xref: /dragonfly/sys/netinet/ip_output.c (revision 1de703da)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
34  * $FreeBSD: src/sys/netinet/ip_output.c,v 1.99.2.37 2003/04/15 06:44:45 silby Exp $
35  * $DragonFly: src/sys/netinet/ip_output.c,v 1.2 2003/06/17 04:28:51 dillon Exp $
36  */
37 
38 #define _IP_VHL
39 
40 #include "opt_ipfw.h"
41 #include "opt_ipdn.h"
42 #include "opt_ipdivert.h"
43 #include "opt_ipfilter.h"
44 #include "opt_ipsec.h"
45 #include "opt_random_ip_id.h"
46 #include "opt_mbuf_stress_test.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/mbuf.h>
53 #include <sys/protosw.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/proc.h>
57 #include <sys/sysctl.h>
58 
59 #include <net/if.h>
60 #include <net/route.h>
61 
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/ip.h>
65 #include <netinet/in_pcb.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip_var.h>
68 
69 #include <machine/in_cksum.h>
70 
71 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
72 
73 #ifdef IPSEC
74 #include <netinet6/ipsec.h>
75 #include <netkey/key.h>
76 #ifdef IPSEC_DEBUG
77 #include <netkey/key_debug.h>
78 #else
79 #define	KEYDEBUG(lev,arg)
80 #endif
81 #endif /*IPSEC*/
82 
83 #ifdef FAST_IPSEC
84 #include <netipsec/ipsec.h>
85 #include <netipsec/xform.h>
86 #include <netipsec/key.h>
87 #endif /*FAST_IPSEC*/
88 
89 #include <netinet/ip_fw.h>
90 #include <netinet/ip_dummynet.h>
91 
92 #define print_ip(x, a, y)	 printf("%s %d.%d.%d.%d%s",\
93 				x, (ntohl(a.s_addr)>>24)&0xFF,\
94 				  (ntohl(a.s_addr)>>16)&0xFF,\
95 				  (ntohl(a.s_addr)>>8)&0xFF,\
96 				  (ntohl(a.s_addr))&0xFF, y);
97 
98 u_short ip_id;
99 
100 #ifdef MBUF_STRESS_TEST
101 int mbuf_frag_size = 0;
102 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
103 	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
104 #endif
105 
106 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
107 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
108 static void	ip_mloopback
109 	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
110 static int	ip_getmoptions
111 	(struct sockopt *, struct ip_moptions *);
112 static int	ip_pcbopts(int, struct mbuf **, struct mbuf *);
113 static int	ip_setmoptions
114 	(struct sockopt *, struct ip_moptions **);
115 
116 int	ip_optcopy(struct ip *, struct ip *);
117 extern int (*fr_checkp) (struct ip *, int, struct ifnet *, int, struct mbuf **);
118 
119 
120 extern	struct protosw inetsw[];
121 
122 /*
123  * IP output.  The packet in mbuf chain m contains a skeletal IP
124  * header (with len, off, ttl, proto, tos, src, dst).
125  * The mbuf chain containing the packet will be freed.
126  * The mbuf opt, if present, will not be freed.
127  */
128 int
129 ip_output(m0, opt, ro, flags, imo, inp)
130 	struct mbuf *m0;
131 	struct mbuf *opt;
132 	struct route *ro;
133 	int flags;
134 	struct ip_moptions *imo;
135 	struct inpcb *inp;
136 {
137 	struct ip *ip, *mhip;
138 	struct ifnet *ifp = NULL;	/* keep compiler happy */
139 	struct mbuf *m;
140 	int hlen = sizeof (struct ip);
141 	int len, off, error = 0;
142 	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
143 	struct in_ifaddr *ia = NULL;
144 	int isbroadcast, sw_csum;
145 	struct in_addr pkt_dst;
146 #ifdef IPSEC
147 	struct route iproute;
148 	struct secpolicy *sp = NULL;
149 	struct socket *so = inp ? inp->inp_socket : NULL;
150 #endif
151 #ifdef FAST_IPSEC
152 	struct route iproute;
153 	struct m_tag *mtag;
154 	struct secpolicy *sp = NULL;
155 	struct tdb_ident *tdbi;
156 	int s;
157 #endif /* FAST_IPSEC */
158 	struct ip_fw_args args;
159 	int src_was_INADDR_ANY = 0;	/* as the name says... */
160 
161 	args.eh = NULL;
162 	args.rule = NULL;
163 	args.next_hop = NULL;
164 	args.divert_rule = 0;			/* divert cookie */
165 
166 	/* Grab info from MT_TAG mbufs prepended to the chain. */
167 	for (; m0 && m0->m_type == MT_TAG; m0 = m0->m_next) {
168 		switch(m0->_m_tag_id) {
169 		default:
170 			printf("ip_output: unrecognised MT_TAG tag %d\n",
171 			    m0->_m_tag_id);
172 			break;
173 
174 		case PACKET_TAG_DUMMYNET:
175 			/*
176 			 * the packet was already tagged, so part of the
177 			 * processing was already done, and we need to go down.
178 			 * Get parameters from the header.
179 			 */
180 			args.rule = ((struct dn_pkt *)m0)->rule;
181 			opt = NULL ;
182 			ro = & ( ((struct dn_pkt *)m0)->ro ) ;
183 			imo = NULL ;
184 			dst = ((struct dn_pkt *)m0)->dn_dst ;
185 			ifp = ((struct dn_pkt *)m0)->ifp ;
186 			flags = ((struct dn_pkt *)m0)->flags ;
187 			break;
188 
189 		case PACKET_TAG_DIVERT:
190 			args.divert_rule = (int)m0->m_data & 0xffff;
191 			break;
192 
193 		case PACKET_TAG_IPFORWARD:
194 			args.next_hop = (struct sockaddr_in *)m0->m_data;
195 			break;
196 		}
197 	}
198 	m = m0;
199 
200 	KASSERT(!m || (m->m_flags & M_PKTHDR) != 0, ("ip_output: no HDR"));
201 #ifndef FAST_IPSEC
202 	KASSERT(ro != NULL, ("ip_output: no route, proto %d",
203 	    mtod(m, struct ip *)->ip_p));
204 #endif
205 
206 	if (args.rule != NULL) {	/* dummynet already saw us */
207 		ip = mtod(m, struct ip *);
208 		hlen = IP_VHL_HL(ip->ip_vhl) << 2 ;
209 		if (ro->ro_rt)
210 			ia = ifatoia(ro->ro_rt->rt_ifa);
211 		goto sendit;
212 	}
213 
214 	if (opt) {
215 		len = 0;
216 		m = ip_insertoptions(m, opt, &len);
217 		if (len != 0)
218 			hlen = len;
219 	}
220 	ip = mtod(m, struct ip *);
221 	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
222 
223 	/*
224 	 * Fill in IP header.
225 	 */
226 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
227 		ip->ip_vhl = IP_MAKE_VHL(IPVERSION, hlen >> 2);
228 		ip->ip_off &= IP_DF;
229 #ifdef RANDOM_IP_ID
230 		ip->ip_id = ip_randomid();
231 #else
232 		ip->ip_id = htons(ip_id++);
233 #endif
234 		ipstat.ips_localout++;
235 	} else {
236 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
237 	}
238 
239 #ifdef FAST_IPSEC
240 	if (ro == NULL) {
241 		ro = &iproute;
242 		bzero(ro, sizeof (*ro));
243 	}
244 #endif /* FAST_IPSEC */
245 	dst = (struct sockaddr_in *)&ro->ro_dst;
246 	/*
247 	 * If there is a cached route,
248 	 * check that it is to the same destination
249 	 * and is still up.  If not, free it and try again.
250 	 * The address family should also be checked in case of sharing the
251 	 * cache with IPv6.
252 	 */
253 	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
254 			  dst->sin_family != AF_INET ||
255 			  dst->sin_addr.s_addr != pkt_dst.s_addr)) {
256 		RTFREE(ro->ro_rt);
257 		ro->ro_rt = (struct rtentry *)0;
258 	}
259 	if (ro->ro_rt == 0) {
260 		bzero(dst, sizeof(*dst));
261 		dst->sin_family = AF_INET;
262 		dst->sin_len = sizeof(*dst);
263 		dst->sin_addr = pkt_dst;
264 	}
265 	/*
266 	 * If routing to interface only,
267 	 * short circuit routing lookup.
268 	 */
269 	if (flags & IP_ROUTETOIF) {
270 		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == 0 &&
271 		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == 0) {
272 			ipstat.ips_noroute++;
273 			error = ENETUNREACH;
274 			goto bad;
275 		}
276 		ifp = ia->ia_ifp;
277 		ip->ip_ttl = 1;
278 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
279 	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
280 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
281 		/*
282 		 * Bypass the normal routing lookup for multicast
283 		 * packets if the interface is specified.
284 		 */
285 		ifp = imo->imo_multicast_ifp;
286 		IFP_TO_IA(ifp, ia);
287 		isbroadcast = 0;	/* fool gcc */
288 	} else {
289 		/*
290 		 * If this is the case, we probably don't want to allocate
291 		 * a protocol-cloned route since we didn't get one from the
292 		 * ULP.  This lets TCP do its thing, while not burdening
293 		 * forwarding or ICMP with the overhead of cloning a route.
294 		 * Of course, we still want to do any cloning requested by
295 		 * the link layer, as this is probably required in all cases
296 		 * for correct operation (as it is for ARP).
297 		 */
298 		if (ro->ro_rt == 0)
299 			rtalloc_ign(ro, RTF_PRCLONING);
300 		if (ro->ro_rt == 0) {
301 			ipstat.ips_noroute++;
302 			error = EHOSTUNREACH;
303 			goto bad;
304 		}
305 		ia = ifatoia(ro->ro_rt->rt_ifa);
306 		ifp = ro->ro_rt->rt_ifp;
307 		ro->ro_rt->rt_use++;
308 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
309 			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
310 		if (ro->ro_rt->rt_flags & RTF_HOST)
311 			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
312 		else
313 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
314 	}
315 	if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
316 		struct in_multi *inm;
317 
318 		m->m_flags |= M_MCAST;
319 		/*
320 		 * IP destination address is multicast.  Make sure "dst"
321 		 * still points to the address in "ro".  (It may have been
322 		 * changed to point to a gateway address, above.)
323 		 */
324 		dst = (struct sockaddr_in *)&ro->ro_dst;
325 		/*
326 		 * See if the caller provided any multicast options
327 		 */
328 		if (imo != NULL) {
329 			ip->ip_ttl = imo->imo_multicast_ttl;
330 			if (imo->imo_multicast_vif != -1)
331 				ip->ip_src.s_addr =
332 				    ip_mcast_src ?
333 				    ip_mcast_src(imo->imo_multicast_vif) :
334 				    INADDR_ANY;
335 		} else
336 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
337 		/*
338 		 * Confirm that the outgoing interface supports multicast.
339 		 */
340 		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
341 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
342 				ipstat.ips_noroute++;
343 				error = ENETUNREACH;
344 				goto bad;
345 			}
346 		}
347 		/*
348 		 * If source address not specified yet, use address
349 		 * of outgoing interface.
350 		 */
351 		if (ip->ip_src.s_addr == INADDR_ANY) {
352 			/* Interface may have no addresses. */
353 			if (ia != NULL)
354 				ip->ip_src = IA_SIN(ia)->sin_addr;
355 		}
356 
357 		IN_LOOKUP_MULTI(pkt_dst, ifp, inm);
358 		if (inm != NULL &&
359 		   (imo == NULL || imo->imo_multicast_loop)) {
360 			/*
361 			 * If we belong to the destination multicast group
362 			 * on the outgoing interface, and the caller did not
363 			 * forbid loopback, loop back a copy.
364 			 */
365 			ip_mloopback(ifp, m, dst, hlen);
366 		}
367 		else {
368 			/*
369 			 * If we are acting as a multicast router, perform
370 			 * multicast forwarding as if the packet had just
371 			 * arrived on the interface to which we are about
372 			 * to send.  The multicast forwarding function
373 			 * recursively calls this function, using the
374 			 * IP_FORWARDING flag to prevent infinite recursion.
375 			 *
376 			 * Multicasts that are looped back by ip_mloopback(),
377 			 * above, will be forwarded by the ip_input() routine,
378 			 * if necessary.
379 			 */
380 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
381 				/*
382 				 * If rsvp daemon is not running, do not
383 				 * set ip_moptions. This ensures that the packet
384 				 * is multicast and not just sent down one link
385 				 * as prescribed by rsvpd.
386 				 */
387 				if (!rsvp_on)
388 					imo = NULL;
389 				if (ip_mforward &&
390 				    ip_mforward(ip, ifp, m, imo) != 0) {
391 					m_freem(m);
392 					goto done;
393 				}
394 			}
395 		}
396 
397 		/*
398 		 * Multicasts with a time-to-live of zero may be looped-
399 		 * back, above, but must not be transmitted on a network.
400 		 * Also, multicasts addressed to the loopback interface
401 		 * are not sent -- the above call to ip_mloopback() will
402 		 * loop back a copy if this host actually belongs to the
403 		 * destination group on the loopback interface.
404 		 */
405 		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
406 			m_freem(m);
407 			goto done;
408 		}
409 
410 		goto sendit;
411 	}
412 #ifndef notdef
413 	/*
414 	 * If the source address is not specified yet, use the address
415 	 * of the outoing interface. In case, keep note we did that, so
416 	 * if the the firewall changes the next-hop causing the output
417 	 * interface to change, we can fix that.
418 	 */
419 	if (ip->ip_src.s_addr == INADDR_ANY) {
420 		/* Interface may have no addresses. */
421 		if (ia != NULL) {
422 			ip->ip_src = IA_SIN(ia)->sin_addr;
423 			src_was_INADDR_ANY = 1;
424 		}
425 	}
426 #endif /* notdef */
427 	/*
428 	 * Verify that we have any chance at all of being able to queue
429 	 *      the packet or packet fragments
430 	 */
431 	if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
432 		ifp->if_snd.ifq_maxlen) {
433 			error = ENOBUFS;
434 			ipstat.ips_odropped++;
435 			goto bad;
436 	}
437 
438 	/*
439 	 * Look for broadcast address and
440 	 * verify user is allowed to send
441 	 * such a packet.
442 	 */
443 	if (isbroadcast) {
444 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
445 			error = EADDRNOTAVAIL;
446 			goto bad;
447 		}
448 		if ((flags & IP_ALLOWBROADCAST) == 0) {
449 			error = EACCES;
450 			goto bad;
451 		}
452 		/* don't allow broadcast messages to be fragmented */
453 		if ((u_short)ip->ip_len > ifp->if_mtu) {
454 			error = EMSGSIZE;
455 			goto bad;
456 		}
457 		m->m_flags |= M_BCAST;
458 	} else {
459 		m->m_flags &= ~M_BCAST;
460 	}
461 
462 sendit:
463 #ifdef IPSEC
464 	/* get SP for this packet */
465 	if (so == NULL)
466 		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, flags, &error);
467 	else
468 		sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
469 
470 	if (sp == NULL) {
471 		ipsecstat.out_inval++;
472 		goto bad;
473 	}
474 
475 	error = 0;
476 
477 	/* check policy */
478 	switch (sp->policy) {
479 	case IPSEC_POLICY_DISCARD:
480 		/*
481 		 * This packet is just discarded.
482 		 */
483 		ipsecstat.out_polvio++;
484 		goto bad;
485 
486 	case IPSEC_POLICY_BYPASS:
487 	case IPSEC_POLICY_NONE:
488 		/* no need to do IPsec. */
489 		goto skip_ipsec;
490 
491 	case IPSEC_POLICY_IPSEC:
492 		if (sp->req == NULL) {
493 			/* acquire a policy */
494 			error = key_spdacquire(sp);
495 			goto bad;
496 		}
497 		break;
498 
499 	case IPSEC_POLICY_ENTRUST:
500 	default:
501 		printf("ip_output: Invalid policy found. %d\n", sp->policy);
502 	}
503     {
504 	struct ipsec_output_state state;
505 	bzero(&state, sizeof(state));
506 	state.m = m;
507 	if (flags & IP_ROUTETOIF) {
508 		state.ro = &iproute;
509 		bzero(&iproute, sizeof(iproute));
510 	} else
511 		state.ro = ro;
512 	state.dst = (struct sockaddr *)dst;
513 
514 	ip->ip_sum = 0;
515 
516 	/*
517 	 * XXX
518 	 * delayed checksums are not currently compatible with IPsec
519 	 */
520 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
521 		in_delayed_cksum(m);
522 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
523 	}
524 
525 	ip->ip_len = htons(ip->ip_len);
526 	ip->ip_off = htons(ip->ip_off);
527 
528 	error = ipsec4_output(&state, sp, flags);
529 
530 	m = state.m;
531 	if (flags & IP_ROUTETOIF) {
532 		/*
533 		 * if we have tunnel mode SA, we may need to ignore
534 		 * IP_ROUTETOIF.
535 		 */
536 		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
537 			flags &= ~IP_ROUTETOIF;
538 			ro = state.ro;
539 		}
540 	} else
541 		ro = state.ro;
542 	dst = (struct sockaddr_in *)state.dst;
543 	if (error) {
544 		/* mbuf is already reclaimed in ipsec4_output. */
545 		m0 = NULL;
546 		switch (error) {
547 		case EHOSTUNREACH:
548 		case ENETUNREACH:
549 		case EMSGSIZE:
550 		case ENOBUFS:
551 		case ENOMEM:
552 			break;
553 		default:
554 			printf("ip4_output (ipsec): error code %d\n", error);
555 			/*fall through*/
556 		case ENOENT:
557 			/* don't show these error codes to the user */
558 			error = 0;
559 			break;
560 		}
561 		goto bad;
562 	}
563     }
564 
565 	/* be sure to update variables that are affected by ipsec4_output() */
566 	ip = mtod(m, struct ip *);
567 #ifdef _IP_VHL
568 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
569 #else
570 	hlen = ip->ip_hl << 2;
571 #endif
572 	if (ro->ro_rt == NULL) {
573 		if ((flags & IP_ROUTETOIF) == 0) {
574 			printf("ip_output: "
575 				"can't update route after IPsec processing\n");
576 			error = EHOSTUNREACH;	/*XXX*/
577 			goto bad;
578 		}
579 	} else {
580 		ia = ifatoia(ro->ro_rt->rt_ifa);
581 		ifp = ro->ro_rt->rt_ifp;
582 	}
583 
584 	/* make it flipped, again. */
585 	ip->ip_len = ntohs(ip->ip_len);
586 	ip->ip_off = ntohs(ip->ip_off);
587 skip_ipsec:
588 #endif /*IPSEC*/
589 #ifdef FAST_IPSEC
590 	/*
591 	 * Check the security policy (SP) for the packet and, if
592 	 * required, do IPsec-related processing.  There are two
593 	 * cases here; the first time a packet is sent through
594 	 * it will be untagged and handled by ipsec4_checkpolicy.
595 	 * If the packet is resubmitted to ip_output (e.g. after
596 	 * AH, ESP, etc. processing), there will be a tag to bypass
597 	 * the lookup and related policy checking.
598 	 */
599 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
600 	s = splnet();
601 	if (mtag != NULL) {
602 		tdbi = (struct tdb_ident *)(mtag + 1);
603 		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
604 		if (sp == NULL)
605 			error = -EINVAL;	/* force silent drop */
606 		m_tag_delete(m, mtag);
607 	} else {
608 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
609 					&error, inp);
610 	}
611 	/*
612 	 * There are four return cases:
613 	 *    sp != NULL	 	    apply IPsec policy
614 	 *    sp == NULL, error == 0	    no IPsec handling needed
615 	 *    sp == NULL, error == -EINVAL  discard packet w/o error
616 	 *    sp == NULL, error != 0	    discard packet, report error
617 	 */
618 	if (sp != NULL) {
619 		/* Loop detection, check if ipsec processing already done */
620 		KASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
621 		for (mtag = m_tag_first(m); mtag != NULL;
622 		     mtag = m_tag_next(m, mtag)) {
623 			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
624 				continue;
625 			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
626 			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
627 				continue;
628 			/*
629 			 * Check if policy has an SA associated with it.
630 			 * This can happen when an SP has yet to acquire
631 			 * an SA; e.g. on first reference.  If it occurs,
632 			 * then we let ipsec4_process_packet do its thing.
633 			 */
634 			if (sp->req->sav == NULL)
635 				break;
636 			tdbi = (struct tdb_ident *)(mtag + 1);
637 			if (tdbi->spi == sp->req->sav->spi &&
638 			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
639 			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
640 				 sizeof (union sockaddr_union)) == 0) {
641 				/*
642 				 * No IPsec processing is needed, free
643 				 * reference to SP.
644 				 *
645 				 * NB: null pointer to avoid free at
646 				 *     done: below.
647 				 */
648 				KEY_FREESP(&sp), sp = NULL;
649 				splx(s);
650 				goto spd_done;
651 			}
652 		}
653 
654 		/*
655 		 * Do delayed checksums now because we send before
656 		 * this is done in the normal processing path.
657 		 */
658 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
659 			in_delayed_cksum(m);
660 			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
661 		}
662 
663 		ip->ip_len = htons(ip->ip_len);
664 		ip->ip_off = htons(ip->ip_off);
665 
666 		/* NB: callee frees mbuf */
667 		error = ipsec4_process_packet(m, sp->req, flags, 0);
668 		/*
669 		 * Preserve KAME behaviour: ENOENT can be returned
670 		 * when an SA acquire is in progress.  Don't propagate
671 		 * this to user-level; it confuses applications.
672 		 *
673 		 * XXX this will go away when the SADB is redone.
674 		 */
675 		if (error == ENOENT)
676 			error = 0;
677 		splx(s);
678 		goto done;
679 	} else {
680 		splx(s);
681 
682 		if (error != 0) {
683 			/*
684 			 * Hack: -EINVAL is used to signal that a packet
685 			 * should be silently discarded.  This is typically
686 			 * because we asked key management for an SA and
687 			 * it was delayed (e.g. kicked up to IKE).
688 			 */
689 			if (error == -EINVAL)
690 				error = 0;
691 			goto bad;
692 		} else {
693 			/* No IPsec processing for this packet. */
694 		}
695 #ifdef notyet
696 		/*
697 		 * If deferred crypto processing is needed, check that
698 		 * the interface supports it.
699 		 */
700 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
701 		if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
702 			/* notify IPsec to do its own crypto */
703 			ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
704 			error = EHOSTUNREACH;
705 			goto bad;
706 		}
707 #endif
708 	}
709 spd_done:
710 #endif /* FAST_IPSEC */
711 	/*
712 	 * IpHack's section.
713 	 * - Xlate: translate packet's addr/port (NAT).
714 	 * - Firewall: deny/allow/etc.
715 	 * - Wrap: fake packet's addr/port <unimpl.>
716 	 * - Encapsulate: put it in another IP and send out. <unimp.>
717 	 */
718 	if (fr_checkp) {
719 		struct  mbuf    *m1 = m;
720 
721 		if ((error = (*fr_checkp)(ip, hlen, ifp, 1, &m1)) || !m1)
722 			goto done;
723 		ip = mtod(m = m1, struct ip *);
724 	}
725 
726 	/*
727 	 * Check with the firewall...
728 	 * but not if we are already being fwd'd from a firewall.
729 	 */
730 	if (fw_enable && IPFW_LOADED && !args.next_hop) {
731 		struct sockaddr_in *old = dst;
732 
733 		args.m = m;
734 		args.next_hop = dst;
735 		args.oif = ifp;
736 		off = ip_fw_chk_ptr(&args);
737 		m = args.m;
738 		dst = args.next_hop;
739 
740                 /*
741 		 * On return we must do the following:
742 		 * m == NULL	-> drop the pkt (old interface, deprecated)
743 		 * (off & IP_FW_PORT_DENY_FLAG)	-> drop the pkt (new interface)
744 		 * 1<=off<= 0xffff		-> DIVERT
745 		 * (off & IP_FW_PORT_DYNT_FLAG)	-> send to a DUMMYNET pipe
746 		 * (off & IP_FW_PORT_TEE_FLAG)	-> TEE the packet
747 		 * dst != old			-> IPFIREWALL_FORWARD
748 		 * off==0, dst==old		-> accept
749 		 * If some of the above modules are not compiled in, then
750 		 * we should't have to check the corresponding condition
751 		 * (because the ipfw control socket should not accept
752 		 * unsupported rules), but better play safe and drop
753 		 * packets in case of doubt.
754 		 */
755 		if ( (off & IP_FW_PORT_DENY_FLAG) || m == NULL) {
756 			if (m)
757 				m_freem(m);
758 			error = EACCES;
759 			goto done;
760 		}
761 		ip = mtod(m, struct ip *);
762 		if (off == 0 && dst == old)		/* common case */
763 			goto pass;
764                 if (DUMMYNET_LOADED && (off & IP_FW_PORT_DYNT_FLAG) != 0) {
765 			/*
766 			 * pass the pkt to dummynet. Need to include
767 			 * pipe number, m, ifp, ro, dst because these are
768 			 * not recomputed in the next pass.
769 			 * All other parameters have been already used and
770 			 * so they are not needed anymore.
771 			 * XXX note: if the ifp or ro entry are deleted
772 			 * while a pkt is in dummynet, we are in trouble!
773 			 */
774 			args.ro = ro;
775 			args.dst = dst;
776 			args.flags = flags;
777 
778 			error = ip_dn_io_ptr(m, off & 0xffff, DN_TO_IP_OUT,
779 				&args);
780 			goto done;
781 		}
782 #ifdef IPDIVERT
783 		if (off != 0 && (off & IP_FW_PORT_DYNT_FLAG) == 0) {
784 			struct mbuf *clone = NULL;
785 
786 			/* Clone packet if we're doing a 'tee' */
787 			if ((off & IP_FW_PORT_TEE_FLAG) != 0)
788 				clone = m_dup(m, M_DONTWAIT);
789 
790 			/*
791 			 * XXX
792 			 * delayed checksums are not currently compatible
793 			 * with divert sockets.
794 			 */
795 			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
796 				in_delayed_cksum(m);
797 				m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
798 			}
799 
800 			/* Restore packet header fields to original values */
801 			ip->ip_len = htons(ip->ip_len);
802 			ip->ip_off = htons(ip->ip_off);
803 
804 			/* Deliver packet to divert input routine */
805 			divert_packet(m, 0, off & 0xffff, args.divert_rule);
806 
807 			/* If 'tee', continue with original packet */
808 			if (clone != NULL) {
809 				m = clone;
810 				ip = mtod(m, struct ip *);
811 				goto pass;
812 			}
813 			goto done;
814 		}
815 #endif
816 
817 		/* IPFIREWALL_FORWARD */
818 		/*
819 		 * Check dst to make sure it is directly reachable on the
820 		 * interface we previously thought it was.
821 		 * If it isn't (which may be likely in some situations) we have
822 		 * to re-route it (ie, find a route for the next-hop and the
823 		 * associated interface) and set them here. This is nested
824 		 * forwarding which in most cases is undesirable, except where
825 		 * such control is nigh impossible. So we do it here.
826 		 * And I'm babbling.
827 		 */
828 		if (off == 0 && old != dst) { /* FORWARD, dst has changed */
829 #if 0
830 			/*
831 			 * XXX To improve readability, this block should be
832 			 * changed into a function call as below:
833 			 */
834 			error = ip_ipforward(&m, &dst, &ifp);
835 			if (error)
836 				goto bad;
837 			if (m == NULL) /* ip_input consumed the mbuf */
838 				goto done;
839 #else
840 			struct in_ifaddr *ia;
841 
842 			/*
843 			 * XXX sro_fwd below is static, and a pointer
844 			 * to it gets passed to routines downstream.
845 			 * This could have surprisingly bad results in
846 			 * practice, because its content is overwritten
847 			 * by subsequent packets.
848 			 */
849 			/* There must be a better way to do this next line... */
850 			static struct route sro_fwd;
851 			struct route *ro_fwd = &sro_fwd;
852 
853 #if 0
854 			print_ip("IPFIREWALL_FORWARD: New dst ip: ",
855 			    dst->sin_addr, "\n");
856 #endif
857 
858 			/*
859 			 * We need to figure out if we have been forwarded
860 			 * to a local socket. If so, then we should somehow
861 			 * "loop back" to ip_input, and get directed to the
862 			 * PCB as if we had received this packet. This is
863 			 * because it may be dificult to identify the packets
864 			 * you want to forward until they are being output
865 			 * and have selected an interface. (e.g. locally
866 			 * initiated packets) If we used the loopback inteface,
867 			 * we would not be able to control what happens
868 			 * as the packet runs through ip_input() as
869 			 * it is done through a ISR.
870 			 */
871 			LIST_FOREACH(ia,
872 			    INADDR_HASH(dst->sin_addr.s_addr), ia_hash) {
873 				/*
874 				 * If the addr to forward to is one
875 				 * of ours, we pretend to
876 				 * be the destination for this packet.
877 				 */
878 				if (IA_SIN(ia)->sin_addr.s_addr ==
879 						 dst->sin_addr.s_addr)
880 					break;
881 			}
882 			if (ia) {	/* tell ip_input "dont filter" */
883 				struct m_hdr tag;
884 
885 				tag.mh_type = MT_TAG;
886 				tag.mh_flags = PACKET_TAG_IPFORWARD;
887 				tag.mh_data = (caddr_t)args.next_hop;
888 				tag.mh_next = m;
889 
890 				if (m->m_pkthdr.rcvif == NULL)
891 					m->m_pkthdr.rcvif = ifunit("lo0");
892 				if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
893 					m->m_pkthdr.csum_flags |=
894 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
895 					m0->m_pkthdr.csum_data = 0xffff;
896 				}
897 				m->m_pkthdr.csum_flags |=
898 				    CSUM_IP_CHECKED | CSUM_IP_VALID;
899 				ip->ip_len = htons(ip->ip_len);
900 				ip->ip_off = htons(ip->ip_off);
901 				ip_input((struct mbuf *)&tag);
902 				goto done;
903 			}
904 			/* Some of the logic for this was
905 			 * nicked from above.
906 			 *
907 			 * This rewrites the cached route in a local PCB.
908 			 * Is this what we want to do?
909 			 */
910 			bcopy(dst, &ro_fwd->ro_dst, sizeof(*dst));
911 
912 			ro_fwd->ro_rt = 0;
913 			rtalloc_ign(ro_fwd, RTF_PRCLONING);
914 
915 			if (ro_fwd->ro_rt == 0) {
916 				ipstat.ips_noroute++;
917 				error = EHOSTUNREACH;
918 				goto bad;
919 			}
920 
921 			ia = ifatoia(ro_fwd->ro_rt->rt_ifa);
922 			ifp = ro_fwd->ro_rt->rt_ifp;
923 			ro_fwd->ro_rt->rt_use++;
924 			if (ro_fwd->ro_rt->rt_flags & RTF_GATEWAY)
925 				dst = (struct sockaddr_in *)
926 					ro_fwd->ro_rt->rt_gateway;
927 			if (ro_fwd->ro_rt->rt_flags & RTF_HOST)
928 				isbroadcast =
929 				    (ro_fwd->ro_rt->rt_flags & RTF_BROADCAST);
930 			else
931 				isbroadcast = in_broadcast(dst->sin_addr, ifp);
932 			if (ro->ro_rt)
933 				RTFREE(ro->ro_rt);
934 			ro->ro_rt = ro_fwd->ro_rt;
935 			dst = (struct sockaddr_in *)&ro_fwd->ro_dst;
936 
937 #endif	/* ... block to be put into a function */
938 			/*
939 			 * If we added a default src ip earlier,
940 			 * which would have been gotten from the-then
941 			 * interface, do it again, from the new one.
942 			 */
943 			if (src_was_INADDR_ANY)
944 				ip->ip_src = IA_SIN(ia)->sin_addr;
945 			goto pass ;
946 		}
947 
948                 /*
949                  * if we get here, none of the above matches, and
950                  * we have to drop the pkt
951                  */
952 		m_freem(m);
953                 error = EACCES; /* not sure this is the right error msg */
954                 goto done;
955 	}
956 
957 pass:
958 	/* 127/8 must not appear on wire - RFC1122. */
959 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
960 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
961 		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
962 			ipstat.ips_badaddr++;
963 			error = EADDRNOTAVAIL;
964 			goto bad;
965 		}
966 	}
967 
968 	m->m_pkthdr.csum_flags |= CSUM_IP;
969 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
970 	if (sw_csum & CSUM_DELAY_DATA) {
971 		in_delayed_cksum(m);
972 		sw_csum &= ~CSUM_DELAY_DATA;
973 	}
974 	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
975 
976 	/*
977 	 * If small enough for interface, or the interface will take
978 	 * care of the fragmentation for us, can just send directly.
979 	 */
980 	if ((u_short)ip->ip_len <= ifp->if_mtu ||
981 	    ifp->if_hwassist & CSUM_FRAGMENT) {
982 		ip->ip_len = htons(ip->ip_len);
983 		ip->ip_off = htons(ip->ip_off);
984 		ip->ip_sum = 0;
985 		if (sw_csum & CSUM_DELAY_IP) {
986 			if (ip->ip_vhl == IP_VHL_BORING) {
987 				ip->ip_sum = in_cksum_hdr(ip);
988 			} else {
989 				ip->ip_sum = in_cksum(m, hlen);
990 			}
991 		}
992 
993 		/* Record statistics for this interface address. */
994 		if (!(flags & IP_FORWARDING) && ia) {
995 			ia->ia_ifa.if_opackets++;
996 			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
997 		}
998 
999 #ifdef IPSEC
1000 		/* clean ipsec history once it goes out of the node */
1001 		ipsec_delaux(m);
1002 #endif
1003 
1004 #ifdef MBUF_STRESS_TEST
1005 		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) {
1006 			struct mbuf *m1, *m2;
1007 			int length, tmp;
1008 
1009 			tmp = length = m->m_pkthdr.len;
1010 
1011 			while ((length -= mbuf_frag_size) >= 1) {
1012 				m1 = m_split(m, length, M_DONTWAIT);
1013 				if (m1 == NULL)
1014 					break;
1015 				m1->m_flags &= ~M_PKTHDR;
1016 				m2 = m;
1017 				while (m2->m_next != NULL)
1018 					m2 = m2->m_next;
1019 				m2->m_next = m1;
1020 			}
1021 			m->m_pkthdr.len = tmp;
1022 		}
1023 #endif
1024 		error = (*ifp->if_output)(ifp, m,
1025 				(struct sockaddr *)dst, ro->ro_rt);
1026 		goto done;
1027 	}
1028 	/*
1029 	 * Too large for interface; fragment if possible.
1030 	 * Must be able to put at least 8 bytes per fragment.
1031 	 */
1032 	if (ip->ip_off & IP_DF) {
1033 		error = EMSGSIZE;
1034 		/*
1035 		 * This case can happen if the user changed the MTU
1036 		 * of an interface after enabling IP on it.  Because
1037 		 * most netifs don't keep track of routes pointing to
1038 		 * them, there is no way for one to update all its
1039 		 * routes when the MTU is changed.
1040 		 */
1041 		if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST))
1042 		    && !(ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU)
1043 		    && (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
1044 			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
1045 		}
1046 		ipstat.ips_cantfrag++;
1047 		goto bad;
1048 	}
1049 	len = (ifp->if_mtu - hlen) &~ 7;
1050 	if (len < 8) {
1051 		error = EMSGSIZE;
1052 		goto bad;
1053 	}
1054 
1055 	/*
1056 	 * if the interface will not calculate checksums on
1057 	 * fragmented packets, then do it here.
1058 	 */
1059 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
1060 	    (ifp->if_hwassist & CSUM_IP_FRAGS) == 0) {
1061 		in_delayed_cksum(m);
1062 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1063 	}
1064 
1065     {
1066 	int mhlen, firstlen = len;
1067 	struct mbuf **mnext = &m->m_nextpkt;
1068 	int nfrags = 1;
1069 
1070 	/*
1071 	 * Loop through length of segment after first fragment,
1072 	 * make new header and copy data of each part and link onto chain.
1073 	 */
1074 	m0 = m;
1075 	mhlen = sizeof (struct ip);
1076 	for (off = hlen + len; off < (u_short)ip->ip_len; off += len) {
1077 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
1078 		if (m == 0) {
1079 			error = ENOBUFS;
1080 			ipstat.ips_odropped++;
1081 			goto sendorfree;
1082 		}
1083 		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
1084 		m->m_data += max_linkhdr;
1085 		mhip = mtod(m, struct ip *);
1086 		*mhip = *ip;
1087 		if (hlen > sizeof (struct ip)) {
1088 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1089 			mhip->ip_vhl = IP_MAKE_VHL(IPVERSION, mhlen >> 2);
1090 		}
1091 		m->m_len = mhlen;
1092 		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
1093 		if (off + len >= (u_short)ip->ip_len)
1094 			len = (u_short)ip->ip_len - off;
1095 		else
1096 			mhip->ip_off |= IP_MF;
1097 		mhip->ip_len = htons((u_short)(len + mhlen));
1098 		m->m_next = m_copy(m0, off, len);
1099 		if (m->m_next == 0) {
1100 			(void) m_free(m);
1101 			error = ENOBUFS;	/* ??? */
1102 			ipstat.ips_odropped++;
1103 			goto sendorfree;
1104 		}
1105 		m->m_pkthdr.len = mhlen + len;
1106 		m->m_pkthdr.rcvif = (struct ifnet *)0;
1107 		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
1108 		mhip->ip_off = htons(mhip->ip_off);
1109 		mhip->ip_sum = 0;
1110 		if (sw_csum & CSUM_DELAY_IP) {
1111 			if (mhip->ip_vhl == IP_VHL_BORING) {
1112 				mhip->ip_sum = in_cksum_hdr(mhip);
1113 			} else {
1114 				mhip->ip_sum = in_cksum(m, mhlen);
1115 			}
1116 		}
1117 		*mnext = m;
1118 		mnext = &m->m_nextpkt;
1119 		nfrags++;
1120 	}
1121 	ipstat.ips_ofragments += nfrags;
1122 
1123 	/* set first/last markers for fragment chain */
1124 	m->m_flags |= M_LASTFRAG;
1125 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1126 	m0->m_pkthdr.csum_data = nfrags;
1127 
1128 	/*
1129 	 * Update first fragment by trimming what's been copied out
1130 	 * and updating header, then send each fragment (in order).
1131 	 */
1132 	m = m0;
1133 	m_adj(m, hlen + firstlen - (u_short)ip->ip_len);
1134 	m->m_pkthdr.len = hlen + firstlen;
1135 	ip->ip_len = htons((u_short)m->m_pkthdr.len);
1136 	ip->ip_off |= IP_MF;
1137 	ip->ip_off = htons(ip->ip_off);
1138 	ip->ip_sum = 0;
1139 	if (sw_csum & CSUM_DELAY_IP) {
1140 		if (ip->ip_vhl == IP_VHL_BORING) {
1141 			ip->ip_sum = in_cksum_hdr(ip);
1142 		} else {
1143 			ip->ip_sum = in_cksum(m, hlen);
1144 		}
1145 	}
1146 sendorfree:
1147 	for (m = m0; m; m = m0) {
1148 		m0 = m->m_nextpkt;
1149 		m->m_nextpkt = 0;
1150 #ifdef IPSEC
1151 		/* clean ipsec history once it goes out of the node */
1152 		ipsec_delaux(m);
1153 #endif
1154 		if (error == 0) {
1155 			/* Record statistics for this interface address. */
1156 			if (ia != NULL) {
1157 				ia->ia_ifa.if_opackets++;
1158 				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1159 			}
1160 
1161 			error = (*ifp->if_output)(ifp, m,
1162 			    (struct sockaddr *)dst, ro->ro_rt);
1163 		} else
1164 			m_freem(m);
1165 	}
1166 
1167 	if (error == 0)
1168 		ipstat.ips_fragmented++;
1169     }
1170 done:
1171 #ifdef IPSEC
1172 	if (ro == &iproute && ro->ro_rt) {
1173 		RTFREE(ro->ro_rt);
1174 		ro->ro_rt = NULL;
1175 	}
1176 	if (sp != NULL) {
1177 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1178 			printf("DP ip_output call free SP:%p\n", sp));
1179 		key_freesp(sp);
1180 	}
1181 #endif /* IPSEC */
1182 #ifdef FAST_IPSEC
1183 	if (ro == &iproute && ro->ro_rt) {
1184 		RTFREE(ro->ro_rt);
1185 		ro->ro_rt = NULL;
1186 	}
1187 	if (sp != NULL)
1188 		KEY_FREESP(&sp);
1189 #endif /* FAST_IPSEC */
1190 	return (error);
1191 bad:
1192 	m_freem(m);
1193 	goto done;
1194 }
1195 
1196 void
1197 in_delayed_cksum(struct mbuf *m)
1198 {
1199 	struct ip *ip;
1200 	u_short csum, offset;
1201 
1202 	ip = mtod(m, struct ip *);
1203 	offset = IP_VHL_HL(ip->ip_vhl) << 2 ;
1204 	csum = in_cksum_skip(m, ip->ip_len, offset);
1205 	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
1206 		csum = 0xffff;
1207 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
1208 
1209 	if (offset + sizeof(u_short) > m->m_len) {
1210 		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
1211 		    m->m_len, offset, ip->ip_p);
1212 		/*
1213 		 * XXX
1214 		 * this shouldn't happen, but if it does, the
1215 		 * correct behavior may be to insert the checksum
1216 		 * in the existing chain instead of rearranging it.
1217 		 */
1218 		m = m_pullup(m, offset + sizeof(u_short));
1219 	}
1220 	*(u_short *)(m->m_data + offset) = csum;
1221 }
1222 
1223 /*
1224  * Insert IP options into preformed packet.
1225  * Adjust IP destination as required for IP source routing,
1226  * as indicated by a non-zero in_addr at the start of the options.
1227  *
1228  * XXX This routine assumes that the packet has no options in place.
1229  */
1230 static struct mbuf *
1231 ip_insertoptions(m, opt, phlen)
1232 	register struct mbuf *m;
1233 	struct mbuf *opt;
1234 	int *phlen;
1235 {
1236 	register struct ipoption *p = mtod(opt, struct ipoption *);
1237 	struct mbuf *n;
1238 	register struct ip *ip = mtod(m, struct ip *);
1239 	unsigned optlen;
1240 
1241 	optlen = opt->m_len - sizeof(p->ipopt_dst);
1242 	if (optlen + (u_short)ip->ip_len > IP_MAXPACKET) {
1243 		*phlen = 0;
1244 		return (m);		/* XXX should fail */
1245 	}
1246 	if (p->ipopt_dst.s_addr)
1247 		ip->ip_dst = p->ipopt_dst;
1248 	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
1249 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
1250 		if (n == 0) {
1251 			*phlen = 0;
1252 			return (m);
1253 		}
1254 		n->m_pkthdr.rcvif = (struct ifnet *)0;
1255 		n->m_pkthdr.len = m->m_pkthdr.len + optlen;
1256 		m->m_len -= sizeof(struct ip);
1257 		m->m_data += sizeof(struct ip);
1258 		n->m_next = m;
1259 		m = n;
1260 		m->m_len = optlen + sizeof(struct ip);
1261 		m->m_data += max_linkhdr;
1262 		(void)memcpy(mtod(m, void *), ip, sizeof(struct ip));
1263 	} else {
1264 		m->m_data -= optlen;
1265 		m->m_len += optlen;
1266 		m->m_pkthdr.len += optlen;
1267 		ovbcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1268 	}
1269 	ip = mtod(m, struct ip *);
1270 	bcopy(p->ipopt_list, ip + 1, optlen);
1271 	*phlen = sizeof(struct ip) + optlen;
1272 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, *phlen >> 2);
1273 	ip->ip_len += optlen;
1274 	return (m);
1275 }
1276 
1277 /*
1278  * Copy options from ip to jp,
1279  * omitting those not copied during fragmentation.
1280  */
1281 int
1282 ip_optcopy(ip, jp)
1283 	struct ip *ip, *jp;
1284 {
1285 	register u_char *cp, *dp;
1286 	int opt, optlen, cnt;
1287 
1288 	cp = (u_char *)(ip + 1);
1289 	dp = (u_char *)(jp + 1);
1290 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1291 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1292 		opt = cp[0];
1293 		if (opt == IPOPT_EOL)
1294 			break;
1295 		if (opt == IPOPT_NOP) {
1296 			/* Preserve for IP mcast tunnel's LSRR alignment. */
1297 			*dp++ = IPOPT_NOP;
1298 			optlen = 1;
1299 			continue;
1300 		}
1301 
1302 		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp),
1303 		    ("ip_optcopy: malformed ipv4 option"));
1304 		optlen = cp[IPOPT_OLEN];
1305 		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen <= cnt,
1306 		    ("ip_optcopy: malformed ipv4 option"));
1307 
1308 		/* bogus lengths should have been caught by ip_dooptions */
1309 		if (optlen > cnt)
1310 			optlen = cnt;
1311 		if (IPOPT_COPIED(opt)) {
1312 			bcopy(cp, dp, optlen);
1313 			dp += optlen;
1314 		}
1315 	}
1316 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1317 		*dp++ = IPOPT_EOL;
1318 	return (optlen);
1319 }
1320 
1321 /*
1322  * IP socket option processing.
1323  */
1324 int
1325 ip_ctloutput(so, sopt)
1326 	struct socket *so;
1327 	struct sockopt *sopt;
1328 {
1329 	struct	inpcb *inp = sotoinpcb(so);
1330 	int	error, optval;
1331 
1332 	error = optval = 0;
1333 	if (sopt->sopt_level != IPPROTO_IP) {
1334 		return (EINVAL);
1335 	}
1336 
1337 	switch (sopt->sopt_dir) {
1338 	case SOPT_SET:
1339 		switch (sopt->sopt_name) {
1340 		case IP_OPTIONS:
1341 #ifdef notyet
1342 		case IP_RETOPTS:
1343 #endif
1344 		{
1345 			struct mbuf *m;
1346 			if (sopt->sopt_valsize > MLEN) {
1347 				error = EMSGSIZE;
1348 				break;
1349 			}
1350 			MGET(m, sopt->sopt_p ? M_WAIT : M_DONTWAIT, MT_HEADER);
1351 			if (m == 0) {
1352 				error = ENOBUFS;
1353 				break;
1354 			}
1355 			m->m_len = sopt->sopt_valsize;
1356 			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1357 					    m->m_len);
1358 
1359 			return (ip_pcbopts(sopt->sopt_name, &inp->inp_options,
1360 					   m));
1361 		}
1362 
1363 		case IP_TOS:
1364 		case IP_TTL:
1365 		case IP_RECVOPTS:
1366 		case IP_RECVRETOPTS:
1367 		case IP_RECVDSTADDR:
1368 		case IP_RECVIF:
1369 		case IP_FAITH:
1370 			error = sooptcopyin(sopt, &optval, sizeof optval,
1371 					    sizeof optval);
1372 			if (error)
1373 				break;
1374 
1375 			switch (sopt->sopt_name) {
1376 			case IP_TOS:
1377 				inp->inp_ip_tos = optval;
1378 				break;
1379 
1380 			case IP_TTL:
1381 				inp->inp_ip_ttl = optval;
1382 				break;
1383 #define	OPTSET(bit) \
1384 	if (optval) \
1385 		inp->inp_flags |= bit; \
1386 	else \
1387 		inp->inp_flags &= ~bit;
1388 
1389 			case IP_RECVOPTS:
1390 				OPTSET(INP_RECVOPTS);
1391 				break;
1392 
1393 			case IP_RECVRETOPTS:
1394 				OPTSET(INP_RECVRETOPTS);
1395 				break;
1396 
1397 			case IP_RECVDSTADDR:
1398 				OPTSET(INP_RECVDSTADDR);
1399 				break;
1400 
1401 			case IP_RECVIF:
1402 				OPTSET(INP_RECVIF);
1403 				break;
1404 
1405 			case IP_FAITH:
1406 				OPTSET(INP_FAITH);
1407 				break;
1408 			}
1409 			break;
1410 #undef OPTSET
1411 
1412 		case IP_MULTICAST_IF:
1413 		case IP_MULTICAST_VIF:
1414 		case IP_MULTICAST_TTL:
1415 		case IP_MULTICAST_LOOP:
1416 		case IP_ADD_MEMBERSHIP:
1417 		case IP_DROP_MEMBERSHIP:
1418 			error = ip_setmoptions(sopt, &inp->inp_moptions);
1419 			break;
1420 
1421 		case IP_PORTRANGE:
1422 			error = sooptcopyin(sopt, &optval, sizeof optval,
1423 					    sizeof optval);
1424 			if (error)
1425 				break;
1426 
1427 			switch (optval) {
1428 			case IP_PORTRANGE_DEFAULT:
1429 				inp->inp_flags &= ~(INP_LOWPORT);
1430 				inp->inp_flags &= ~(INP_HIGHPORT);
1431 				break;
1432 
1433 			case IP_PORTRANGE_HIGH:
1434 				inp->inp_flags &= ~(INP_LOWPORT);
1435 				inp->inp_flags |= INP_HIGHPORT;
1436 				break;
1437 
1438 			case IP_PORTRANGE_LOW:
1439 				inp->inp_flags &= ~(INP_HIGHPORT);
1440 				inp->inp_flags |= INP_LOWPORT;
1441 				break;
1442 
1443 			default:
1444 				error = EINVAL;
1445 				break;
1446 			}
1447 			break;
1448 
1449 #if defined(IPSEC) || defined(FAST_IPSEC)
1450 		case IP_IPSEC_POLICY:
1451 		{
1452 			caddr_t req;
1453 			size_t len = 0;
1454 			int priv;
1455 			struct mbuf *m;
1456 			int optname;
1457 
1458 			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1459 				break;
1460 			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1461 				break;
1462 			priv = (sopt->sopt_p != NULL &&
1463 				suser(sopt->sopt_p) != 0) ? 0 : 1;
1464 			req = mtod(m, caddr_t);
1465 			len = m->m_len;
1466 			optname = sopt->sopt_name;
1467 			error = ipsec4_set_policy(inp, optname, req, len, priv);
1468 			m_freem(m);
1469 			break;
1470 		}
1471 #endif /*IPSEC*/
1472 
1473 		default:
1474 			error = ENOPROTOOPT;
1475 			break;
1476 		}
1477 		break;
1478 
1479 	case SOPT_GET:
1480 		switch (sopt->sopt_name) {
1481 		case IP_OPTIONS:
1482 		case IP_RETOPTS:
1483 			if (inp->inp_options)
1484 				error = sooptcopyout(sopt,
1485 						     mtod(inp->inp_options,
1486 							  char *),
1487 						     inp->inp_options->m_len);
1488 			else
1489 				sopt->sopt_valsize = 0;
1490 			break;
1491 
1492 		case IP_TOS:
1493 		case IP_TTL:
1494 		case IP_RECVOPTS:
1495 		case IP_RECVRETOPTS:
1496 		case IP_RECVDSTADDR:
1497 		case IP_RECVIF:
1498 		case IP_PORTRANGE:
1499 		case IP_FAITH:
1500 			switch (sopt->sopt_name) {
1501 
1502 			case IP_TOS:
1503 				optval = inp->inp_ip_tos;
1504 				break;
1505 
1506 			case IP_TTL:
1507 				optval = inp->inp_ip_ttl;
1508 				break;
1509 
1510 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1511 
1512 			case IP_RECVOPTS:
1513 				optval = OPTBIT(INP_RECVOPTS);
1514 				break;
1515 
1516 			case IP_RECVRETOPTS:
1517 				optval = OPTBIT(INP_RECVRETOPTS);
1518 				break;
1519 
1520 			case IP_RECVDSTADDR:
1521 				optval = OPTBIT(INP_RECVDSTADDR);
1522 				break;
1523 
1524 			case IP_RECVIF:
1525 				optval = OPTBIT(INP_RECVIF);
1526 				break;
1527 
1528 			case IP_PORTRANGE:
1529 				if (inp->inp_flags & INP_HIGHPORT)
1530 					optval = IP_PORTRANGE_HIGH;
1531 				else if (inp->inp_flags & INP_LOWPORT)
1532 					optval = IP_PORTRANGE_LOW;
1533 				else
1534 					optval = 0;
1535 				break;
1536 
1537 			case IP_FAITH:
1538 				optval = OPTBIT(INP_FAITH);
1539 				break;
1540 			}
1541 			error = sooptcopyout(sopt, &optval, sizeof optval);
1542 			break;
1543 
1544 		case IP_MULTICAST_IF:
1545 		case IP_MULTICAST_VIF:
1546 		case IP_MULTICAST_TTL:
1547 		case IP_MULTICAST_LOOP:
1548 		case IP_ADD_MEMBERSHIP:
1549 		case IP_DROP_MEMBERSHIP:
1550 			error = ip_getmoptions(sopt, inp->inp_moptions);
1551 			break;
1552 
1553 #if defined(IPSEC) || defined(FAST_IPSEC)
1554 		case IP_IPSEC_POLICY:
1555 		{
1556 			struct mbuf *m = NULL;
1557 			caddr_t req = NULL;
1558 			size_t len = 0;
1559 
1560 			if (m != 0) {
1561 				req = mtod(m, caddr_t);
1562 				len = m->m_len;
1563 			}
1564 			error = ipsec4_get_policy(sotoinpcb(so), req, len, &m);
1565 			if (error == 0)
1566 				error = soopt_mcopyout(sopt, m); /* XXX */
1567 			if (error == 0)
1568 				m_freem(m);
1569 			break;
1570 		}
1571 #endif /*IPSEC*/
1572 
1573 		default:
1574 			error = ENOPROTOOPT;
1575 			break;
1576 		}
1577 		break;
1578 	}
1579 	return (error);
1580 }
1581 
1582 /*
1583  * Set up IP options in pcb for insertion in output packets.
1584  * Store in mbuf with pointer in pcbopt, adding pseudo-option
1585  * with destination address if source routed.
1586  */
1587 static int
1588 ip_pcbopts(optname, pcbopt, m)
1589 	int optname;
1590 	struct mbuf **pcbopt;
1591 	register struct mbuf *m;
1592 {
1593 	register int cnt, optlen;
1594 	register u_char *cp;
1595 	u_char opt;
1596 
1597 	/* turn off any old options */
1598 	if (*pcbopt)
1599 		(void)m_free(*pcbopt);
1600 	*pcbopt = 0;
1601 	if (m == (struct mbuf *)0 || m->m_len == 0) {
1602 		/*
1603 		 * Only turning off any previous options.
1604 		 */
1605 		if (m)
1606 			(void)m_free(m);
1607 		return (0);
1608 	}
1609 
1610 	if (m->m_len % sizeof(int32_t))
1611 		goto bad;
1612 	/*
1613 	 * IP first-hop destination address will be stored before
1614 	 * actual options; move other options back
1615 	 * and clear it when none present.
1616 	 */
1617 	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1618 		goto bad;
1619 	cnt = m->m_len;
1620 	m->m_len += sizeof(struct in_addr);
1621 	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1622 	ovbcopy(mtod(m, caddr_t), (caddr_t)cp, (unsigned)cnt);
1623 	bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1624 
1625 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1626 		opt = cp[IPOPT_OPTVAL];
1627 		if (opt == IPOPT_EOL)
1628 			break;
1629 		if (opt == IPOPT_NOP)
1630 			optlen = 1;
1631 		else {
1632 			if (cnt < IPOPT_OLEN + sizeof(*cp))
1633 				goto bad;
1634 			optlen = cp[IPOPT_OLEN];
1635 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1636 				goto bad;
1637 		}
1638 		switch (opt) {
1639 
1640 		default:
1641 			break;
1642 
1643 		case IPOPT_LSRR:
1644 		case IPOPT_SSRR:
1645 			/*
1646 			 * user process specifies route as:
1647 			 *	->A->B->C->D
1648 			 * D must be our final destination (but we can't
1649 			 * check that since we may not have connected yet).
1650 			 * A is first hop destination, which doesn't appear in
1651 			 * actual IP option, but is stored before the options.
1652 			 */
1653 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1654 				goto bad;
1655 			m->m_len -= sizeof(struct in_addr);
1656 			cnt -= sizeof(struct in_addr);
1657 			optlen -= sizeof(struct in_addr);
1658 			cp[IPOPT_OLEN] = optlen;
1659 			/*
1660 			 * Move first hop before start of options.
1661 			 */
1662 			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1663 			    sizeof(struct in_addr));
1664 			/*
1665 			 * Then copy rest of options back
1666 			 * to close up the deleted entry.
1667 			 */
1668 			ovbcopy((caddr_t)(&cp[IPOPT_OFFSET+1] +
1669 			    sizeof(struct in_addr)),
1670 			    (caddr_t)&cp[IPOPT_OFFSET+1],
1671 			    (unsigned)cnt + sizeof(struct in_addr));
1672 			break;
1673 		}
1674 	}
1675 	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1676 		goto bad;
1677 	*pcbopt = m;
1678 	return (0);
1679 
1680 bad:
1681 	(void)m_free(m);
1682 	return (EINVAL);
1683 }
1684 
1685 /*
1686  * XXX
1687  * The whole multicast option thing needs to be re-thought.
1688  * Several of these options are equally applicable to non-multicast
1689  * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1690  * standard option (IP_TTL).
1691  */
1692 
1693 /*
1694  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1695  */
1696 static struct ifnet *
1697 ip_multicast_if(a, ifindexp)
1698 	struct in_addr *a;
1699 	int *ifindexp;
1700 {
1701 	int ifindex;
1702 	struct ifnet *ifp;
1703 
1704 	if (ifindexp)
1705 		*ifindexp = 0;
1706 	if (ntohl(a->s_addr) >> 24 == 0) {
1707 		ifindex = ntohl(a->s_addr) & 0xffffff;
1708 		if (ifindex < 0 || if_index < ifindex)
1709 			return NULL;
1710 		ifp = ifindex2ifnet[ifindex];
1711 		if (ifindexp)
1712 			*ifindexp = ifindex;
1713 	} else {
1714 		INADDR_TO_IFP(*a, ifp);
1715 	}
1716 	return ifp;
1717 }
1718 
1719 /*
1720  * Set the IP multicast options in response to user setsockopt().
1721  */
1722 static int
1723 ip_setmoptions(sopt, imop)
1724 	struct sockopt *sopt;
1725 	struct ip_moptions **imop;
1726 {
1727 	int error = 0;
1728 	int i;
1729 	struct in_addr addr;
1730 	struct ip_mreq mreq;
1731 	struct ifnet *ifp;
1732 	struct ip_moptions *imo = *imop;
1733 	struct route ro;
1734 	struct sockaddr_in *dst;
1735 	int ifindex;
1736 	int s;
1737 
1738 	if (imo == NULL) {
1739 		/*
1740 		 * No multicast option buffer attached to the pcb;
1741 		 * allocate one and initialize to default values.
1742 		 */
1743 		imo = (struct ip_moptions*)malloc(sizeof(*imo), M_IPMOPTS,
1744 		    M_WAITOK);
1745 
1746 		if (imo == NULL)
1747 			return (ENOBUFS);
1748 		*imop = imo;
1749 		imo->imo_multicast_ifp = NULL;
1750 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
1751 		imo->imo_multicast_vif = -1;
1752 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1753 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1754 		imo->imo_num_memberships = 0;
1755 	}
1756 
1757 	switch (sopt->sopt_name) {
1758 	/* store an index number for the vif you wanna use in the send */
1759 	case IP_MULTICAST_VIF:
1760 		if (legal_vif_num == 0) {
1761 			error = EOPNOTSUPP;
1762 			break;
1763 		}
1764 		error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1765 		if (error)
1766 			break;
1767 		if (!legal_vif_num(i) && (i != -1)) {
1768 			error = EINVAL;
1769 			break;
1770 		}
1771 		imo->imo_multicast_vif = i;
1772 		break;
1773 
1774 	case IP_MULTICAST_IF:
1775 		/*
1776 		 * Select the interface for outgoing multicast packets.
1777 		 */
1778 		error = sooptcopyin(sopt, &addr, sizeof addr, sizeof addr);
1779 		if (error)
1780 			break;
1781 		/*
1782 		 * INADDR_ANY is used to remove a previous selection.
1783 		 * When no interface is selected, a default one is
1784 		 * chosen every time a multicast packet is sent.
1785 		 */
1786 		if (addr.s_addr == INADDR_ANY) {
1787 			imo->imo_multicast_ifp = NULL;
1788 			break;
1789 		}
1790 		/*
1791 		 * The selected interface is identified by its local
1792 		 * IP address.  Find the interface and confirm that
1793 		 * it supports multicasting.
1794 		 */
1795 		s = splimp();
1796 		ifp = ip_multicast_if(&addr, &ifindex);
1797 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1798 			splx(s);
1799 			error = EADDRNOTAVAIL;
1800 			break;
1801 		}
1802 		imo->imo_multicast_ifp = ifp;
1803 		if (ifindex)
1804 			imo->imo_multicast_addr = addr;
1805 		else
1806 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1807 		splx(s);
1808 		break;
1809 
1810 	case IP_MULTICAST_TTL:
1811 		/*
1812 		 * Set the IP time-to-live for outgoing multicast packets.
1813 		 * The original multicast API required a char argument,
1814 		 * which is inconsistent with the rest of the socket API.
1815 		 * We allow either a char or an int.
1816 		 */
1817 		if (sopt->sopt_valsize == 1) {
1818 			u_char ttl;
1819 			error = sooptcopyin(sopt, &ttl, 1, 1);
1820 			if (error)
1821 				break;
1822 			imo->imo_multicast_ttl = ttl;
1823 		} else {
1824 			u_int ttl;
1825 			error = sooptcopyin(sopt, &ttl, sizeof ttl,
1826 					    sizeof ttl);
1827 			if (error)
1828 				break;
1829 			if (ttl > 255)
1830 				error = EINVAL;
1831 			else
1832 				imo->imo_multicast_ttl = ttl;
1833 		}
1834 		break;
1835 
1836 	case IP_MULTICAST_LOOP:
1837 		/*
1838 		 * Set the loopback flag for outgoing multicast packets.
1839 		 * Must be zero or one.  The original multicast API required a
1840 		 * char argument, which is inconsistent with the rest
1841 		 * of the socket API.  We allow either a char or an int.
1842 		 */
1843 		if (sopt->sopt_valsize == 1) {
1844 			u_char loop;
1845 			error = sooptcopyin(sopt, &loop, 1, 1);
1846 			if (error)
1847 				break;
1848 			imo->imo_multicast_loop = !!loop;
1849 		} else {
1850 			u_int loop;
1851 			error = sooptcopyin(sopt, &loop, sizeof loop,
1852 					    sizeof loop);
1853 			if (error)
1854 				break;
1855 			imo->imo_multicast_loop = !!loop;
1856 		}
1857 		break;
1858 
1859 	case IP_ADD_MEMBERSHIP:
1860 		/*
1861 		 * Add a multicast group membership.
1862 		 * Group must be a valid IP multicast address.
1863 		 */
1864 		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1865 		if (error)
1866 			break;
1867 
1868 		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1869 			error = EINVAL;
1870 			break;
1871 		}
1872 		s = splimp();
1873 		/*
1874 		 * If no interface address was provided, use the interface of
1875 		 * the route to the given multicast address.
1876 		 */
1877 		if (mreq.imr_interface.s_addr == INADDR_ANY) {
1878 			bzero((caddr_t)&ro, sizeof(ro));
1879 			dst = (struct sockaddr_in *)&ro.ro_dst;
1880 			dst->sin_len = sizeof(*dst);
1881 			dst->sin_family = AF_INET;
1882 			dst->sin_addr = mreq.imr_multiaddr;
1883 			rtalloc(&ro);
1884 			if (ro.ro_rt == NULL) {
1885 				error = EADDRNOTAVAIL;
1886 				splx(s);
1887 				break;
1888 			}
1889 			ifp = ro.ro_rt->rt_ifp;
1890 			rtfree(ro.ro_rt);
1891 		}
1892 		else {
1893 			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1894 		}
1895 
1896 		/*
1897 		 * See if we found an interface, and confirm that it
1898 		 * supports multicast.
1899 		 */
1900 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1901 			error = EADDRNOTAVAIL;
1902 			splx(s);
1903 			break;
1904 		}
1905 		/*
1906 		 * See if the membership already exists or if all the
1907 		 * membership slots are full.
1908 		 */
1909 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1910 			if (imo->imo_membership[i]->inm_ifp == ifp &&
1911 			    imo->imo_membership[i]->inm_addr.s_addr
1912 						== mreq.imr_multiaddr.s_addr)
1913 				break;
1914 		}
1915 		if (i < imo->imo_num_memberships) {
1916 			error = EADDRINUSE;
1917 			splx(s);
1918 			break;
1919 		}
1920 		if (i == IP_MAX_MEMBERSHIPS) {
1921 			error = ETOOMANYREFS;
1922 			splx(s);
1923 			break;
1924 		}
1925 		/*
1926 		 * Everything looks good; add a new record to the multicast
1927 		 * address list for the given interface.
1928 		 */
1929 		if ((imo->imo_membership[i] =
1930 		    in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
1931 			error = ENOBUFS;
1932 			splx(s);
1933 			break;
1934 		}
1935 		++imo->imo_num_memberships;
1936 		splx(s);
1937 		break;
1938 
1939 	case IP_DROP_MEMBERSHIP:
1940 		/*
1941 		 * Drop a multicast group membership.
1942 		 * Group must be a valid IP multicast address.
1943 		 */
1944 		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1945 		if (error)
1946 			break;
1947 
1948 		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1949 			error = EINVAL;
1950 			break;
1951 		}
1952 
1953 		s = splimp();
1954 		/*
1955 		 * If an interface address was specified, get a pointer
1956 		 * to its ifnet structure.
1957 		 */
1958 		if (mreq.imr_interface.s_addr == INADDR_ANY)
1959 			ifp = NULL;
1960 		else {
1961 			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1962 			if (ifp == NULL) {
1963 				error = EADDRNOTAVAIL;
1964 				splx(s);
1965 				break;
1966 			}
1967 		}
1968 		/*
1969 		 * Find the membership in the membership array.
1970 		 */
1971 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1972 			if ((ifp == NULL ||
1973 			     imo->imo_membership[i]->inm_ifp == ifp) &&
1974 			     imo->imo_membership[i]->inm_addr.s_addr ==
1975 			     mreq.imr_multiaddr.s_addr)
1976 				break;
1977 		}
1978 		if (i == imo->imo_num_memberships) {
1979 			error = EADDRNOTAVAIL;
1980 			splx(s);
1981 			break;
1982 		}
1983 		/*
1984 		 * Give up the multicast address record to which the
1985 		 * membership points.
1986 		 */
1987 		in_delmulti(imo->imo_membership[i]);
1988 		/*
1989 		 * Remove the gap in the membership array.
1990 		 */
1991 		for (++i; i < imo->imo_num_memberships; ++i)
1992 			imo->imo_membership[i-1] = imo->imo_membership[i];
1993 		--imo->imo_num_memberships;
1994 		splx(s);
1995 		break;
1996 
1997 	default:
1998 		error = EOPNOTSUPP;
1999 		break;
2000 	}
2001 
2002 	/*
2003 	 * If all options have default values, no need to keep the mbuf.
2004 	 */
2005 	if (imo->imo_multicast_ifp == NULL &&
2006 	    imo->imo_multicast_vif == -1 &&
2007 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
2008 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
2009 	    imo->imo_num_memberships == 0) {
2010 		free(*imop, M_IPMOPTS);
2011 		*imop = NULL;
2012 	}
2013 
2014 	return (error);
2015 }
2016 
2017 /*
2018  * Return the IP multicast options in response to user getsockopt().
2019  */
2020 static int
2021 ip_getmoptions(sopt, imo)
2022 	struct sockopt *sopt;
2023 	register struct ip_moptions *imo;
2024 {
2025 	struct in_addr addr;
2026 	struct in_ifaddr *ia;
2027 	int error, optval;
2028 	u_char coptval;
2029 
2030 	error = 0;
2031 	switch (sopt->sopt_name) {
2032 	case IP_MULTICAST_VIF:
2033 		if (imo != NULL)
2034 			optval = imo->imo_multicast_vif;
2035 		else
2036 			optval = -1;
2037 		error = sooptcopyout(sopt, &optval, sizeof optval);
2038 		break;
2039 
2040 	case IP_MULTICAST_IF:
2041 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
2042 			addr.s_addr = INADDR_ANY;
2043 		else if (imo->imo_multicast_addr.s_addr) {
2044 			/* return the value user has set */
2045 			addr = imo->imo_multicast_addr;
2046 		} else {
2047 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
2048 			addr.s_addr = (ia == NULL) ? INADDR_ANY
2049 				: IA_SIN(ia)->sin_addr.s_addr;
2050 		}
2051 		error = sooptcopyout(sopt, &addr, sizeof addr);
2052 		break;
2053 
2054 	case IP_MULTICAST_TTL:
2055 		if (imo == 0)
2056 			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
2057 		else
2058 			optval = coptval = imo->imo_multicast_ttl;
2059 		if (sopt->sopt_valsize == 1)
2060 			error = sooptcopyout(sopt, &coptval, 1);
2061 		else
2062 			error = sooptcopyout(sopt, &optval, sizeof optval);
2063 		break;
2064 
2065 	case IP_MULTICAST_LOOP:
2066 		if (imo == 0)
2067 			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
2068 		else
2069 			optval = coptval = imo->imo_multicast_loop;
2070 		if (sopt->sopt_valsize == 1)
2071 			error = sooptcopyout(sopt, &coptval, 1);
2072 		else
2073 			error = sooptcopyout(sopt, &optval, sizeof optval);
2074 		break;
2075 
2076 	default:
2077 		error = ENOPROTOOPT;
2078 		break;
2079 	}
2080 	return (error);
2081 }
2082 
2083 /*
2084  * Discard the IP multicast options.
2085  */
2086 void
2087 ip_freemoptions(imo)
2088 	register struct ip_moptions *imo;
2089 {
2090 	register int i;
2091 
2092 	if (imo != NULL) {
2093 		for (i = 0; i < imo->imo_num_memberships; ++i)
2094 			in_delmulti(imo->imo_membership[i]);
2095 		free(imo, M_IPMOPTS);
2096 	}
2097 }
2098 
2099 /*
2100  * Routine called from ip_output() to loop back a copy of an IP multicast
2101  * packet to the input queue of a specified interface.  Note that this
2102  * calls the output routine of the loopback "driver", but with an interface
2103  * pointer that might NOT be a loopback interface -- evil, but easier than
2104  * replicating that code here.
2105  */
2106 static void
2107 ip_mloopback(ifp, m, dst, hlen)
2108 	struct ifnet *ifp;
2109 	register struct mbuf *m;
2110 	register struct sockaddr_in *dst;
2111 	int hlen;
2112 {
2113 	register struct ip *ip;
2114 	struct mbuf *copym;
2115 
2116 	copym = m_copy(m, 0, M_COPYALL);
2117 	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
2118 		copym = m_pullup(copym, hlen);
2119 	if (copym != NULL) {
2120 		/*
2121 		 * We don't bother to fragment if the IP length is greater
2122 		 * than the interface's MTU.  Can this possibly matter?
2123 		 */
2124 		ip = mtod(copym, struct ip *);
2125 		ip->ip_len = htons(ip->ip_len);
2126 		ip->ip_off = htons(ip->ip_off);
2127 		ip->ip_sum = 0;
2128 		if (ip->ip_vhl == IP_VHL_BORING) {
2129 			ip->ip_sum = in_cksum_hdr(ip);
2130 		} else {
2131 			ip->ip_sum = in_cksum(copym, hlen);
2132 		}
2133 		/*
2134 		 * NB:
2135 		 * It's not clear whether there are any lingering
2136 		 * reentrancy problems in other areas which might
2137 		 * be exposed by using ip_input directly (in
2138 		 * particular, everything which modifies the packet
2139 		 * in-place).  Yet another option is using the
2140 		 * protosw directly to deliver the looped back
2141 		 * packet.  For the moment, we'll err on the side
2142 		 * of safety by using if_simloop().
2143 		 */
2144 #if 1 /* XXX */
2145 		if (dst->sin_family != AF_INET) {
2146 			printf("ip_mloopback: bad address family %d\n",
2147 						dst->sin_family);
2148 			dst->sin_family = AF_INET;
2149 		}
2150 #endif
2151 
2152 #ifdef notdef
2153 		copym->m_pkthdr.rcvif = ifp;
2154 		ip_input(copym);
2155 #else
2156 		/* if the checksum hasn't been computed, mark it as valid */
2157 		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2158 			copym->m_pkthdr.csum_flags |=
2159 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2160 			copym->m_pkthdr.csum_data = 0xffff;
2161 		}
2162 		if_simloop(ifp, copym, dst->sin_family, 0);
2163 #endif
2164 	}
2165 }
2166