xref: /dragonfly/sys/netinet/ip_input.c (revision e1acdbad)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
36  *
37  * License terms: all terms for the DragonFly license above plus the following:
38  *
39  * 4. All advertising materials mentioning features or use of this software
40  *    must display the following acknowledgement:
41  *
42  *	This product includes software developed by Jeffrey M. Hsu
43  *	for the DragonFly Project.
44  *
45  *    This requirement may be waived with permission from Jeffrey Hsu.
46  *    This requirement will sunset and may be removed on July 8 2005,
47  *    after which the standard DragonFly license (as shown above) will
48  *    apply.
49  */
50 
51 /*
52  * Copyright (c) 1982, 1986, 1988, 1993
53  *	The Regents of the University of California.  All rights reserved.
54  *
55  * Redistribution and use in source and binary forms, with or without
56  * modification, are permitted provided that the following conditions
57  * are met:
58  * 1. Redistributions of source code must retain the above copyright
59  *    notice, this list of conditions and the following disclaimer.
60  * 2. Redistributions in binary form must reproduce the above copyright
61  *    notice, this list of conditions and the following disclaimer in the
62  *    documentation and/or other materials provided with the distribution.
63  * 3. All advertising materials mentioning features or use of this software
64  *    must display the following acknowledgement:
65  *	This product includes software developed by the University of
66  *	California, Berkeley and its contributors.
67  * 4. Neither the name of the University nor the names of its contributors
68  *    may be used to endorse or promote products derived from this software
69  *    without specific prior written permission.
70  *
71  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
72  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
75  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81  * SUCH DAMAGE.
82  *
83  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
84  * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
85  * $DragonFly: src/sys/netinet/ip_input.c,v 1.51 2005/04/18 23:43:04 hsu Exp $
86  */
87 
88 #define	_IP_VHL
89 
90 #include "opt_bootp.h"
91 #include "opt_ipfw.h"
92 #include "opt_ipdn.h"
93 #include "opt_ipdivert.h"
94 #include "opt_ipfilter.h"
95 #include "opt_ipstealth.h"
96 #include "opt_ipsec.h"
97 #include "opt_random_ip_id.h"
98 
99 #include <sys/param.h>
100 #include <sys/systm.h>
101 #include <sys/mbuf.h>
102 #include <sys/malloc.h>
103 #include <sys/mpipe.h>
104 #include <sys/domain.h>
105 #include <sys/protosw.h>
106 #include <sys/socket.h>
107 #include <sys/time.h>
108 #include <sys/globaldata.h>
109 #include <sys/thread.h>
110 #include <sys/kernel.h>
111 #include <sys/syslog.h>
112 #include <sys/sysctl.h>
113 #include <sys/in_cksum.h>
114 
115 #include <sys/thread2.h>
116 #include <sys/msgport2.h>
117 
118 #include <machine/stdarg.h>
119 
120 #include <net/if.h>
121 #include <net/if_types.h>
122 #include <net/if_var.h>
123 #include <net/if_dl.h>
124 #include <net/pfil.h>
125 #include <net/route.h>
126 #include <net/netisr.h>
127 #include <net/intrq.h>
128 
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/in_var.h>
132 #include <netinet/ip.h>
133 #include <netinet/in_pcb.h>
134 #include <netinet/ip_var.h>
135 #include <netinet/ip_icmp.h>
136 
137 
138 #include <sys/socketvar.h>
139 
140 #include <net/ipfw/ip_fw.h>
141 #include <net/dummynet/ip_dummynet.h>
142 
143 #ifdef IPSEC
144 #include <netinet6/ipsec.h>
145 #include <netproto/key/key.h>
146 #endif
147 
148 #ifdef FAST_IPSEC
149 #include <netproto/ipsec/ipsec.h>
150 #include <netproto/ipsec/key.h>
151 #endif
152 
153 int rsvp_on = 0;
154 static int ip_rsvp_on;
155 struct socket *ip_rsvpd;
156 
157 int ipforwarding = 0;
158 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
159     &ipforwarding, 0, "Enable IP forwarding between interfaces");
160 
161 static int ipsendredirects = 1; /* XXX */
162 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
163     &ipsendredirects, 0, "Enable sending IP redirects");
164 
165 int ip_defttl = IPDEFTTL;
166 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
167     &ip_defttl, 0, "Maximum TTL on IP packets");
168 
169 static int ip_dosourceroute = 0;
170 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
171     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
172 
173 static int ip_acceptsourceroute = 0;
174 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
175     CTLFLAG_RW, &ip_acceptsourceroute, 0,
176     "Enable accepting source routed IP packets");
177 
178 static int ip_keepfaith = 0;
179 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
180     &ip_keepfaith, 0,
181     "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
182 
183 static int nipq = 0;	/* total # of reass queues */
184 static int maxnipq;
185 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
186     &maxnipq, 0,
187     "Maximum number of IPv4 fragment reassembly queue entries");
188 
189 static int maxfragsperpacket;
190 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
191     &maxfragsperpacket, 0,
192     "Maximum number of IPv4 fragments allowed per packet");
193 
194 static int ip_sendsourcequench = 0;
195 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
196     &ip_sendsourcequench, 0,
197     "Enable the transmission of source quench packets");
198 
199 /*
200  * XXX - Setting ip_checkinterface mostly implements the receive side of
201  * the Strong ES model described in RFC 1122, but since the routing table
202  * and transmit implementation do not implement the Strong ES model,
203  * setting this to 1 results in an odd hybrid.
204  *
205  * XXX - ip_checkinterface currently must be disabled if you use ipnat
206  * to translate the destination address to another local interface.
207  *
208  * XXX - ip_checkinterface must be disabled if you add IP aliases
209  * to the loopback interface instead of the interface where the
210  * packets for those addresses are received.
211  */
212 static int ip_checkinterface = 0;
213 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
214     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
215 
216 #ifdef DIAGNOSTIC
217 static int ipprintfs = 0;
218 #endif
219 
220 static struct ifqueue ipintrq;
221 static int ipqmaxlen = IFQ_MAXLEN;
222 
223 extern	struct domain inetdomain;
224 extern	struct protosw inetsw[];
225 u_char	ip_protox[IPPROTO_MAX];
226 struct	in_ifaddrhead in_ifaddrhead;		/* first inet address */
227 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table */
228 u_long	in_ifaddrhmask;				/* mask for hash table */
229 
230 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
231     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
232 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
233     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
234 
235 struct ip_stats ipstats_percpu[MAXCPU];
236 #ifdef SMP
237 static int
238 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
239 {
240 	int cpu, error = 0;
241 
242 	for (cpu = 0; cpu < ncpus; ++cpu) {
243 		if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
244 					sizeof(struct ip_stats))))
245 			break;
246 		if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
247 				       sizeof(struct ip_stats))))
248 			break;
249 	}
250 
251 	return (error);
252 }
253 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
254     0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
255 #else
256 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
257     &ipstat, ip_stats, "IP statistics");
258 #endif
259 
260 /* Packet reassembly stuff */
261 #define	IPREASS_NHASH_LOG2	6
262 #define	IPREASS_NHASH		(1 << IPREASS_NHASH_LOG2)
263 #define	IPREASS_HMASK		(IPREASS_NHASH - 1)
264 #define	IPREASS_HASH(x,y)						\
265     (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
266 
267 static struct ipq ipq[IPREASS_NHASH];
268 const  int    ipintrq_present = 1;
269 
270 #ifdef IPCTL_DEFMTU
271 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
272     &ip_mtu, 0, "Default MTU");
273 #endif
274 
275 #ifdef IPSTEALTH
276 static int ipstealth = 0;
277 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
278 #else
279 static const int ipstealth = 0;
280 #endif
281 
282 
283 /* Firewall hooks */
284 ip_fw_chk_t *ip_fw_chk_ptr;
285 int fw_enable = 1;
286 int fw_one_pass = 1;
287 
288 /* Dummynet hooks */
289 ip_dn_io_t *ip_dn_io_ptr;
290 
291 struct pfil_head inet_pfil_hook;
292 
293 /*
294  * XXX this is ugly -- the following two global variables are
295  * used to store packet state while it travels through the stack.
296  * Note that the code even makes assumptions on the size and
297  * alignment of fields inside struct ip_srcrt so e.g. adding some
298  * fields will break the code. This needs to be fixed.
299  *
300  * We need to save the IP options in case a protocol wants to respond
301  * to an incoming packet over the same route if the packet got here
302  * using IP source routing.  This allows connection establishment and
303  * maintenance when the remote end is on a network that is not known
304  * to us.
305  */
306 static int ip_nhops = 0;
307 
308 static	struct ip_srcrt {
309 	struct	in_addr dst;			/* final destination */
310 	char	nop;				/* one NOP to align */
311 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
312 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
313 } ip_srcrt;
314 
315 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
316 static struct malloc_pipe ipq_mpipe;
317 
318 static void		save_rte (u_char *, struct in_addr);
319 static int		ip_dooptions (struct mbuf *m, int,
320 					struct sockaddr_in *next_hop);
321 static void		ip_forward (struct mbuf *m, boolean_t using_srcrt,
322 					struct sockaddr_in *next_hop);
323 static void		ip_freef (struct ipq *);
324 static int		ip_input_handler (struct netmsg *);
325 static struct mbuf	*ip_reass (struct mbuf *, struct ipq *,
326 					struct ipq *, u_int32_t *);
327 
328 /*
329  * IP initialization: fill in IP protocol switch table.
330  * All protocols not implemented in kernel go to raw IP protocol handler.
331  */
332 void
333 ip_init(void)
334 {
335 	struct protosw *pr;
336 	int i;
337 #ifdef SMP
338 	int cpu;
339 #endif
340 
341 	/*
342 	 * Make sure we can handle a reasonable number of fragments but
343 	 * cap it at 4000 (XXX).
344 	 */
345 	mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
346 		    IFQ_MAXLEN, 4000, 0, NULL);
347 	TAILQ_INIT(&in_ifaddrhead);
348 	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
349 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
350 	if (pr == NULL)
351 		panic("ip_init");
352 	for (i = 0; i < IPPROTO_MAX; i++)
353 		ip_protox[i] = pr - inetsw;
354 	for (pr = inetdomain.dom_protosw;
355 	     pr < inetdomain.dom_protoswNPROTOSW; pr++)
356 		if (pr->pr_domain->dom_family == PF_INET &&
357 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
358 			ip_protox[pr->pr_protocol] = pr - inetsw;
359 
360 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
361 	inet_pfil_hook.ph_af = AF_INET;
362 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
363 		printf("%s: WARNING: unable to register pfil hook, "
364 			"error %d\n", __func__, i);
365 	}
366 
367 	for (i = 0; i < IPREASS_NHASH; i++)
368 	    ipq[i].next = ipq[i].prev = &ipq[i];
369 
370 	maxnipq = nmbclusters / 32;
371 	maxfragsperpacket = 16;
372 
373 #ifndef RANDOM_IP_ID
374 	ip_id = time_second & 0xffff;
375 #endif
376 	ipintrq.ifq_maxlen = ipqmaxlen;
377 
378 	/*
379 	 * Initialize IP statistics counters for each CPU.
380 	 *
381 	 */
382 #ifdef SMP
383 	for (cpu = 0; cpu < ncpus; ++cpu) {
384 		bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
385 	}
386 #else
387 	bzero(&ipstat, sizeof(struct ip_stats));
388 #endif
389 
390 	netisr_register(NETISR_IP, ip_mport, ip_input_handler);
391 }
392 
393 /*
394  * XXX watch out this one. It is perhaps used as a cache for
395  * the most recently used route ? it is cleared in in_addroute()
396  * when a new route is successfully created.
397  */
398 struct route ipforward_rt;
399 
400 /* Do transport protocol processing. */
401 static void
402 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip,
403 			   struct sockaddr_in *nexthop)
404 {
405 	/*
406 	 * Switch out to protocol's input routine.
407 	 */
408 	if (nexthop && ip->ip_p == IPPROTO_TCP) {
409 		/* TCP needs IPFORWARD info if available */
410 		struct m_hdr tag;
411 
412 		tag.mh_type = MT_TAG;
413 		tag.mh_flags = PACKET_TAG_IPFORWARD;
414 		tag.mh_data = (caddr_t)nexthop;
415 		tag.mh_next = m;
416 
417 		(*inetsw[ip_protox[ip->ip_p]].pr_input)
418 		    ((struct mbuf *)&tag, hlen, ip->ip_p);
419 	} else {
420 		(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen, ip->ip_p);
421 	}
422 }
423 
424 struct netmsg_transport_packet {
425 	struct lwkt_msg		nm_lmsg;
426 	struct mbuf		*nm_mbuf;
427 	int			nm_hlen;
428 	boolean_t		nm_hasnexthop;
429 	struct sockaddr_in	nm_nexthop;
430 };
431 
432 static int
433 transport_processing_handler(lwkt_msg_t lmsg)
434 {
435 	struct netmsg_transport_packet *msg = (void *)lmsg;
436 	struct sockaddr_in *nexthop;
437 	struct ip *ip;
438 
439 	ip = mtod(msg->nm_mbuf, struct ip *);
440 	nexthop = msg->nm_hasnexthop ? &msg->nm_nexthop : NULL;
441 	transport_processing_oncpu(msg->nm_mbuf, msg->nm_hlen, ip, nexthop);
442 	lwkt_replymsg(lmsg, 0);
443 	return(EASYNC);
444 }
445 
446 static int
447 ip_input_handler(struct netmsg *msg0)
448 {
449 	struct mbuf *m = ((struct netmsg_packet *)msg0)->nm_packet;
450 
451 	ip_input(m);
452 	lwkt_replymsg(&msg0->nm_lmsg, 0);
453 	return(EASYNC);
454 }
455 
456 /*
457  * IP input routine.  Checksum and byte swap header.  If fragmented
458  * try to reassemble.  Process options.  Pass to next level.
459  */
460 void
461 ip_input(struct mbuf *m)
462 {
463 	struct ip *ip;
464 	struct ipq *fp;
465 	struct in_ifaddr *ia = NULL;
466 	struct ifaddr *ifa;
467 	int i, hlen, checkif;
468 	u_short sum;
469 	struct in_addr pkt_dst;
470 	u_int32_t divert_info = 0;		/* packet divert/tee info */
471 	struct ip_fw_args args;
472 	boolean_t using_srcrt = FALSE;		/* forward (by PFIL_HOOKS) */
473 	boolean_t needredispatch = FALSE;
474 	struct in_addr odst;			/* original dst address(NAT) */
475 #if defined(FAST_IPSEC) || defined(IPDIVERT)
476 	struct m_tag *mtag;
477 #endif
478 #ifdef FAST_IPSEC
479 	struct tdb_ident *tdbi;
480 	struct secpolicy *sp;
481 	int s, error;
482 #endif
483 
484 	args.eh = NULL;
485 	args.oif = NULL;
486 	args.rule = NULL;
487 	args.next_hop = NULL;
488 
489 	/* Grab info from MT_TAG mbufs prepended to the chain. */
490 	while (m != NULL && m->m_type == MT_TAG) {
491 		switch(m->_m_tag_id) {
492 		case PACKET_TAG_DUMMYNET:
493 			args.rule = ((struct dn_pkt *)m)->rule;
494 			break;
495 		case PACKET_TAG_IPFORWARD:
496 			args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
497 			break;
498 		default:
499 			printf("ip_input: unrecognised MT_TAG tag %d\n",
500 			    m->_m_tag_id);
501 			break;
502 		}
503 		m = m->m_next;
504 	}
505 	KASSERT(m != NULL && (m->m_flags & M_PKTHDR), ("ip_input: no HDR"));
506 
507 	if (args.rule != NULL) {	/* dummynet already filtered us */
508 		ip = mtod(m, struct ip *);
509 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
510 		goto iphack;
511 	}
512 
513 	ipstat.ips_total++;
514 
515 	/* length checks already done in ip_demux() */
516 	KASSERT(m->m_len >= sizeof(ip), ("IP header not in one mbuf"));
517 
518 	ip = mtod(m, struct ip *);
519 
520 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
521 		ipstat.ips_badvers++;
522 		goto bad;
523 	}
524 
525 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
526 	/* length checks already done in ip_demux() */
527 	KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
528 	KASSERT(m->m_len >= hlen, ("packet shorter than IP header length"));
529 
530 	/* 127/8 must not appear on wire - RFC1122 */
531 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
532 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
533 		if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
534 			ipstat.ips_badaddr++;
535 			goto bad;
536 		}
537 	}
538 
539 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
540 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
541 	} else {
542 		if (hlen == sizeof(struct ip)) {
543 			sum = in_cksum_hdr(ip);
544 		} else {
545 			sum = in_cksum(m, hlen);
546 		}
547 	}
548 	if (sum != 0) {
549 		ipstat.ips_badsum++;
550 		goto bad;
551 	}
552 
553 #ifdef ALTQ
554 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
555 		/* packet is dropped by traffic conditioner */
556 		return;
557 	}
558 #endif
559 	/*
560 	 * Convert fields to host representation.
561 	 */
562 	ip->ip_len = ntohs(ip->ip_len);
563 	if (ip->ip_len < hlen) {
564 		ipstat.ips_badlen++;
565 		goto bad;
566 	}
567 	ip->ip_off = ntohs(ip->ip_off);
568 
569 	/*
570 	 * Check that the amount of data in the buffers
571 	 * is as at least much as the IP header would have us expect.
572 	 * Trim mbufs if longer than we expect.
573 	 * Drop packet if shorter than we expect.
574 	 */
575 	if (m->m_pkthdr.len < ip->ip_len) {
576 		ipstat.ips_tooshort++;
577 		goto bad;
578 	}
579 	if (m->m_pkthdr.len > ip->ip_len) {
580 		if (m->m_len == m->m_pkthdr.len) {
581 			m->m_len = ip->ip_len;
582 			m->m_pkthdr.len = ip->ip_len;
583 		} else
584 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
585 	}
586 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
587 	/*
588 	 * Bypass packet filtering for packets from a tunnel (gif).
589 	 */
590 	if (ipsec_gethist(m, NULL))
591 		goto pass;
592 #endif
593 
594 	/*
595 	 * IpHack's section.
596 	 * Right now when no processing on packet has done
597 	 * and it is still fresh out of network we do our black
598 	 * deals with it.
599 	 * - Firewall: deny/allow/divert
600 	 * - Xlate: translate packet's addr/port (NAT).
601 	 * - Pipe: pass pkt through dummynet.
602 	 * - Wrap: fake packet's addr/port <unimpl.>
603 	 * - Encapsulate: put it in another IP and send out. <unimp.>
604 	 */
605 
606 iphack:
607 
608 	/*
609 	 * Run through list of hooks for input packets.
610 	 *
611 	 * NB: Beware of the destination address changing (e.g.
612 	 *     by NAT rewriting). When this happens, tell
613 	 *     ip_forward to do the right thing.
614 	 */
615 	if (pfil_has_hooks(&inet_pfil_hook)) {
616 		odst = ip->ip_dst;
617 		if (pfil_run_hooks(&inet_pfil_hook, &m,
618 		    m->m_pkthdr.rcvif, PFIL_IN)) {
619 			return;
620 		}
621 		if (m == NULL)			/* consumed by filter */
622 			return;
623 		ip = mtod(m, struct ip *);
624 		using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
625 	}
626 
627 	if (fw_enable && IPFW_LOADED) {
628 		/*
629 		 * If we've been forwarded from the output side, then
630 		 * skip the firewall a second time
631 		 */
632 		if (args.next_hop != NULL)
633 			goto ours;
634 
635 		args.m = m;
636 		i = ip_fw_chk_ptr(&args);
637 		m = args.m;
638 
639 		if ((i & IP_FW_PORT_DENY_FLAG) || m == NULL) {	/* drop */
640 			if (m != NULL)
641 				m_freem(m);
642 			return;
643 		}
644 		ip = mtod(m, struct ip *);	/* just in case m changed */
645 		if (i == 0 && args.next_hop == NULL)	/* common case */
646 			goto pass;
647 		if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG)) {
648 			/* Send packet to the appropriate pipe */
649 			ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
650 			return;
651 		}
652 #ifdef IPDIVERT
653 		if (i != 0 && !(i & IP_FW_PORT_DYNT_FLAG)) {
654 			/* Divert or tee packet */
655 			divert_info = i;
656 			goto ours;
657 		}
658 #endif
659 		if (i == 0 && args.next_hop != NULL)
660 			goto pass;
661 		/*
662 		 * if we get here, the packet must be dropped
663 		 */
664 		m_freem(m);
665 		return;
666 	}
667 pass:
668 
669 	/*
670 	 * Process options and, if not destined for us,
671 	 * ship it on.  ip_dooptions returns 1 when an
672 	 * error was detected (causing an icmp message
673 	 * to be sent and the original packet to be freed).
674 	 */
675 	ip_nhops = 0;		/* for source routed packets */
676 	if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, args.next_hop))
677 		return;
678 
679 	/* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
680 	 * matter if it is destined to another node, or whether it is
681 	 * a multicast one, RSVP wants it! and prevents it from being forwarded
682 	 * anywhere else. Also checks if the rsvp daemon is running before
683 	 * grabbing the packet.
684 	 */
685 	if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
686 		goto ours;
687 
688 	/*
689 	 * Check our list of addresses, to see if the packet is for us.
690 	 * If we don't have any addresses, assume any unicast packet
691 	 * we receive might be for us (and let the upper layers deal
692 	 * with it).
693 	 */
694 	if (TAILQ_EMPTY(&in_ifaddrhead) && !(m->m_flags & (M_MCAST | M_BCAST)))
695 		goto ours;
696 
697 	/*
698 	 * Cache the destination address of the packet; this may be
699 	 * changed by use of 'ipfw fwd'.
700 	 */
701 	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
702 
703 	/*
704 	 * Enable a consistency check between the destination address
705 	 * and the arrival interface for a unicast packet (the RFC 1122
706 	 * strong ES model) if IP forwarding is disabled and the packet
707 	 * is not locally generated and the packet is not subject to
708 	 * 'ipfw fwd'.
709 	 *
710 	 * XXX - Checking also should be disabled if the destination
711 	 * address is ipnat'ed to a different interface.
712 	 *
713 	 * XXX - Checking is incompatible with IP aliases added
714 	 * to the loopback interface instead of the interface where
715 	 * the packets are received.
716 	 */
717 	checkif = ip_checkinterface &&
718 		  !ipforwarding &&
719 		  m->m_pkthdr.rcvif != NULL &&
720 		  !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
721 		  (args.next_hop == NULL);
722 
723 	/*
724 	 * Check for exact addresses in the hash bucket.
725 	 */
726 	LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
727 		/*
728 		 * If the address matches, verify that the packet
729 		 * arrived via the correct interface if checking is
730 		 * enabled.
731 		 */
732 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
733 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
734 			goto ours;
735 	}
736 	/*
737 	 * Check for broadcast addresses.
738 	 *
739 	 * Only accept broadcast packets that arrive via the matching
740 	 * interface.  Reception of forwarded directed broadcasts would
741 	 * be handled via ip_forward() and ether_output() with the loopback
742 	 * into the stack for SIMPLEX interfaces handled by ether_output().
743 	 */
744 	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
745 		TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
746 			if (ifa->ifa_addr == NULL) /* shutdown/startup race */
747 				continue;
748 			if (ifa->ifa_addr->sa_family != AF_INET)
749 				continue;
750 			ia = ifatoia(ifa);
751 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
752 								pkt_dst.s_addr)
753 				goto ours;
754 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
755 				goto ours;
756 #ifdef BOOTP_COMPAT
757 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
758 				goto ours;
759 #endif
760 		}
761 	}
762 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
763 		struct in_multi *inm;
764 
765 		if (ip_mrouter != NULL) {
766 			/*
767 			 * If we are acting as a multicast router, all
768 			 * incoming multicast packets are passed to the
769 			 * kernel-level multicast forwarding function.
770 			 * The packet is returned (relatively) intact; if
771 			 * ip_mforward() returns a non-zero value, the packet
772 			 * must be discarded, else it may be accepted below.
773 			 */
774 			if (ip_mforward != NULL &&
775 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
776 				ipstat.ips_cantforward++;
777 				m_freem(m);
778 				return;
779 			}
780 
781 			/*
782 			 * The process-level routing daemon needs to receive
783 			 * all multicast IGMP packets, whether or not this
784 			 * host belongs to their destination groups.
785 			 */
786 			if (ip->ip_p == IPPROTO_IGMP)
787 				goto ours;
788 			ipstat.ips_forward++;
789 		}
790 		/*
791 		 * See if we belong to the destination multicast group on the
792 		 * arrival interface.
793 		 */
794 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
795 		if (inm == NULL) {
796 			ipstat.ips_notmember++;
797 			m_freem(m);
798 			return;
799 		}
800 		goto ours;
801 	}
802 	if (ip->ip_dst.s_addr == INADDR_BROADCAST)
803 		goto ours;
804 	if (ip->ip_dst.s_addr == INADDR_ANY)
805 		goto ours;
806 
807 	/*
808 	 * FAITH(Firewall Aided Internet Translator)
809 	 */
810 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
811 		if (ip_keepfaith) {
812 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
813 				goto ours;
814 		}
815 		m_freem(m);
816 		return;
817 	}
818 
819 	/*
820 	 * Not for us; forward if possible and desirable.
821 	 */
822 	if (!ipforwarding) {
823 		ipstat.ips_cantforward++;
824 		m_freem(m);
825 	} else {
826 #ifdef IPSEC
827 		/*
828 		 * Enforce inbound IPsec SPD.
829 		 */
830 		if (ipsec4_in_reject(m, NULL)) {
831 			ipsecstat.in_polvio++;
832 			goto bad;
833 		}
834 #endif
835 #ifdef FAST_IPSEC
836 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
837 		s = splnet();
838 		if (mtag != NULL) {
839 			tdbi = (struct tdb_ident *)(mtag + 1);
840 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
841 		} else {
842 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
843 						   IP_FORWARDING, &error);
844 		}
845 		if (sp == NULL) {	/* NB: can happen if error */
846 			splx(s);
847 			/*XXX error stat???*/
848 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
849 			goto bad;
850 		}
851 
852 		/*
853 		 * Check security policy against packet attributes.
854 		 */
855 		error = ipsec_in_reject(sp, m);
856 		KEY_FREESP(&sp);
857 		splx(s);
858 		if (error) {
859 			ipstat.ips_cantforward++;
860 			goto bad;
861 		}
862 #endif
863 		ip_forward(m, using_srcrt, args.next_hop);
864 	}
865 	return;
866 
867 ours:
868 
869 	/*
870 	 * IPSTEALTH: Process non-routing options only
871 	 * if the packet is destined for us.
872 	 */
873 	if (ipstealth &&
874 	    hlen > sizeof(struct ip) &&
875 	    ip_dooptions(m, 1, args.next_hop))
876 		return;
877 
878 	/* Count the packet in the ip address stats */
879 	if (ia != NULL) {
880 		ia->ia_ifa.if_ipackets++;
881 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
882 	}
883 
884 	/*
885 	 * If offset or IP_MF are set, must reassemble.
886 	 * Otherwise, nothing need be done.
887 	 * (We could look in the reassembly queue to see
888 	 * if the packet was previously fragmented,
889 	 * but it's not worth the time; just let them time out.)
890 	 */
891 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
892 
893 		/* If maxnipq is 0, never accept fragments. */
894 		if (maxnipq == 0) {
895 			ipstat.ips_fragments++;
896 			ipstat.ips_fragdropped++;
897 			goto bad;
898 		}
899 
900 		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
901 		/*
902 		 * Look for queue of fragments
903 		 * of this datagram.
904 		 */
905 		for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
906 			if (ip->ip_id == fp->ipq_id &&
907 			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
908 			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
909 			    ip->ip_p == fp->ipq_p)
910 				goto found;
911 
912 		fp = NULL;
913 
914 		/*
915 		 * Enforce upper bound on number of fragmented packets
916 		 * for which we attempt reassembly;
917 		 * If maxnipq is -1, accept all fragments without limitation.
918 		 */
919 		if ((nipq > maxnipq) && (maxnipq > 0)) {
920 			/*
921 			 * drop something from the tail of the current queue
922 			 * before proceeding further
923 			 */
924 			if (ipq[sum].prev == &ipq[sum]) {   /* gak */
925 				for (i = 0; i < IPREASS_NHASH; i++) {
926 					if (ipq[i].prev != &ipq[i]) {
927 						ipstat.ips_fragtimeout +=
928 						    ipq[i].prev->ipq_nfrags;
929 						ip_freef(ipq[i].prev);
930 						break;
931 					}
932 				}
933 			} else {
934 				ipstat.ips_fragtimeout +=
935 				    ipq[sum].prev->ipq_nfrags;
936 				ip_freef(ipq[sum].prev);
937 			}
938 		}
939 found:
940 		/*
941 		 * Adjust ip_len to not reflect header,
942 		 * convert offset of this to bytes.
943 		 */
944 		ip->ip_len -= hlen;
945 		if (ip->ip_off & IP_MF) {
946 			/*
947 			 * Make sure that fragments have a data length
948 			 * that's a non-zero multiple of 8 bytes.
949 			 */
950 			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
951 				ipstat.ips_toosmall++; /* XXX */
952 				goto bad;
953 			}
954 			m->m_flags |= M_FRAG;
955 		} else
956 			m->m_flags &= ~M_FRAG;
957 		ip->ip_off <<= 3;
958 
959 		/*
960 		 * Attempt reassembly; if it succeeds, proceed.
961 		 * ip_reass() will return a different mbuf, and update
962 		 * the divert info in divert_info.
963 		 */
964 		ipstat.ips_fragments++;
965 		m->m_pkthdr.header = ip;
966 		m = ip_reass(m, fp, &ipq[sum], &divert_info);
967 		if (m == NULL)
968 			return;
969 		ipstat.ips_reassembled++;
970 		needredispatch = TRUE;
971 		ip = mtod(m, struct ip *);
972 		/* Get the header length of the reassembled packet */
973 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
974 #ifdef IPDIVERT
975 		/* Restore original checksum before diverting packet */
976 		if (divert_info != 0) {
977 			ip->ip_len += hlen;
978 			ip->ip_len = htons(ip->ip_len);
979 			ip->ip_off = htons(ip->ip_off);
980 			ip->ip_sum = 0;
981 			if (hlen == sizeof(struct ip))
982 				ip->ip_sum = in_cksum_hdr(ip);
983 			else
984 				ip->ip_sum = in_cksum(m, hlen);
985 			ip->ip_off = ntohs(ip->ip_off);
986 			ip->ip_len = ntohs(ip->ip_len);
987 			ip->ip_len -= hlen;
988 		}
989 #endif
990 	} else {
991 		ip->ip_len -= hlen;
992 	}
993 
994 #ifdef IPDIVERT
995 	/*
996 	 * Divert or tee packet to the divert protocol if required.
997 	 */
998 	if (divert_info != 0) {
999 		struct mbuf *clone = NULL;
1000 
1001 		/* Clone packet if we're doing a 'tee' */
1002 		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
1003 			clone = m_dup(m, MB_DONTWAIT);
1004 
1005 		/* Restore packet header fields to original values */
1006 		ip->ip_len += hlen;
1007 		ip->ip_len = htons(ip->ip_len);
1008 		ip->ip_off = htons(ip->ip_off);
1009 
1010 		/* Deliver packet to divert input routine */
1011 		divert_packet(m, 1, divert_info & 0xffff);
1012 		ipstat.ips_delivered++;
1013 
1014 		/* If 'tee', continue with original packet */
1015 		if (clone == NULL)
1016 			return;
1017 		m = clone;
1018 		ip = mtod(m, struct ip *);
1019 		ip->ip_len += hlen;
1020 		/*
1021 		 * Jump backwards to complete processing of the
1022 		 * packet. But first clear divert_info to avoid
1023 		 * entering this block again.
1024 		 * We do not need to clear args.divert_rule
1025 		 * or args.next_hop as they will not be used.
1026 		 *
1027 		 * XXX Better safe than sorry, remove the DIVERT tag.
1028 		 */
1029 		mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL);
1030 		if (mtag != NULL)
1031 			m_tag_delete(m, mtag);
1032 
1033 		divert_info = 0;
1034 		goto pass;
1035 	}
1036 #endif
1037 
1038 #ifdef IPSEC
1039 	/*
1040 	 * enforce IPsec policy checking if we are seeing last header.
1041 	 * note that we do not visit this with protocols with pcb layer
1042 	 * code - like udp/tcp/raw ip.
1043 	 */
1044 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
1045 	    ipsec4_in_reject(m, NULL)) {
1046 		ipsecstat.in_polvio++;
1047 		goto bad;
1048 	}
1049 #endif
1050 #if FAST_IPSEC
1051 	/*
1052 	 * enforce IPsec policy checking if we are seeing last header.
1053 	 * note that we do not visit this with protocols with pcb layer
1054 	 * code - like udp/tcp/raw ip.
1055 	 */
1056 	if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
1057 		/*
1058 		 * Check if the packet has already had IPsec processing
1059 		 * done.  If so, then just pass it along.  This tag gets
1060 		 * set during AH, ESP, etc. input handling, before the
1061 		 * packet is returned to the ip input queue for delivery.
1062 		 */
1063 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
1064 		s = splnet();
1065 		if (mtag != NULL) {
1066 			tdbi = (struct tdb_ident *)(mtag + 1);
1067 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
1068 		} else {
1069 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1070 						   IP_FORWARDING, &error);
1071 		}
1072 		if (sp != NULL) {
1073 			/*
1074 			 * Check security policy against packet attributes.
1075 			 */
1076 			error = ipsec_in_reject(sp, m);
1077 			KEY_FREESP(&sp);
1078 		} else {
1079 			/* XXX error stat??? */
1080 			error = EINVAL;
1081 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1082 			goto bad;
1083 		}
1084 		splx(s);
1085 		if (error)
1086 			goto bad;
1087 	}
1088 #endif /* FAST_IPSEC */
1089 
1090 	ipstat.ips_delivered++;
1091 	if (needredispatch) {
1092 		struct netmsg_transport_packet *msg;
1093 		lwkt_port_t port;
1094 
1095 		msg = malloc(sizeof(struct netmsg_transport_packet),
1096 				M_LWKTMSG, M_INTWAIT | M_NULLOK);
1097 		if (msg == NULL)
1098 			goto bad;
1099 
1100 		lwkt_initmsg(&msg->nm_lmsg, &netisr_afree_rport, 0,
1101 			lwkt_cmd_func(transport_processing_handler),
1102 			lwkt_cmd_op_none);
1103 		msg->nm_hlen = hlen;
1104 		msg->nm_hasnexthop = (args.next_hop != NULL);
1105 		if (msg->nm_hasnexthop)
1106 			msg->nm_nexthop = *args.next_hop;  /* structure copy */
1107 
1108 		ip->ip_off = htons(ip->ip_off);
1109 		ip->ip_len = htons(ip->ip_len);
1110 		port = ip_mport(&m);
1111 		if (port) {
1112 		    msg->nm_mbuf = m;
1113 		    ip = mtod(m, struct ip *);
1114 		    ip->ip_len = ntohs(ip->ip_len);
1115 		    ip->ip_off = ntohs(ip->ip_off);
1116 		    lwkt_sendmsg(port, &msg->nm_lmsg);
1117 		}
1118 	} else {
1119 		transport_processing_oncpu(m, hlen, ip, args.next_hop);
1120 	}
1121 	return;
1122 
1123 bad:
1124 	m_freem(m);
1125 }
1126 
1127 /*
1128  * Take incoming datagram fragment and try to reassemble it into
1129  * whole datagram.  If a chain for reassembly of this datagram already
1130  * exists, then it is given as fp; otherwise have to make a chain.
1131  *
1132  * When IPDIVERT enabled, keep additional state with each packet that
1133  * tells us if we need to divert or tee the packet we're building.
1134  * In particular, *divinfo includes the port and TEE flag.
1135  */
1136 
1137 static struct mbuf *
1138 ip_reass(struct mbuf *m, struct ipq *fp, struct ipq *where,
1139 	 u_int32_t *divinfo)
1140 {
1141 	struct ip *ip = mtod(m, struct ip *);
1142 	struct mbuf *p = NULL, *q, *nq;
1143 	struct mbuf *n;
1144 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1145 	int i, next;
1146 #ifdef IPDIVERT
1147 	struct m_tag *mtag;
1148 #endif
1149 
1150 	/*
1151 	 * Presence of header sizes in mbufs
1152 	 * would confuse code below.
1153 	 */
1154 	m->m_data += hlen;
1155 	m->m_len -= hlen;
1156 
1157 	/*
1158 	 * If first fragment to arrive, create a reassembly queue.
1159 	 */
1160 	if (fp == NULL) {
1161 		if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1162 			goto dropfrag;
1163 		insque(fp, where);
1164 		nipq++;
1165 		fp->ipq_nfrags = 1;
1166 		fp->ipq_ttl = IPFRAGTTL;
1167 		fp->ipq_p = ip->ip_p;
1168 		fp->ipq_id = ip->ip_id;
1169 		fp->ipq_src = ip->ip_src;
1170 		fp->ipq_dst = ip->ip_dst;
1171 		fp->ipq_frags = m;
1172 		m->m_nextpkt = NULL;
1173 #ifdef IPDIVERT
1174 		fp->ipq_div_info = 0;
1175 #endif
1176 		goto inserted;
1177 	} else {
1178 		fp->ipq_nfrags++;
1179 	}
1180 
1181 #define	GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1182 
1183 	/*
1184 	 * Find a segment which begins after this one does.
1185 	 */
1186 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1187 		if (GETIP(q)->ip_off > ip->ip_off)
1188 			break;
1189 
1190 	/*
1191 	 * If there is a preceding segment, it may provide some of
1192 	 * our data already.  If so, drop the data from the incoming
1193 	 * segment.  If it provides all of our data, drop us, otherwise
1194 	 * stick new segment in the proper place.
1195 	 *
1196 	 * If some of the data is dropped from the the preceding
1197 	 * segment, then it's checksum is invalidated.
1198 	 */
1199 	if (p) {
1200 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1201 		if (i > 0) {
1202 			if (i >= ip->ip_len)
1203 				goto dropfrag;
1204 			m_adj(m, i);
1205 			m->m_pkthdr.csum_flags = 0;
1206 			ip->ip_off += i;
1207 			ip->ip_len -= i;
1208 		}
1209 		m->m_nextpkt = p->m_nextpkt;
1210 		p->m_nextpkt = m;
1211 	} else {
1212 		m->m_nextpkt = fp->ipq_frags;
1213 		fp->ipq_frags = m;
1214 	}
1215 
1216 	/*
1217 	 * While we overlap succeeding segments trim them or,
1218 	 * if they are completely covered, dequeue them.
1219 	 */
1220 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1221 	     q = nq) {
1222 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1223 		if (i < GETIP(q)->ip_len) {
1224 			GETIP(q)->ip_len -= i;
1225 			GETIP(q)->ip_off += i;
1226 			m_adj(q, i);
1227 			q->m_pkthdr.csum_flags = 0;
1228 			break;
1229 		}
1230 		nq = q->m_nextpkt;
1231 		m->m_nextpkt = nq;
1232 		ipstat.ips_fragdropped++;
1233 		fp->ipq_nfrags--;
1234 		m_freem(q);
1235 	}
1236 
1237 inserted:
1238 
1239 #ifdef IPDIVERT
1240 	/*
1241 	 * Transfer firewall instructions to the fragment structure.
1242 	 * Only trust info in the fragment at offset 0.
1243 	 */
1244 	if (ip->ip_off == 0) {
1245 		fp->ipq_div_info = *divinfo;
1246 	} else {
1247 		mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL);
1248 		if (mtag != NULL)
1249 			m_tag_delete(m, mtag);
1250 	}
1251 	*divinfo = 0;
1252 #endif
1253 
1254 	/*
1255 	 * Check for complete reassembly and perform frag per packet
1256 	 * limiting.
1257 	 *
1258 	 * Frag limiting is performed here so that the nth frag has
1259 	 * a chance to complete the packet before we drop the packet.
1260 	 * As a result, n+1 frags are actually allowed per packet, but
1261 	 * only n will ever be stored. (n = maxfragsperpacket.)
1262 	 *
1263 	 */
1264 	next = 0;
1265 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1266 		if (GETIP(q)->ip_off != next) {
1267 			if (fp->ipq_nfrags > maxfragsperpacket) {
1268 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1269 				ip_freef(fp);
1270 			}
1271 			return (NULL);
1272 		}
1273 		next += GETIP(q)->ip_len;
1274 	}
1275 	/* Make sure the last packet didn't have the IP_MF flag */
1276 	if (p->m_flags & M_FRAG) {
1277 		if (fp->ipq_nfrags > maxfragsperpacket) {
1278 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1279 			ip_freef(fp);
1280 		}
1281 		return (NULL);
1282 	}
1283 
1284 	/*
1285 	 * Reassembly is complete.  Make sure the packet is a sane size.
1286 	 */
1287 	q = fp->ipq_frags;
1288 	ip = GETIP(q);
1289 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1290 		ipstat.ips_toolong++;
1291 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1292 		ip_freef(fp);
1293 		return (NULL);
1294 	}
1295 
1296 	/*
1297 	 * Concatenate fragments.
1298 	 */
1299 	m = q;
1300 	n = m->m_next;
1301 	m->m_next = NULL;
1302 	m_cat(m, n);
1303 	nq = q->m_nextpkt;
1304 	q->m_nextpkt = NULL;
1305 	for (q = nq; q != NULL; q = nq) {
1306 		nq = q->m_nextpkt;
1307 		q->m_nextpkt = NULL;
1308 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1309 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1310 		m_cat(m, q);
1311 	}
1312 
1313 #ifdef IPDIVERT
1314 	/*
1315 	 * Extract firewall instructions from the fragment structure.
1316 	 */
1317 	*divinfo = fp->ipq_div_info;
1318 #endif
1319 
1320 	/*
1321 	 * Create header for new ip packet by
1322 	 * modifying header of first packet;
1323 	 * dequeue and discard fragment reassembly header.
1324 	 * Make header visible.
1325 	 */
1326 	ip->ip_len = next;
1327 	ip->ip_src = fp->ipq_src;
1328 	ip->ip_dst = fp->ipq_dst;
1329 	remque(fp);
1330 	nipq--;
1331 	mpipe_free(&ipq_mpipe, fp);
1332 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1333 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1334 	/* some debugging cruft by sklower, below, will go away soon */
1335 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1336 		int plen = 0;
1337 
1338 		for (n = m; n; n = n->m_next)
1339 			plen += n->m_len;
1340 		m->m_pkthdr.len = plen;
1341 	}
1342 	return (m);
1343 
1344 dropfrag:
1345 #ifdef IPDIVERT
1346 	*divinfo = 0;
1347 #endif
1348 	ipstat.ips_fragdropped++;
1349 	if (fp != NULL)
1350 		fp->ipq_nfrags--;
1351 	m_freem(m);
1352 	return (NULL);
1353 
1354 #undef GETIP
1355 }
1356 
1357 /*
1358  * Free a fragment reassembly header and all
1359  * associated datagrams.
1360  */
1361 static void
1362 ip_freef(struct ipq *fp)
1363 {
1364 	struct mbuf *q;
1365 
1366 	while (fp->ipq_frags) {
1367 		q = fp->ipq_frags;
1368 		fp->ipq_frags = q->m_nextpkt;
1369 		m_freem(q);
1370 	}
1371 	remque(fp);
1372 	mpipe_free(&ipq_mpipe, fp);
1373 	nipq--;
1374 }
1375 
1376 /*
1377  * IP timer processing;
1378  * if a timer expires on a reassembly
1379  * queue, discard it.
1380  */
1381 void
1382 ip_slowtimo(void)
1383 {
1384 	struct ipq *fp;
1385 	int s = splnet();
1386 	int i;
1387 
1388 	for (i = 0; i < IPREASS_NHASH; i++) {
1389 		fp = ipq[i].next;
1390 		if (fp == NULL)
1391 			continue;
1392 		while (fp != &ipq[i]) {
1393 			--fp->ipq_ttl;
1394 			fp = fp->next;
1395 			if (fp->prev->ipq_ttl == 0) {
1396 				ipstat.ips_fragtimeout += fp->prev->ipq_nfrags;
1397 				ip_freef(fp->prev);
1398 			}
1399 		}
1400 	}
1401 	/*
1402 	 * If we are over the maximum number of fragments
1403 	 * (due to the limit being lowered), drain off
1404 	 * enough to get down to the new limit.
1405 	 */
1406 	if (maxnipq >= 0 && nipq > maxnipq) {
1407 		for (i = 0; i < IPREASS_NHASH; i++) {
1408 			while (nipq > maxnipq &&
1409 				(ipq[i].next != &ipq[i])) {
1410 				ipstat.ips_fragdropped +=
1411 				    ipq[i].next->ipq_nfrags;
1412 				ip_freef(ipq[i].next);
1413 			}
1414 		}
1415 	}
1416 	ipflow_slowtimo();
1417 	splx(s);
1418 }
1419 
1420 /*
1421  * Drain off all datagram fragments.
1422  */
1423 void
1424 ip_drain(void)
1425 {
1426 	int i;
1427 
1428 	for (i = 0; i < IPREASS_NHASH; i++) {
1429 		while (ipq[i].next != &ipq[i]) {
1430 			ipstat.ips_fragdropped += ipq[i].next->ipq_nfrags;
1431 			ip_freef(ipq[i].next);
1432 		}
1433 	}
1434 	in_rtqdrain();
1435 }
1436 
1437 /*
1438  * Do option processing on a datagram,
1439  * possibly discarding it if bad options are encountered,
1440  * or forwarding it if source-routed.
1441  * The pass argument is used when operating in the IPSTEALTH
1442  * mode to tell what options to process:
1443  * [LS]SRR (pass 0) or the others (pass 1).
1444  * The reason for as many as two passes is that when doing IPSTEALTH,
1445  * non-routing options should be processed only if the packet is for us.
1446  * Returns 1 if packet has been forwarded/freed,
1447  * 0 if the packet should be processed further.
1448  */
1449 static int
1450 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1451 {
1452 	struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1453 	struct ip *ip = mtod(m, struct ip *);
1454 	u_char *cp;
1455 	struct in_ifaddr *ia;
1456 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1457 	boolean_t forward = FALSE;
1458 	struct in_addr *sin, dst;
1459 	n_time ntime;
1460 
1461 	dst = ip->ip_dst;
1462 	cp = (u_char *)(ip + 1);
1463 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1464 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1465 		opt = cp[IPOPT_OPTVAL];
1466 		if (opt == IPOPT_EOL)
1467 			break;
1468 		if (opt == IPOPT_NOP)
1469 			optlen = 1;
1470 		else {
1471 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1472 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1473 				goto bad;
1474 			}
1475 			optlen = cp[IPOPT_OLEN];
1476 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1477 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1478 				goto bad;
1479 			}
1480 		}
1481 		switch (opt) {
1482 
1483 		default:
1484 			break;
1485 
1486 		/*
1487 		 * Source routing with record.
1488 		 * Find interface with current destination address.
1489 		 * If none on this machine then drop if strictly routed,
1490 		 * or do nothing if loosely routed.
1491 		 * Record interface address and bring up next address
1492 		 * component.  If strictly routed make sure next
1493 		 * address is on directly accessible net.
1494 		 */
1495 		case IPOPT_LSRR:
1496 		case IPOPT_SSRR:
1497 			if (ipstealth && pass > 0)
1498 				break;
1499 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1500 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1501 				goto bad;
1502 			}
1503 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1504 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1505 				goto bad;
1506 			}
1507 			ipaddr.sin_addr = ip->ip_dst;
1508 			ia = (struct in_ifaddr *)
1509 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1510 			if (ia == NULL) {
1511 				if (opt == IPOPT_SSRR) {
1512 					type = ICMP_UNREACH;
1513 					code = ICMP_UNREACH_SRCFAIL;
1514 					goto bad;
1515 				}
1516 				if (!ip_dosourceroute)
1517 					goto nosourcerouting;
1518 				/*
1519 				 * Loose routing, and not at next destination
1520 				 * yet; nothing to do except forward.
1521 				 */
1522 				break;
1523 			}
1524 			off--;			/* 0 origin */
1525 			if (off > optlen - (int)sizeof(struct in_addr)) {
1526 				/*
1527 				 * End of source route.  Should be for us.
1528 				 */
1529 				if (!ip_acceptsourceroute)
1530 					goto nosourcerouting;
1531 				save_rte(cp, ip->ip_src);
1532 				break;
1533 			}
1534 			if (ipstealth)
1535 				goto dropit;
1536 			if (!ip_dosourceroute) {
1537 				if (ipforwarding) {
1538 					char buf[sizeof "aaa.bbb.ccc.ddd"];
1539 
1540 					/*
1541 					 * Acting as a router, so generate ICMP
1542 					 */
1543 nosourcerouting:
1544 					strcpy(buf, inet_ntoa(ip->ip_dst));
1545 					log(LOG_WARNING,
1546 					    "attempted source route from %s to %s\n",
1547 					    inet_ntoa(ip->ip_src), buf);
1548 					type = ICMP_UNREACH;
1549 					code = ICMP_UNREACH_SRCFAIL;
1550 					goto bad;
1551 				} else {
1552 					/*
1553 					 * Not acting as a router,
1554 					 * so silently drop.
1555 					 */
1556 dropit:
1557 					ipstat.ips_cantforward++;
1558 					m_freem(m);
1559 					return (1);
1560 				}
1561 			}
1562 
1563 			/*
1564 			 * locate outgoing interface
1565 			 */
1566 			memcpy(&ipaddr.sin_addr, cp + off,
1567 			    sizeof ipaddr.sin_addr);
1568 
1569 			if (opt == IPOPT_SSRR) {
1570 #define	INA	struct in_ifaddr *
1571 #define	SA	struct sockaddr *
1572 				if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1573 									== NULL)
1574 					ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1575 			} else
1576 				ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt);
1577 			if (ia == NULL) {
1578 				type = ICMP_UNREACH;
1579 				code = ICMP_UNREACH_SRCFAIL;
1580 				goto bad;
1581 			}
1582 			ip->ip_dst = ipaddr.sin_addr;
1583 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1584 			    sizeof(struct in_addr));
1585 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1586 			/*
1587 			 * Let ip_intr's mcast routing check handle mcast pkts
1588 			 */
1589 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1590 			break;
1591 
1592 		case IPOPT_RR:
1593 			if (ipstealth && pass == 0)
1594 				break;
1595 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1596 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1597 				goto bad;
1598 			}
1599 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1600 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1601 				goto bad;
1602 			}
1603 			/*
1604 			 * If no space remains, ignore.
1605 			 */
1606 			off--;			/* 0 origin */
1607 			if (off > optlen - (int)sizeof(struct in_addr))
1608 				break;
1609 			memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1610 			    sizeof ipaddr.sin_addr);
1611 			/*
1612 			 * locate outgoing interface; if we're the destination,
1613 			 * use the incoming interface (should be same).
1614 			 */
1615 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1616 			    (ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt))
1617 								     == NULL) {
1618 				type = ICMP_UNREACH;
1619 				code = ICMP_UNREACH_HOST;
1620 				goto bad;
1621 			}
1622 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1623 			    sizeof(struct in_addr));
1624 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1625 			break;
1626 
1627 		case IPOPT_TS:
1628 			if (ipstealth && pass == 0)
1629 				break;
1630 			code = cp - (u_char *)ip;
1631 			if (optlen < 4 || optlen > 40) {
1632 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1633 				goto bad;
1634 			}
1635 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1636 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1637 				goto bad;
1638 			}
1639 			if (off > optlen - (int)sizeof(int32_t)) {
1640 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1641 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1642 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1643 					goto bad;
1644 				}
1645 				break;
1646 			}
1647 			off--;				/* 0 origin */
1648 			sin = (struct in_addr *)(cp + off);
1649 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1650 
1651 			case IPOPT_TS_TSONLY:
1652 				break;
1653 
1654 			case IPOPT_TS_TSANDADDR:
1655 				if (off + sizeof(n_time) +
1656 				    sizeof(struct in_addr) > optlen) {
1657 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1658 					goto bad;
1659 				}
1660 				ipaddr.sin_addr = dst;
1661 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1662 							    m->m_pkthdr.rcvif);
1663 				if (ia == NULL)
1664 					continue;
1665 				memcpy(sin, &IA_SIN(ia)->sin_addr,
1666 				    sizeof(struct in_addr));
1667 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1668 				off += sizeof(struct in_addr);
1669 				break;
1670 
1671 			case IPOPT_TS_PRESPEC:
1672 				if (off + sizeof(n_time) +
1673 				    sizeof(struct in_addr) > optlen) {
1674 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1675 					goto bad;
1676 				}
1677 				memcpy(&ipaddr.sin_addr, sin,
1678 				    sizeof(struct in_addr));
1679 				if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1680 					continue;
1681 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1682 				off += sizeof(struct in_addr);
1683 				break;
1684 
1685 			default:
1686 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1687 				goto bad;
1688 			}
1689 			ntime = iptime();
1690 			memcpy(cp + off, &ntime, sizeof(n_time));
1691 			cp[IPOPT_OFFSET] += sizeof(n_time);
1692 		}
1693 	}
1694 	if (forward && ipforwarding) {
1695 		ip_forward(m, TRUE, next_hop);
1696 		return (1);
1697 	}
1698 	return (0);
1699 bad:
1700 	icmp_error(m, type, code, 0, NULL);
1701 	ipstat.ips_badoptions++;
1702 	return (1);
1703 }
1704 
1705 /*
1706  * Given address of next destination (final or next hop),
1707  * return internet address info of interface to be used to get there.
1708  */
1709 struct in_ifaddr *
1710 ip_rtaddr(struct in_addr dst, struct route *ro)
1711 {
1712 	struct sockaddr_in *sin;
1713 
1714 	sin = (struct sockaddr_in *)&ro->ro_dst;
1715 
1716 	if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1717 		if (ro->ro_rt != NULL) {
1718 			RTFREE(ro->ro_rt);
1719 			ro->ro_rt = NULL;
1720 		}
1721 		sin->sin_family = AF_INET;
1722 		sin->sin_len = sizeof *sin;
1723 		sin->sin_addr = dst;
1724 		rtalloc_ign(ro, RTF_PRCLONING);
1725 	}
1726 
1727 	if (ro->ro_rt == NULL)
1728 		return (NULL);
1729 
1730 	return (ifatoia(ro->ro_rt->rt_ifa));
1731 }
1732 
1733 /*
1734  * Save incoming source route for use in replies,
1735  * to be picked up later by ip_srcroute if the receiver is interested.
1736  */
1737 void
1738 save_rte(u_char *option, struct in_addr dst)
1739 {
1740 	unsigned olen;
1741 
1742 	olen = option[IPOPT_OLEN];
1743 #ifdef DIAGNOSTIC
1744 	if (ipprintfs)
1745 		printf("save_rte: olen %d\n", olen);
1746 #endif
1747 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1748 		return;
1749 	bcopy(option, ip_srcrt.srcopt, olen);
1750 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1751 	ip_srcrt.dst = dst;
1752 }
1753 
1754 /*
1755  * Retrieve incoming source route for use in replies,
1756  * in the same form used by setsockopt.
1757  * The first hop is placed before the options, will be removed later.
1758  */
1759 struct mbuf *
1760 ip_srcroute(void)
1761 {
1762 	struct in_addr *p, *q;
1763 	struct mbuf *m;
1764 
1765 	if (ip_nhops == 0)
1766 		return (NULL);
1767 	m = m_get(MB_DONTWAIT, MT_HEADER);
1768 	if (m == NULL)
1769 		return (NULL);
1770 
1771 #define	OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1772 
1773 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1774 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1775 	    OPTSIZ;
1776 #ifdef DIAGNOSTIC
1777 	if (ipprintfs)
1778 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1779 #endif
1780 
1781 	/*
1782 	 * First save first hop for return route
1783 	 */
1784 	p = &ip_srcrt.route[ip_nhops - 1];
1785 	*(mtod(m, struct in_addr *)) = *p--;
1786 #ifdef DIAGNOSTIC
1787 	if (ipprintfs)
1788 		printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1789 #endif
1790 
1791 	/*
1792 	 * Copy option fields and padding (nop) to mbuf.
1793 	 */
1794 	ip_srcrt.nop = IPOPT_NOP;
1795 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1796 	memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &ip_srcrt.nop,
1797 	    OPTSIZ);
1798 	q = (struct in_addr *)(mtod(m, caddr_t) +
1799 	    sizeof(struct in_addr) + OPTSIZ);
1800 #undef OPTSIZ
1801 	/*
1802 	 * Record return path as an IP source route,
1803 	 * reversing the path (pointers are now aligned).
1804 	 */
1805 	while (p >= ip_srcrt.route) {
1806 #ifdef DIAGNOSTIC
1807 		if (ipprintfs)
1808 			printf(" %x", ntohl(q->s_addr));
1809 #endif
1810 		*q++ = *p--;
1811 	}
1812 	/*
1813 	 * Last hop goes to final destination.
1814 	 */
1815 	*q = ip_srcrt.dst;
1816 #ifdef DIAGNOSTIC
1817 	if (ipprintfs)
1818 		printf(" %x\n", ntohl(q->s_addr));
1819 #endif
1820 	return (m);
1821 }
1822 
1823 /*
1824  * Strip out IP options.
1825  */
1826 void
1827 ip_stripoptions(struct mbuf *m)
1828 {
1829 	int datalen;
1830 	struct ip *ip = mtod(m, struct ip *);
1831 	caddr_t opts;
1832 	int optlen;
1833 
1834 	optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1835 	opts = (caddr_t)(ip + 1);
1836 	datalen = m->m_len - (sizeof(struct ip) + optlen);
1837 	bcopy(opts + optlen, opts, datalen);
1838 	m->m_len -= optlen;
1839 	if (m->m_flags & M_PKTHDR)
1840 		m->m_pkthdr.len -= optlen;
1841 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1842 }
1843 
1844 u_char inetctlerrmap[PRC_NCMDS] = {
1845 	0,		0,		0,		0,
1846 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1847 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1848 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1849 	0,		0,		0,		0,
1850 	ENOPROTOOPT,	ECONNREFUSED
1851 };
1852 
1853 /*
1854  * Forward a packet.  If some error occurs return the sender
1855  * an icmp packet.  Note we can't always generate a meaningful
1856  * icmp message because icmp doesn't have a large enough repertoire
1857  * of codes and types.
1858  *
1859  * If not forwarding, just drop the packet.  This could be confusing
1860  * if ipforwarding was zero but some routing protocol was advancing
1861  * us as a gateway to somewhere.  However, we must let the routing
1862  * protocol deal with that.
1863  *
1864  * The using_srcrt parameter indicates whether the packet is being forwarded
1865  * via a source route.
1866  */
1867 static void
1868 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1869 {
1870 	struct ip *ip = mtod(m, struct ip *);
1871 	struct sockaddr_in *ipforward_rtaddr;
1872 	struct rtentry *rt;
1873 	int error, type = 0, code = 0;
1874 	struct mbuf *mcopy;
1875 	n_long dest;
1876 	struct in_addr pkt_dst;
1877 	struct ifnet *destifp;
1878 	struct m_hdr tag;
1879 #if defined(IPSEC) || defined(FAST_IPSEC)
1880 	struct ifnet dummyifp;
1881 #endif
1882 
1883 	dest = INADDR_ANY;
1884 	/*
1885 	 * Cache the destination address of the packet; this may be
1886 	 * changed by use of 'ipfw fwd'.
1887 	 */
1888 	pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1889 
1890 #ifdef DIAGNOSTIC
1891 	if (ipprintfs)
1892 		printf("forward: src %x dst %x ttl %x\n",
1893 		       ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1894 #endif
1895 
1896 	if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1897 		ipstat.ips_cantforward++;
1898 		m_freem(m);
1899 		return;
1900 	}
1901 	if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1902 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, NULL);
1903 		return;
1904 	}
1905 
1906 	ipforward_rtaddr = (struct sockaddr_in *) &ipforward_rt.ro_dst;
1907 	if (ipforward_rt.ro_rt == NULL ||
1908 	    ipforward_rtaddr->sin_addr.s_addr != pkt_dst.s_addr) {
1909 		if (ipforward_rt.ro_rt != NULL) {
1910 			RTFREE(ipforward_rt.ro_rt);
1911 			ipforward_rt.ro_rt = NULL;
1912 		}
1913 		ipforward_rtaddr->sin_family = AF_INET;
1914 		ipforward_rtaddr->sin_len = sizeof(struct sockaddr_in);
1915 		ipforward_rtaddr->sin_addr = pkt_dst;
1916 		rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1917 		if (ipforward_rt.ro_rt == NULL) {
1918 			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest,
1919 				   NULL);
1920 			return;
1921 		}
1922 	}
1923 	rt = ipforward_rt.ro_rt;
1924 
1925 	/*
1926 	 * Save the IP header and at most 8 bytes of the payload,
1927 	 * in case we need to generate an ICMP message to the src.
1928 	 *
1929 	 * XXX this can be optimized a lot by saving the data in a local
1930 	 * buffer on the stack (72 bytes at most), and only allocating the
1931 	 * mbuf if really necessary. The vast majority of the packets
1932 	 * are forwarded without having to send an ICMP back (either
1933 	 * because unnecessary, or because rate limited), so we are
1934 	 * really we are wasting a lot of work here.
1935 	 *
1936 	 * We don't use m_copy() because it might return a reference
1937 	 * to a shared cluster. Both this function and ip_output()
1938 	 * assume exclusive access to the IP header in `m', so any
1939 	 * data in a cluster may change before we reach icmp_error().
1940 	 */
1941 	MGET(mcopy, MB_DONTWAIT, m->m_type);
1942 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, MB_DONTWAIT)) {
1943 		/*
1944 		 * It's probably ok if the pkthdr dup fails (because
1945 		 * the deep copy of the tag chain failed), but for now
1946 		 * be conservative and just discard the copy since
1947 		 * code below may some day want the tags.
1948 		 */
1949 		m_free(mcopy);
1950 		mcopy = NULL;
1951 	}
1952 	if (mcopy != NULL) {
1953 		mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1954 		    (int)ip->ip_len);
1955 		mcopy->m_pkthdr.len = mcopy->m_len;
1956 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1957 	}
1958 
1959 	if (!ipstealth)
1960 		ip->ip_ttl -= IPTTLDEC;
1961 
1962 	/*
1963 	 * If forwarding packet using same interface that it came in on,
1964 	 * perhaps should send a redirect to sender to shortcut a hop.
1965 	 * Only send redirect if source is sending directly to us,
1966 	 * and if packet was not source routed (or has any options).
1967 	 * Also, don't send redirect if forwarding using a default route
1968 	 * or a route modified by a redirect.
1969 	 */
1970 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1971 	    !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
1972 	    satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
1973 	    ipsendredirects && !using_srcrt && next_hop == NULL) {
1974 		u_long src = ntohl(ip->ip_src.s_addr);
1975 		struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
1976 
1977 		if (rt_ifa != NULL &&
1978 		    (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
1979 			if (rt->rt_flags & RTF_GATEWAY)
1980 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1981 			else
1982 				dest = pkt_dst.s_addr;
1983 			/*
1984 			 * Router requirements says to only send
1985 			 * host redirects.
1986 			 */
1987 			type = ICMP_REDIRECT;
1988 			code = ICMP_REDIRECT_HOST;
1989 #ifdef DIAGNOSTIC
1990 			if (ipprintfs)
1991 				printf("redirect (%d) to %x\n", code, dest);
1992 #endif
1993 		}
1994 	}
1995 
1996 	if (next_hop != NULL) {
1997 		/* Pass IPFORWARD info if available */
1998 		tag.mh_type = MT_TAG;
1999 		tag.mh_flags = PACKET_TAG_IPFORWARD;
2000 		tag.mh_data = (caddr_t)next_hop;
2001 		tag.mh_next = m;
2002 		m = (struct mbuf *)&tag;
2003 	}
2004 
2005 	error = ip_output(m, NULL, &ipforward_rt, IP_FORWARDING, NULL, NULL);
2006 	if (error == 0) {
2007 		ipstat.ips_forward++;
2008 		if (type == 0) {
2009 			if (mcopy) {
2010 				ipflow_create(&ipforward_rt, mcopy);
2011 				m_freem(mcopy);
2012 			}
2013 			return;		/* most common case */
2014 		} else {
2015 			ipstat.ips_redirectsent++;
2016 		}
2017 	} else {
2018 		ipstat.ips_cantforward++;
2019 	}
2020 
2021 	if (mcopy == NULL)
2022 		return;
2023 
2024 	/*
2025 	 * Send ICMP message.
2026 	 */
2027 	destifp = NULL;
2028 
2029 	switch (error) {
2030 
2031 	case 0:				/* forwarded, but need redirect */
2032 		/* type, code set above */
2033 		break;
2034 
2035 	case ENETUNREACH:		/* shouldn't happen, checked above */
2036 	case EHOSTUNREACH:
2037 	case ENETDOWN:
2038 	case EHOSTDOWN:
2039 	default:
2040 		type = ICMP_UNREACH;
2041 		code = ICMP_UNREACH_HOST;
2042 		break;
2043 
2044 	case EMSGSIZE:
2045 		type = ICMP_UNREACH;
2046 		code = ICMP_UNREACH_NEEDFRAG;
2047 #ifdef IPSEC
2048 		/*
2049 		 * If the packet is routed over IPsec tunnel, tell the
2050 		 * originator the tunnel MTU.
2051 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2052 		 * XXX quickhack!!!
2053 		 */
2054 		if (ipforward_rt.ro_rt != NULL) {
2055 			struct secpolicy *sp = NULL;
2056 			int ipsecerror;
2057 			int ipsechdr;
2058 			struct route *ro;
2059 
2060 			sp = ipsec4_getpolicybyaddr(mcopy,
2061 						    IPSEC_DIR_OUTBOUND,
2062 						    IP_FORWARDING,
2063 						    &ipsecerror);
2064 
2065 			if (sp == NULL)
2066 				destifp = ipforward_rt.ro_rt->rt_ifp;
2067 			else {
2068 				/* count IPsec header size */
2069 				ipsechdr = ipsec4_hdrsiz(mcopy,
2070 							 IPSEC_DIR_OUTBOUND,
2071 							 NULL);
2072 
2073 				/*
2074 				 * find the correct route for outer IPv4
2075 				 * header, compute tunnel MTU.
2076 				 *
2077 				 * XXX BUG ALERT
2078 				 * The "dummyifp" code relies upon the fact
2079 				 * that icmp_error() touches only ifp->if_mtu.
2080 				 */
2081 				/*XXX*/
2082 				destifp = NULL;
2083 				if (sp->req != NULL && sp->req->sav != NULL &&
2084 				    sp->req->sav->sah != NULL) {
2085 					ro = &sp->req->sav->sah->sa_route;
2086 					if (ro->ro_rt != NULL &&
2087 					    ro->ro_rt->rt_ifp != NULL) {
2088 						dummyifp.if_mtu =
2089 						    ro->ro_rt->rt_ifp->if_mtu;
2090 						dummyifp.if_mtu -= ipsechdr;
2091 						destifp = &dummyifp;
2092 					}
2093 				}
2094 
2095 				key_freesp(sp);
2096 			}
2097 		}
2098 #elif FAST_IPSEC
2099 		/*
2100 		 * If the packet is routed over IPsec tunnel, tell the
2101 		 * originator the tunnel MTU.
2102 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2103 		 * XXX quickhack!!!
2104 		 */
2105 		if (ipforward_rt.ro_rt != NULL) {
2106 			struct secpolicy *sp = NULL;
2107 			int ipsecerror;
2108 			int ipsechdr;
2109 			struct route *ro;
2110 
2111 			sp = ipsec_getpolicybyaddr(mcopy,
2112 						   IPSEC_DIR_OUTBOUND,
2113 						   IP_FORWARDING,
2114 						   &ipsecerror);
2115 
2116 			if (sp == NULL)
2117 				destifp = ipforward_rt.ro_rt->rt_ifp;
2118 			else {
2119 				/* count IPsec header size */
2120 				ipsechdr = ipsec4_hdrsiz(mcopy,
2121 							 IPSEC_DIR_OUTBOUND,
2122 							 NULL);
2123 
2124 				/*
2125 				 * find the correct route for outer IPv4
2126 				 * header, compute tunnel MTU.
2127 				 *
2128 				 * XXX BUG ALERT
2129 				 * The "dummyifp" code relies upon the fact
2130 				 * that icmp_error() touches only ifp->if_mtu.
2131 				 */
2132 				/*XXX*/
2133 				destifp = NULL;
2134 				if (sp->req != NULL &&
2135 				    sp->req->sav != NULL &&
2136 				    sp->req->sav->sah != NULL) {
2137 					ro = &sp->req->sav->sah->sa_route;
2138 					if (ro->ro_rt != NULL &&
2139 					    ro->ro_rt->rt_ifp != NULL) {
2140 						dummyifp.if_mtu =
2141 						    ro->ro_rt->rt_ifp->if_mtu;
2142 						dummyifp.if_mtu -= ipsechdr;
2143 						destifp = &dummyifp;
2144 					}
2145 				}
2146 
2147 				KEY_FREESP(&sp);
2148 			}
2149 		}
2150 #else /* !IPSEC && !FAST_IPSEC */
2151 		if (ipforward_rt.ro_rt != NULL)
2152 			destifp = ipforward_rt.ro_rt->rt_ifp;
2153 #endif /*IPSEC*/
2154 		ipstat.ips_cantfrag++;
2155 		break;
2156 
2157 	case ENOBUFS:
2158 		/*
2159 		 * A router should not generate ICMP_SOURCEQUENCH as
2160 		 * required in RFC1812 Requirements for IP Version 4 Routers.
2161 		 * Source quench could be a big problem under DoS attacks,
2162 		 * or if the underlying interface is rate-limited.
2163 		 * Those who need source quench packets may re-enable them
2164 		 * via the net.inet.ip.sendsourcequench sysctl.
2165 		 */
2166 		if (!ip_sendsourcequench) {
2167 			m_freem(mcopy);
2168 			return;
2169 		} else {
2170 			type = ICMP_SOURCEQUENCH;
2171 			code = 0;
2172 		}
2173 		break;
2174 
2175 	case EACCES:			/* ipfw denied packet */
2176 		m_freem(mcopy);
2177 		return;
2178 	}
2179 	icmp_error(mcopy, type, code, dest, destifp);
2180 }
2181 
2182 void
2183 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2184 	       struct mbuf *m)
2185 {
2186 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2187 		struct timeval tv;
2188 
2189 		microtime(&tv);
2190 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2191 		    SCM_TIMESTAMP, SOL_SOCKET);
2192 		if (*mp)
2193 			mp = &(*mp)->m_next;
2194 	}
2195 	if (inp->inp_flags & INP_RECVDSTADDR) {
2196 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2197 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2198 		if (*mp)
2199 			mp = &(*mp)->m_next;
2200 	}
2201 #ifdef notyet
2202 	/* XXX
2203 	 * Moving these out of udp_input() made them even more broken
2204 	 * than they already were.
2205 	 */
2206 	/* options were tossed already */
2207 	if (inp->inp_flags & INP_RECVOPTS) {
2208 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2209 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2210 		if (*mp)
2211 			mp = &(*mp)->m_next;
2212 	}
2213 	/* ip_srcroute doesn't do what we want here, need to fix */
2214 	if (inp->inp_flags & INP_RECVRETOPTS) {
2215 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2216 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2217 		if (*mp)
2218 			mp = &(*mp)->m_next;
2219 	}
2220 #endif
2221 	if (inp->inp_flags & INP_RECVIF) {
2222 		struct ifnet *ifp;
2223 		struct sdlbuf {
2224 			struct sockaddr_dl sdl;
2225 			u_char	pad[32];
2226 		} sdlbuf;
2227 		struct sockaddr_dl *sdp;
2228 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2229 
2230 		if (((ifp = m->m_pkthdr.rcvif)) &&
2231 		    ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2232 			sdp = (struct sockaddr_dl *)
2233 			    ifnet_addrs[ifp->if_index - 1]->ifa_addr;
2234 			/*
2235 			 * Change our mind and don't try copy.
2236 			 */
2237 			if ((sdp->sdl_family != AF_LINK) ||
2238 			    (sdp->sdl_len > sizeof(sdlbuf))) {
2239 				goto makedummy;
2240 			}
2241 			bcopy(sdp, sdl2, sdp->sdl_len);
2242 		} else {
2243 makedummy:
2244 			sdl2->sdl_len =
2245 			    offsetof(struct sockaddr_dl, sdl_data[0]);
2246 			sdl2->sdl_family = AF_LINK;
2247 			sdl2->sdl_index = 0;
2248 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2249 		}
2250 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2251 			IP_RECVIF, IPPROTO_IP);
2252 		if (*mp)
2253 			mp = &(*mp)->m_next;
2254 	}
2255 }
2256 
2257 /*
2258  * XXX these routines are called from the upper part of the kernel.
2259  *
2260  * They could also be moved to ip_mroute.c, since all the RSVP
2261  *  handling is done there already.
2262  */
2263 int
2264 ip_rsvp_init(struct socket *so)
2265 {
2266 	if (so->so_type != SOCK_RAW ||
2267 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2268 		return EOPNOTSUPP;
2269 
2270 	if (ip_rsvpd != NULL)
2271 		return EADDRINUSE;
2272 
2273 	ip_rsvpd = so;
2274 	/*
2275 	 * This may seem silly, but we need to be sure we don't over-increment
2276 	 * the RSVP counter, in case something slips up.
2277 	 */
2278 	if (!ip_rsvp_on) {
2279 		ip_rsvp_on = 1;
2280 		rsvp_on++;
2281 	}
2282 
2283 	return 0;
2284 }
2285 
2286 int
2287 ip_rsvp_done(void)
2288 {
2289 	ip_rsvpd = NULL;
2290 	/*
2291 	 * This may seem silly, but we need to be sure we don't over-decrement
2292 	 * the RSVP counter, in case something slips up.
2293 	 */
2294 	if (ip_rsvp_on) {
2295 		ip_rsvp_on = 0;
2296 		rsvp_on--;
2297 	}
2298 	return 0;
2299 }
2300 
2301 void
2302 rsvp_input(struct mbuf *m, ...)	/* XXX must fixup manually */
2303 {
2304 	int off, proto;
2305 	__va_list ap;
2306 
2307 	__va_start(ap, m);
2308 	off = __va_arg(ap, int);
2309 	proto = __va_arg(ap, int);
2310 	__va_end(ap);
2311 
2312 	if (rsvp_input_p) { /* call the real one if loaded */
2313 		rsvp_input_p(m, off, proto);
2314 		return;
2315 	}
2316 
2317 	/* Can still get packets with rsvp_on = 0 if there is a local member
2318 	 * of the group to which the RSVP packet is addressed.  But in this
2319 	 * case we want to throw the packet away.
2320 	 */
2321 
2322 	if (!rsvp_on) {
2323 		m_freem(m);
2324 		return;
2325 	}
2326 
2327 	if (ip_rsvpd != NULL) {
2328 		rip_input(m, off, proto);
2329 		return;
2330 	}
2331 	/* Drop the packet */
2332 	m_freem(m);
2333 }
2334