[i].prev->ipq_nfrags;
1009 					ip_freef(ipq[i].prev);
1010 					break;
1011 				}
1012 			}
1013 		} else {
1014 			ipstat.ips_fragtimeout +=
1015 			    ipq[sum].prev->ipq_nfrags;
1016 			ip_freef(ipq[sum].prev);
1017 		}
1018 	}
1019 found:
1020 	/*
1021 	 * Adjust ip_len to not reflect header,
1022 	 * convert offset of this to bytes.
1023 	 */
1024 	ip->ip_len -= hlen;
1025 	if (ip->ip_off & IP_MF) {
1026 		/*
1027 		 * Make sure that fragments have a data length
1028 		 * that's a non-zero multiple of 8 bytes.
1029 		 */
1030 		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
1031 			ipstat.ips_toosmall++; /* XXX */
1032 			m_freem(m);
1033 			return NULL;
1034 		}
1035 		m->m_flags |= M_FRAG;
1036 	} else
1037 		m->m_flags &= ~M_FRAG;
1038 	ip->ip_off <<= 3;
1039 
1040 	ipstat.ips_fragments++;
1041 	m->m_pkthdr.header = ip;
1042 
1043 	/*
1044 	 * If the hardware has not done csum over this fragment
1045 	 * then csum_data is not valid at all.
1046 	 */
1047 	if ((m->m_pkthdr.csum_flags & (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID))
1048 	    == (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID)) {
1049 		m->m_pkthdr.csum_data = 0;
1050 		m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1051 	}
1052 
1053 	/*
1054 	 * Presence of header sizes in mbufs
1055 	 * would confuse code below.
1056 	 */
1057 	m->m_data += hlen;
1058 	m->m_len -= hlen;
1059 
1060 	/*
1061 	 * If first fragment to arrive, create a reassembly queue.
1062 	 */
1063 	if (fp == NULL) {
1064 		if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1065 			goto dropfrag;
1066 		insque(fp, &ipq[sum]);
1067 		nipq++;
1068 		fp->ipq_nfrags = 1;
1069 		fp->ipq_ttl = IPFRAGTTL;
1070 		fp->ipq_p = ip->ip_p;
1071 		fp->ipq_id = ip->ip_id;
1072 		fp->ipq_src = ip->ip_src;
1073 		fp->ipq_dst = ip->ip_dst;
1074 		fp->ipq_frags = m;
1075 		m->m_nextpkt = NULL;
1076 		goto inserted;
1077 	} else {
1078 		fp->ipq_nfrags++;
1079 	}
1080 
1081 #define	GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1082 
1083 	/*
1084 	 * Find a segment which begins after this one does.
1085 	 */
1086 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1087 		if (GETIP(q)->ip_off > ip->ip_off)
1088 			break;
1089 
1090 	/*
1091 	 * If there is a preceding segment, it may provide some of
1092 	 * our data already.  If so, drop the data from the incoming
1093 	 * segment.  If it provides all of our data, drop us, otherwise
1094 	 * stick new segment in the proper place.
1095 	 *
1096 	 * If some of the data is dropped from the the preceding
1097 	 * segment, then it's checksum is invalidated.
1098 	 */
1099 	if (p) {
1100 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1101 		if (i > 0) {
1102 			if (i >= ip->ip_len)
1103 				goto dropfrag;
1104 			m_adj(m, i);
1105 			m->m_pkthdr.csum_flags = 0;
1106 			ip->ip_off += i;
1107 			ip->ip_len -= i;
1108 		}
1109 		m->m_nextpkt = p->m_nextpkt;
1110 		p->m_nextpkt = m;
1111 	} else {
1112 		m->m_nextpkt = fp->ipq_frags;
1113 		fp->ipq_frags = m;
1114 	}
1115 
1116 	/*
1117 	 * While we overlap succeeding segments trim them or,
1118 	 * if they are completely covered, dequeue them.
1119 	 */
1120 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1121 	     q = nq) {
1122 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1123 		if (i < GETIP(q)->ip_len) {
1124 			GETIP(q)->ip_len -= i;
1125 			GETIP(q)->ip_off += i;
1126 			m_adj(q, i);
1127 			q->m_pkthdr.csum_flags = 0;
1128 			break;
1129 		}
1130 		nq = q->m_nextpkt;
1131 		m->m_nextpkt = nq;
1132 		ipstat.ips_fragdropped++;
1133 		fp->ipq_nfrags--;
1134 		q->m_nextpkt = NULL;
1135 		m_freem(q);
1136 	}
1137 
1138 inserted:
1139 	/*
1140 	 * Check for complete reassembly and perform frag per packet
1141 	 * limiting.
1142 	 *
1143 	 * Frag limiting is performed here so that the nth frag has
1144 	 * a chance to complete the packet before we drop the packet.
1145 	 * As a result, n+1 frags are actually allowed per packet, but
1146 	 * only n will ever be stored. (n = maxfragsperpacket.)
1147 	 *
1148 	 */
1149 	next = 0;
1150 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1151 		if (GETIP(q)->ip_off != next) {
1152 			if (fp->ipq_nfrags > maxfragsperpacket) {
1153 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1154 				ip_freef(fp);
1155 			}
1156 			return (NULL);
1157 		}
1158 		next += GETIP(q)->ip_len;
1159 	}
1160 	/* Make sure the last packet didn't have the IP_MF flag */
1161 	if (p->m_flags & M_FRAG) {
1162 		if (fp->ipq_nfrags > maxfragsperpacket) {
1163 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1164 			ip_freef(fp);
1165 		}
1166 		return (NULL);
1167 	}
1168 
1169 	/*
1170 	 * Reassembly is complete.  Make sure the packet is a sane size.
1171 	 */
1172 	q = fp->ipq_frags;
1173 	ip = GETIP(q);
1174 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1175 		ipstat.ips_toolong++;
1176 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1177 		ip_freef(fp);
1178 		return (NULL);
1179 	}
1180 
1181 	/*
1182 	 * Concatenate fragments.
1183 	 */
1184 	m = q;
1185 	n = m->m_next;
1186 	m->m_next = NULL;
1187 	m_cat(m, n);
1188 	nq = q->m_nextpkt;
1189 	q->m_nextpkt = NULL;
1190 	for (q = nq; q != NULL; q = nq) {
1191 		nq = q->m_nextpkt;
1192 		q->m_nextpkt = NULL;
1193 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1194 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1195 		m_cat(m, q);
1196 	}
1197 
1198 	/*
1199 	 * Clean up the 1's complement checksum.  Carry over 16 bits must
1200 	 * be added back.  This assumes no more then 65535 packet fragments
1201 	 * were reassembled.  A second carry can also occur (but not a third).
1202 	 */
1203 	m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1204 				(m->m_pkthdr.csum_data >> 16);
1205 	if (m->m_pkthdr.csum_data > 0xFFFF)
1206 		m->m_pkthdr.csum_data -= 0xFFFF;
1207 
1208 	/*
1209 	 * Create header for new ip packet by
1210 	 * modifying header of first packet;
1211 	 * dequeue and discard fragment reassembly header.
1212 	 * Make header visible.
1213 	 */
1214 	ip->ip_len = next;
1215 	ip->ip_src = fp->ipq_src;
1216 	ip->ip_dst = fp->ipq_dst;
1217 	remque(fp);
1218 	nipq--;
1219 	mpipe_free(&ipq_mpipe, fp);
1220 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1221 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1222 	/* some debugging cruft by sklower, below, will go away soon */
1223 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1224 		int plen = 0;
1225 
1226 		for (n = m; n; n = n->m_next)
1227 			plen += n->m_len;
1228 		m->m_pkthdr.len = plen;
1229 	}
1230 
1231 	ipstat.ips_reassembled++;
1232 	return (m);
1233 
1234 dropfrag:
1235 	ipstat.ips_fragdropped++;
1236 	if (fp != NULL)
1237 		fp->ipq_nfrags--;
1238 	m_freem(m);
1239 	return (NULL);
1240 
1241 #undef GETIP
1242 }
1243 
1244 /*
1245  * Free a fragment reassembly header and all
1246  * associated datagrams.
1247  */
1248 static void
1249 ip_freef(struct ipq *fp)
1250 {
1251 	struct mbuf *q;
1252 
1253 	while (fp->ipq_frags) {
1254 		q = fp->ipq_frags;
1255 		fp->ipq_frags = q->m_nextpkt;
1256 		q->m_nextpkt = NULL;
1257 		m_freem(q);
1258 	}
1259 	remque(fp);
1260 	mpipe_free(&ipq_mpipe, fp);
1261 	nipq--;
1262 }
1263 
1264 /*
1265  * IP timer processing;
1266  * if a timer expires on a reassembly
1267  * queue, discard it.
1268  */
1269 void
1270 ip_slowtimo(void)
1271 {
1272 	struct ipq *fp;
1273 	int i;
1274 
1275 	crit_enter();
1276 	for (i = 0; i < IPREASS_NHASH; i++) {
1277 		fp = ipq[i].next;
1278 		if (fp == NULL)
1279 			continue;
1280 		while (fp != &ipq[i]) {
1281 			--fp->ipq_ttl;
1282 			fp = fp->next;
1283 			if (fp->prev->ipq_ttl == 0) {
1284 				ipstat.ips_fragtimeout += fp->prev->ipq_nfrags;
1285 				ip_freef(fp->prev);
1286 			}
1287 		}
1288 	}
1289 	/*
1290 	 * If we are over the maximum number of fragments
1291 	 * (due to the limit being lowered), drain off
1292 	 * enough to get down to the new limit.
1293 	 */
1294 	if (maxnipq >= 0 && nipq > maxnipq) {
1295 		for (i = 0; i < IPREASS_NHASH; i++) {
1296 			while (nipq > maxnipq &&
1297 				(ipq[i].next != &ipq[i])) {
1298 				ipstat.ips_fragdropped +=
1299 				    ipq[i].next->ipq_nfrags;
1300 				ip_freef(ipq[i].next);
1301 			}
1302 		}
1303 	}
1304 	ipflow_slowtimo();
1305 	crit_exit();
1306 }
1307 
1308 /*
1309  * Drain off all datagram fragments.
1310  */
1311 void
1312 ip_drain(void)
1313 {
1314 	int i;
1315 
1316 	for (i = 0; i < IPREASS_NHASH; i++) {
1317 		while (ipq[i].next != &ipq[i]) {
1318 			ipstat.ips_fragdropped += ipq[i].next->ipq_nfrags;
1319 			ip_freef(ipq[i].next);
1320 		}
1321 	}
1322 	in_rtqdrain();
1323 }
1324 
1325 /*
1326  * Do option processing on a datagram,
1327  * possibly discarding it if bad options are encountered,
1328  * or forwarding it if source-routed.
1329  * The pass argument is used when operating in the IPSTEALTH
1330  * mode to tell what options to process:
1331  * [LS]SRR (pass 0) or the others (pass 1).
1332  * The reason for as many as two passes is that when doing IPSTEALTH,
1333  * non-routing options should be processed only if the packet is for us.
1334  * Returns 1 if packet has been forwarded/freed,
1335  * 0 if the packet should be processed further.
1336  */
1337 static int
1338 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1339 {
1340 	struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1341 	struct ip *ip = mtod(m, struct ip *);
1342 	u_char *cp;
1343 	struct in_ifaddr *ia;
1344 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1345 	boolean_t forward = FALSE;
1346 	struct in_addr *sin, dst;
1347 	n_time ntime;
1348 
1349 	dst = ip->ip_dst;
1350 	cp = (u_char *)(ip + 1);
1351 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1352 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1353 		opt = cp[IPOPT_OPTVAL];
1354 		if (opt == IPOPT_EOL)
1355 			break;
1356 		if (opt == IPOPT_NOP)
1357 			optlen = 1;
1358 		else {
1359 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1360 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1361 				goto bad;
1362 			}
1363 			optlen = cp[IPOPT_OLEN];
1364 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1365 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1366 				goto bad;
1367 			}
1368 		}
1369 		switch (opt) {
1370 
1371 		default:
1372 			break;
1373 
1374 		/*
1375 		 * Source routing with record.
1376 		 * Find interface with current destination address.
1377 		 * If none on this machine then drop if strictly routed,
1378 		 * or do nothing if loosely routed.
1379 		 * Record interface address and bring up next address
1380 		 * component.  If strictly routed make sure next
1381 		 * address is on directly accessible net.
1382 		 */
1383 		case IPOPT_LSRR:
1384 		case IPOPT_SSRR:
1385 			if (ipstealth && pass > 0)
1386 				break;
1387 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1388 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1389 				goto bad;
1390 			}
1391 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1392 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1393 				goto bad;
1394 			}
1395 			ipaddr.sin_addr = ip->ip_dst;
1396 			ia = (struct in_ifaddr *)
1397 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1398 			if (ia == NULL) {
1399 				if (opt == IPOPT_SSRR) {
1400 					type = ICMP_UNREACH;
1401 					code = ICMP_UNREACH_SRCFAIL;
1402 					goto bad;
1403 				}
1404 				if (!ip_dosourceroute)
1405 					goto nosourcerouting;
1406 				/*
1407 				 * Loose routing, and not at next destination
1408 				 * yet; nothing to do except forward.
1409 				 */
1410 				break;
1411 			}
1412 			off--;			/* 0 origin */
1413 			if (off > optlen - (int)sizeof(struct in_addr)) {
1414 				/*
1415 				 * End of source route.  Should be for us.
1416 				 */
1417 				if (!ip_acceptsourceroute)
1418 					goto nosourcerouting;
1419 				save_rte(m, cp, ip->ip_src);
1420 				break;
1421 			}
1422 			if (ipstealth)
1423 				goto dropit;
1424 			if (!ip_dosourceroute) {
1425 				if (ipforwarding) {
1426 					char buf[sizeof "aaa.bbb.ccc.ddd"];
1427 
1428 					/*
1429 					 * Acting as a router, so generate ICMP
1430 					 */
1431 nosourcerouting:
1432 					strcpy(buf, inet_ntoa(ip->ip_dst));
1433 					log(LOG_WARNING,
1434 					    "attempted source route from %s to %s\n",
1435 					    inet_ntoa(ip->ip_src), buf);
1436 					type = ICMP_UNREACH;
1437 					code = ICMP_UNREACH_SRCFAIL;
1438 					goto bad;
1439 				} else {
1440 					/*
1441 					 * Not acting as a router,
1442 					 * so silently drop.
1443 					 */
1444 dropit:
1445 					ipstat.ips_cantforward++;
1446 					m_freem(m);
1447 					return (1);
1448 				}
1449 			}
1450 
1451 			/*
1452 			 * locate outgoing interface
1453 			 */
1454 			memcpy(&ipaddr.sin_addr, cp + off,
1455 			    sizeof ipaddr.sin_addr);
1456 
1457 			if (opt == IPOPT_SSRR) {
1458 #define	INA	struct in_ifaddr *
1459 #define	SA	struct sockaddr *
1460 				if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1461 									== NULL)
1462 					ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1463 			} else {
1464 				ia = ip_rtaddr(ipaddr.sin_addr, NULL);
1465 			}
1466 			if (ia == NULL) {
1467 				type = ICMP_UNREACH;
1468 				code = ICMP_UNREACH_SRCFAIL;
1469 				goto bad;
1470 			}
1471 			ip->ip_dst = ipaddr.sin_addr;
1472 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1473 			    sizeof(struct in_addr));
1474 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1475 			/*
1476 			 * Let ip_intr's mcast routing check handle mcast pkts
1477 			 */
1478 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1479 			break;
1480 
1481 		case IPOPT_RR:
1482 			if (ipstealth && pass == 0)
1483 				break;
1484 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1485 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1486 				goto bad;
1487 			}
1488 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1489 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1490 				goto bad;
1491 			}
1492 			/*
1493 			 * If no space remains, ignore.
1494 			 */
1495 			off--;			/* 0 origin */
1496 			if (off > optlen - (int)sizeof(struct in_addr))
1497 				break;
1498 			memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1499 			    sizeof ipaddr.sin_addr);
1500 			/*
1501 			 * locate outgoing interface; if we're the destination,
1502 			 * use the incoming interface (should be same).
1503 			 */
1504 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1505 			    (ia = ip_rtaddr(ipaddr.sin_addr, NULL)) == NULL) {
1506 				type = ICMP_UNREACH;
1507 				code = ICMP_UNREACH_HOST;
1508 				goto bad;
1509 			}
1510 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1511 			    sizeof(struct in_addr));
1512 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1513 			break;
1514 
1515 		case IPOPT_TS:
1516 			if (ipstealth && pass == 0)
1517 				break;
1518 			code = cp - (u_char *)ip;
1519 			if (optlen < 4 || optlen > 40) {
1520 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1521 				goto bad;
1522 			}
1523 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1524 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1525 				goto bad;
1526 			}
1527 			if (off > optlen - (int)sizeof(int32_t)) {
1528 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1529 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1530 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1531 					goto bad;
1532 				}
1533 				break;
1534 			}
1535 			off--;				/* 0 origin */
1536 			sin = (struct in_addr *)(cp + off);
1537 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1538 
1539 			case IPOPT_TS_TSONLY:
1540 				break;
1541 
1542 			case IPOPT_TS_TSANDADDR:
1543 				if (off + sizeof(n_time) +
1544 				    sizeof(struct in_addr) > optlen) {
1545 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1546 					goto bad;
1547 				}
1548 				ipaddr.sin_addr = dst;
1549 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1550 							    m->m_pkthdr.rcvif);
1551 				if (ia == NULL)
1552 					continue;
1553 				memcpy(sin, &IA_SIN(ia)->sin_addr,
1554 				    sizeof(struct in_addr));
1555 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1556 				off += sizeof(struct in_addr);
1557 				break;
1558 
1559 			case IPOPT_TS_PRESPEC:
1560 				if (off + sizeof(n_time) +
1561 				    sizeof(struct in_addr) > optlen) {
1562 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1563 					goto bad;
1564 				}
1565 				memcpy(&ipaddr.sin_addr, sin,
1566 				    sizeof(struct in_addr));
1567 				if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1568 					continue;
1569 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1570 				off += sizeof(struct in_addr);
1571 				break;
1572 
1573 			default:
1574 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1575 				goto bad;
1576 			}
1577 			ntime = iptime();
1578 			memcpy(cp + off, &ntime, sizeof(n_time));
1579 			cp[IPOPT_OFFSET] += sizeof(n_time);
1580 		}
1581 	}
1582 	if (forward && ipforwarding) {
1583 		ip_forward(m, TRUE, next_hop);
1584 		return (1);
1585 	}
1586 	return (0);
1587 bad:
1588 	icmp_error(m, type, code, 0, 0);
1589 	ipstat.ips_badoptions++;
1590 	return (1);
1591 }
1592 
1593 /*
1594  * Given address of next destination (final or next hop),
1595  * return internet address info of interface to be used to get there.
1596  */
1597 struct in_ifaddr *
1598 ip_rtaddr(struct in_addr dst, struct route *ro0)
1599 {
1600 	struct route sro, *ro;
1601 	struct sockaddr_in *sin;
1602 	struct in_ifaddr *ia;
1603 
1604 	if (ro0 != NULL) {
1605 		ro = ro0;
1606 	} else {
1607 		bzero(&sro, sizeof(sro));
1608 		ro = &sro;
1609 	}
1610 
1611 	sin = (struct sockaddr_in *)&ro->ro_dst;
1612 
1613 	if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1614 		if (ro->ro_rt != NULL) {
1615 			RTFREE(ro->ro_rt);
1616 			ro->ro_rt = NULL;
1617 		}
1618 		sin->sin_family = AF_INET;
1619 		sin->sin_len = sizeof *sin;
1620 		sin->sin_addr = dst;
1621 		rtalloc_ign(ro, RTF_PRCLONING);
1622 	}
1623 
1624 	if (ro->ro_rt == NULL)
1625 		return (NULL);
1626 
1627 	ia = ifatoia(ro->ro_rt->rt_ifa);
1628 
1629 	if (ro == &sro)
1630 		RTFREE(ro->ro_rt);
1631 	return ia;
1632 }
1633 
1634 /*
1635  * Save incoming source route for use in replies,
1636  * to be picked up later by ip_srcroute if the receiver is interested.
1637  */
1638 static void
1639 save_rte(struct mbuf *m, u_char *option, struct in_addr dst)
1640 {
1641 	struct m_tag *mtag;
1642 	struct ip_srcrt_opt *opt;
1643 	unsigned olen;
1644 
1645 	mtag = m_tag_get(PACKET_TAG_IPSRCRT, sizeof(*opt), MB_DONTWAIT);
1646 	if (mtag == NULL)
1647 		return;
1648 	opt = m_tag_data(mtag);
1649 
1650 	olen = option[IPOPT_OLEN];
1651 #ifdef DIAGNOSTIC
1652 	if (ipprintfs)
1653 		kprintf("save_rte: olen %d\n", olen);
1654 #endif
1655 	if (olen > sizeof(opt->ip_srcrt) - (1 + sizeof(dst))) {
1656 		m_tag_free(mtag);
1657 		return;
1658 	}
1659 	bcopy(option, opt->ip_srcrt.srcopt, olen);
1660 	opt->ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1661 	opt->ip_srcrt.dst = dst;
1662 	m_tag_prepend(m, mtag);
1663 }
1664 
1665 /*
1666  * Retrieve incoming source route for use in replies,
1667  * in the same form used by setsockopt.
1668  * The first hop is placed before the options, will be removed later.
1669  */
1670 struct mbuf *
1671 ip_srcroute(struct mbuf *m0)
1672 {
1673 	struct in_addr *p, *q;
1674 	struct mbuf *m;
1675 	struct m_tag *mtag;
1676 	struct ip_srcrt_opt *opt;
1677 
1678 	if (m0 == NULL)
1679 		return NULL;
1680 
1681 	mtag = m_tag_find(m0, PACKET_TAG_IPSRCRT, NULL);
1682 	if (mtag == NULL)
1683 		return NULL;
1684 	opt = m_tag_data(mtag);
1685 
1686 	if (opt->ip_nhops == 0)
1687 		return (NULL);
1688 	m = m_get(MB_DONTWAIT, MT_HEADER);
1689 	if (m == NULL)
1690 		return (NULL);
1691 
1692 #define	OPTSIZ	(sizeof(opt->ip_srcrt.nop) + sizeof(opt->ip_srcrt.srcopt))
1693 
1694 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1695 	m->m_len = opt->ip_nhops * sizeof(struct in_addr) +
1696 		   sizeof(struct in_addr) + OPTSIZ;
1697 #ifdef DIAGNOSTIC
1698 	if (ipprintfs) {
1699 		kprintf("ip_srcroute: nhops %d mlen %d",
1700 			opt->ip_nhops, m->m_len);
1701 	}
1702 #endif
1703 
1704 	/*
1705 	 * First save first hop for return route
1706 	 */
1707 	p = &opt->ip_srcrt.route[opt->ip_nhops - 1];
1708 	*(mtod(m, struct in_addr *)) = *p--;
1709 #ifdef DIAGNOSTIC
1710 	if (ipprintfs)
1711 		kprintf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1712 #endif
1713 
1714 	/*
1715 	 * Copy option fields and padding (nop) to mbuf.
1716 	 */
1717 	opt->ip_srcrt.nop = IPOPT_NOP;
1718 	opt->ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1719 	memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &opt->ip_srcrt.nop,
1720 	    OPTSIZ);
1721 	q = (struct in_addr *)(mtod(m, caddr_t) +
1722 	    sizeof(struct in_addr) + OPTSIZ);
1723 #undef OPTSIZ
1724 	/*
1725 	 * Record return path as an IP source route,
1726 	 * reversing the path (pointers are now aligned).
1727 	 */
1728 	while (p >= opt->ip_srcrt.route) {
1729 #ifdef DIAGNOSTIC
1730 		if (ipprintfs)
1731 			kprintf(" %x", ntohl(q->s_addr));
1732 #endif
1733 		*q++ = *p--;
1734 	}
1735 	/*
1736 	 * Last hop goes to final destination.
1737 	 */
1738 	*q = opt->ip_srcrt.dst;
1739 	m_tag_delete(m0, mtag);
1740 #ifdef DIAGNOSTIC
1741 	if (ipprintfs)
1742 		kprintf(" %x\n", ntohl(q->s_addr));
1743 #endif
1744 	return (m);
1745 }
1746 
1747 /*
1748  * Strip out IP options.
1749  */
1750 void
1751 ip_stripoptions(struct mbuf *m)
1752 {
1753 	int datalen;
1754 	struct ip *ip = mtod(m, struct ip *);
1755 	caddr_t opts;
1756 	int optlen;
1757 
1758 	optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1759 	opts = (caddr_t)(ip + 1);
1760 	datalen = m->m_len - (sizeof(struct ip) + optlen);
1761 	bcopy(opts + optlen, opts, datalen);
1762 	m->m_len -= optlen;
1763 	if (m->m_flags & M_PKTHDR)
1764 		m->m_pkthdr.len -= optlen;
1765 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1766 }
1767 
1768 u_char inetctlerrmap[PRC_NCMDS] = {
1769 	0,		0,		0,		0,
1770 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1771 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1772 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1773 	0,		0,		0,		0,
1774 	ENOPROTOOPT,	ECONNREFUSED
1775 };
1776 
1777 /*
1778  * Forward a packet.  If some error occurs return the sender
1779  * an icmp packet.  Note we can't always generate a meaningful
1780  * icmp message because icmp doesn't have a large enough repertoire
1781  * of codes and types.
1782  *
1783  * If not forwarding, just drop the packet.  This could be confusing
1784  * if ipforwarding was zero but some routing protocol was advancing
1785  * us as a gateway to somewhere.  However, we must let the routing
1786  * protocol deal with that.
1787  *
1788  * The using_srcrt parameter indicates whether the packet is being forwarded
1789  * via a source route.
1790  */
1791 void
1792 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1793 {
1794 	struct ip *ip = mtod(m, struct ip *);
1795 	struct rtentry *rt;
1796 	struct route fwd_ro;
1797 	int error, type = 0, code = 0, destmtu = 0;
1798 	struct mbuf *mcopy;
1799 	n_long dest;
1800 	struct in_addr pkt_dst;
1801 
1802 	dest = INADDR_ANY;
1803 	/*
1804 	 * Cache the destination address of the packet; this may be
1805 	 * changed by use of 'ipfw fwd'.
1806 	 */
1807 	pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1808 
1809 #ifdef DIAGNOSTIC
1810 	if (ipprintfs)
1811 		kprintf("forward: src %x dst %x ttl %x\n",
1812 		       ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1813 #endif
1814 
1815 	if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1816 		ipstat.ips_cantforward++;
1817 		m_freem(m);
1818 		return;
1819 	}
1820 	if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1821 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1822 		return;
1823 	}
1824 
1825 	bzero(&fwd_ro, sizeof(fwd_ro));
1826 	ip_rtaddr(pkt_dst, &fwd_ro);
1827 	if (fwd_ro.ro_rt == NULL) {
1828 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1829 		return;
1830 	}
1831 	rt = fwd_ro.ro_rt;
1832 
1833 	/*
1834 	 * Save the IP header and at most 8 bytes of the payload,
1835 	 * in case we need to generate an ICMP message to the src.
1836 	 *
1837 	 * XXX this can be optimized a lot by saving the data in a local
1838 	 * buffer on the stack (72 bytes at most), and only allocating the
1839 	 * mbuf if really necessary. The vast majority of the packets
1840 	 * are forwarded without having to send an ICMP back (either
1841 	 * because unnecessary, or because rate limited), so we are
1842 	 * really we are wasting a lot of work here.
1843 	 *
1844 	 * We don't use m_copy() because it might return a reference
1845 	 * to a shared cluster. Both this function and ip_output()
1846 	 * assume exclusive access to the IP header in `m', so any
1847 	 * data in a cluster may change before we reach icmp_error().
1848 	 */
1849 	MGETHDR(mcopy, MB_DONTWAIT, m->m_type);
1850 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, MB_DONTWAIT)) {
1851 		/*
1852 		 * It's probably ok if the pkthdr dup fails (because
1853 		 * the deep copy of the tag chain failed), but for now
1854 		 * be conservative and just discard the copy since
1855 		 * code below may some day want the tags.
1856 		 */
1857 		m_free(mcopy);
1858 		mcopy = NULL;
1859 	}
1860 	if (mcopy != NULL) {
1861 		mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1862 		    (int)ip->ip_len);
1863 		mcopy->m_pkthdr.len = mcopy->m_len;
1864 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1865 	}
1866 
1867 	if (!ipstealth)
1868 		ip->ip_ttl -= IPTTLDEC;
1869 
1870 	/*
1871 	 * If forwarding packet using same interface that it came in on,
1872 	 * perhaps should send a redirect to sender to shortcut a hop.
1873 	 * Only send redirect if source is sending directly to us,
1874 	 * and if packet was not source routed (or has any options).
1875 	 * Also, don't send redirect if forwarding using a default route
1876 	 * or a route modified by a redirect.
1877 	 */
1878 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1879 	    !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
1880 	    satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
1881 	    ipsendredirects && !using_srcrt && next_hop == NULL) {
1882 		u_long src = ntohl(ip->ip_src.s_addr);
1883 		struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
1884 
1885 		if (rt_ifa != NULL &&
1886 		    (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
1887 			if (rt->rt_flags & RTF_GATEWAY)
1888 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1889 			else
1890 				dest = pkt_dst.s_addr;
1891 			/*
1892 			 * Router requirements says to only send
1893 			 * host redirects.
1894 			 */
1895 			type = ICMP_REDIRECT;
1896 			code = ICMP_REDIRECT_HOST;
1897 #ifdef DIAGNOSTIC
1898 			if (ipprintfs)
1899 				kprintf("redirect (%d) to %x\n", code, dest);
1900 #endif
1901 		}
1902 	}
1903 
1904 	error = ip_output(m, NULL, &fwd_ro, IP_FORWARDING, NULL, NULL);
1905 	if (error == 0) {
1906 		ipstat.ips_forward++;
1907 		if (type == 0) {
1908 			if (mcopy) {
1909 				ipflow_create(&fwd_ro, mcopy);
1910 				m_freem(mcopy);
1911 			}
1912 			goto done;
1913 		} else {
1914 			ipstat.ips_redirectsent++;
1915 		}
1916 	} else {
1917 		ipstat.ips_cantforward++;
1918 	}
1919 
1920 	if (mcopy == NULL)
1921 		goto done;
1922 
1923 	/*
1924 	 * Send ICMP message.
1925 	 */
1926 
1927 	switch (error) {
1928 
1929 	case 0:				/* forwarded, but need redirect */
1930 		/* type, code set above */
1931 		break;
1932 
1933 	case ENETUNREACH:		/* shouldn't happen, checked above */
1934 	case EHOSTUNREACH:
1935 	case ENETDOWN:
1936 	case EHOSTDOWN:
1937 	default:
1938 		type = ICMP_UNREACH;
1939 		code = ICMP_UNREACH_HOST;
1940 		break;
1941 
1942 	case EMSGSIZE:
1943 		type = ICMP_UNREACH;
1944 		code = ICMP_UNREACH_NEEDFRAG;
1945 #ifdef IPSEC
1946 		/*
1947 		 * If the packet is routed over IPsec tunnel, tell the
1948 		 * originator the tunnel MTU.
1949 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1950 		 * XXX quickhack!!!
1951 		 */
1952 		if (fwd_ro.ro_rt != NULL) {
1953 			struct secpolicy *sp = NULL;
1954 			int ipsecerror;
1955 			int ipsechdr;
1956 			struct route *ro;
1957 
1958 			sp = ipsec4_getpolicybyaddr(mcopy,
1959 						    IPSEC_DIR_OUTBOUND,
1960 						    IP_FORWARDING,
1961 						    &ipsecerror);
1962 
1963 			if (sp == NULL)
1964 				destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
1965 			else {
1966 				/* count IPsec header size */
1967 				ipsechdr = ipsec4_hdrsiz(mcopy,
1968 							 IPSEC_DIR_OUTBOUND,
1969 							 NULL);
1970 
1971 				/*
1972 				 * find the correct route for outer IPv4
1973 				 * header, compute tunnel MTU.
1974 				 *
1975 				 */
1976 				if (sp->req != NULL && sp->req->sav != NULL &&
1977 				    sp->req->sav->sah != NULL) {
1978 					ro = &sp->req->sav->sah->sa_route;
1979 					if (ro->ro_rt != NULL &&
1980 					    ro->ro_rt->rt_ifp != NULL) {
1981 						destmtu =
1982 						    ro->ro_rt->rt_ifp->if_mtu;
1983 						destmtu -= ipsechdr;
1984 					}
1985 				}
1986 
1987 				key_freesp(sp);
1988 			}
1989 		}
1990 #elif FAST_IPSEC
1991 		/*
1992 		 * If the packet is routed over IPsec tunnel, tell the
1993 		 * originator the tunnel MTU.
1994 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1995 		 * XXX quickhack!!!
1996 		 */
1997 		if (fwd_ro.ro_rt != NULL) {
1998 			struct secpolicy *sp = NULL;
1999 			int ipsecerror;
2000 			int ipsechdr;
2001 			struct route *ro;
2002 
2003 			sp = ipsec_getpolicybyaddr(mcopy,
2004 						   IPSEC_DIR_OUTBOUND,
2005 						   IP_FORWARDING,
2006 						   &ipsecerror);
2007 
2008 			if (sp == NULL)
2009 				destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2010 			else {
2011 				/* count IPsec header size */
2012 				ipsechdr = ipsec4_hdrsiz(mcopy,
2013 							 IPSEC_DIR_OUTBOUND,
2014 							 NULL);
2015 
2016 				/*
2017 				 * find the correct route for outer IPv4
2018 				 * header, compute tunnel MTU.
2019 				 */
2020 
2021 				if (sp->req != NULL &&
2022 				    sp->req->sav != NULL &&
2023 				    sp->req->sav->sah != NULL) {
2024 					ro = &sp->req->sav->sah->sa_route;
2025 					if (ro->ro_rt != NULL &&
2026 					    ro->ro_rt->rt_ifp != NULL) {
2027 						destmtu =
2028 						    ro->ro_rt->rt_ifp->if_mtu;
2029 						destmtu -= ipsechdr;
2030 					}
2031 				}
2032 
2033 				KEY_FREESP(&sp);
2034 			}
2035 		}
2036 #else /* !IPSEC && !FAST_IPSEC */
2037 		if (fwd_ro.ro_rt != NULL)
2038 			destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2039 #endif /*IPSEC*/
2040 		ipstat.ips_cantfrag++;
2041 		break;
2042 
2043 	case ENOBUFS:
2044 		/*
2045 		 * A router should not generate ICMP_SOURCEQUENCH as
2046 		 * required in RFC1812 Requirements for IP Version 4 Routers.
2047 		 * Source quench could be a big problem under DoS attacks,
2048 		 * or if the underlying interface is rate-limited.
2049 		 * Those who need source quench packets may re-enable them
2050 		 * via the net.inet.ip.sendsourcequench sysctl.
2051 		 */
2052 		if (!ip_sendsourcequench) {
2053 			m_freem(mcopy);
2054 			goto done;
2055 		} else {
2056 			type = ICMP_SOURCEQUENCH;
2057 			code = 0;
2058 		}
2059 		break;
2060 
2061 	case EACCES:			/* ipfw denied packet */
2062 		m_freem(mcopy);
2063 		goto done;
2064 	}
2065 	icmp_error(mcopy, type, code, dest, destmtu);
2066 done:
2067 	if (fwd_ro.ro_rt != NULL)
2068 		RTFREE(fwd_ro.ro_rt);
2069 }
2070 
2071 void
2072 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2073 	       struct mbuf *m)
2074 {
2075 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2076 		struct timeval tv;
2077 
2078 		microtime(&tv);
2079 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2080 		    SCM_TIMESTAMP, SOL_SOCKET);
2081 		if (*mp)
2082 			mp = &(*mp)->m_next;
2083 	}
2084 	if (inp->inp_flags & INP_RECVDSTADDR) {
2085 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2086 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2087 		if (*mp)
2088 			mp = &(*mp)->m_next;
2089 	}
2090 	if (inp->inp_flags & INP_RECVTTL) {
2091 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2092 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2093 		if (*mp)
2094 			mp = &(*mp)->m_next;
2095 	}
2096 #ifdef notyet
2097 	/* XXX
2098 	 * Moving these out of udp_input() made them even more broken
2099 	 * than they already were.
2100 	 */
2101 	/* options were tossed already */
2102 	if (inp->inp_flags & INP_RECVOPTS) {
2103 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2104 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2105 		if (*mp)
2106 			mp = &(*mp)->m_next;
2107 	}
2108 	/* ip_srcroute doesn't do what we want here, need to fix */
2109 	if (inp->inp_flags & INP_RECVRETOPTS) {
2110 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
2111 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2112 		if (*mp)
2113 			mp = &(*mp)->m_next;
2114 	}
2115 #endif
2116 	if (inp->inp_flags & INP_RECVIF) {
2117 		struct ifnet *ifp;
2118 		struct sdlbuf {
2119 			struct sockaddr_dl sdl;
2120 			u_char	pad[32];
2121 		} sdlbuf;
2122 		struct sockaddr_dl *sdp;
2123 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2124 
2125 		if (((ifp = m->m_pkthdr.rcvif)) &&
2126 		    ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2127 			sdp = IF_LLSOCKADDR(ifp);
2128 			/*
2129 			 * Change our mind and don't try copy.
2130 			 */
2131 			if ((sdp->sdl_family != AF_LINK) ||
2132 			    (sdp->sdl_len > sizeof(sdlbuf))) {
2133 				goto makedummy;
2134 			}
2135 			bcopy(sdp, sdl2, sdp->sdl_len);
2136 		} else {
2137 makedummy:
2138 			sdl2->sdl_len =
2139 			    offsetof(struct sockaddr_dl, sdl_data[0]);
2140 			sdl2->sdl_family = AF_LINK;
2141 			sdl2->sdl_index = 0;
2142 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2143 		}
2144 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2145 			IP_RECVIF, IPPROTO_IP);
2146 		if (*mp)
2147 			mp = &(*mp)->m_next;
2148 	}
2149 }
2150 
2151 /*
2152  * XXX these routines are called from the upper part of the kernel.
2153  *
2154  * They could also be moved to ip_mroute.c, since all the RSVP
2155  *  handling is done there already.
2156  */
2157 int
2158 ip_rsvp_init(struct socket *so)
2159 {
2160 	if (so->so_type != SOCK_RAW ||
2161 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2162 		return EOPNOTSUPP;
2163 
2164 	if (ip_rsvpd != NULL)
2165 		return EADDRINUSE;
2166 
2167 	ip_rsvpd = so;
2168 	/*
2169 	 * This may seem silly, but we need to be sure we don't over-increment
2170 	 * the RSVP counter, in case something slips up.
2171 	 */
2172 	if (!ip_rsvp_on) {
2173 		ip_rsvp_on = 1;
2174 		rsvp_on++;
2175 	}
2176 
2177 	return 0;
2178 }
2179 
2180 int
2181 ip_rsvp_done(void)
2182 {
2183 	ip_rsvpd = NULL;
2184 	/*
2185 	 * This may seem silly, but we need to be sure we don't over-decrement
2186 	 * the RSVP counter, in case something slips up.
2187 	 */
2188 	if (ip_rsvp_on) {
2189 		ip_rsvp_on = 0;
2190 		rsvp_on--;
2191 	}
2192 	return 0;
2193 }
2194 
2195 void
2196 rsvp_input(struct mbuf *m, ...)	/* XXX must fixup manually */
2197 {
2198 	int off, proto;
2199 	__va_list ap;
2200 
2201 	__va_start(ap, m);
2202 	off = __va_arg(ap, int);
2203 	proto = __va_arg(ap, int);
2204 	__va_end(ap);
2205 
2206 	if (rsvp_input_p) { /* call the real one if loaded */
2207 		rsvp_input_p(m, off, proto);
2208 		return;
2209 	}
2210 
2211 	/* Can still get packets with rsvp_on = 0 if there is a local member
2212 	 * of the group to which the RSVP packet is addressed.  But in this
2213 	 * case we want to throw the packet away.
2214 	 */
2215 
2216 	if (!rsvp_on) {
2217 		m_freem(m);
2218 		return;
2219 	}
2220 
2221 	if (ip_rsvpd != NULL) {
2222 		rip_input(m, off, proto);
2223 		return;
2224 	}
2225 	/* Drop the packet */
2226 	m_freem(m);
2227 }
2228