xref: /dragonfly/sys/netinet/ip_output.c (revision 5204e13c)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30  * $FreeBSD: src/sys/netinet/ip_output.c,v 1.99.2.37 2003/04/15 06:44:45 silby Exp $
31  */
32 
33 #define _IP_VHL
34 
35 #include "opt_ipdn.h"
36 #include "opt_ipdivert.h"
37 #include "opt_ipsec.h"
38 #include "opt_mbuf_stress_test.h"
39 #include "opt_mpls.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/protosw.h>
47 #include <sys/socket.h>
48 #include <sys/socketvar.h>
49 #include <sys/proc.h>
50 #include <sys/priv.h>
51 #include <sys/sysctl.h>
52 #include <sys/in_cksum.h>
53 #include <sys/lock.h>
54 
55 #include <sys/thread2.h>
56 #include <sys/mplock2.h>
57 #include <sys/msgport2.h>
58 
59 #include <net/if.h>
60 #include <net/netisr.h>
61 #include <net/pfil.h>
62 #include <net/route.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/ip.h>
67 #include <netinet/in_pcb.h>
68 #include <netinet/in_var.h>
69 #include <netinet/ip_var.h>
70 
71 #include <netproto/mpls/mpls_var.h>
72 
73 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
74 
75 #ifdef IPSEC
76 #include <netinet6/ipsec.h>
77 #include <netproto/key/key.h>
78 #ifdef IPSEC_DEBUG
79 #include <netproto/key/key_debug.h>
80 #else
81 #define	KEYDEBUG(lev,arg)
82 #endif
83 #endif /*IPSEC*/
84 
85 #ifdef FAST_IPSEC
86 #include <netproto/ipsec/ipsec.h>
87 #include <netproto/ipsec/xform.h>
88 #include <netproto/ipsec/key.h>
89 #endif /*FAST_IPSEC*/
90 
91 #include <net/ipfw/ip_fw.h>
92 #include <net/dummynet/ip_dummynet.h>
93 
94 #define print_ip(x, a, y)	 kprintf("%s %d.%d.%d.%d%s",\
95 				x, (ntohl(a.s_addr)>>24)&0xFF,\
96 				  (ntohl(a.s_addr)>>16)&0xFF,\
97 				  (ntohl(a.s_addr)>>8)&0xFF,\
98 				  (ntohl(a.s_addr))&0xFF, y);
99 
100 u_short ip_id;
101 
102 #ifdef MBUF_STRESS_TEST
103 int mbuf_frag_size = 0;
104 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
105 	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
106 #endif
107 
108 static int ip_do_rfc6864 = 1;
109 SYSCTL_INT(_net_inet_ip, OID_AUTO, rfc6864, CTLFLAG_RW, &ip_do_rfc6864, 0,
110     "Don't generate IP ID for DF IP datagrams");
111 
112 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
113 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
114 static void	ip_mloopback
115 	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
116 static int	ip_getmoptions
117 	(struct sockopt *, struct ip_moptions *);
118 static int	ip_pcbopts(int, struct mbuf **, struct mbuf *);
119 static int	ip_setmoptions
120 	(struct sockopt *, struct ip_moptions **);
121 
122 int	ip_optcopy(struct ip *, struct ip *);
123 
124 extern	struct protosw inetsw[];
125 
126 static int
127 ip_localforward(struct mbuf *m, const struct sockaddr_in *dst, int hlen)
128 {
129 	struct in_ifaddr_container *iac;
130 
131 	/*
132 	 * We need to figure out if we have been forwarded to a local
133 	 * socket.  If so, then we should somehow "loop back" to
134 	 * ip_input(), and get directed to the PCB as if we had received
135 	 * this packet.  This is because it may be difficult to identify
136 	 * the packets you want to forward until they are being output
137 	 * and have selected an interface (e.g. locally initiated
138 	 * packets).  If we used the loopback inteface, we would not be
139 	 * able to control what happens as the packet runs through
140 	 * ip_input() as it is done through a ISR.
141 	 */
142 	LIST_FOREACH(iac, INADDR_HASH(dst->sin_addr.s_addr), ia_hash) {
143 		/*
144 		 * If the addr to forward to is one of ours, we pretend
145 		 * to be the destination for this packet.
146 		 */
147 		if (IA_SIN(iac->ia)->sin_addr.s_addr == dst->sin_addr.s_addr)
148 			break;
149 	}
150 	if (iac != NULL) {
151 		struct ip *ip;
152 
153 		if (m->m_pkthdr.rcvif == NULL)
154 			m->m_pkthdr.rcvif = loif;
155 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
156 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
157 						  CSUM_PSEUDO_HDR;
158 			m->m_pkthdr.csum_data = 0xffff;
159 		}
160 		m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
161 
162 		/*
163 		 * Make sure that the IP header is in one mbuf,
164 		 * required by ip_input
165 		 */
166 		if (m->m_len < hlen) {
167 			m = m_pullup(m, hlen);
168 			if (m == NULL) {
169 				/* The packet was freed; we are done */
170 				return 1;
171 			}
172 		}
173 		ip = mtod(m, struct ip *);
174 
175 		ip->ip_len = htons(ip->ip_len);
176 		ip->ip_off = htons(ip->ip_off);
177 		ip_input(m);
178 
179 		return 1; /* The packet gets forwarded locally */
180 	}
181 	return 0;
182 }
183 
184 /*
185  * IP output.  The packet in mbuf chain m contains a skeletal IP
186  * header (with len, off, ttl, proto, tos, src, dst).
187  * The mbuf chain containing the packet will be freed.
188  * The mbuf opt, if present, will not be freed.
189  */
190 int
191 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro,
192 	  int flags, struct ip_moptions *imo, struct inpcb *inp)
193 {
194 	struct ip *ip;
195 	struct ifnet *ifp = NULL;	/* keep compiler happy */
196 	struct mbuf *m;
197 	int hlen = sizeof(struct ip);
198 	int len, error = 0;
199 	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
200 	struct in_ifaddr *ia = NULL;
201 	int isbroadcast, sw_csum;
202 	struct in_addr pkt_dst;
203 	struct route iproute;
204 	struct m_tag *mtag;
205 #ifdef IPSEC
206 	struct secpolicy *sp = NULL;
207 	struct socket *so = inp ? inp->inp_socket : NULL;
208 #endif
209 #ifdef FAST_IPSEC
210 	struct secpolicy *sp = NULL;
211 	struct tdb_ident *tdbi;
212 #endif /* FAST_IPSEC */
213 	struct sockaddr_in *next_hop = NULL;
214 	int src_was_INADDR_ANY = 0;	/* as the name says... */
215 
216 	ASSERT_NETISR_NCPUS(mycpuid);
217 
218 	m = m0;
219 	M_ASSERTPKTHDR(m);
220 
221 	if (ro == NULL) {
222 		ro = &iproute;
223 		bzero(ro, sizeof *ro);
224 	} else if (ro->ro_rt != NULL && ro->ro_rt->rt_cpuid != mycpuid) {
225 		if (flags & IP_DEBUGROUTE) {
226 			panic("ip_output: rt rt_cpuid %d accessed on cpu %d\n",
227 			    ro->ro_rt->rt_cpuid, mycpuid);
228 		}
229 
230 		/*
231 		 * XXX
232 		 * If the cached rtentry's owner CPU is not the current CPU,
233 		 * then don't touch the cached rtentry (remote free is too
234 		 * expensive in this context); just relocate the route.
235 		 */
236 		ro = &iproute;
237 		bzero(ro, sizeof *ro);
238 	}
239 
240 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
241 		/* Next hop */
242 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
243 		KKASSERT(mtag != NULL);
244 		next_hop = m_tag_data(mtag);
245 	}
246 
247 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
248 		struct dn_pkt *dn_pkt;
249 
250 		/* Extract info from dummynet tag */
251 		mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
252 		KKASSERT(mtag != NULL);
253 		dn_pkt = m_tag_data(mtag);
254 
255 		/*
256 		 * The packet was already tagged, so part of the
257 		 * processing was already done, and we need to go down.
258 		 * Get the calculated parameters from the tag.
259 		 */
260 		ifp = dn_pkt->ifp;
261 
262 		KKASSERT(ro == &iproute);
263 		*ro = dn_pkt->ro; /* structure copy */
264 		KKASSERT(ro->ro_rt == NULL || ro->ro_rt->rt_cpuid == mycpuid);
265 
266 		dst = dn_pkt->dn_dst;
267 		if (dst == (struct sockaddr_in *)&(dn_pkt->ro.ro_dst)) {
268 			/* If 'dst' points into dummynet tag, adjust it */
269 			dst = (struct sockaddr_in *)&(ro->ro_dst);
270 		}
271 
272 		ip = mtod(m, struct ip *);
273 		hlen = IP_VHL_HL(ip->ip_vhl) << 2 ;
274 		if (ro->ro_rt)
275 			ia = ifatoia(ro->ro_rt->rt_ifa);
276 		goto sendit;
277 	}
278 
279 	if (opt) {
280 		len = 0;
281 		m = ip_insertoptions(m, opt, &len);
282 		if (len != 0)
283 			hlen = len;
284 	}
285 	ip = mtod(m, struct ip *);
286 
287 	/*
288 	 * Fill in IP header.
289 	 */
290 	if (!(flags & (IP_FORWARDING|IP_RAWOUTPUT))) {
291 		ip->ip_vhl = IP_MAKE_VHL(IPVERSION, hlen >> 2);
292 		ip->ip_off &= IP_DF;
293 		if (ip_do_rfc6864 && (ip->ip_off & IP_DF))
294 			ip->ip_id = 0;
295 		else
296 			ip->ip_id = ip_newid();
297 		ipstat.ips_localout++;
298 	} else {
299 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
300 	}
301 
302 reroute:
303 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
304 
305 	dst = (struct sockaddr_in *)&ro->ro_dst;
306 	/*
307 	 * If there is a cached route,
308 	 * check that it is to the same destination
309 	 * and is still up.  If not, free it and try again.
310 	 * The address family should also be checked in case of sharing the
311 	 * cache with IPv6.
312 	 */
313 	if (ro->ro_rt &&
314 	    (!(ro->ro_rt->rt_flags & RTF_UP) ||
315 	     dst->sin_family != AF_INET ||
316 	     dst->sin_addr.s_addr != pkt_dst.s_addr)) {
317 		rtfree(ro->ro_rt);
318 		ro->ro_rt = NULL;
319 	}
320 	if (ro->ro_rt == NULL) {
321 		bzero(dst, sizeof *dst);
322 		dst->sin_family = AF_INET;
323 		dst->sin_len = sizeof *dst;
324 		dst->sin_addr = pkt_dst;
325 	}
326 	/*
327 	 * If routing to interface only,
328 	 * short circuit routing lookup.
329 	 */
330 	if (flags & IP_ROUTETOIF) {
331 		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
332 		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == NULL) {
333 			ipstat.ips_noroute++;
334 			error = ENETUNREACH;
335 			goto bad;
336 		}
337 		ifp = ia->ia_ifp;
338 		ip->ip_ttl = 1;
339 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
340 	} else if (IN_MULTICAST(ntohl(pkt_dst.s_addr)) &&
341 		   imo != NULL && imo->imo_multicast_ifp != NULL) {
342 		/*
343 		 * Bypass the normal routing lookup for multicast
344 		 * packets if the interface is specified.
345 		 */
346 		ifp = imo->imo_multicast_ifp;
347 		ia = IFP_TO_IA(ifp);
348 		isbroadcast = 0;	/* fool gcc */
349 	} else {
350 		/*
351 		 * If this is the case, we probably don't want to allocate
352 		 * a protocol-cloned route since we didn't get one from the
353 		 * ULP.  This lets TCP do its thing, while not burdening
354 		 * forwarding or ICMP with the overhead of cloning a route.
355 		 * Of course, we still want to do any cloning requested by
356 		 * the link layer, as this is probably required in all cases
357 		 * for correct operation (as it is for ARP).
358 		 */
359 		if (ro->ro_rt == NULL)
360 			rtalloc_ign(ro, RTF_PRCLONING);
361 		if (ro->ro_rt == NULL) {
362 			ipstat.ips_noroute++;
363 			error = EHOSTUNREACH;
364 			goto bad;
365 		}
366 		ia = ifatoia(ro->ro_rt->rt_ifa);
367 		ifp = ro->ro_rt->rt_ifp;
368 		ro->ro_rt->rt_use++;
369 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
370 			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
371 		if (ro->ro_rt->rt_flags & RTF_HOST)
372 			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
373 		else
374 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
375 	}
376 	if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
377 		m->m_flags |= M_MCAST;
378 		/*
379 		 * IP destination address is multicast.  Make sure "dst"
380 		 * still points to the address in "ro".  (It may have been
381 		 * changed to point to a gateway address, above.)
382 		 */
383 		dst = (struct sockaddr_in *)&ro->ro_dst;
384 		/*
385 		 * See if the caller provided any multicast options
386 		 */
387 		if (imo != NULL) {
388 			ip->ip_ttl = imo->imo_multicast_ttl;
389 			if (imo->imo_multicast_vif != -1) {
390 				ip->ip_src.s_addr =
391 				    ip_mcast_src ?
392 				    ip_mcast_src(imo->imo_multicast_vif) :
393 				    INADDR_ANY;
394 			}
395 		} else {
396 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
397 		}
398 		/*
399 		 * Confirm that the outgoing interface supports multicast.
400 		 */
401 		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
402 			if (!(ifp->if_flags & IFF_MULTICAST)) {
403 				ipstat.ips_noroute++;
404 				error = ENETUNREACH;
405 				goto bad;
406 			}
407 		}
408 		/*
409 		 * If source address not specified yet, use address of the
410 		 * outgoing interface.  In case, keep note we did that, so
411 		 * if the the firewall changes the next-hop causing the
412 		 * output interface to change, we can fix that.
413 		 */
414 		if (ip->ip_src.s_addr == INADDR_ANY || src_was_INADDR_ANY) {
415 			/* Interface may have no addresses. */
416 			if (ia != NULL) {
417 				ip->ip_src = IA_SIN(ia)->sin_addr;
418 				src_was_INADDR_ANY = 1;
419 			}
420 		}
421 
422 		if (ip->ip_src.s_addr != INADDR_ANY) {
423 			struct in_multi *inm;
424 
425 			inm = IN_LOOKUP_MULTI(&pkt_dst, ifp);
426 			if (inm != NULL &&
427 			    (imo == NULL || imo->imo_multicast_loop)) {
428 				/*
429 				 * If we belong to the destination multicast
430 				 * group on the outgoing interface, and the
431 				 * caller did not forbid loopback, loop back
432 				 * a copy.
433 				 */
434 				ip_mloopback(ifp, m, dst, hlen);
435 			} else {
436 				/*
437 				 * If we are acting as a multicast router,
438 				 * perform multicast forwarding as if the
439 				 * packet had just arrived on the interface
440 				 * to which we are about to send.  The
441 				 * multicast forwarding function recursively
442 				 * calls this function, using the IP_FORWARDING
443 				 * flag to prevent infinite recursion.
444 				 *
445 				 * Multicasts that are looped back by
446 				 * ip_mloopback(), above, will be forwarded by
447 				 * the ip_input() routine, if necessary.
448 				 */
449 				if (ip_mrouter && !(flags & IP_FORWARDING)) {
450 					/*
451 					 * If rsvp daemon is not running, do
452 					 * not set ip_moptions. This ensures
453 					 * that the packet is multicast and
454 					 * not just sent down one link as
455 					 * prescribed by rsvpd.
456 					 */
457 					if (!rsvp_on)
458 						imo = NULL;
459 					if (ip_mforward) {
460 						get_mplock();
461 						if (ip_mforward(ip, ifp,
462 						    m, imo) != 0) {
463 							m_freem(m);
464 							rel_mplock();
465 							goto done;
466 						}
467 						rel_mplock();
468 					}
469 				}
470 			}
471 		}
472 
473 		/*
474 		 * Multicasts with a time-to-live of zero may be looped-
475 		 * back, above, but must not be transmitted on a network.
476 		 * Also, multicasts addressed to the loopback interface
477 		 * are not sent -- the above call to ip_mloopback() will
478 		 * loop back a copy if this host actually belongs to the
479 		 * destination group on the loopback interface.
480 		 */
481 		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
482 			m_freem(m);
483 			goto done;
484 		}
485 
486 		goto sendit;
487 	} else {
488 		m->m_flags &= ~M_MCAST;
489 	}
490 
491 	/*
492 	 * If the source address is not specified yet, use the address
493 	 * of the outgoing interface.  In case, keep note we did that,
494 	 * so if the the firewall changes the next-hop causing the output
495 	 * interface to change, we can fix that.
496 	 */
497 	if (ip->ip_src.s_addr == INADDR_ANY || src_was_INADDR_ANY) {
498 		/* Interface may have no addresses. */
499 		if (ia != NULL) {
500 			ip->ip_src = IA_SIN(ia)->sin_addr;
501 			src_was_INADDR_ANY = 1;
502 		}
503 	}
504 
505 	/*
506 	 * Look for broadcast address and
507 	 * verify user is allowed to send
508 	 * such a packet.
509 	 */
510 	if (isbroadcast) {
511 		if (!(ifp->if_flags & IFF_BROADCAST)) {
512 			error = EADDRNOTAVAIL;
513 			goto bad;
514 		}
515 		if (!(flags & IP_ALLOWBROADCAST)) {
516 			error = EACCES;
517 			goto bad;
518 		}
519 		/* don't allow broadcast messages to be fragmented */
520 		if (ip->ip_len > ifp->if_mtu) {
521 			error = EMSGSIZE;
522 			goto bad;
523 		}
524 		m->m_flags |= M_BCAST;
525 	} else {
526 		m->m_flags &= ~M_BCAST;
527 	}
528 
529 sendit:
530 #ifdef IPSEC
531 	/* get SP for this packet */
532 	if (so == NULL)
533 		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, flags, &error);
534 	else
535 		sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
536 
537 	if (sp == NULL) {
538 		ipsecstat.out_inval++;
539 		goto bad;
540 	}
541 
542 	error = 0;
543 
544 	/* check policy */
545 	switch (sp->policy) {
546 	case IPSEC_POLICY_DISCARD:
547 		/*
548 		 * This packet is just discarded.
549 		 */
550 		ipsecstat.out_polvio++;
551 		goto bad;
552 
553 	case IPSEC_POLICY_BYPASS:
554 	case IPSEC_POLICY_NONE:
555 	case IPSEC_POLICY_TCP:
556 		/* no need to do IPsec. */
557 		goto skip_ipsec;
558 
559 	case IPSEC_POLICY_IPSEC:
560 		if (sp->req == NULL) {
561 			/* acquire a policy */
562 			error = key_spdacquire(sp);
563 			goto bad;
564 		}
565 		break;
566 
567 	case IPSEC_POLICY_ENTRUST:
568 	default:
569 		kprintf("ip_output: Invalid policy found. %d\n", sp->policy);
570 	}
571     {
572 	struct ipsec_output_state state;
573 	bzero(&state, sizeof state);
574 	state.m = m;
575 	if (flags & IP_ROUTETOIF) {
576 		state.ro = &iproute;
577 		bzero(&iproute, sizeof iproute);
578 	} else
579 		state.ro = ro;
580 	state.dst = (struct sockaddr *)dst;
581 
582 	ip->ip_sum = 0;
583 
584 	/*
585 	 * XXX
586 	 * delayed checksums are not currently compatible with IPsec
587 	 */
588 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
589 		in_delayed_cksum(m);
590 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
591 	}
592 
593 	ip->ip_len = htons(ip->ip_len);
594 	ip->ip_off = htons(ip->ip_off);
595 
596 	error = ipsec4_output(&state, sp, flags);
597 
598 	m = state.m;
599 	if (flags & IP_ROUTETOIF) {
600 		/*
601 		 * if we have tunnel mode SA, we may need to ignore
602 		 * IP_ROUTETOIF.
603 		 */
604 		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
605 			flags &= ~IP_ROUTETOIF;
606 			ro = state.ro;
607 		}
608 	} else
609 		ro = state.ro;
610 	dst = (struct sockaddr_in *)state.dst;
611 	if (error) {
612 		/* mbuf is already reclaimed in ipsec4_output. */
613 		m0 = NULL;
614 		switch (error) {
615 		case EHOSTUNREACH:
616 		case ENETUNREACH:
617 		case EMSGSIZE:
618 		case ENOBUFS:
619 		case ENOMEM:
620 			break;
621 		default:
622 			kprintf("ip4_output (ipsec): error code %d\n", error);
623 			/*fall through*/
624 		case ENOENT:
625 			/* don't show these error codes to the user */
626 			error = 0;
627 			break;
628 		}
629 		goto bad;
630 	}
631     }
632 
633 	/* be sure to update variables that are affected by ipsec4_output() */
634 	ip = mtod(m, struct ip *);
635 #ifdef _IP_VHL
636 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
637 #else
638 	hlen = ip->ip_hl << 2;
639 #endif
640 	if (ro->ro_rt == NULL) {
641 		if (!(flags & IP_ROUTETOIF)) {
642 			kprintf("ip_output: "
643 				"can't update route after IPsec processing\n");
644 			error = EHOSTUNREACH;	/*XXX*/
645 			goto bad;
646 		}
647 	} else {
648 		ia = ifatoia(ro->ro_rt->rt_ifa);
649 		ifp = ro->ro_rt->rt_ifp;
650 	}
651 
652 	/* make it flipped, again. */
653 	ip->ip_len = ntohs(ip->ip_len);
654 	ip->ip_off = ntohs(ip->ip_off);
655 skip_ipsec:
656 #endif /*IPSEC*/
657 #ifdef FAST_IPSEC
658 	/*
659 	 * Check the security policy (SP) for the packet and, if
660 	 * required, do IPsec-related processing.  There are two
661 	 * cases here; the first time a packet is sent through
662 	 * it will be untagged and handled by ipsec4_checkpolicy.
663 	 * If the packet is resubmitted to ip_output (e.g. after
664 	 * AH, ESP, etc. processing), there will be a tag to bypass
665 	 * the lookup and related policy checking.
666 	 */
667 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
668 	crit_enter();
669 	if (mtag != NULL) {
670 		tdbi = (struct tdb_ident *)m_tag_data(mtag);
671 		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
672 		if (sp == NULL)
673 			error = -EINVAL;	/* force silent drop */
674 		m_tag_delete(m, mtag);
675 	} else {
676 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
677 					&error, inp);
678 	}
679 	/*
680 	 * There are four return cases:
681 	 *    sp != NULL		    apply IPsec policy
682 	 *    sp == NULL, error == 0	    no IPsec handling needed
683 	 *    sp == NULL, error == -EINVAL  discard packet w/o error
684 	 *    sp == NULL, error != 0	    discard packet, report error
685 	 */
686 	if (sp != NULL) {
687 		/* Loop detection, check if ipsec processing already done */
688 		KASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
689 		for (mtag = m_tag_first(m); mtag != NULL;
690 		     mtag = m_tag_next(m, mtag)) {
691 			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
692 				continue;
693 			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
694 			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
695 				continue;
696 			/*
697 			 * Check if policy has an SA associated with it.
698 			 * This can happen when an SP has yet to acquire
699 			 * an SA; e.g. on first reference.  If it occurs,
700 			 * then we let ipsec4_process_packet do its thing.
701 			 */
702 			if (sp->req->sav == NULL)
703 				break;
704 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
705 			if (tdbi->spi == sp->req->sav->spi &&
706 			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
707 			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
708 				 sizeof(union sockaddr_union)) == 0) {
709 				/*
710 				 * No IPsec processing is needed, free
711 				 * reference to SP.
712 				 *
713 				 * NB: null pointer to avoid free at
714 				 *     done: below.
715 				 */
716 				KEY_FREESP(&sp), sp = NULL;
717 				crit_exit();
718 				goto spd_done;
719 			}
720 		}
721 
722 		/*
723 		 * Do delayed checksums now because we send before
724 		 * this is done in the normal processing path.
725 		 */
726 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
727 			in_delayed_cksum(m);
728 			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
729 		}
730 
731 		ip->ip_len = htons(ip->ip_len);
732 		ip->ip_off = htons(ip->ip_off);
733 
734 		/* NB: callee frees mbuf */
735 		error = ipsec4_process_packet(m, sp->req, flags, 0);
736 		/*
737 		 * Preserve KAME behaviour: ENOENT can be returned
738 		 * when an SA acquire is in progress.  Don't propagate
739 		 * this to user-level; it confuses applications.
740 		 *
741 		 * XXX this will go away when the SADB is redone.
742 		 */
743 		if (error == ENOENT)
744 			error = 0;
745 		crit_exit();
746 		goto done;
747 	} else {
748 		crit_exit();
749 
750 		if (error != 0) {
751 			/*
752 			 * Hack: -EINVAL is used to signal that a packet
753 			 * should be silently discarded.  This is typically
754 			 * because we asked key management for an SA and
755 			 * it was delayed (e.g. kicked up to IKE).
756 			 */
757 			if (error == -EINVAL)
758 				error = 0;
759 			goto bad;
760 		} else {
761 			/* No IPsec processing for this packet. */
762 		}
763 #ifdef notyet
764 		/*
765 		 * If deferred crypto processing is needed, check that
766 		 * the interface supports it.
767 		 */
768 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
769 		if (mtag != NULL && !(ifp->if_capenable & IFCAP_IPSEC)) {
770 			/* notify IPsec to do its own crypto */
771 			ipsp_skipcrypto_unmark((struct tdb_ident *)m_tag_data(mtag));
772 			error = EHOSTUNREACH;
773 			goto bad;
774 		}
775 #endif
776 	}
777 spd_done:
778 #endif /* FAST_IPSEC */
779 
780 	/* We are already being fwd'd from a firewall. */
781 	if (next_hop != NULL)
782 		goto pass;
783 
784 	/* No pfil hooks */
785 	if (!pfil_has_hooks(&inet_pfil_hook)) {
786 		if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
787 			/*
788 			 * Strip dummynet tags from stranded packets
789 			 */
790 			mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
791 			KKASSERT(mtag != NULL);
792 			m_tag_delete(m, mtag);
793 			m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
794 		}
795 		goto pass;
796 	}
797 
798 	/*
799 	 * IpHack's section.
800 	 * - Xlate: translate packet's addr/port (NAT).
801 	 * - Firewall: deny/allow/etc.
802 	 * - Wrap: fake packet's addr/port <unimpl.>
803 	 * - Encapsulate: put it in another IP and send out. <unimp.>
804 	 */
805 
806 	/*
807 	 * Run through list of hooks for output packets.
808 	 */
809 	error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT);
810 	if (error != 0 || m == NULL)
811 		goto done;
812 	ip = mtod(m, struct ip *);
813 
814 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
815 		/*
816 		 * Check dst to make sure it is directly reachable on the
817 		 * interface we previously thought it was.
818 		 * If it isn't (which may be likely in some situations) we have
819 		 * to re-route it (ie, find a route for the next-hop and the
820 		 * associated interface) and set them here. This is nested
821 		 * forwarding which in most cases is undesirable, except where
822 		 * such control is nigh impossible. So we do it here.
823 		 * And I'm babbling.
824 		 */
825 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
826 		KKASSERT(mtag != NULL);
827 		next_hop = m_tag_data(mtag);
828 
829 		/*
830 		 * Try local forwarding first
831 		 */
832 		if (ip_localforward(m, next_hop, hlen))
833 			goto done;
834 
835 		/*
836 		 * Relocate the route based on next_hop.
837 		 * If the current route is inp's cache, keep it untouched.
838 		 */
839 		if (ro == &iproute && ro->ro_rt != NULL) {
840 			RTFREE(ro->ro_rt);
841 			ro->ro_rt = NULL;
842 		}
843 		ro = &iproute;
844 		bzero(ro, sizeof *ro);
845 
846 		/*
847 		 * Forwarding to broadcast address is not allowed.
848 		 * XXX Should we follow IP_ROUTETOIF?
849 		 */
850 		flags &= ~(IP_ALLOWBROADCAST | IP_ROUTETOIF);
851 
852 		/* We are doing forwarding now */
853 		flags |= IP_FORWARDING;
854 
855 		goto reroute;
856 	}
857 
858 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
859 		struct dn_pkt *dn_pkt;
860 
861 		mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
862 		KKASSERT(mtag != NULL);
863 		dn_pkt = m_tag_data(mtag);
864 
865 		/*
866 		 * Under certain cases it is not possible to recalculate
867 		 * 'ro' and 'dst', let alone 'flags', so just save them in
868 		 * dummynet tag and avoid the possible wrong reculcalation
869 		 * when we come back to ip_output() again.
870 		 *
871 		 * All other parameters have been already used and so they
872 		 * are not needed anymore.
873 		 * XXX if the ifp is deleted while a pkt is in dummynet,
874 		 * we are in trouble! (TODO use ifnet_detach_event)
875 		 *
876 		 * We need to copy *ro because for ICMP pkts (and maybe
877 		 * others) the caller passed a pointer into the stack;
878 		 * dst might also be a pointer into *ro so it needs to
879 		 * be updated.
880 		 */
881 		dn_pkt->ro = *ro;
882 		if (ro->ro_rt)
883 			ro->ro_rt->rt_refcnt++;
884 		if (dst == (struct sockaddr_in *)&ro->ro_dst) {
885 			/* 'dst' points into 'ro' */
886 			dst = (struct sockaddr_in *)&(dn_pkt->ro.ro_dst);
887 		}
888 		dn_pkt->dn_dst = dst;
889 		dn_pkt->flags = flags;
890 
891 		ip_dn_queue(m);
892 		goto done;
893 	}
894 pass:
895 	/* 127/8 must not appear on wire - RFC1122. */
896 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
897 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
898 		if (!(ifp->if_flags & IFF_LOOPBACK)) {
899 			ipstat.ips_badaddr++;
900 			error = EADDRNOTAVAIL;
901 			goto bad;
902 		}
903 	}
904 	if (ip->ip_src.s_addr == INADDR_ANY ||
905 	    IN_MULTICAST(ntohl(ip->ip_src.s_addr))) {
906 		ipstat.ips_badaddr++;
907 		error = EADDRNOTAVAIL;
908 		goto bad;
909 	}
910 
911 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
912 		m->m_pkthdr.csum_flags |= CSUM_IP;
913 		sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
914 		if (sw_csum & CSUM_DELAY_DATA) {
915 			in_delayed_cksum(m);
916 			sw_csum &= ~CSUM_DELAY_DATA;
917 		}
918 		m->m_pkthdr.csum_flags &= ifp->if_hwassist;
919 	} else {
920 		sw_csum = 0;
921 	}
922 	m->m_pkthdr.csum_iphlen = hlen;
923 
924 	/*
925 	 * If small enough for interface, or the interface will take
926 	 * care of the fragmentation or segmentation for us, can just
927 	 * send directly.
928 	 */
929 	if (ip->ip_len <= ifp->if_mtu ||
930 	    ((ifp->if_hwassist & CSUM_FRAGMENT) && !(ip->ip_off & IP_DF)) ||
931 	    (m->m_pkthdr.csum_flags & CSUM_TSO)) {
932 		ip->ip_len = htons(ip->ip_len);
933 		ip->ip_off = htons(ip->ip_off);
934 		ip->ip_sum = 0;
935 		if (sw_csum & CSUM_DELAY_IP) {
936 			if (ip->ip_vhl == IP_VHL_BORING)
937 				ip->ip_sum = in_cksum_hdr(ip);
938 			else
939 				ip->ip_sum = in_cksum(m, hlen);
940 		}
941 
942 		/* Record statistics for this interface address. */
943 		if (!(flags & IP_FORWARDING) && ia) {
944 			IFA_STAT_INC(&ia->ia_ifa, opackets, 1);
945 			IFA_STAT_INC(&ia->ia_ifa, obytes, m->m_pkthdr.len);
946 		}
947 
948 #ifdef IPSEC
949 		/* clean ipsec history once it goes out of the node */
950 		ipsec_delaux(m);
951 #endif
952 
953 #ifdef MBUF_STRESS_TEST
954 		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) {
955 			struct mbuf *m1, *m2;
956 			int length, tmp;
957 
958 			tmp = length = m->m_pkthdr.len;
959 
960 			while ((length -= mbuf_frag_size) >= 1) {
961 				m1 = m_split(m, length, M_NOWAIT);
962 				if (m1 == NULL)
963 					break;
964 				m2 = m;
965 				while (m2->m_next != NULL)
966 					m2 = m2->m_next;
967 				m2->m_next = m1;
968 			}
969 			m->m_pkthdr.len = tmp;
970 		}
971 #endif
972 
973 #ifdef MPLS
974 		if (!mpls_output_process(m, ro->ro_rt))
975 			goto done;
976 #endif
977 		error = ifp->if_output(ifp, m, (struct sockaddr *)dst,
978 				       ro->ro_rt);
979 		goto done;
980 	}
981 
982 	if (ip->ip_off & IP_DF) {
983 		error = EMSGSIZE;
984 		/*
985 		 * This case can happen if the user changed the MTU
986 		 * of an interface after enabling IP on it.  Because
987 		 * most netifs don't keep track of routes pointing to
988 		 * them, there is no way for one to update all its
989 		 * routes when the MTU is changed.
990 		 */
991 		if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
992 		    !(ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) &&
993 		    (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
994 			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
995 		}
996 		ipstat.ips_cantfrag++;
997 		goto bad;
998 	}
999 
1000 	/*
1001 	 * Too large for interface; fragment if possible. If successful,
1002 	 * on return, m will point to a list of packets to be sent.
1003 	 */
1004 	error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum);
1005 	if (error)
1006 		goto bad;
1007 	for (; m; m = m0) {
1008 		m0 = m->m_nextpkt;
1009 		m->m_nextpkt = NULL;
1010 #ifdef IPSEC
1011 		/* clean ipsec history once it goes out of the node */
1012 		ipsec_delaux(m);
1013 #endif
1014 		if (error == 0) {
1015 			/* Record statistics for this interface address. */
1016 			if (ia != NULL) {
1017 				IFA_STAT_INC(&ia->ia_ifa, opackets, 1);
1018 				IFA_STAT_INC(&ia->ia_ifa, obytes,
1019 				    m->m_pkthdr.len);
1020 			}
1021 #ifdef MPLS
1022 			if (!mpls_output_process(m, ro->ro_rt))
1023 				continue;
1024 #endif
1025 			error = ifp->if_output(ifp, m, (struct sockaddr *)dst,
1026 					       ro->ro_rt);
1027 		} else {
1028 			m_freem(m);
1029 		}
1030 	}
1031 
1032 	if (error == 0)
1033 		ipstat.ips_fragmented++;
1034 
1035 done:
1036 	if (ro == &iproute && ro->ro_rt != NULL) {
1037 		RTFREE(ro->ro_rt);
1038 		ro->ro_rt = NULL;
1039 	}
1040 #ifdef IPSEC
1041 	if (sp != NULL) {
1042 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1043 			kprintf("DP ip_output call free SP:%p\n", sp));
1044 		key_freesp(sp);
1045 	}
1046 #endif
1047 #ifdef FAST_IPSEC
1048 	if (sp != NULL)
1049 		KEY_FREESP(&sp);
1050 #endif
1051 	return (error);
1052 bad:
1053 	m_freem(m);
1054 	goto done;
1055 }
1056 
1057 /*
1058  * Create a chain of fragments which fit the given mtu. m_frag points to the
1059  * mbuf to be fragmented; on return it points to the chain with the fragments.
1060  * Return 0 if no error. If error, m_frag may contain a partially built
1061  * chain of fragments that should be freed by the caller.
1062  *
1063  * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
1064  * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
1065  */
1066 int
1067 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
1068 	    u_long if_hwassist_flags, int sw_csum)
1069 {
1070 	int error = 0;
1071 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1072 	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
1073 	int off;
1074 	struct mbuf *m0 = *m_frag;	/* the original packet		*/
1075 	int firstlen;
1076 	struct mbuf **mnext;
1077 	int nfrags;
1078 
1079 	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
1080 		ipstat.ips_cantfrag++;
1081 		return EMSGSIZE;
1082 	}
1083 
1084 	/*
1085 	 * Must be able to put at least 8 bytes per fragment.
1086 	 */
1087 	if (len < 8)
1088 		return EMSGSIZE;
1089 
1090 	/*
1091 	 * If the interface will not calculate checksums on
1092 	 * fragmented packets, then do it here.
1093 	 */
1094 	if ((m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) &&
1095 	    !(if_hwassist_flags & CSUM_IP_FRAGS)) {
1096 		in_delayed_cksum(m0);
1097 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1098 	}
1099 
1100 	if (len > PAGE_SIZE) {
1101 		/*
1102 		 * Fragment large datagrams such that each segment
1103 		 * contains a multiple of PAGE_SIZE amount of data,
1104 		 * plus headers. This enables a receiver to perform
1105 		 * page-flipping zero-copy optimizations.
1106 		 *
1107 		 * XXX When does this help given that sender and receiver
1108 		 * could have different page sizes, and also mtu could
1109 		 * be less than the receiver's page size ?
1110 		 */
1111 		int newlen;
1112 		struct mbuf *m;
1113 
1114 		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
1115 			off += m->m_len;
1116 
1117 		/*
1118 		 * firstlen (off - hlen) must be aligned on an
1119 		 * 8-byte boundary
1120 		 */
1121 		if (off < hlen)
1122 			goto smart_frag_failure;
1123 		off = ((off - hlen) & ~7) + hlen;
1124 		newlen = (~PAGE_MASK) & mtu;
1125 		if ((newlen + sizeof(struct ip)) > mtu) {
1126 			/* we failed, go back the default */
1127 smart_frag_failure:
1128 			newlen = len;
1129 			off = hlen + len;
1130 		}
1131 		len = newlen;
1132 
1133 	} else {
1134 		off = hlen + len;
1135 	}
1136 
1137 	firstlen = off - hlen;
1138 	mnext = &m0->m_nextpkt;		/* pointer to next packet */
1139 
1140 	/*
1141 	 * Loop through length of segment after first fragment,
1142 	 * make new header and copy data of each part and link onto chain.
1143 	 * Here, m0 is the original packet, m is the fragment being created.
1144 	 * The fragments are linked off the m_nextpkt of the original
1145 	 * packet, which after processing serves as the first fragment.
1146 	 */
1147 	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
1148 		struct ip *mhip;	/* ip header on the fragment */
1149 		struct mbuf *m;
1150 		int mhlen = sizeof(struct ip);
1151 
1152 		MGETHDR(m, M_NOWAIT, MT_HEADER);
1153 		if (m == NULL) {
1154 			error = ENOBUFS;
1155 			ipstat.ips_odropped++;
1156 			goto done;
1157 		}
1158 		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
1159 		/*
1160 		 * In the first mbuf, leave room for the link header, then
1161 		 * copy the original IP header including options. The payload
1162 		 * goes into an additional mbuf chain returned by m_copy().
1163 		 */
1164 		m->m_data += max_linkhdr;
1165 		mhip = mtod(m, struct ip *);
1166 		*mhip = *ip;
1167 		if (hlen > sizeof(struct ip)) {
1168 			mhlen = ip_optcopy(ip, mhip) + sizeof(struct ip);
1169 			mhip->ip_vhl = IP_MAKE_VHL(IPVERSION, mhlen >> 2);
1170 		}
1171 		m->m_len = mhlen;
1172 		/* XXX do we need to add ip->ip_off below ? */
1173 		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
1174 		if (off + len >= ip->ip_len) {	/* last fragment */
1175 			len = ip->ip_len - off;
1176 			m->m_flags |= M_LASTFRAG;
1177 		} else
1178 			mhip->ip_off |= IP_MF;
1179 		mhip->ip_len = htons((u_short)(len + mhlen));
1180 		m->m_next = m_copy(m0, off, len);
1181 		if (m->m_next == NULL) {		/* copy failed */
1182 			m_free(m);
1183 			error = ENOBUFS;	/* ??? */
1184 			ipstat.ips_odropped++;
1185 			goto done;
1186 		}
1187 		m->m_pkthdr.len = mhlen + len;
1188 		m->m_pkthdr.rcvif = NULL;
1189 		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
1190 		m->m_pkthdr.csum_iphlen = mhlen;
1191 		mhip->ip_off = htons(mhip->ip_off);
1192 		mhip->ip_sum = 0;
1193 		if (sw_csum & CSUM_DELAY_IP)
1194 			mhip->ip_sum = in_cksum(m, mhlen);
1195 		*mnext = m;
1196 		mnext = &m->m_nextpkt;
1197 	}
1198 	ipstat.ips_ofragments += nfrags;
1199 
1200 	/* set first marker for fragment chain */
1201 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1202 	m0->m_pkthdr.csum_data = nfrags;
1203 
1204 	/*
1205 	 * Update first fragment by trimming what's been copied out
1206 	 * and updating header.
1207 	 */
1208 	m_adj(m0, hlen + firstlen - ip->ip_len);
1209 	m0->m_pkthdr.len = hlen + firstlen;
1210 	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1211 	ip->ip_off |= IP_MF;
1212 	ip->ip_off = htons(ip->ip_off);
1213 	ip->ip_sum = 0;
1214 	if (sw_csum & CSUM_DELAY_IP)
1215 		ip->ip_sum = in_cksum(m0, hlen);
1216 
1217 done:
1218 	*m_frag = m0;
1219 	return error;
1220 }
1221 
1222 void
1223 in_delayed_cksum(struct mbuf *m)
1224 {
1225 	struct ip *ip;
1226 	u_short csum, offset;
1227 
1228 	ip = mtod(m, struct ip *);
1229 	offset = IP_VHL_HL(ip->ip_vhl) << 2 ;
1230 	csum = in_cksum_skip(m, ip->ip_len, offset);
1231 	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
1232 		csum = 0xffff;
1233 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
1234 
1235 	if (offset + sizeof(u_short) > m->m_len) {
1236 		kprintf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
1237 		    m->m_len, offset, ip->ip_p);
1238 		/*
1239 		 * XXX
1240 		 * this shouldn't happen, but if it does, the
1241 		 * correct behavior may be to insert the checksum
1242 		 * in the existing chain instead of rearranging it.
1243 		 */
1244 		m = m_pullup(m, offset + sizeof(u_short));
1245 	}
1246 	*(u_short *)(m->m_data + offset) = csum;
1247 }
1248 
1249 /*
1250  * Insert IP options into preformed packet.
1251  * Adjust IP destination as required for IP source routing,
1252  * as indicated by a non-zero in_addr at the start of the options.
1253  *
1254  * XXX This routine assumes that the packet has no options in place.
1255  */
1256 static struct mbuf *
1257 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1258 {
1259 	struct ipoption *p = mtod(opt, struct ipoption *);
1260 	struct mbuf *n;
1261 	struct ip *ip = mtod(m, struct ip *);
1262 	unsigned optlen;
1263 
1264 	optlen = opt->m_len - sizeof p->ipopt_dst;
1265 	if (optlen + (u_short)ip->ip_len > IP_MAXPACKET) {
1266 		*phlen = 0;
1267 		return (m);		/* XXX should fail */
1268 	}
1269 	if (p->ipopt_dst.s_addr)
1270 		ip->ip_dst = p->ipopt_dst;
1271 	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
1272 		MGETHDR(n, M_NOWAIT, MT_HEADER);
1273 		if (n == NULL) {
1274 			*phlen = 0;
1275 			return (m);
1276 		}
1277 		n->m_pkthdr.rcvif = NULL;
1278 		n->m_pkthdr.len = m->m_pkthdr.len + optlen;
1279 		m->m_len -= sizeof(struct ip);
1280 		m->m_data += sizeof(struct ip);
1281 		n->m_next = m;
1282 		m = n;
1283 		m->m_len = optlen + sizeof(struct ip);
1284 		m->m_data += max_linkhdr;
1285 		memcpy(mtod(m, void *), ip, sizeof(struct ip));
1286 	} else {
1287 		m->m_data -= optlen;
1288 		m->m_len += optlen;
1289 		m->m_pkthdr.len += optlen;
1290 		bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
1291 	}
1292 	ip = mtod(m, struct ip *);
1293 	bcopy(p->ipopt_list, ip + 1, optlen);
1294 	*phlen = sizeof(struct ip) + optlen;
1295 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, *phlen >> 2);
1296 	ip->ip_len += optlen;
1297 	return (m);
1298 }
1299 
1300 /*
1301  * Copy options from ip to jp,
1302  * omitting those not copied during fragmentation.
1303  */
1304 int
1305 ip_optcopy(struct ip *ip, struct ip *jp)
1306 {
1307 	u_char *cp, *dp;
1308 	int opt, optlen, cnt;
1309 
1310 	cp = (u_char *)(ip + 1);
1311 	dp = (u_char *)(jp + 1);
1312 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1313 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1314 		opt = cp[0];
1315 		if (opt == IPOPT_EOL)
1316 			break;
1317 		if (opt == IPOPT_NOP) {
1318 			/* Preserve for IP mcast tunnel's LSRR alignment. */
1319 			*dp++ = IPOPT_NOP;
1320 			optlen = 1;
1321 			continue;
1322 		}
1323 
1324 		KASSERT(cnt >= IPOPT_OLEN + sizeof *cp,
1325 		    ("ip_optcopy: malformed ipv4 option"));
1326 		optlen = cp[IPOPT_OLEN];
1327 		KASSERT(optlen >= IPOPT_OLEN + sizeof *cp && optlen <= cnt,
1328 		    ("ip_optcopy: malformed ipv4 option"));
1329 
1330 		/* bogus lengths should have been caught by ip_dooptions */
1331 		if (optlen > cnt)
1332 			optlen = cnt;
1333 		if (IPOPT_COPIED(opt)) {
1334 			bcopy(cp, dp, optlen);
1335 			dp += optlen;
1336 		}
1337 	}
1338 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1339 		*dp++ = IPOPT_EOL;
1340 	return (optlen);
1341 }
1342 
1343 /*
1344  * IP socket option processing.
1345  */
1346 void
1347 ip_ctloutput(netmsg_t msg)
1348 {
1349 	struct socket *so = msg->base.nm_so;
1350 	struct sockopt *sopt = msg->ctloutput.nm_sopt;
1351 	struct	inpcb *inp = so->so_pcb;
1352 	int	error, optval;
1353 
1354 	error = optval = 0;
1355 
1356 	/* Get socket's owner cpuid hint */
1357 	if (sopt->sopt_level == SOL_SOCKET &&
1358 	    sopt->sopt_dir == SOPT_GET &&
1359 	    sopt->sopt_name == SO_CPUHINT) {
1360 		optval = mycpuid;
1361 		soopt_from_kbuf(sopt, &optval, sizeof(optval));
1362 		goto done;
1363 	}
1364 
1365 	if (sopt->sopt_level != IPPROTO_IP) {
1366 		error = EINVAL;
1367 		goto done;
1368 	}
1369 
1370 	switch (sopt->sopt_name) {
1371 	case IP_MULTICAST_IF:
1372 	case IP_MULTICAST_VIF:
1373 	case IP_MULTICAST_TTL:
1374 	case IP_MULTICAST_LOOP:
1375 	case IP_ADD_MEMBERSHIP:
1376 	case IP_DROP_MEMBERSHIP:
1377 		/*
1378 		 * Handle multicast options in netisr0
1379 		 */
1380 		if (&curthread->td_msgport != netisr_cpuport(0)) {
1381 			/* NOTE: so_port MUST NOT be checked in netisr0 */
1382 			msg->lmsg.ms_flags |= MSGF_IGNSOPORT;
1383 			lwkt_forwardmsg(netisr_cpuport(0), &msg->lmsg);
1384 			return;
1385 		}
1386 		break;
1387 	}
1388 
1389 	switch (sopt->sopt_dir) {
1390 	case SOPT_SET:
1391 		switch (sopt->sopt_name) {
1392 		case IP_OPTIONS:
1393 #ifdef notyet
1394 		case IP_RETOPTS:
1395 #endif
1396 		{
1397 			struct mbuf *m;
1398 			if (sopt->sopt_valsize > MLEN) {
1399 				error = EMSGSIZE;
1400 				break;
1401 			}
1402 			MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_HEADER);
1403 			if (m == NULL) {
1404 				error = ENOBUFS;
1405 				break;
1406 			}
1407 			m->m_len = sopt->sopt_valsize;
1408 			error = soopt_to_kbuf(sopt, mtod(m, void *), m->m_len,
1409 					      m->m_len);
1410 			error = ip_pcbopts(sopt->sopt_name,
1411 					   &inp->inp_options, m);
1412 			goto done;
1413 		}
1414 
1415 		case IP_TOS:
1416 		case IP_TTL:
1417 		case IP_MINTTL:
1418 		case IP_RECVOPTS:
1419 		case IP_RECVRETOPTS:
1420 		case IP_RECVDSTADDR:
1421 		case IP_RECVIF:
1422 		case IP_RECVTTL:
1423 		case IP_FAITH:
1424 			error = soopt_to_kbuf(sopt, &optval, sizeof optval,
1425 					     sizeof optval);
1426 			if (error)
1427 				break;
1428 			switch (sopt->sopt_name) {
1429 			case IP_TOS:
1430 				inp->inp_ip_tos = optval;
1431 				break;
1432 
1433 			case IP_TTL:
1434 				inp->inp_ip_ttl = optval;
1435 				break;
1436 			case IP_MINTTL:
1437 				if (optval >= 0 && optval <= MAXTTL)
1438 					inp->inp_ip_minttl = optval;
1439 				else
1440 					error = EINVAL;
1441 				break;
1442 #define	OPTSET(bit) \
1443 	if (optval) \
1444 		inp->inp_flags |= bit; \
1445 	else \
1446 		inp->inp_flags &= ~bit;
1447 
1448 			case IP_RECVOPTS:
1449 				OPTSET(INP_RECVOPTS);
1450 				break;
1451 
1452 			case IP_RECVRETOPTS:
1453 				OPTSET(INP_RECVRETOPTS);
1454 				break;
1455 
1456 			case IP_RECVDSTADDR:
1457 				OPTSET(INP_RECVDSTADDR);
1458 				break;
1459 
1460 			case IP_RECVIF:
1461 				OPTSET(INP_RECVIF);
1462 				break;
1463 
1464 			case IP_RECVTTL:
1465 				OPTSET(INP_RECVTTL);
1466 				break;
1467 
1468 			case IP_FAITH:
1469 				OPTSET(INP_FAITH);
1470 				break;
1471 			}
1472 			break;
1473 #undef OPTSET
1474 
1475 		case IP_MULTICAST_IF:
1476 		case IP_MULTICAST_VIF:
1477 		case IP_MULTICAST_TTL:
1478 		case IP_MULTICAST_LOOP:
1479 		case IP_ADD_MEMBERSHIP:
1480 		case IP_DROP_MEMBERSHIP:
1481 			error = ip_setmoptions(sopt, &inp->inp_moptions);
1482 			break;
1483 
1484 		case IP_PORTRANGE:
1485 			error = soopt_to_kbuf(sopt, &optval, sizeof optval,
1486 					    sizeof optval);
1487 			if (error)
1488 				break;
1489 
1490 			switch (optval) {
1491 			case IP_PORTRANGE_DEFAULT:
1492 				inp->inp_flags &= ~(INP_LOWPORT);
1493 				inp->inp_flags &= ~(INP_HIGHPORT);
1494 				break;
1495 
1496 			case IP_PORTRANGE_HIGH:
1497 				inp->inp_flags &= ~(INP_LOWPORT);
1498 				inp->inp_flags |= INP_HIGHPORT;
1499 				break;
1500 
1501 			case IP_PORTRANGE_LOW:
1502 				inp->inp_flags &= ~(INP_HIGHPORT);
1503 				inp->inp_flags |= INP_LOWPORT;
1504 				break;
1505 
1506 			default:
1507 				error = EINVAL;
1508 				break;
1509 			}
1510 			break;
1511 
1512 #if defined(IPSEC) || defined(FAST_IPSEC)
1513 		case IP_IPSEC_POLICY:
1514 		{
1515 			caddr_t req;
1516 			size_t len = 0;
1517 			int priv;
1518 			struct mbuf *m;
1519 			int optname;
1520 
1521 			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1522 				break;
1523 			soopt_to_mbuf(sopt, m);
1524 			priv = (sopt->sopt_td != NULL &&
1525 				priv_check(sopt->sopt_td, PRIV_ROOT) != 0) ? 0 : 1;
1526 			req = mtod(m, caddr_t);
1527 			len = m->m_len;
1528 			optname = sopt->sopt_name;
1529 			error = ipsec4_set_policy(inp, optname, req, len, priv);
1530 			m_freem(m);
1531 			break;
1532 		}
1533 #endif /*IPSEC*/
1534 
1535 		default:
1536 			error = ENOPROTOOPT;
1537 			break;
1538 		}
1539 		break;
1540 
1541 	case SOPT_GET:
1542 		switch (sopt->sopt_name) {
1543 		case IP_OPTIONS:
1544 		case IP_RETOPTS:
1545 			if (inp->inp_options)
1546 				soopt_from_kbuf(sopt, mtod(inp->inp_options,
1547 							   char *),
1548 						inp->inp_options->m_len);
1549 			else
1550 				sopt->sopt_valsize = 0;
1551 			break;
1552 
1553 		case IP_TOS:
1554 		case IP_TTL:
1555 		case IP_MINTTL:
1556 		case IP_RECVOPTS:
1557 		case IP_RECVRETOPTS:
1558 		case IP_RECVDSTADDR:
1559 		case IP_RECVTTL:
1560 		case IP_RECVIF:
1561 		case IP_PORTRANGE:
1562 		case IP_FAITH:
1563 			switch (sopt->sopt_name) {
1564 
1565 			case IP_TOS:
1566 				optval = inp->inp_ip_tos;
1567 				break;
1568 
1569 			case IP_TTL:
1570 				optval = inp->inp_ip_ttl;
1571 				break;
1572 			case IP_MINTTL:
1573 				optval = inp->inp_ip_minttl;
1574 				break;
1575 
1576 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1577 
1578 			case IP_RECVOPTS:
1579 				optval = OPTBIT(INP_RECVOPTS);
1580 				break;
1581 
1582 			case IP_RECVRETOPTS:
1583 				optval = OPTBIT(INP_RECVRETOPTS);
1584 				break;
1585 
1586 			case IP_RECVDSTADDR:
1587 				optval = OPTBIT(INP_RECVDSTADDR);
1588 				break;
1589 
1590 			case IP_RECVTTL:
1591 				optval = OPTBIT(INP_RECVTTL);
1592 				break;
1593 
1594 			case IP_RECVIF:
1595 				optval = OPTBIT(INP_RECVIF);
1596 				break;
1597 
1598 			case IP_PORTRANGE:
1599 				if (inp->inp_flags & INP_HIGHPORT)
1600 					optval = IP_PORTRANGE_HIGH;
1601 				else if (inp->inp_flags & INP_LOWPORT)
1602 					optval = IP_PORTRANGE_LOW;
1603 				else
1604 					optval = 0;
1605 				break;
1606 
1607 			case IP_FAITH:
1608 				optval = OPTBIT(INP_FAITH);
1609 				break;
1610 			}
1611 			soopt_from_kbuf(sopt, &optval, sizeof optval);
1612 			break;
1613 
1614 		case IP_MULTICAST_IF:
1615 		case IP_MULTICAST_VIF:
1616 		case IP_MULTICAST_TTL:
1617 		case IP_MULTICAST_LOOP:
1618 		case IP_ADD_MEMBERSHIP:
1619 		case IP_DROP_MEMBERSHIP:
1620 			error = ip_getmoptions(sopt, inp->inp_moptions);
1621 			break;
1622 
1623 #if defined(IPSEC) || defined(FAST_IPSEC)
1624 		case IP_IPSEC_POLICY:
1625 		{
1626 			struct mbuf *m = NULL;
1627 			caddr_t req = NULL;
1628 			size_t len = 0;
1629 
1630 			if (m != NULL) {
1631 				req = mtod(m, caddr_t);
1632 				len = m->m_len;
1633 			}
1634 			error = ipsec4_get_policy(so->so_pcb, req, len, &m);
1635 			if (error == 0)
1636 				error = soopt_from_mbuf(sopt, m); /* XXX */
1637 			if (error == 0)
1638 				m_freem(m);
1639 			break;
1640 		}
1641 #endif /*IPSEC*/
1642 
1643 		default:
1644 			error = ENOPROTOOPT;
1645 			break;
1646 		}
1647 		break;
1648 	}
1649 done:
1650 	lwkt_replymsg(&msg->lmsg, error);
1651 }
1652 
1653 /*
1654  * Set up IP options in pcb for insertion in output packets.
1655  * Store in mbuf with pointer in pcbopt, adding pseudo-option
1656  * with destination address if source routed.
1657  */
1658 static int
1659 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1660 {
1661 	int cnt, optlen;
1662 	u_char *cp;
1663 	u_char opt;
1664 
1665 	/* turn off any old options */
1666 	if (*pcbopt)
1667 		m_free(*pcbopt);
1668 	*pcbopt = NULL;
1669 	if (m == NULL || m->m_len == 0) {
1670 		/*
1671 		 * Only turning off any previous options.
1672 		 */
1673 		if (m != NULL)
1674 			m_free(m);
1675 		return (0);
1676 	}
1677 
1678 	if (m->m_len % sizeof(int32_t))
1679 		goto bad;
1680 	/*
1681 	 * IP first-hop destination address will be stored before
1682 	 * actual options; move other options back
1683 	 * and clear it when none present.
1684 	 */
1685 	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1686 		goto bad;
1687 	cnt = m->m_len;
1688 	m->m_len += sizeof(struct in_addr);
1689 	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1690 	bcopy(mtod(m, caddr_t), cp, cnt);
1691 	bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1692 
1693 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1694 		opt = cp[IPOPT_OPTVAL];
1695 		if (opt == IPOPT_EOL)
1696 			break;
1697 		if (opt == IPOPT_NOP)
1698 			optlen = 1;
1699 		else {
1700 			if (cnt < IPOPT_OLEN + sizeof *cp)
1701 				goto bad;
1702 			optlen = cp[IPOPT_OLEN];
1703 			if (optlen < IPOPT_OLEN + sizeof *cp || optlen > cnt)
1704 				goto bad;
1705 		}
1706 		switch (opt) {
1707 
1708 		default:
1709 			break;
1710 
1711 		case IPOPT_LSRR:
1712 		case IPOPT_SSRR:
1713 			/*
1714 			 * user process specifies route as:
1715 			 *	->A->B->C->D
1716 			 * D must be our final destination (but we can't
1717 			 * check that since we may not have connected yet).
1718 			 * A is first hop destination, which doesn't appear in
1719 			 * actual IP option, but is stored before the options.
1720 			 */
1721 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1722 				goto bad;
1723 			m->m_len -= sizeof(struct in_addr);
1724 			cnt -= sizeof(struct in_addr);
1725 			optlen -= sizeof(struct in_addr);
1726 			cp[IPOPT_OLEN] = optlen;
1727 			/*
1728 			 * Move first hop before start of options.
1729 			 */
1730 			bcopy(&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1731 			      sizeof(struct in_addr));
1732 			/*
1733 			 * Then copy rest of options back
1734 			 * to close up the deleted entry.
1735 			 */
1736 			bcopy(&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1737 			      &cp[IPOPT_OFFSET+1],
1738 			      cnt - (IPOPT_MINOFF - 1));
1739 			break;
1740 		}
1741 	}
1742 	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1743 		goto bad;
1744 	*pcbopt = m;
1745 	return (0);
1746 
1747 bad:
1748 	m_free(m);
1749 	return (EINVAL);
1750 }
1751 
1752 /*
1753  * XXX
1754  * The whole multicast option thing needs to be re-thought.
1755  * Several of these options are equally applicable to non-multicast
1756  * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1757  * standard option (IP_TTL).
1758  */
1759 
1760 /*
1761  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1762  */
1763 static struct ifnet *
1764 ip_multicast_if(struct in_addr *a, int *ifindexp)
1765 {
1766 	int ifindex;
1767 	struct ifnet *ifp;
1768 
1769 	if (ifindexp)
1770 		*ifindexp = 0;
1771 	if (ntohl(a->s_addr) >> 24 == 0) {
1772 		ifindex = ntohl(a->s_addr) & 0xffffff;
1773 		if (ifindex < 0 || if_index < ifindex)
1774 			return NULL;
1775 		ifp = ifindex2ifnet[ifindex];
1776 		if (ifindexp)
1777 			*ifindexp = ifindex;
1778 	} else {
1779 		ifp = INADDR_TO_IFP(a);
1780 	}
1781 	return ifp;
1782 }
1783 
1784 /*
1785  * Set the IP multicast options in response to user setsockopt().
1786  */
1787 static int
1788 ip_setmoptions(struct sockopt *sopt, struct ip_moptions **imop)
1789 {
1790 	int error = 0;
1791 	int i;
1792 	struct in_addr addr;
1793 	struct ip_mreq mreq;
1794 	struct ifnet *ifp;
1795 	struct ip_moptions *imo = *imop;
1796 	int ifindex;
1797 
1798 	if (imo == NULL) {
1799 		/*
1800 		 * No multicast option buffer attached to the pcb;
1801 		 * allocate one and initialize to default values.
1802 		 */
1803 		imo = kmalloc(sizeof *imo, M_IPMOPTS, M_WAITOK);
1804 
1805 		imo->imo_multicast_ifp = NULL;
1806 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
1807 		imo->imo_multicast_vif = -1;
1808 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1809 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1810 		imo->imo_num_memberships = 0;
1811 		/* Assign imo to imop after all fields are setup */
1812 		cpu_sfence();
1813 		*imop = imo;
1814 	}
1815 	switch (sopt->sopt_name) {
1816 	/* store an index number for the vif you wanna use in the send */
1817 	case IP_MULTICAST_VIF:
1818 		if (legal_vif_num == 0) {
1819 			error = EOPNOTSUPP;
1820 			break;
1821 		}
1822 		error = soopt_to_kbuf(sopt, &i, sizeof i, sizeof i);
1823 		if (error)
1824 			break;
1825 		if (!legal_vif_num(i) && (i != -1)) {
1826 			error = EINVAL;
1827 			break;
1828 		}
1829 		imo->imo_multicast_vif = i;
1830 		break;
1831 
1832 	case IP_MULTICAST_IF:
1833 		/*
1834 		 * Select the interface for outgoing multicast packets.
1835 		 */
1836 		error = soopt_to_kbuf(sopt, &addr, sizeof addr, sizeof addr);
1837 		if (error)
1838 			break;
1839 
1840 		/*
1841 		 * INADDR_ANY is used to remove a previous selection.
1842 		 * When no interface is selected, a default one is
1843 		 * chosen every time a multicast packet is sent.
1844 		 */
1845 		if (addr.s_addr == INADDR_ANY) {
1846 			imo->imo_multicast_ifp = NULL;
1847 			break;
1848 		}
1849 		/*
1850 		 * The selected interface is identified by its local
1851 		 * IP address.  Find the interface and confirm that
1852 		 * it supports multicasting.
1853 		 */
1854 		crit_enter();
1855 		ifp = ip_multicast_if(&addr, &ifindex);
1856 		if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
1857 			crit_exit();
1858 			error = EADDRNOTAVAIL;
1859 			break;
1860 		}
1861 		imo->imo_multicast_ifp = ifp;
1862 		if (ifindex)
1863 			imo->imo_multicast_addr = addr;
1864 		else
1865 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1866 		crit_exit();
1867 		break;
1868 
1869 	case IP_MULTICAST_TTL:
1870 		/*
1871 		 * Set the IP time-to-live for outgoing multicast packets.
1872 		 * The original multicast API required a char argument,
1873 		 * which is inconsistent with the rest of the socket API.
1874 		 * We allow either a char or an int.
1875 		 */
1876 		if (sopt->sopt_valsize == 1) {
1877 			u_char ttl;
1878 			error = soopt_to_kbuf(sopt, &ttl, 1, 1);
1879 			if (error)
1880 				break;
1881 			imo->imo_multicast_ttl = ttl;
1882 		} else {
1883 			u_int ttl;
1884 			error = soopt_to_kbuf(sopt, &ttl, sizeof ttl, sizeof ttl);
1885 			if (error)
1886 				break;
1887 			if (ttl > 255)
1888 				error = EINVAL;
1889 			else
1890 				imo->imo_multicast_ttl = ttl;
1891 		}
1892 		break;
1893 
1894 	case IP_MULTICAST_LOOP:
1895 		/*
1896 		 * Set the loopback flag for outgoing multicast packets.
1897 		 * Must be zero or one.  The original multicast API required a
1898 		 * char argument, which is inconsistent with the rest
1899 		 * of the socket API.  We allow either a char or an int.
1900 		 */
1901 		if (sopt->sopt_valsize == 1) {
1902 			u_char loop;
1903 
1904 			error = soopt_to_kbuf(sopt, &loop, 1, 1);
1905 			if (error)
1906 				break;
1907 			imo->imo_multicast_loop = !!loop;
1908 		} else {
1909 			u_int loop;
1910 
1911 			error = soopt_to_kbuf(sopt, &loop, sizeof loop,
1912 					    sizeof loop);
1913 			if (error)
1914 				break;
1915 			imo->imo_multicast_loop = !!loop;
1916 		}
1917 		break;
1918 
1919 	case IP_ADD_MEMBERSHIP:
1920 		/*
1921 		 * Add a multicast group membership.
1922 		 * Group must be a valid IP multicast address.
1923 		 */
1924 		error = soopt_to_kbuf(sopt, &mreq, sizeof mreq, sizeof mreq);
1925 		if (error)
1926 			break;
1927 
1928 		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1929 			error = EINVAL;
1930 			break;
1931 		}
1932 		crit_enter();
1933 		/*
1934 		 * If no interface address was provided, use the interface of
1935 		 * the route to the given multicast address.
1936 		 */
1937 		if (mreq.imr_interface.s_addr == INADDR_ANY) {
1938 			struct sockaddr_in dst;
1939 			struct rtentry *rt;
1940 
1941 			bzero(&dst, sizeof(struct sockaddr_in));
1942 			dst.sin_len = sizeof(struct sockaddr_in);
1943 			dst.sin_family = AF_INET;
1944 			dst.sin_addr = mreq.imr_multiaddr;
1945 			rt = rtlookup((struct sockaddr *)&dst);
1946 			if (rt == NULL) {
1947 				error = EADDRNOTAVAIL;
1948 				crit_exit();
1949 				break;
1950 			}
1951 			--rt->rt_refcnt;
1952 			ifp = rt->rt_ifp;
1953 		} else {
1954 			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1955 		}
1956 
1957 		/*
1958 		 * See if we found an interface, and confirm that it
1959 		 * supports multicast.
1960 		 */
1961 		if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
1962 			error = EADDRNOTAVAIL;
1963 			crit_exit();
1964 			break;
1965 		}
1966 		/*
1967 		 * See if the membership already exists or if all the
1968 		 * membership slots are full.
1969 		 */
1970 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1971 			if (imo->imo_membership[i]->inm_ifp == ifp &&
1972 			    imo->imo_membership[i]->inm_addr.s_addr
1973 						== mreq.imr_multiaddr.s_addr)
1974 				break;
1975 		}
1976 		if (i < imo->imo_num_memberships) {
1977 			error = EADDRINUSE;
1978 			crit_exit();
1979 			break;
1980 		}
1981 		if (i == IP_MAX_MEMBERSHIPS) {
1982 			error = ETOOMANYREFS;
1983 			crit_exit();
1984 			break;
1985 		}
1986 		/*
1987 		 * Everything looks good; add a new record to the multicast
1988 		 * address list for the given interface.
1989 		 */
1990 		if ((imo->imo_membership[i] =
1991 		     in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
1992 			error = ENOBUFS;
1993 			crit_exit();
1994 			break;
1995 		}
1996 		++imo->imo_num_memberships;
1997 		crit_exit();
1998 		break;
1999 
2000 	case IP_DROP_MEMBERSHIP:
2001 		/*
2002 		 * Drop a multicast group membership.
2003 		 * Group must be a valid IP multicast address.
2004 		 */
2005 		error = soopt_to_kbuf(sopt, &mreq, sizeof mreq, sizeof mreq);
2006 		if (error)
2007 			break;
2008 
2009 		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
2010 			error = EINVAL;
2011 			break;
2012 		}
2013 
2014 		crit_enter();
2015 		/*
2016 		 * If an interface address was specified, get a pointer
2017 		 * to its ifnet structure.
2018 		 */
2019 		if (mreq.imr_interface.s_addr == INADDR_ANY)
2020 			ifp = NULL;
2021 		else {
2022 			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
2023 			if (ifp == NULL) {
2024 				error = EADDRNOTAVAIL;
2025 				crit_exit();
2026 				break;
2027 			}
2028 		}
2029 		/*
2030 		 * Find the membership in the membership array.
2031 		 */
2032 		for (i = 0; i < imo->imo_num_memberships; ++i) {
2033 			if ((ifp == NULL ||
2034 			     imo->imo_membership[i]->inm_ifp == ifp) &&
2035 			    imo->imo_membership[i]->inm_addr.s_addr ==
2036 			    mreq.imr_multiaddr.s_addr)
2037 				break;
2038 		}
2039 		if (i == imo->imo_num_memberships) {
2040 			error = EADDRNOTAVAIL;
2041 			crit_exit();
2042 			break;
2043 		}
2044 		/*
2045 		 * Give up the multicast address record to which the
2046 		 * membership points.
2047 		 */
2048 		in_delmulti(imo->imo_membership[i]);
2049 		/*
2050 		 * Remove the gap in the membership array.
2051 		 */
2052 		for (++i; i < imo->imo_num_memberships; ++i)
2053 			imo->imo_membership[i-1] = imo->imo_membership[i];
2054 		--imo->imo_num_memberships;
2055 		crit_exit();
2056 		break;
2057 
2058 	default:
2059 		error = EOPNOTSUPP;
2060 		break;
2061 	}
2062 
2063 	return (error);
2064 }
2065 
2066 /*
2067  * Return the IP multicast options in response to user getsockopt().
2068  */
2069 static int
2070 ip_getmoptions(struct sockopt *sopt, struct ip_moptions *imo)
2071 {
2072 	struct in_addr addr;
2073 	struct in_ifaddr *ia;
2074 	int error, optval;
2075 	u_char coptval;
2076 
2077 	error = 0;
2078 	switch (sopt->sopt_name) {
2079 	case IP_MULTICAST_VIF:
2080 		if (imo != NULL)
2081 			optval = imo->imo_multicast_vif;
2082 		else
2083 			optval = -1;
2084 		soopt_from_kbuf(sopt, &optval, sizeof optval);
2085 		break;
2086 
2087 	case IP_MULTICAST_IF:
2088 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
2089 			addr.s_addr = INADDR_ANY;
2090 		else if (imo->imo_multicast_addr.s_addr) {
2091 			/* return the value user has set */
2092 			addr = imo->imo_multicast_addr;
2093 		} else {
2094 			ia = IFP_TO_IA(imo->imo_multicast_ifp);
2095 			addr.s_addr = (ia == NULL) ? INADDR_ANY
2096 				: IA_SIN(ia)->sin_addr.s_addr;
2097 		}
2098 		soopt_from_kbuf(sopt, &addr, sizeof addr);
2099 		break;
2100 
2101 	case IP_MULTICAST_TTL:
2102 		if (imo == NULL)
2103 			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
2104 		else
2105 			optval = coptval = imo->imo_multicast_ttl;
2106 		if (sopt->sopt_valsize == 1)
2107 			soopt_from_kbuf(sopt, &coptval, 1);
2108 		else
2109 			soopt_from_kbuf(sopt, &optval, sizeof optval);
2110 		break;
2111 
2112 	case IP_MULTICAST_LOOP:
2113 		if (imo == NULL)
2114 			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
2115 		else
2116 			optval = coptval = imo->imo_multicast_loop;
2117 		if (sopt->sopt_valsize == 1)
2118 			soopt_from_kbuf(sopt, &coptval, 1);
2119 		else
2120 			soopt_from_kbuf(sopt, &optval, sizeof optval);
2121 		break;
2122 
2123 	default:
2124 		error = ENOPROTOOPT;
2125 		break;
2126 	}
2127 	return (error);
2128 }
2129 
2130 /*
2131  * Discard the IP multicast options.
2132  */
2133 void
2134 ip_freemoptions(struct ip_moptions *imo)
2135 {
2136 	int i;
2137 
2138 	if (imo != NULL) {
2139 		for (i = 0; i < imo->imo_num_memberships; ++i)
2140 			in_delmulti(imo->imo_membership[i]);
2141 		kfree(imo, M_IPMOPTS);
2142 	}
2143 }
2144 
2145 /*
2146  * Routine called from ip_output() to loop back a copy of an IP multicast
2147  * packet to the input queue of a specified interface.  Note that this
2148  * calls the output routine of the loopback "driver", but with an interface
2149  * pointer that might NOT be a loopback interface -- evil, but easier than
2150  * replicating that code here.
2151  */
2152 static void
2153 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst,
2154 	     int hlen)
2155 {
2156 	struct ip *ip;
2157 	struct mbuf *copym;
2158 
2159 	copym = m_copypacket(m, M_NOWAIT);
2160 	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
2161 		copym = m_pullup(copym, hlen);
2162 	if (copym != NULL) {
2163 		/*
2164 		 * if the checksum hasn't been computed, mark it as valid
2165 		 */
2166 		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2167 			in_delayed_cksum(copym);
2168 			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2169 			copym->m_pkthdr.csum_flags |=
2170 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2171 			copym->m_pkthdr.csum_data = 0xffff;
2172 		}
2173 		/*
2174 		 * We don't bother to fragment if the IP length is greater
2175 		 * than the interface's MTU.  Can this possibly matter?
2176 		 */
2177 		ip = mtod(copym, struct ip *);
2178 		ip->ip_len = htons(ip->ip_len);
2179 		ip->ip_off = htons(ip->ip_off);
2180 		ip->ip_sum = 0;
2181 		if (ip->ip_vhl == IP_VHL_BORING) {
2182 			ip->ip_sum = in_cksum_hdr(ip);
2183 		} else {
2184 			ip->ip_sum = in_cksum(copym, hlen);
2185 		}
2186 		/*
2187 		 * NB:
2188 		 * It's not clear whether there are any lingering
2189 		 * reentrancy problems in other areas which might
2190 		 * be exposed by using ip_input directly (in
2191 		 * particular, everything which modifies the packet
2192 		 * in-place).  Yet another option is using the
2193 		 * protosw directly to deliver the looped back
2194 		 * packet.  For the moment, we'll err on the side
2195 		 * of safety by using if_simloop().
2196 		 */
2197 #if 1 /* XXX */
2198 		if (dst->sin_family != AF_INET) {
2199 			kprintf("ip_mloopback: bad address family %d\n",
2200 						dst->sin_family);
2201 			dst->sin_family = AF_INET;
2202 		}
2203 #endif
2204 		if_simloop(ifp, copym, dst->sin_family, 0);
2205 	}
2206 }
2207