xref: /dragonfly/sys/netinet/ip_input.c (revision efbafed1)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. Neither the name of the University nor the names of its contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  *
62  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
63  * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
64  */
65 
66 #define	_IP_VHL
67 
68 #include "opt_bootp.h"
69 #include "opt_ipdn.h"
70 #include "opt_ipdivert.h"
71 #include "opt_ipstealth.h"
72 #include "opt_rss.h"
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/mbuf.h>
77 #include <sys/malloc.h>
78 #include <sys/mpipe.h>
79 #include <sys/domain.h>
80 #include <sys/protosw.h>
81 #include <sys/socket.h>
82 #include <sys/time.h>
83 #include <sys/globaldata.h>
84 #include <sys/thread.h>
85 #include <sys/kernel.h>
86 #include <sys/syslog.h>
87 #include <sys/sysctl.h>
88 #include <sys/in_cksum.h>
89 #include <sys/lock.h>
90 
91 #include <sys/mplock2.h>
92 
93 #include <machine/stdarg.h>
94 
95 #include <net/if.h>
96 #include <net/if_types.h>
97 #include <net/if_var.h>
98 #include <net/if_dl.h>
99 #include <net/pfil.h>
100 #include <net/route.h>
101 #include <net/netisr2.h>
102 
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #include <netinet/in_pcb.h>
108 #include <netinet/ip_var.h>
109 #include <netinet/ip_icmp.h>
110 #include <netinet/ip_divert.h>
111 #include <netinet/ip_flow.h>
112 
113 #include <sys/thread2.h>
114 #include <sys/msgport2.h>
115 #include <net/netmsg2.h>
116 
117 #include <sys/socketvar.h>
118 
119 #include <net/ipfw/ip_fw.h>
120 #include <net/dummynet/ip_dummynet.h>
121 
122 int rsvp_on = 0;
123 static int ip_rsvp_on;
124 struct socket *ip_rsvpd;
125 
126 int ipforwarding = 0;
127 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
128     &ipforwarding, 0, "Enable IP forwarding between interfaces");
129 
130 static int ipsendredirects = 1; /* XXX */
131 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
132     &ipsendredirects, 0, "Enable sending IP redirects");
133 
134 int ip_defttl = IPDEFTTL;
135 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
136     &ip_defttl, 0, "Maximum TTL on IP packets");
137 
138 static int ip_dosourceroute = 0;
139 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
140     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
141 
142 static int ip_acceptsourceroute = 0;
143 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
144     CTLFLAG_RW, &ip_acceptsourceroute, 0,
145     "Enable accepting source routed IP packets");
146 
147 static int maxnipq;
148 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
149     &maxnipq, 0,
150     "Maximum number of IPv4 fragment reassembly queue entries");
151 
152 static int maxfragsperpacket;
153 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
154     &maxfragsperpacket, 0,
155     "Maximum number of IPv4 fragments allowed per packet");
156 
157 static int ip_sendsourcequench = 0;
158 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
159     &ip_sendsourcequench, 0,
160     "Enable the transmission of source quench packets");
161 
162 int ip_do_randomid = 1;
163 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
164     &ip_do_randomid, 0,
165     "Assign random ip_id values");
166 /*
167  * XXX - Setting ip_checkinterface mostly implements the receive side of
168  * the Strong ES model described in RFC 1122, but since the routing table
169  * and transmit implementation do not implement the Strong ES model,
170  * setting this to 1 results in an odd hybrid.
171  *
172  * XXX - ip_checkinterface currently must be disabled if you use ipnat
173  * to translate the destination address to another local interface.
174  *
175  * XXX - ip_checkinterface must be disabled if you add IP aliases
176  * to the loopback interface instead of the interface where the
177  * packets for those addresses are received.
178  */
179 static int ip_checkinterface = 0;
180 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
181     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
182 
183 static u_long ip_hash_count = 0;
184 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, hash_count, CTLFLAG_RD,
185     &ip_hash_count, 0, "Number of packets hashed by IP");
186 
187 #ifdef RSS_DEBUG
188 static u_long ip_rehash_count = 0;
189 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, rehash_count, CTLFLAG_RD,
190     &ip_rehash_count, 0, "Number of packets rehashed by IP");
191 
192 static u_long ip_dispatch_fast = 0;
193 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, dispatch_fast_count, CTLFLAG_RD,
194     &ip_dispatch_fast, 0, "Number of packets handled on current CPU");
195 
196 static u_long ip_dispatch_slow = 0;
197 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, dispatch_slow_count, CTLFLAG_RD,
198     &ip_dispatch_slow, 0, "Number of packets messaged to another CPU");
199 #endif
200 
201 #ifdef DIAGNOSTIC
202 static int ipprintfs = 0;
203 #endif
204 
205 extern	struct domain inetdomain;
206 extern	struct protosw inetsw[];
207 u_char	ip_protox[IPPROTO_MAX];
208 struct	in_ifaddrhead in_ifaddrheads[MAXCPU];	/* first inet address */
209 struct	in_ifaddrhashhead *in_ifaddrhashtbls[MAXCPU];
210 						/* inet addr hash table */
211 u_long	in_ifaddrhmask;				/* mask for hash table */
212 
213 static struct mbuf *ipforward_mtemp[MAXCPU];
214 
215 struct ip_stats ipstats_percpu[MAXCPU] __cachealign;
216 
217 static int
218 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
219 {
220 	int cpu, error = 0;
221 
222 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
223 		if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
224 					sizeof(struct ip_stats))))
225 			break;
226 		if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
227 				       sizeof(struct ip_stats))))
228 			break;
229 	}
230 
231 	return (error);
232 }
233 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
234     0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
235 
236 /* Packet reassembly stuff */
237 #define	IPREASS_NHASH_LOG2	6
238 #define	IPREASS_NHASH		(1 << IPREASS_NHASH_LOG2)
239 #define	IPREASS_HMASK		(IPREASS_NHASH - 1)
240 #define	IPREASS_HASH(x,y)						\
241     (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
242 
243 TAILQ_HEAD(ipqhead, ipq);
244 struct ipfrag_queue {
245 	int			nipq;
246 	volatile int		draining;
247 	struct netmsg_base	timeo_netmsg;
248 	struct callout		timeo_ch;
249 	struct netmsg_base	drain_netmsg;
250 	struct ipqhead		ipq[IPREASS_NHASH];
251 } __cachealign;
252 
253 static struct ipfrag_queue	ipfrag_queue_pcpu[MAXCPU];
254 
255 #ifdef IPCTL_DEFMTU
256 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
257     &ip_mtu, 0, "Default MTU");
258 #endif
259 
260 #ifdef IPSTEALTH
261 static int ipstealth = 0;
262 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
263 #else
264 static const int ipstealth = 0;
265 #endif
266 
267 struct mbuf *(*ip_divert_p)(struct mbuf *, int, int);
268 
269 struct pfil_head inet_pfil_hook;
270 
271 /*
272  * struct ip_srcrt_opt is used to store packet state while it travels
273  * through the stack.
274  *
275  * XXX Note that the code even makes assumptions on the size and
276  * alignment of fields inside struct ip_srcrt so e.g. adding some
277  * fields will break the code.  This needs to be fixed.
278  *
279  * We need to save the IP options in case a protocol wants to respond
280  * to an incoming packet over the same route if the packet got here
281  * using IP source routing.  This allows connection establishment and
282  * maintenance when the remote end is on a network that is not known
283  * to us.
284  */
285 struct ip_srcrt {
286 	struct	in_addr dst;			/* final destination */
287 	char	nop;				/* one NOP to align */
288 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
289 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
290 };
291 
292 struct ip_srcrt_opt {
293 	int		ip_nhops;
294 	struct ip_srcrt	ip_srcrt;
295 };
296 
297 #define IPFRAG_MPIPE_MAX	4096
298 #define MAXIPFRAG_MIN		((IPFRAG_MPIPE_MAX * 2) / 256)
299 
300 #define IPFRAG_TIMEO		(hz / PR_SLOWHZ)
301 
302 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
303 static struct malloc_pipe ipq_mpipe;
304 
305 static void		save_rte(struct mbuf *, u_char *, struct in_addr);
306 static int		ip_dooptions(struct mbuf *m, int, struct sockaddr_in *);
307 static void		ip_freef(struct ipfrag_queue *, struct ipqhead *,
308 			    struct ipq *);
309 static void		ip_input_handler(netmsg_t);
310 
311 static void		ipfrag_timeo_dispatch(netmsg_t);
312 static void		ipfrag_timeo(void *);
313 static void		ipfrag_drain_dispatch(netmsg_t);
314 
315 /*
316  * IP initialization: fill in IP protocol switch table.
317  * All protocols not implemented in kernel go to raw IP protocol handler.
318  */
319 void
320 ip_init(void)
321 {
322 	struct ipfrag_queue *fragq;
323 	struct protosw *pr;
324 	int cpu, i;
325 
326 	/*
327 	 * Make sure we can handle a reasonable number of fragments but
328 	 * cap it at IPFRAG_MPIPE_MAX.
329 	 */
330 	mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
331 	    IFQ_MAXLEN, IPFRAG_MPIPE_MAX, 0, NULL, NULL, NULL);
332 
333 	/*
334 	 * Make in_ifaddrhead and in_ifaddrhashtbl available on all CPUs,
335 	 * since they could be accessed by any threads.
336 	 */
337 	for (cpu = 0; cpu < ncpus; ++cpu) {
338 		TAILQ_INIT(&in_ifaddrheads[cpu]);
339 		in_ifaddrhashtbls[cpu] =
340 		    hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
341 	}
342 
343 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
344 	if (pr == NULL)
345 		panic("ip_init");
346 	for (i = 0; i < IPPROTO_MAX; i++)
347 		ip_protox[i] = pr - inetsw;
348 	for (pr = inetdomain.dom_protosw;
349 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
350 		if (pr->pr_domain->dom_family == PF_INET && pr->pr_protocol) {
351 			if (pr->pr_protocol != IPPROTO_RAW)
352 				ip_protox[pr->pr_protocol] = pr - inetsw;
353 		}
354 	}
355 
356 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
357 	inet_pfil_hook.ph_af = AF_INET;
358 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
359 		kprintf("%s: WARNING: unable to register pfil hook, "
360 			"error %d\n", __func__, i);
361 	}
362 
363 	maxnipq = (nmbclusters / 32) / netisr_ncpus;
364 	if (maxnipq < MAXIPFRAG_MIN)
365 		maxnipq = MAXIPFRAG_MIN;
366 	maxfragsperpacket = 16;
367 
368 	ip_id = time_second & 0xffff;	/* time_second survives reboots */
369 
370 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
371 		/*
372 		 * Initialize IP statistics counters for each CPU.
373 		 */
374 		bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
375 
376 		/*
377 		 * Preallocate mbuf template for forwarding
378 		 */
379 		MGETHDR(ipforward_mtemp[cpu], M_WAITOK, MT_DATA);
380 
381 		/*
382 		 * Initialize per-cpu ip fragments queues
383 		 */
384 		fragq = &ipfrag_queue_pcpu[cpu];
385 		for (i = 0; i < IPREASS_NHASH; i++)
386 			TAILQ_INIT(&fragq->ipq[i]);
387 
388 		callout_init_mp(&fragq->timeo_ch);
389 		netmsg_init(&fragq->timeo_netmsg, NULL, &netisr_adone_rport,
390 		    MSGF_PRIORITY, ipfrag_timeo_dispatch);
391 		netmsg_init(&fragq->drain_netmsg, NULL, &netisr_adone_rport,
392 		    MSGF_PRIORITY, ipfrag_drain_dispatch);
393 	}
394 
395 	netisr_register(NETISR_IP, ip_input_handler, ip_hashfn);
396 	netisr_register_hashcheck(NETISR_IP, ip_hashcheck);
397 
398 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
399 		fragq = &ipfrag_queue_pcpu[cpu];
400 		callout_reset_bycpu(&fragq->timeo_ch, IPFRAG_TIMEO,
401 		    ipfrag_timeo, NULL, cpu);
402 	}
403 
404 	ip_porthash_trycount = 2 * netisr_ncpus;
405 }
406 
407 /* Do transport protocol processing. */
408 static void
409 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip)
410 {
411 	const struct protosw *pr = &inetsw[ip_protox[ip->ip_p]];
412 
413 	/*
414 	 * Switch out to protocol's input routine.
415 	 */
416 	PR_GET_MPLOCK(pr);
417 	pr->pr_input(&m, &hlen, ip->ip_p);
418 	PR_REL_MPLOCK(pr);
419 }
420 
421 static void
422 transport_processing_handler(netmsg_t msg)
423 {
424 	struct netmsg_packet *pmsg = &msg->packet;
425 	struct ip *ip;
426 	int hlen;
427 
428 	ip = mtod(pmsg->nm_packet, struct ip *);
429 	hlen = pmsg->base.lmsg.u.ms_result;
430 
431 	transport_processing_oncpu(pmsg->nm_packet, hlen, ip);
432 	/* msg was embedded in the mbuf, do not reply! */
433 }
434 
435 static void
436 ip_input_handler(netmsg_t msg)
437 {
438 	ip_input(msg->packet.nm_packet);
439 	/* msg was embedded in the mbuf, do not reply! */
440 }
441 
442 /*
443  * IP input routine.  Checksum and byte swap header.  If fragmented
444  * try to reassemble.  Process options.  Pass to next level.
445  */
446 void
447 ip_input(struct mbuf *m)
448 {
449 	struct ip *ip;
450 	struct in_ifaddr *ia = NULL;
451 	struct in_ifaddr_container *iac;
452 	int hlen, checkif;
453 	u_short sum;
454 	struct in_addr pkt_dst;
455 	boolean_t using_srcrt = FALSE;		/* forward (by PFIL_HOOKS) */
456 	struct in_addr odst;			/* original dst address(NAT) */
457 	struct m_tag *mtag;
458 	struct sockaddr_in *next_hop = NULL;
459 	lwkt_port_t port;
460 
461 	ASSERT_NETISR_NCPUS(mycpuid);
462 	M_ASSERTPKTHDR(m);
463 
464 	if (m->m_len < sizeof(struct ip)) {
465 		kprintf("Issuer to ip_input failed to check IP header atomicy (%d)\n",
466 			m->m_len);
467 		ipstat.ips_badlen++;
468 		goto bad;
469 	}
470 #if 0
471 	/* length checks already done in ip_hashfn() */
472 	KASSERT(m->m_len >= sizeof(struct ip), ("IP header not in one mbuf"));
473 #endif
474 
475 	/*
476 	 * This routine is called from numerous places which may not have
477 	 * characterized the packet.
478 	 */
479 	ip = mtod(m, struct ip *);
480 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
481 	    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK))) {
482 		/*
483 		 * Force hash recalculation for fragments and multicast
484 		 * packets; hardware may not do it correctly.
485 		 * XXX add flag to indicate the hash is from hardware
486 		 */
487 		m->m_flags &= ~M_HASH;
488 	}
489 	if ((m->m_flags & M_HASH) == 0) {
490 		ip_hashfn(&m, 0);
491 		if (m == NULL)
492 			return;
493 		KKASSERT(m->m_flags & M_HASH);
494 
495 		if (&curthread->td_msgport !=
496 		    netisr_hashport(m->m_pkthdr.hash)) {
497 			netisr_queue(NETISR_IP, m);
498 			/* Requeued to other netisr msgport; done */
499 			return;
500 		}
501 
502 		/* mbuf could have been changed */
503 		ip = mtod(m, struct ip *);
504 	}
505 
506 	/*
507 	 * Pull out certain tags
508 	 */
509 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
510 		/* Next hop */
511 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
512 		KKASSERT(mtag != NULL);
513 		next_hop = m_tag_data(mtag);
514 	}
515 
516 	if (m->m_pkthdr.fw_flags &
517 	    (DUMMYNET_MBUF_TAGGED | IPFW_MBUF_CONTINUE)) {
518 		/*
519 		 * - Dummynet already filtered this packet.
520 		 * - This packet was processed by ipfw on another
521 		 *   cpu, and the rest of the ipfw processing should
522 		 *   be carried out on this cpu.
523 		 */
524 		ip = mtod(m, struct ip *);
525 		ip->ip_len = ntohs(ip->ip_len);
526 		ip->ip_off = ntohs(ip->ip_off);
527 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
528 		goto iphack;
529 	}
530 
531 	ipstat.ips_total++;
532 
533 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
534 		ipstat.ips_badvers++;
535 		goto bad;
536 	}
537 
538 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
539 	/* length checks already done in ip_hashfn() */
540 	KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
541 	KASSERT(m->m_len >= hlen, ("complete IP header not in one mbuf"));
542 
543 	/* 127/8 must not appear on wire - RFC1122 */
544 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
545 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
546 		if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
547 			ipstat.ips_badaddr++;
548 			goto bad;
549 		}
550 	}
551 
552 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
553 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
554 	} else {
555 		if (hlen == sizeof(struct ip))
556 			sum = in_cksum_hdr(ip);
557 		else
558 			sum = in_cksum(m, hlen);
559 	}
560 	if (sum != 0) {
561 		ipstat.ips_badsum++;
562 		goto bad;
563 	}
564 
565 #ifdef ALTQ
566 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
567 		/* packet is dropped by traffic conditioner */
568 		return;
569 	}
570 #endif
571 	/*
572 	 * Convert fields to host representation.
573 	 */
574 	ip->ip_len = ntohs(ip->ip_len);
575 	ip->ip_off = ntohs(ip->ip_off);
576 
577 	/* length checks already done in ip_hashfn() */
578 	KASSERT(ip->ip_len >= hlen, ("total length less than header length"));
579 	KASSERT(m->m_pkthdr.len >= ip->ip_len, ("mbuf too short"));
580 
581 	/*
582 	 * Trim mbufs if longer than the IP header would have us expect.
583 	 */
584 	if (m->m_pkthdr.len > ip->ip_len) {
585 		if (m->m_len == m->m_pkthdr.len) {
586 			m->m_len = ip->ip_len;
587 			m->m_pkthdr.len = ip->ip_len;
588 		} else {
589 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
590 		}
591 	}
592 
593 	/*
594 	 * IpHack's section.
595 	 * Right now when no processing on packet has done
596 	 * and it is still fresh out of network we do our black
597 	 * deals with it.
598 	 * - Firewall: deny/allow/divert
599 	 * - Xlate: translate packet's addr/port (NAT).
600 	 * - Pipe: pass pkt through dummynet.
601 	 * - Wrap: fake packet's addr/port <unimpl.>
602 	 * - Encapsulate: put it in another IP and send out. <unimp.>
603 	 */
604 
605 iphack:
606 	/*
607 	 * If we've been forwarded from the output side, then
608 	 * skip the firewall a second time
609 	 */
610 	if (next_hop != NULL)
611 		goto ours;
612 
613 	/* No pfil hooks */
614 	if (!pfil_has_hooks(&inet_pfil_hook)) {
615 		if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
616 			/*
617 			 * Strip dummynet tags from stranded packets
618 			 */
619 			mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
620 			KKASSERT(mtag != NULL);
621 			m_tag_delete(m, mtag);
622 			m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
623 		}
624 		goto pass;
625 	}
626 
627 	/*
628 	 * Run through list of hooks for input packets.
629 	 *
630 	 * NOTE!  If the packet is rewritten pf/ipfw/whoever must
631 	 *	  clear M_HASH.
632 	 */
633 	odst = ip->ip_dst;
634 	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif, PFIL_IN))
635 		return;
636 	if (m == NULL)	/* consumed by filter */
637 		return;
638 	ip = mtod(m, struct ip *);
639 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
640 	using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
641 
642 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
643 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
644 		KKASSERT(mtag != NULL);
645 		next_hop = m_tag_data(mtag);
646 	}
647 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
648 		ip_dn_queue(m);
649 		return;
650 	}
651 	if (m->m_pkthdr.fw_flags & FW_MBUF_REDISPATCH)
652 		m->m_pkthdr.fw_flags &= ~FW_MBUF_REDISPATCH;
653 	if (m->m_pkthdr.fw_flags & IPFW_MBUF_CONTINUE) {
654 		/* ipfw was disabled/unloaded. */
655 		goto bad;
656 	}
657 pass:
658 	/*
659 	 * Process options and, if not destined for us,
660 	 * ship it on.  ip_dooptions returns 1 when an
661 	 * error was detected (causing an icmp message
662 	 * to be sent and the original packet to be freed).
663 	 */
664 	if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, next_hop))
665 		return;
666 
667 	/* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
668 	 * matter if it is destined to another node, or whether it is
669 	 * a multicast one, RSVP wants it! and prevents it from being forwarded
670 	 * anywhere else. Also checks if the rsvp daemon is running before
671 	 * grabbing the packet.
672 	 */
673 	if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
674 		goto ours;
675 
676 	/*
677 	 * Check our list of addresses, to see if the packet is for us.
678 	 * If we don't have any addresses, assume any unicast packet
679 	 * we receive might be for us (and let the upper layers deal
680 	 * with it).
681 	 */
682 	if (TAILQ_EMPTY(&in_ifaddrheads[mycpuid]) &&
683 	    !(m->m_flags & (M_MCAST | M_BCAST)))
684 		goto ours;
685 
686 	/*
687 	 * Cache the destination address of the packet; this may be
688 	 * changed by use of 'ipfw fwd'.
689 	 */
690 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
691 
692 	/*
693 	 * Enable a consistency check between the destination address
694 	 * and the arrival interface for a unicast packet (the RFC 1122
695 	 * strong ES model) if IP forwarding is disabled and the packet
696 	 * is not locally generated and the packet is not subject to
697 	 * 'ipfw fwd'.
698 	 *
699 	 * XXX - Checking also should be disabled if the destination
700 	 * address is ipnat'ed to a different interface.
701 	 *
702 	 * XXX - Checking is incompatible with IP aliases added
703 	 * to the loopback interface instead of the interface where
704 	 * the packets are received.
705 	 */
706 	checkif = ip_checkinterface &&
707 		  !ipforwarding &&
708 		  m->m_pkthdr.rcvif != NULL &&
709 		  !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
710 		  next_hop == NULL;
711 
712 	/*
713 	 * Check for exact addresses in the hash bucket.
714 	 */
715 	LIST_FOREACH(iac, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
716 		ia = iac->ia;
717 
718 		/*
719 		 * If the address matches, verify that the packet
720 		 * arrived via the correct interface if checking is
721 		 * enabled.
722 		 */
723 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
724 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
725 			goto ours;
726 	}
727 	ia = NULL;
728 
729 	/*
730 	 * Check for broadcast addresses.
731 	 *
732 	 * Only accept broadcast packets that arrive via the matching
733 	 * interface.  Reception of forwarded directed broadcasts would
734 	 * be handled via ip_forward() and ether_output() with the loopback
735 	 * into the stack for SIMPLEX interfaces handled by ether_output().
736 	 */
737 	if (m->m_pkthdr.rcvif != NULL &&
738 	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
739 		struct ifaddr_container *ifac;
740 
741 		TAILQ_FOREACH(ifac, &m->m_pkthdr.rcvif->if_addrheads[mycpuid],
742 			      ifa_link) {
743 			struct ifaddr *ifa = ifac->ifa;
744 
745 			if (ifa->ifa_addr == NULL) /* shutdown/startup race */
746 				continue;
747 			if (ifa->ifa_addr->sa_family != AF_INET)
748 				continue;
749 			ia = ifatoia(ifa);
750 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
751 								pkt_dst.s_addr)
752 				goto ours;
753 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
754 				goto ours;
755 #ifdef BOOTP_COMPAT
756 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
757 				goto ours;
758 #endif
759 		}
760 	}
761 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
762 		struct in_multi *inm;
763 
764 		if (ip_mrouter != NULL) {
765 			/* XXX Multicast routing is not MPSAFE yet */
766 			get_mplock();
767 
768 			/*
769 			 * If we are acting as a multicast router, all
770 			 * incoming multicast packets are passed to the
771 			 * kernel-level multicast forwarding function.
772 			 * The packet is returned (relatively) intact; if
773 			 * ip_mforward() returns a non-zero value, the packet
774 			 * must be discarded, else it may be accepted below.
775 			 */
776 			if (ip_mforward != NULL &&
777 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
778 				rel_mplock();
779 				ipstat.ips_cantforward++;
780 				m_freem(m);
781 				return;
782 			}
783 
784 			rel_mplock();
785 
786 			/*
787 			 * The process-level routing daemon needs to receive
788 			 * all multicast IGMP packets, whether or not this
789 			 * host belongs to their destination groups.
790 			 */
791 			if (ip->ip_p == IPPROTO_IGMP)
792 				goto ours;
793 			ipstat.ips_forward++;
794 		}
795 		/*
796 		 * See if we belong to the destination multicast group on the
797 		 * arrival interface.
798 		 */
799 		inm = IN_LOOKUP_MULTI(&ip->ip_dst, m->m_pkthdr.rcvif);
800 		if (inm == NULL) {
801 			ipstat.ips_notmember++;
802 			m_freem(m);
803 			return;
804 		}
805 		goto ours;
806 	}
807 	if (ip->ip_dst.s_addr == INADDR_BROADCAST)
808 		goto ours;
809 	if (ip->ip_dst.s_addr == INADDR_ANY)
810 		goto ours;
811 
812 	/*
813 	 * Not for us; forward if possible and desirable.
814 	 */
815 	if (!ipforwarding) {
816 		ipstat.ips_cantforward++;
817 		m_freem(m);
818 	} else {
819 		ip_forward(m, using_srcrt, next_hop);
820 	}
821 	return;
822 
823 ours:
824 
825 	/*
826 	 * IPSTEALTH: Process non-routing options only
827 	 * if the packet is destined for us.
828 	 */
829 	if (ipstealth &&
830 	    hlen > sizeof(struct ip) &&
831 	    ip_dooptions(m, 1, next_hop))
832 		return;
833 
834 	/* Count the packet in the ip address stats */
835 	if (ia != NULL) {
836 		IFA_STAT_INC(&ia->ia_ifa, ipackets, 1);
837 		IFA_STAT_INC(&ia->ia_ifa, ibytes, m->m_pkthdr.len);
838 	}
839 
840 	/*
841 	 * If offset or IP_MF are set, must reassemble.
842 	 * Otherwise, nothing need be done.
843 	 * (We could look in the reassembly queue to see
844 	 * if the packet was previously fragmented,
845 	 * but it's not worth the time; just let them time out.)
846 	 */
847 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
848 		/*
849 		 * Attempt reassembly; if it succeeds, proceed.  ip_reass()
850 		 * will return a different mbuf.
851 		 *
852 		 * NOTE: ip_reass() returns m with M_HASH cleared to force
853 		 *	 us to recharacterize the packet.
854 		 */
855 		m = ip_reass(m);
856 		if (m == NULL)
857 			return;
858 		ip = mtod(m, struct ip *);
859 
860 		/* Get the header length of the reassembled packet */
861 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
862 	} else {
863 		ip->ip_len -= hlen;
864 	}
865 
866 	/*
867 	 * We must forward the packet to the correct protocol thread if
868 	 * we are not already in it.
869 	 *
870 	 * NOTE: ip_len is now in host form.  ip_len is not adjusted
871 	 *	 further for protocol processing, instead we pass hlen
872 	 *	 to the protosw and let it deal with it.
873 	 */
874 	ipstat.ips_delivered++;
875 
876 	if ((m->m_flags & M_HASH) == 0) {
877 		m = ip_rehashm(m, hlen);
878 		if (m == NULL)
879 			return;
880 		ip = mtod(m, struct ip *);
881 	}
882 	port = netisr_hashport(m->m_pkthdr.hash);
883 
884 	if (port != &curthread->td_msgport) {
885 		ip_transport_redispatch(port, m, hlen);
886 	} else {
887 #ifdef RSS_DEBUG
888 		atomic_add_long(&ip_dispatch_fast, 1);
889 #endif
890 		transport_processing_oncpu(m, hlen, ip);
891 	}
892 	return;
893 
894 bad:
895 	m_freem(m);
896 }
897 
898 struct mbuf *
899 ip_rehashm(struct mbuf *m, int hlen)
900 {
901 	struct ip *ip = mtod(m, struct ip *);
902 
903 #ifdef RSS_DEBUG
904 	atomic_add_long(&ip_rehash_count, 1);
905 #endif
906 	ip->ip_len = htons(ip->ip_len + hlen);
907 	ip->ip_off = htons(ip->ip_off);
908 
909 	ip_hashfn(&m, 0);
910 	if (m == NULL)
911 		return NULL;
912 
913 	/* 'm' might be changed by ip_hashfn(). */
914 	ip = mtod(m, struct ip *);
915 	ip->ip_len = ntohs(ip->ip_len) - hlen;
916 	ip->ip_off = ntohs(ip->ip_off);
917 	KASSERT(m->m_flags & M_HASH, ("no hash"));
918 
919 	return (m);
920 }
921 
922 void
923 ip_transport_redispatch(struct lwkt_port *port, struct mbuf *m, int hlen)
924 {
925 	struct netmsg_packet *pmsg;
926 
927 #ifdef RSS_DEBUG
928 	atomic_add_long(&ip_dispatch_slow, 1);
929 #endif
930 
931 	pmsg = &m->m_hdr.mh_netmsg;
932 	netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
933 		    0, transport_processing_handler);
934 	pmsg->nm_packet = m;
935 	pmsg->base.lmsg.u.ms_result = hlen;
936 	lwkt_sendmsg(port, &pmsg->base.lmsg);
937 }
938 
939 /*
940  * Take incoming datagram fragment and try to reassemble it into
941  * whole datagram.  If a chain for reassembly of this datagram already
942  * exists, then it is given as fp; otherwise have to make a chain.
943  */
944 struct mbuf *
945 ip_reass(struct mbuf *m)
946 {
947 	struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[mycpuid];
948 	struct ip *ip = mtod(m, struct ip *);
949 	struct mbuf *p = NULL, *q, *nq;
950 	struct mbuf *n;
951 	struct ipq *fp = NULL;
952 	struct ipqhead *head;
953 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
954 	int i, next;
955 	u_short sum;
956 
957 	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
958 	if (maxnipq == 0 || maxfragsperpacket == 0) {
959 		ipstat.ips_fragments++;
960 		ipstat.ips_fragdropped++;
961 		m_freem(m);
962 		return NULL;
963 	}
964 
965 	sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
966 	/*
967 	 * Look for queue of fragments of this datagram.
968 	 */
969 	head = &fragq->ipq[sum];
970 	TAILQ_FOREACH(fp, head, ipq_list) {
971 		if (ip->ip_id == fp->ipq_id &&
972 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
973 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
974 		    ip->ip_p == fp->ipq_p)
975 			goto found;
976 	}
977 
978 	fp = NULL;
979 
980 	/*
981 	 * Enforce upper bound on number of fragmented packets
982 	 * for which we attempt reassembly;
983 	 * If maxnipq is -1, accept all fragments without limitation.
984 	 */
985 	if (fragq->nipq > maxnipq && maxnipq > 0) {
986 		/*
987 		 * drop something from the tail of the current queue
988 		 * before proceeding further
989 		 */
990 		struct ipq *q = TAILQ_LAST(head, ipqhead);
991 		if (q == NULL) {
992 			/*
993 			 * The current queue is empty,
994 			 * so drop from one of the others.
995 			 */
996 			for (i = 0; i < IPREASS_NHASH; i++) {
997 				struct ipq *r = TAILQ_LAST(&fragq->ipq[i],
998 				    ipqhead);
999 				if (r) {
1000 					ipstat.ips_fragtimeout += r->ipq_nfrags;
1001 					ip_freef(fragq, &fragq->ipq[i], r);
1002 					break;
1003 				}
1004 			}
1005 		} else {
1006 			ipstat.ips_fragtimeout += q->ipq_nfrags;
1007 			ip_freef(fragq, head, q);
1008 		}
1009 	}
1010 found:
1011 	/*
1012 	 * Adjust ip_len to not reflect header,
1013 	 * convert offset of this to bytes.
1014 	 */
1015 	ip->ip_len -= hlen;
1016 	if (ip->ip_off & IP_MF) {
1017 		/*
1018 		 * Make sure that fragments have a data length
1019 		 * that's a non-zero multiple of 8 bytes.
1020 		 */
1021 		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
1022 			ipstat.ips_toosmall++; /* XXX */
1023 			m_freem(m);
1024 			goto done;
1025 		}
1026 		m->m_flags |= M_FRAG;
1027 	} else {
1028 		m->m_flags &= ~M_FRAG;
1029 	}
1030 	ip->ip_off <<= 3;
1031 
1032 	ipstat.ips_fragments++;
1033 	m->m_pkthdr.header = ip;
1034 
1035 	/*
1036 	 * If the hardware has not done csum over this fragment
1037 	 * then csum_data is not valid at all.
1038 	 */
1039 	if ((m->m_pkthdr.csum_flags & (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID))
1040 	    == (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID)) {
1041 		m->m_pkthdr.csum_data = 0;
1042 		m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1043 	}
1044 
1045 	/*
1046 	 * Presence of header sizes in mbufs
1047 	 * would confuse code below.
1048 	 */
1049 	m->m_data += hlen;
1050 	m->m_len -= hlen;
1051 
1052 	/*
1053 	 * If first fragment to arrive, create a reassembly queue.
1054 	 */
1055 	if (fp == NULL) {
1056 		if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1057 			goto dropfrag;
1058 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
1059 		fragq->nipq++;
1060 		fp->ipq_nfrags = 1;
1061 		fp->ipq_ttl = IPFRAGTTL;
1062 		fp->ipq_p = ip->ip_p;
1063 		fp->ipq_id = ip->ip_id;
1064 		fp->ipq_src = ip->ip_src;
1065 		fp->ipq_dst = ip->ip_dst;
1066 		fp->ipq_frags = m;
1067 		m->m_nextpkt = NULL;
1068 		goto inserted;
1069 	}
1070 	fp->ipq_nfrags++;
1071 
1072 #define	GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1073 
1074 	/*
1075 	 * Find a segment which begins after this one does.
1076 	 */
1077 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1078 		if (GETIP(q)->ip_off > ip->ip_off)
1079 			break;
1080 	}
1081 
1082 	/*
1083 	 * If there is a preceding segment, it may provide some of
1084 	 * our data already.  If so, drop the data from the incoming
1085 	 * segment.  If it provides all of our data, drop us, otherwise
1086 	 * stick new segment in the proper place.
1087 	 *
1088 	 * If some of the data is dropped from the the preceding
1089 	 * segment, then it's checksum is invalidated.
1090 	 */
1091 	if (p) {
1092 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1093 		if (i > 0) {
1094 			if (i >= ip->ip_len)
1095 				goto dropfrag;
1096 			m_adj(m, i);
1097 			m->m_pkthdr.csum_flags = 0;
1098 			ip->ip_off += i;
1099 			ip->ip_len -= i;
1100 		}
1101 		m->m_nextpkt = p->m_nextpkt;
1102 		p->m_nextpkt = m;
1103 	} else {
1104 		m->m_nextpkt = fp->ipq_frags;
1105 		fp->ipq_frags = m;
1106 	}
1107 
1108 	/*
1109 	 * While we overlap succeeding segments trim them or,
1110 	 * if they are completely covered, dequeue them.
1111 	 */
1112 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1113 	     q = nq) {
1114 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1115 		if (i < GETIP(q)->ip_len) {
1116 			GETIP(q)->ip_len -= i;
1117 			GETIP(q)->ip_off += i;
1118 			m_adj(q, i);
1119 			q->m_pkthdr.csum_flags = 0;
1120 			break;
1121 		}
1122 		nq = q->m_nextpkt;
1123 		m->m_nextpkt = nq;
1124 		ipstat.ips_fragdropped++;
1125 		fp->ipq_nfrags--;
1126 		q->m_nextpkt = NULL;
1127 		m_freem(q);
1128 	}
1129 
1130 inserted:
1131 	/*
1132 	 * Check for complete reassembly and perform frag per packet
1133 	 * limiting.
1134 	 *
1135 	 * Frag limiting is performed here so that the nth frag has
1136 	 * a chance to complete the packet before we drop the packet.
1137 	 * As a result, n+1 frags are actually allowed per packet, but
1138 	 * only n will ever be stored. (n = maxfragsperpacket.)
1139 	 *
1140 	 */
1141 	next = 0;
1142 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1143 		if (GETIP(q)->ip_off != next) {
1144 			if (fp->ipq_nfrags > maxfragsperpacket) {
1145 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1146 				ip_freef(fragq, head, fp);
1147 			}
1148 			goto done;
1149 		}
1150 		next += GETIP(q)->ip_len;
1151 	}
1152 	/* Make sure the last packet didn't have the IP_MF flag */
1153 	if (p->m_flags & M_FRAG) {
1154 		if (fp->ipq_nfrags > maxfragsperpacket) {
1155 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1156 			ip_freef(fragq, head, fp);
1157 		}
1158 		goto done;
1159 	}
1160 
1161 	/*
1162 	 * Reassembly is complete.  Make sure the packet is a sane size.
1163 	 */
1164 	q = fp->ipq_frags;
1165 	ip = GETIP(q);
1166 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1167 		ipstat.ips_toolong++;
1168 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1169 		ip_freef(fragq, head, fp);
1170 		goto done;
1171 	}
1172 
1173 	/*
1174 	 * Concatenate fragments.
1175 	 */
1176 	m = q;
1177 	n = m->m_next;
1178 	m->m_next = NULL;
1179 	m_cat(m, n);
1180 	nq = q->m_nextpkt;
1181 	q->m_nextpkt = NULL;
1182 	for (q = nq; q != NULL; q = nq) {
1183 		nq = q->m_nextpkt;
1184 		q->m_nextpkt = NULL;
1185 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1186 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1187 		m_cat(m, q);
1188 	}
1189 
1190 	/*
1191 	 * Clean up the 1's complement checksum.  Carry over 16 bits must
1192 	 * be added back.  This assumes no more then 65535 packet fragments
1193 	 * were reassembled.  A second carry can also occur (but not a third).
1194 	 */
1195 	m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1196 				(m->m_pkthdr.csum_data >> 16);
1197 	if (m->m_pkthdr.csum_data > 0xFFFF)
1198 		m->m_pkthdr.csum_data -= 0xFFFF;
1199 
1200 	/*
1201 	 * Create header for new ip packet by
1202 	 * modifying header of first packet;
1203 	 * dequeue and discard fragment reassembly header.
1204 	 * Make header visible.
1205 	 */
1206 	ip->ip_len = next;
1207 	ip->ip_src = fp->ipq_src;
1208 	ip->ip_dst = fp->ipq_dst;
1209 	TAILQ_REMOVE(head, fp, ipq_list);
1210 	fragq->nipq--;
1211 	mpipe_free(&ipq_mpipe, fp);
1212 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1213 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1214 	/* some debugging cruft by sklower, below, will go away soon */
1215 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1216 		int plen = 0;
1217 
1218 		for (n = m; n; n = n->m_next)
1219 			plen += n->m_len;
1220 		m->m_pkthdr.len = plen;
1221 	}
1222 
1223 	/*
1224 	 * Reassembly complete, return the next protocol.
1225 	 *
1226 	 * Be sure to clear M_HASH to force the packet
1227 	 * to be re-characterized.
1228 	 *
1229 	 * Clear M_FRAG, we are no longer a fragment.
1230 	 */
1231 	m->m_flags &= ~(M_HASH | M_FRAG);
1232 
1233 	ipstat.ips_reassembled++;
1234 	return (m);
1235 
1236 dropfrag:
1237 	ipstat.ips_fragdropped++;
1238 	if (fp != NULL)
1239 		fp->ipq_nfrags--;
1240 	m_freem(m);
1241 done:
1242 	return (NULL);
1243 
1244 #undef GETIP
1245 }
1246 
1247 /*
1248  * Free a fragment reassembly header and all
1249  * associated datagrams.
1250  */
1251 static void
1252 ip_freef(struct ipfrag_queue *fragq, struct ipqhead *fhp, struct ipq *fp)
1253 {
1254 	struct mbuf *q;
1255 
1256 	/*
1257 	 * Remove first to protect against blocking
1258 	 */
1259 	TAILQ_REMOVE(fhp, fp, ipq_list);
1260 
1261 	/*
1262 	 * Clean out at our leisure
1263 	 */
1264 	while (fp->ipq_frags) {
1265 		q = fp->ipq_frags;
1266 		fp->ipq_frags = q->m_nextpkt;
1267 		q->m_nextpkt = NULL;
1268 		m_freem(q);
1269 	}
1270 	mpipe_free(&ipq_mpipe, fp);
1271 	fragq->nipq--;
1272 }
1273 
1274 /*
1275  * If a timer expires on a reassembly queue, discard it.
1276  */
1277 static void
1278 ipfrag_timeo_dispatch(netmsg_t nmsg)
1279 {
1280 	struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[mycpuid];
1281 	struct ipq *fp, *fp_temp;
1282 	struct ipqhead *head;
1283 	int i;
1284 
1285 	crit_enter();
1286 	netisr_replymsg(&nmsg->base, 0);  /* reply ASAP */
1287 	crit_exit();
1288 
1289 	if (fragq->nipq == 0)
1290 		goto done;
1291 
1292 	for (i = 0; i < IPREASS_NHASH; i++) {
1293 		head = &fragq->ipq[i];
1294 		TAILQ_FOREACH_MUTABLE(fp, head, ipq_list, fp_temp) {
1295 			if (--fp->ipq_ttl == 0) {
1296 				ipstat.ips_fragtimeout += fp->ipq_nfrags;
1297 				ip_freef(fragq, head, fp);
1298 			}
1299 		}
1300 	}
1301 	/*
1302 	 * If we are over the maximum number of fragments
1303 	 * (due to the limit being lowered), drain off
1304 	 * enough to get down to the new limit.
1305 	 */
1306 	if (maxnipq >= 0 && fragq->nipq > maxnipq) {
1307 		for (i = 0; i < IPREASS_NHASH; i++) {
1308 			head = &fragq->ipq[i];
1309 			while (fragq->nipq > maxnipq && !TAILQ_EMPTY(head)) {
1310 				ipstat.ips_fragdropped +=
1311 				    TAILQ_FIRST(head)->ipq_nfrags;
1312 				ip_freef(fragq, head, TAILQ_FIRST(head));
1313 			}
1314 		}
1315 	}
1316 done:
1317 	callout_reset(&fragq->timeo_ch, IPFRAG_TIMEO, ipfrag_timeo, NULL);
1318 }
1319 
1320 static void
1321 ipfrag_timeo(void *dummy __unused)
1322 {
1323 	struct netmsg_base *msg = &ipfrag_queue_pcpu[mycpuid].timeo_netmsg;
1324 
1325 	crit_enter();
1326 	if (msg->lmsg.ms_flags & MSGF_DONE)
1327 		netisr_sendmsg_oncpu(msg);
1328 	crit_exit();
1329 }
1330 
1331 /*
1332  * Drain off all datagram fragments.
1333  */
1334 static void
1335 ipfrag_drain_oncpu(struct ipfrag_queue *fragq)
1336 {
1337 	struct ipqhead *head;
1338 	int i;
1339 
1340 	for (i = 0; i < IPREASS_NHASH; i++) {
1341 		head = &fragq->ipq[i];
1342 		while (!TAILQ_EMPTY(head)) {
1343 			ipstat.ips_fragdropped += TAILQ_FIRST(head)->ipq_nfrags;
1344 			ip_freef(fragq, head, TAILQ_FIRST(head));
1345 		}
1346 	}
1347 }
1348 
1349 static void
1350 ipfrag_drain_dispatch(netmsg_t nmsg)
1351 {
1352 	struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[mycpuid];
1353 
1354 	crit_enter();
1355 	lwkt_replymsg(&nmsg->lmsg, 0);  /* reply ASAP */
1356 	crit_exit();
1357 
1358 	ipfrag_drain_oncpu(fragq);
1359 	fragq->draining = 0;
1360 }
1361 
1362 static void
1363 ipfrag_drain_ipi(void *arg __unused)
1364 {
1365 	int cpu = mycpuid;
1366 	struct lwkt_msg *msg = &ipfrag_queue_pcpu[cpu].drain_netmsg.lmsg;
1367 
1368 	crit_enter();
1369 	if (msg->ms_flags & MSGF_DONE)
1370 		lwkt_sendmsg_oncpu(netisr_cpuport(cpu), msg);
1371 	crit_exit();
1372 }
1373 
1374 static void
1375 ipfrag_drain(void)
1376 {
1377 	cpumask_t mask;
1378 	int cpu;
1379 
1380 	CPUMASK_ASSBMASK(mask, netisr_ncpus);
1381 	CPUMASK_ANDMASK(mask, smp_active_mask);
1382 
1383 	if (IN_NETISR_NCPUS(mycpuid)) {
1384 		ipfrag_drain_oncpu(&ipfrag_queue_pcpu[mycpuid]);
1385 		CPUMASK_NANDBIT(mask, mycpuid);
1386 	}
1387 
1388 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
1389 		struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[cpu];
1390 
1391 		if (!CPUMASK_TESTBIT(mask, cpu))
1392 			continue;
1393 
1394 		if (fragq->nipq == 0 || fragq->draining) {
1395 			/* No fragments or is draining; skip this cpu. */
1396 			CPUMASK_NANDBIT(mask, cpu);
1397 			continue;
1398 		}
1399 		fragq->draining = 1;
1400 	}
1401 
1402 	if (CPUMASK_TESTNZERO(mask))
1403 		lwkt_send_ipiq_mask(mask, ipfrag_drain_ipi, NULL);
1404 }
1405 
1406 void
1407 ip_drain(void)
1408 {
1409 	ipfrag_drain();
1410 	in_rtqdrain();
1411 }
1412 
1413 /*
1414  * Do option processing on a datagram,
1415  * possibly discarding it if bad options are encountered,
1416  * or forwarding it if source-routed.
1417  * The pass argument is used when operating in the IPSTEALTH
1418  * mode to tell what options to process:
1419  * [LS]SRR (pass 0) or the others (pass 1).
1420  * The reason for as many as two passes is that when doing IPSTEALTH,
1421  * non-routing options should be processed only if the packet is for us.
1422  * Returns 1 if packet has been forwarded/freed,
1423  * 0 if the packet should be processed further.
1424  */
1425 static int
1426 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1427 {
1428 	struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1429 	struct ip *ip = mtod(m, struct ip *);
1430 	u_char *cp;
1431 	struct in_ifaddr *ia;
1432 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1433 	boolean_t forward = FALSE;
1434 	struct in_addr *sin, dst;
1435 	n_time ntime;
1436 
1437 	dst = ip->ip_dst;
1438 	cp = (u_char *)(ip + 1);
1439 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1440 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1441 		opt = cp[IPOPT_OPTVAL];
1442 		if (opt == IPOPT_EOL)
1443 			break;
1444 		if (opt == IPOPT_NOP)
1445 			optlen = 1;
1446 		else {
1447 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1448 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1449 				goto bad;
1450 			}
1451 			optlen = cp[IPOPT_OLEN];
1452 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1453 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1454 				goto bad;
1455 			}
1456 		}
1457 		switch (opt) {
1458 
1459 		default:
1460 			break;
1461 
1462 		/*
1463 		 * Source routing with record.
1464 		 * Find interface with current destination address.
1465 		 * If none on this machine then drop if strictly routed,
1466 		 * or do nothing if loosely routed.
1467 		 * Record interface address and bring up next address
1468 		 * component.  If strictly routed make sure next
1469 		 * address is on directly accessible net.
1470 		 */
1471 		case IPOPT_LSRR:
1472 		case IPOPT_SSRR:
1473 			if (ipstealth && pass > 0)
1474 				break;
1475 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1476 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1477 				goto bad;
1478 			}
1479 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1480 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1481 				goto bad;
1482 			}
1483 			ipaddr.sin_addr = ip->ip_dst;
1484 			ia = (struct in_ifaddr *)
1485 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1486 			if (ia == NULL) {
1487 				if (opt == IPOPT_SSRR) {
1488 					type = ICMP_UNREACH;
1489 					code = ICMP_UNREACH_SRCFAIL;
1490 					goto bad;
1491 				}
1492 				if (!ip_dosourceroute)
1493 					goto nosourcerouting;
1494 				/*
1495 				 * Loose routing, and not at next destination
1496 				 * yet; nothing to do except forward.
1497 				 */
1498 				break;
1499 			}
1500 			off--;			/* 0 origin */
1501 			if (off > optlen - (int)sizeof(struct in_addr)) {
1502 				/*
1503 				 * End of source route.  Should be for us.
1504 				 */
1505 				if (!ip_acceptsourceroute)
1506 					goto nosourcerouting;
1507 				save_rte(m, cp, ip->ip_src);
1508 				break;
1509 			}
1510 			if (ipstealth)
1511 				goto dropit;
1512 			if (!ip_dosourceroute) {
1513 				if (ipforwarding) {
1514 					char sbuf[INET_ADDRSTRLEN];
1515 					char dbuf[INET_ADDRSTRLEN];
1516 
1517 					/*
1518 					 * Acting as a router, so generate ICMP
1519 					 */
1520 nosourcerouting:
1521 					log(LOG_WARNING,
1522 					    "attempted source route from %s to %s\n",
1523 					    kinet_ntoa(ip->ip_src, sbuf),
1524 					    kinet_ntoa(ip->ip_dst, dbuf));
1525 					type = ICMP_UNREACH;
1526 					code = ICMP_UNREACH_SRCFAIL;
1527 					goto bad;
1528 				} else {
1529 					/*
1530 					 * Not acting as a router,
1531 					 * so silently drop.
1532 					 */
1533 dropit:
1534 					ipstat.ips_cantforward++;
1535 					m_freem(m);
1536 					return (1);
1537 				}
1538 			}
1539 
1540 			/*
1541 			 * locate outgoing interface
1542 			 */
1543 			memcpy(&ipaddr.sin_addr, cp + off,
1544 			    sizeof ipaddr.sin_addr);
1545 
1546 			if (opt == IPOPT_SSRR) {
1547 #define	INA	struct in_ifaddr *
1548 #define	SA	struct sockaddr *
1549 				if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1550 									== NULL)
1551 					ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1552 			} else {
1553 				ia = ip_rtaddr(ipaddr.sin_addr, NULL);
1554 			}
1555 			if (ia == NULL) {
1556 				type = ICMP_UNREACH;
1557 				code = ICMP_UNREACH_SRCFAIL;
1558 				goto bad;
1559 			}
1560 			ip->ip_dst = ipaddr.sin_addr;
1561 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1562 			    sizeof(struct in_addr));
1563 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1564 			/*
1565 			 * Let ip_intr's mcast routing check handle mcast pkts
1566 			 */
1567 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1568 			break;
1569 
1570 		case IPOPT_RR:
1571 			if (ipstealth && pass == 0)
1572 				break;
1573 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1574 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1575 				goto bad;
1576 			}
1577 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1578 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1579 				goto bad;
1580 			}
1581 			/*
1582 			 * If no space remains, ignore.
1583 			 */
1584 			off--;			/* 0 origin */
1585 			if (off > optlen - (int)sizeof(struct in_addr))
1586 				break;
1587 			memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1588 			    sizeof ipaddr.sin_addr);
1589 			/*
1590 			 * locate outgoing interface; if we're the destination,
1591 			 * use the incoming interface (should be same).
1592 			 */
1593 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1594 			    (ia = ip_rtaddr(ipaddr.sin_addr, NULL)) == NULL) {
1595 				type = ICMP_UNREACH;
1596 				code = ICMP_UNREACH_HOST;
1597 				goto bad;
1598 			}
1599 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1600 			    sizeof(struct in_addr));
1601 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1602 			break;
1603 
1604 		case IPOPT_TS:
1605 			if (ipstealth && pass == 0)
1606 				break;
1607 			code = cp - (u_char *)ip;
1608 			if (optlen < 4 || optlen > 40) {
1609 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1610 				goto bad;
1611 			}
1612 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1613 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1614 				goto bad;
1615 			}
1616 			if (off > optlen - (int)sizeof(int32_t)) {
1617 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1618 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1619 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1620 					goto bad;
1621 				}
1622 				break;
1623 			}
1624 			off--;				/* 0 origin */
1625 			sin = (struct in_addr *)(cp + off);
1626 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1627 
1628 			case IPOPT_TS_TSONLY:
1629 				break;
1630 
1631 			case IPOPT_TS_TSANDADDR:
1632 				if (off + sizeof(n_time) +
1633 				    sizeof(struct in_addr) > optlen) {
1634 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1635 					goto bad;
1636 				}
1637 				ipaddr.sin_addr = dst;
1638 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1639 							    m->m_pkthdr.rcvif);
1640 				if (ia == NULL)
1641 					continue;
1642 				memcpy(sin, &IA_SIN(ia)->sin_addr,
1643 				    sizeof(struct in_addr));
1644 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1645 				off += sizeof(struct in_addr);
1646 				break;
1647 
1648 			case IPOPT_TS_PRESPEC:
1649 				if (off + sizeof(n_time) +
1650 				    sizeof(struct in_addr) > optlen) {
1651 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1652 					goto bad;
1653 				}
1654 				memcpy(&ipaddr.sin_addr, sin,
1655 				    sizeof(struct in_addr));
1656 				if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1657 					continue;
1658 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1659 				off += sizeof(struct in_addr);
1660 				break;
1661 
1662 			default:
1663 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1664 				goto bad;
1665 			}
1666 			ntime = iptime();
1667 			memcpy(cp + off, &ntime, sizeof(n_time));
1668 			cp[IPOPT_OFFSET] += sizeof(n_time);
1669 		}
1670 	}
1671 	if (forward && ipforwarding) {
1672 		ip_forward(m, TRUE, next_hop);
1673 		return (1);
1674 	}
1675 	return (0);
1676 bad:
1677 	icmp_error(m, type, code, 0, 0);
1678 	ipstat.ips_badoptions++;
1679 	return (1);
1680 }
1681 
1682 /*
1683  * Given address of next destination (final or next hop),
1684  * return internet address info of interface to be used to get there.
1685  */
1686 struct in_ifaddr *
1687 ip_rtaddr(struct in_addr dst, struct route *ro0)
1688 {
1689 	struct route sro, *ro;
1690 	struct sockaddr_in *sin;
1691 	struct in_ifaddr *ia;
1692 
1693 	if (ro0 != NULL) {
1694 		ro = ro0;
1695 	} else {
1696 		bzero(&sro, sizeof(sro));
1697 		ro = &sro;
1698 	}
1699 
1700 	sin = (struct sockaddr_in *)&ro->ro_dst;
1701 
1702 	if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1703 		if (ro->ro_rt != NULL) {
1704 			RTFREE(ro->ro_rt);
1705 			ro->ro_rt = NULL;
1706 		}
1707 		sin->sin_family = AF_INET;
1708 		sin->sin_len = sizeof *sin;
1709 		sin->sin_addr = dst;
1710 		rtalloc_ign(ro, RTF_PRCLONING);
1711 	}
1712 
1713 	if (ro->ro_rt == NULL)
1714 		return (NULL);
1715 
1716 	ia = ifatoia(ro->ro_rt->rt_ifa);
1717 
1718 	if (ro == &sro)
1719 		RTFREE(ro->ro_rt);
1720 	return ia;
1721 }
1722 
1723 /*
1724  * Save incoming source route for use in replies,
1725  * to be picked up later by ip_srcroute if the receiver is interested.
1726  */
1727 static void
1728 save_rte(struct mbuf *m, u_char *option, struct in_addr dst)
1729 {
1730 	struct m_tag *mtag;
1731 	struct ip_srcrt_opt *opt;
1732 	unsigned olen;
1733 
1734 	mtag = m_tag_get(PACKET_TAG_IPSRCRT, sizeof(*opt), M_NOWAIT);
1735 	if (mtag == NULL)
1736 		return;
1737 	opt = m_tag_data(mtag);
1738 
1739 	olen = option[IPOPT_OLEN];
1740 #ifdef DIAGNOSTIC
1741 	if (ipprintfs)
1742 		kprintf("save_rte: olen %d\n", olen);
1743 #endif
1744 	if (olen > sizeof(opt->ip_srcrt) - (1 + sizeof(dst))) {
1745 		m_tag_free(mtag);
1746 		return;
1747 	}
1748 	bcopy(option, opt->ip_srcrt.srcopt, olen);
1749 	opt->ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1750 	opt->ip_srcrt.dst = dst;
1751 	m_tag_prepend(m, mtag);
1752 }
1753 
1754 /*
1755  * Retrieve incoming source route for use in replies,
1756  * in the same form used by setsockopt.
1757  * The first hop is placed before the options, will be removed later.
1758  */
1759 struct mbuf *
1760 ip_srcroute(struct mbuf *m0)
1761 {
1762 	struct in_addr *p, *q;
1763 	struct mbuf *m;
1764 	struct m_tag *mtag;
1765 	struct ip_srcrt_opt *opt;
1766 
1767 	if (m0 == NULL)
1768 		return NULL;
1769 
1770 	mtag = m_tag_find(m0, PACKET_TAG_IPSRCRT, NULL);
1771 	if (mtag == NULL)
1772 		return NULL;
1773 	opt = m_tag_data(mtag);
1774 
1775 	if (opt->ip_nhops == 0)
1776 		return (NULL);
1777 	m = m_get(M_NOWAIT, MT_HEADER);
1778 	if (m == NULL)
1779 		return (NULL);
1780 
1781 #define	OPTSIZ	(sizeof(opt->ip_srcrt.nop) + sizeof(opt->ip_srcrt.srcopt))
1782 
1783 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1784 	m->m_len = opt->ip_nhops * sizeof(struct in_addr) +
1785 		   sizeof(struct in_addr) + OPTSIZ;
1786 #ifdef DIAGNOSTIC
1787 	if (ipprintfs) {
1788 		kprintf("ip_srcroute: nhops %d mlen %d",
1789 			opt->ip_nhops, m->m_len);
1790 	}
1791 #endif
1792 
1793 	/*
1794 	 * First save first hop for return route
1795 	 */
1796 	p = &opt->ip_srcrt.route[opt->ip_nhops - 1];
1797 	*(mtod(m, struct in_addr *)) = *p--;
1798 #ifdef DIAGNOSTIC
1799 	if (ipprintfs)
1800 		kprintf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1801 #endif
1802 
1803 	/*
1804 	 * Copy option fields and padding (nop) to mbuf.
1805 	 */
1806 	opt->ip_srcrt.nop = IPOPT_NOP;
1807 	opt->ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1808 	memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &opt->ip_srcrt.nop,
1809 	    OPTSIZ);
1810 	q = (struct in_addr *)(mtod(m, caddr_t) +
1811 	    sizeof(struct in_addr) + OPTSIZ);
1812 #undef OPTSIZ
1813 	/*
1814 	 * Record return path as an IP source route,
1815 	 * reversing the path (pointers are now aligned).
1816 	 */
1817 	while (p >= opt->ip_srcrt.route) {
1818 #ifdef DIAGNOSTIC
1819 		if (ipprintfs)
1820 			kprintf(" %x", ntohl(q->s_addr));
1821 #endif
1822 		*q++ = *p--;
1823 	}
1824 	/*
1825 	 * Last hop goes to final destination.
1826 	 */
1827 	*q = opt->ip_srcrt.dst;
1828 	m_tag_delete(m0, mtag);
1829 #ifdef DIAGNOSTIC
1830 	if (ipprintfs)
1831 		kprintf(" %x\n", ntohl(q->s_addr));
1832 #endif
1833 	return (m);
1834 }
1835 
1836 /*
1837  * Strip out IP options.
1838  */
1839 void
1840 ip_stripoptions(struct mbuf *m)
1841 {
1842 	int datalen;
1843 	struct ip *ip = mtod(m, struct ip *);
1844 	caddr_t opts;
1845 	int optlen;
1846 
1847 	optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1848 	opts = (caddr_t)(ip + 1);
1849 	datalen = m->m_len - (sizeof(struct ip) + optlen);
1850 	bcopy(opts + optlen, opts, datalen);
1851 	m->m_len -= optlen;
1852 	if (m->m_flags & M_PKTHDR)
1853 		m->m_pkthdr.len -= optlen;
1854 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1855 }
1856 
1857 u_char inetctlerrmap[PRC_NCMDS] = {
1858 	0,		0,		0,		0,
1859 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1860 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1861 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1862 	0,		0,		0,		0,
1863 	ENOPROTOOPT,	ECONNREFUSED
1864 };
1865 
1866 /*
1867  * Forward a packet.  If some error occurs return the sender
1868  * an icmp packet.  Note we can't always generate a meaningful
1869  * icmp message because icmp doesn't have a large enough repertoire
1870  * of codes and types.
1871  *
1872  * If not forwarding, just drop the packet.  This could be confusing
1873  * if ipforwarding was zero but some routing protocol was advancing
1874  * us as a gateway to somewhere.  However, we must let the routing
1875  * protocol deal with that.
1876  *
1877  * The using_srcrt parameter indicates whether the packet is being forwarded
1878  * via a source route.
1879  */
1880 void
1881 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1882 {
1883 	struct ip *ip = mtod(m, struct ip *);
1884 	struct rtentry *rt;
1885 	struct route fwd_ro;
1886 	int error, type = 0, code = 0, destmtu = 0;
1887 	struct mbuf *mcopy, *mtemp = NULL;
1888 	n_long dest;
1889 	struct in_addr pkt_dst;
1890 
1891 	dest = INADDR_ANY;
1892 	/*
1893 	 * Cache the destination address of the packet; this may be
1894 	 * changed by use of 'ipfw fwd'.
1895 	 */
1896 	pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1897 
1898 #ifdef DIAGNOSTIC
1899 	if (ipprintfs)
1900 		kprintf("forward: src %x dst %x ttl %x\n",
1901 		       ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1902 #endif
1903 
1904 	if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1905 		ipstat.ips_cantforward++;
1906 		m_freem(m);
1907 		return;
1908 	}
1909 	if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1910 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1911 		return;
1912 	}
1913 
1914 	bzero(&fwd_ro, sizeof(fwd_ro));
1915 	ip_rtaddr(pkt_dst, &fwd_ro);
1916 	if (fwd_ro.ro_rt == NULL) {
1917 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1918 		return;
1919 	}
1920 	rt = fwd_ro.ro_rt;
1921 
1922 	if (curthread->td_type == TD_TYPE_NETISR) {
1923 		/*
1924 		 * Save the IP header and at most 8 bytes of the payload,
1925 		 * in case we need to generate an ICMP message to the src.
1926 		 */
1927 		mtemp = ipforward_mtemp[mycpuid];
1928 		KASSERT((mtemp->m_flags & M_EXT) == 0 &&
1929 		    mtemp->m_data == mtemp->m_pktdat &&
1930 		    m_tag_first(mtemp) == NULL,
1931 		    ("ip_forward invalid mtemp1"));
1932 
1933 		if (!m_dup_pkthdr(mtemp, m, M_NOWAIT)) {
1934 			/*
1935 			 * It's probably ok if the pkthdr dup fails (because
1936 			 * the deep copy of the tag chain failed), but for now
1937 			 * be conservative and just discard the copy since
1938 			 * code below may some day want the tags.
1939 			 */
1940 			mtemp = NULL;
1941 		} else {
1942 			mtemp->m_type = m->m_type;
1943 			mtemp->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1944 			    (int)ip->ip_len);
1945 			mtemp->m_pkthdr.len = mtemp->m_len;
1946 			m_copydata(m, 0, mtemp->m_len, mtod(mtemp, caddr_t));
1947 		}
1948 	}
1949 
1950 	if (!ipstealth)
1951 		ip->ip_ttl -= IPTTLDEC;
1952 
1953 	/*
1954 	 * If forwarding packet using same interface that it came in on,
1955 	 * perhaps should send a redirect to sender to shortcut a hop.
1956 	 * Only send redirect if source is sending directly to us,
1957 	 * and if packet was not source routed (or has any options).
1958 	 * Also, don't send redirect if forwarding using a default route
1959 	 * or a route modified by a redirect.
1960 	 */
1961 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1962 	    !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
1963 	    satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
1964 	    ipsendredirects && !using_srcrt && next_hop == NULL) {
1965 		u_long src = ntohl(ip->ip_src.s_addr);
1966 		struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
1967 
1968 		if (rt_ifa != NULL &&
1969 		    (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
1970 			if (rt->rt_flags & RTF_GATEWAY)
1971 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1972 			else
1973 				dest = pkt_dst.s_addr;
1974 			/*
1975 			 * Router requirements says to only send
1976 			 * host redirects.
1977 			 */
1978 			type = ICMP_REDIRECT;
1979 			code = ICMP_REDIRECT_HOST;
1980 #ifdef DIAGNOSTIC
1981 			if (ipprintfs)
1982 				kprintf("redirect (%d) to %x\n", code, dest);
1983 #endif
1984 		}
1985 	}
1986 
1987 	error = ip_output(m, NULL, &fwd_ro, IP_FORWARDING, NULL, NULL);
1988 	if (error == 0) {
1989 		ipstat.ips_forward++;
1990 		if (type == 0) {
1991 			if (mtemp)
1992 				ipflow_create(&fwd_ro, mtemp);
1993 			goto done;
1994 		}
1995 		ipstat.ips_redirectsent++;
1996 	} else {
1997 		ipstat.ips_cantforward++;
1998 	}
1999 
2000 	if (mtemp == NULL)
2001 		goto done;
2002 
2003 	/*
2004 	 * Errors that do not require generating ICMP message
2005 	 */
2006 	switch (error) {
2007 	case ENOBUFS:
2008 		/*
2009 		 * A router should not generate ICMP_SOURCEQUENCH as
2010 		 * required in RFC1812 Requirements for IP Version 4 Routers.
2011 		 * Source quench could be a big problem under DoS attacks,
2012 		 * or if the underlying interface is rate-limited.
2013 		 * Those who need source quench packets may re-enable them
2014 		 * via the net.inet.ip.sendsourcequench sysctl.
2015 		 */
2016 		if (!ip_sendsourcequench)
2017 			goto done;
2018 		break;
2019 
2020 	case EACCES:			/* ipfw denied packet */
2021 		goto done;
2022 	}
2023 
2024 	KASSERT((mtemp->m_flags & M_EXT) == 0 &&
2025 	    mtemp->m_data == mtemp->m_pktdat,
2026 	    ("ip_forward invalid mtemp2"));
2027 	mcopy = m_copym(mtemp, 0, mtemp->m_len, M_NOWAIT);
2028 	if (mcopy == NULL)
2029 		goto done;
2030 
2031 	/*
2032 	 * Send ICMP message.
2033 	 */
2034 	switch (error) {
2035 	case 0:				/* forwarded, but need redirect */
2036 		/* type, code set above */
2037 		break;
2038 
2039 	case ENETUNREACH:		/* shouldn't happen, checked above */
2040 	case EHOSTUNREACH:
2041 	case ENETDOWN:
2042 	case EHOSTDOWN:
2043 	default:
2044 		type = ICMP_UNREACH;
2045 		code = ICMP_UNREACH_HOST;
2046 		break;
2047 
2048 	case EMSGSIZE:
2049 		type = ICMP_UNREACH;
2050 		code = ICMP_UNREACH_NEEDFRAG;
2051 		if (fwd_ro.ro_rt != NULL)
2052 			destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2053 		ipstat.ips_cantfrag++;
2054 		break;
2055 
2056 	case ENOBUFS:
2057 		type = ICMP_SOURCEQUENCH;
2058 		code = 0;
2059 		break;
2060 
2061 	case EACCES:			/* ipfw denied packet */
2062 		panic("ip_forward EACCES should not reach");
2063 	}
2064 	icmp_error(mcopy, type, code, dest, destmtu);
2065 done:
2066 	if (mtemp != NULL)
2067 		m_tag_delete_chain(mtemp);
2068 	if (fwd_ro.ro_rt != NULL)
2069 		RTFREE(fwd_ro.ro_rt);
2070 }
2071 
2072 void
2073 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2074 	       struct mbuf *m)
2075 {
2076 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2077 		struct timeval tv;
2078 
2079 		microtime(&tv);
2080 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2081 		    SCM_TIMESTAMP, SOL_SOCKET);
2082 		if (*mp)
2083 			mp = &(*mp)->m_next;
2084 	}
2085 	if (inp->inp_flags & INP_RECVDSTADDR) {
2086 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2087 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2088 		if (*mp)
2089 			mp = &(*mp)->m_next;
2090 	}
2091 	if (inp->inp_flags & INP_RECVTTL) {
2092 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2093 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2094 		if (*mp)
2095 			mp = &(*mp)->m_next;
2096 	}
2097 	if (inp->inp_flags & INP_RECVTOS) {
2098 		*mp = sbcreatecontrol((caddr_t) &ip->ip_tos,
2099 		    sizeof(u_char), IP_RECVTOS, IPPROTO_IP);
2100 		if (*mp)
2101 			mp = &(*mp)->m_next;
2102 	}
2103 #ifdef notyet
2104 	/* XXX
2105 	 * Moving these out of udp_input() made them even more broken
2106 	 * than they already were.
2107 	 */
2108 	/* options were tossed already */
2109 	if (inp->inp_flags & INP_RECVOPTS) {
2110 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2111 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2112 		if (*mp)
2113 			mp = &(*mp)->m_next;
2114 	}
2115 	/* ip_srcroute doesn't do what we want here, need to fix */
2116 	if (inp->inp_flags & INP_RECVRETOPTS) {
2117 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
2118 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2119 		if (*mp)
2120 			mp = &(*mp)->m_next;
2121 	}
2122 #endif
2123 	if (inp->inp_flags & INP_RECVIF) {
2124 		struct ifnet *ifp;
2125 		struct sdlbuf {
2126 			struct sockaddr_dl sdl;
2127 			u_char	pad[32];
2128 		} sdlbuf;
2129 		struct sockaddr_dl *sdp;
2130 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2131 
2132 		if (((ifp = m->m_pkthdr.rcvif)) &&
2133 		    ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2134 			sdp = IF_LLSOCKADDR(ifp);
2135 			/*
2136 			 * Change our mind and don't try copy.
2137 			 */
2138 			if ((sdp->sdl_family != AF_LINK) ||
2139 			    (sdp->sdl_len > sizeof(sdlbuf))) {
2140 				goto makedummy;
2141 			}
2142 			bcopy(sdp, sdl2, sdp->sdl_len);
2143 		} else {
2144 makedummy:
2145 			sdl2->sdl_len =
2146 			    offsetof(struct sockaddr_dl, sdl_data[0]);
2147 			sdl2->sdl_family = AF_LINK;
2148 			sdl2->sdl_index = 0;
2149 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2150 		}
2151 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2152 			IP_RECVIF, IPPROTO_IP);
2153 		if (*mp)
2154 			mp = &(*mp)->m_next;
2155 	}
2156 }
2157 
2158 /*
2159  * XXX these routines are called from the upper part of the kernel.
2160  *
2161  * They could also be moved to ip_mroute.c, since all the RSVP
2162  *  handling is done there already.
2163  */
2164 int
2165 ip_rsvp_init(struct socket *so)
2166 {
2167 	if (so->so_type != SOCK_RAW ||
2168 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2169 		return EOPNOTSUPP;
2170 
2171 	if (ip_rsvpd != NULL)
2172 		return EADDRINUSE;
2173 
2174 	ip_rsvpd = so;
2175 	/*
2176 	 * This may seem silly, but we need to be sure we don't over-increment
2177 	 * the RSVP counter, in case something slips up.
2178 	 */
2179 	if (!ip_rsvp_on) {
2180 		ip_rsvp_on = 1;
2181 		rsvp_on++;
2182 	}
2183 
2184 	return 0;
2185 }
2186 
2187 int
2188 ip_rsvp_done(void)
2189 {
2190 	ip_rsvpd = NULL;
2191 	/*
2192 	 * This may seem silly, but we need to be sure we don't over-decrement
2193 	 * the RSVP counter, in case something slips up.
2194 	 */
2195 	if (ip_rsvp_on) {
2196 		ip_rsvp_on = 0;
2197 		rsvp_on--;
2198 	}
2199 	return 0;
2200 }
2201 
2202 int
2203 rsvp_input(struct mbuf **mp, int *offp, int proto)
2204 {
2205 	struct mbuf *m = *mp;
2206 
2207 	*mp = NULL;
2208 
2209 	if (rsvp_input_p) { /* call the real one if loaded */
2210 		*mp = m;
2211 		rsvp_input_p(mp, offp, proto);
2212 		return(IPPROTO_DONE);
2213 	}
2214 
2215 	/* Can still get packets with rsvp_on = 0 if there is a local member
2216 	 * of the group to which the RSVP packet is addressed.  But in this
2217 	 * case we want to throw the packet away.
2218 	 */
2219 
2220 	if (!rsvp_on) {
2221 		m_freem(m);
2222 		return(IPPROTO_DONE);
2223 	}
2224 
2225 	if (ip_rsvpd != NULL) {
2226 		*mp = m;
2227 		rip_input(mp, offp, proto);
2228 		return(IPPROTO_DONE);
2229 	}
2230 	/* Drop the packet */
2231 	m_freem(m);
2232 	return(IPPROTO_DONE);
2233 }
2234