xref: /dragonfly/sys/netinet/ip_output.c (revision 5c5db249)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30  * $FreeBSD: src/sys/netinet/ip_output.c,v 1.99.2.37 2003/04/15 06:44:45 silby Exp $
31  */
32 
33 #define _IP_VHL
34 
35 #include "opt_ipdn.h"
36 #include "opt_ipdivert.h"
37 #include "opt_ipsec.h"
38 #include "opt_mbuf_stress_test.h"
39 #include "opt_mpls.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/protosw.h>
47 #include <sys/socket.h>
48 #include <sys/socketvar.h>
49 #include <sys/proc.h>
50 #include <sys/priv.h>
51 #include <sys/sysctl.h>
52 #include <sys/in_cksum.h>
53 #include <sys/lock.h>
54 
55 #include <sys/thread2.h>
56 #include <sys/mplock2.h>
57 #include <sys/msgport2.h>
58 
59 #include <net/if.h>
60 #include <net/netisr.h>
61 #include <net/pfil.h>
62 #include <net/route.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/ip.h>
67 #include <netinet/in_pcb.h>
68 #include <netinet/in_var.h>
69 #include <netinet/ip_var.h>
70 
71 #include <netproto/mpls/mpls_var.h>
72 
73 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
74 
75 #ifdef IPSEC
76 #include <netinet6/ipsec.h>
77 #include <netproto/key/key.h>
78 #ifdef IPSEC_DEBUG
79 #include <netproto/key/key_debug.h>
80 #else
81 #define	KEYDEBUG(lev,arg)
82 #endif
83 #endif /*IPSEC*/
84 
85 #ifdef FAST_IPSEC
86 #include <netproto/ipsec/ipsec.h>
87 #include <netproto/ipsec/xform.h>
88 #include <netproto/ipsec/key.h>
89 #endif /*FAST_IPSEC*/
90 
91 #include <net/ipfw/ip_fw.h>
92 #include <net/dummynet/ip_dummynet.h>
93 
94 #define print_ip(x, a, y)	 kprintf("%s %d.%d.%d.%d%s",\
95 				x, (ntohl(a.s_addr)>>24)&0xFF,\
96 				  (ntohl(a.s_addr)>>16)&0xFF,\
97 				  (ntohl(a.s_addr)>>8)&0xFF,\
98 				  (ntohl(a.s_addr))&0xFF, y);
99 
100 u_short ip_id;
101 
102 #ifdef MBUF_STRESS_TEST
103 int mbuf_frag_size = 0;
104 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
105 	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
106 #endif
107 
108 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
109 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
110 static void	ip_mloopback
111 	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
112 static int	ip_getmoptions
113 	(struct sockopt *, struct ip_moptions *);
114 static int	ip_pcbopts(int, struct mbuf **, struct mbuf *);
115 static int	ip_setmoptions
116 	(struct sockopt *, struct ip_moptions **);
117 
118 int	ip_optcopy(struct ip *, struct ip *);
119 
120 extern	int route_assert_owner_access;
121 
122 extern	struct protosw inetsw[];
123 
124 static int
125 ip_localforward(struct mbuf *m, const struct sockaddr_in *dst, int hlen)
126 {
127 	struct in_ifaddr_container *iac;
128 
129 	/*
130 	 * We need to figure out if we have been forwarded to a local
131 	 * socket.  If so, then we should somehow "loop back" to
132 	 * ip_input(), and get directed to the PCB as if we had received
133 	 * this packet.  This is because it may be difficult to identify
134 	 * the packets you want to forward until they are being output
135 	 * and have selected an interface (e.g. locally initiated
136 	 * packets).  If we used the loopback inteface, we would not be
137 	 * able to control what happens as the packet runs through
138 	 * ip_input() as it is done through a ISR.
139 	 */
140 	LIST_FOREACH(iac, INADDR_HASH(dst->sin_addr.s_addr), ia_hash) {
141 		/*
142 		 * If the addr to forward to is one of ours, we pretend
143 		 * to be the destination for this packet.
144 		 */
145 		if (IA_SIN(iac->ia)->sin_addr.s_addr == dst->sin_addr.s_addr)
146 			break;
147 	}
148 	if (iac != NULL) {
149 		struct ip *ip;
150 
151 		if (m->m_pkthdr.rcvif == NULL)
152 			m->m_pkthdr.rcvif = ifunit("lo0");
153 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
154 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
155 						  CSUM_PSEUDO_HDR;
156 			m->m_pkthdr.csum_data = 0xffff;
157 		}
158 		m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
159 
160 		/*
161 		 * Make sure that the IP header is in one mbuf,
162 		 * required by ip_input
163 		 */
164 		if (m->m_len < hlen) {
165 			m = m_pullup(m, hlen);
166 			if (m == NULL) {
167 				/* The packet was freed; we are done */
168 				return 1;
169 			}
170 		}
171 		ip = mtod(m, struct ip *);
172 
173 		ip->ip_len = htons(ip->ip_len);
174 		ip->ip_off = htons(ip->ip_off);
175 		ip_input(m);
176 
177 		return 1; /* The packet gets forwarded locally */
178 	}
179 	return 0;
180 }
181 
182 /*
183  * IP output.  The packet in mbuf chain m contains a skeletal IP
184  * header (with len, off, ttl, proto, tos, src, dst).
185  * The mbuf chain containing the packet will be freed.
186  * The mbuf opt, if present, will not be freed.
187  */
188 int
189 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro,
190 	  int flags, struct ip_moptions *imo, struct inpcb *inp)
191 {
192 	struct ip *ip;
193 	struct ifnet *ifp = NULL;	/* keep compiler happy */
194 	struct mbuf *m;
195 	int hlen = sizeof(struct ip);
196 	int len, error = 0;
197 	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
198 	struct in_ifaddr *ia = NULL;
199 	int isbroadcast, sw_csum;
200 	struct in_addr pkt_dst;
201 	struct route iproute;
202 	struct m_tag *mtag;
203 #ifdef IPSEC
204 	struct secpolicy *sp = NULL;
205 	struct socket *so = inp ? inp->inp_socket : NULL;
206 #endif
207 #ifdef FAST_IPSEC
208 	struct secpolicy *sp = NULL;
209 	struct tdb_ident *tdbi;
210 #endif /* FAST_IPSEC */
211 	struct sockaddr_in *next_hop = NULL;
212 	int src_was_INADDR_ANY = 0;	/* as the name says... */
213 
214 	m = m0;
215 	M_ASSERTPKTHDR(m);
216 
217 	if (ro == NULL) {
218 		ro = &iproute;
219 		bzero(ro, sizeof *ro);
220 	} else if (ro->ro_rt != NULL && ro->ro_rt->rt_cpuid != mycpuid) {
221 		if (flags & IP_DEBUGROUTE) {
222 			if (route_assert_owner_access) {
223 				panic("ip_output: "
224 				      "rt rt_cpuid %d accessed on cpu %d\n",
225 				      ro->ro_rt->rt_cpuid, mycpuid);
226 			} else {
227 				kprintf("ip_output: "
228 					"rt rt_cpuid %d accessed on cpu %d\n",
229 					ro->ro_rt->rt_cpuid, mycpuid);
230 				print_backtrace(-1);
231 			}
232 		}
233 
234 		/*
235 		 * XXX
236 		 * If the cached rtentry's owner CPU is not the current CPU,
237 		 * then don't touch the cached rtentry (remote free is too
238 		 * expensive in this context); just relocate the route.
239 		 */
240 		ro = &iproute;
241 		bzero(ro, sizeof *ro);
242 	}
243 
244 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
245 		/* Next hop */
246 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
247 		KKASSERT(mtag != NULL);
248 		next_hop = m_tag_data(mtag);
249 	}
250 
251 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
252 		struct dn_pkt *dn_pkt;
253 
254 		/* Extract info from dummynet tag */
255 		mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
256 		KKASSERT(mtag != NULL);
257 		dn_pkt = m_tag_data(mtag);
258 
259 		/*
260 		 * The packet was already tagged, so part of the
261 		 * processing was already done, and we need to go down.
262 		 * Get the calculated parameters from the tag.
263 		 */
264 		ifp = dn_pkt->ifp;
265 
266 		KKASSERT(ro == &iproute);
267 		*ro = dn_pkt->ro; /* structure copy */
268 		KKASSERT(ro->ro_rt == NULL || ro->ro_rt->rt_cpuid == mycpuid);
269 
270 		dst = dn_pkt->dn_dst;
271 		if (dst == (struct sockaddr_in *)&(dn_pkt->ro.ro_dst)) {
272 			/* If 'dst' points into dummynet tag, adjust it */
273 			dst = (struct sockaddr_in *)&(ro->ro_dst);
274 		}
275 
276 		ip = mtod(m, struct ip *);
277 		hlen = IP_VHL_HL(ip->ip_vhl) << 2 ;
278 		if (ro->ro_rt)
279 			ia = ifatoia(ro->ro_rt->rt_ifa);
280 		goto sendit;
281 	}
282 
283 	if (opt) {
284 		len = 0;
285 		m = ip_insertoptions(m, opt, &len);
286 		if (len != 0)
287 			hlen = len;
288 	}
289 	ip = mtod(m, struct ip *);
290 
291 	/*
292 	 * Fill in IP header.
293 	 */
294 	if (!(flags & (IP_FORWARDING|IP_RAWOUTPUT))) {
295 		ip->ip_vhl = IP_MAKE_VHL(IPVERSION, hlen >> 2);
296 		ip->ip_off &= IP_DF;
297 		ip->ip_id = ip_newid();
298 		ipstat.ips_localout++;
299 	} else {
300 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
301 	}
302 
303 reroute:
304 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
305 
306 	dst = (struct sockaddr_in *)&ro->ro_dst;
307 	/*
308 	 * If there is a cached route,
309 	 * check that it is to the same destination
310 	 * and is still up.  If not, free it and try again.
311 	 * The address family should also be checked in case of sharing the
312 	 * cache with IPv6.
313 	 */
314 	if (ro->ro_rt &&
315 	    (!(ro->ro_rt->rt_flags & RTF_UP) ||
316 	     dst->sin_family != AF_INET ||
317 	     dst->sin_addr.s_addr != pkt_dst.s_addr)) {
318 		rtfree(ro->ro_rt);
319 		ro->ro_rt = NULL;
320 	}
321 	if (ro->ro_rt == NULL) {
322 		bzero(dst, sizeof *dst);
323 		dst->sin_family = AF_INET;
324 		dst->sin_len = sizeof *dst;
325 		dst->sin_addr = pkt_dst;
326 	}
327 	/*
328 	 * If routing to interface only,
329 	 * short circuit routing lookup.
330 	 */
331 	if (flags & IP_ROUTETOIF) {
332 		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
333 		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == NULL) {
334 			ipstat.ips_noroute++;
335 			error = ENETUNREACH;
336 			goto bad;
337 		}
338 		ifp = ia->ia_ifp;
339 		ip->ip_ttl = 1;
340 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
341 	} else if (IN_MULTICAST(ntohl(pkt_dst.s_addr)) &&
342 		   imo != NULL && imo->imo_multicast_ifp != NULL) {
343 		/*
344 		 * Bypass the normal routing lookup for multicast
345 		 * packets if the interface is specified.
346 		 */
347 		ifp = imo->imo_multicast_ifp;
348 		ia = IFP_TO_IA(ifp);
349 		isbroadcast = 0;	/* fool gcc */
350 	} else {
351 		/*
352 		 * If this is the case, we probably don't want to allocate
353 		 * a protocol-cloned route since we didn't get one from the
354 		 * ULP.  This lets TCP do its thing, while not burdening
355 		 * forwarding or ICMP with the overhead of cloning a route.
356 		 * Of course, we still want to do any cloning requested by
357 		 * the link layer, as this is probably required in all cases
358 		 * for correct operation (as it is for ARP).
359 		 */
360 		if (ro->ro_rt == NULL)
361 			rtalloc_ign(ro, RTF_PRCLONING);
362 		if (ro->ro_rt == NULL) {
363 			ipstat.ips_noroute++;
364 			error = EHOSTUNREACH;
365 			goto bad;
366 		}
367 		ia = ifatoia(ro->ro_rt->rt_ifa);
368 		ifp = ro->ro_rt->rt_ifp;
369 		ro->ro_rt->rt_use++;
370 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
371 			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
372 		if (ro->ro_rt->rt_flags & RTF_HOST)
373 			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
374 		else
375 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
376 	}
377 	if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
378 		struct in_multi *inm;
379 
380 		m->m_flags |= M_MCAST;
381 		/*
382 		 * IP destination address is multicast.  Make sure "dst"
383 		 * still points to the address in "ro".  (It may have been
384 		 * changed to point to a gateway address, above.)
385 		 */
386 		dst = (struct sockaddr_in *)&ro->ro_dst;
387 		/*
388 		 * See if the caller provided any multicast options
389 		 */
390 		if (imo != NULL) {
391 			ip->ip_ttl = imo->imo_multicast_ttl;
392 			if (imo->imo_multicast_vif != -1) {
393 				ip->ip_src.s_addr =
394 				    ip_mcast_src ?
395 				    ip_mcast_src(imo->imo_multicast_vif) :
396 				    INADDR_ANY;
397 			}
398 		} else {
399 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
400 		}
401 		/*
402 		 * Confirm that the outgoing interface supports multicast.
403 		 */
404 		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
405 			if (!(ifp->if_flags & IFF_MULTICAST)) {
406 				ipstat.ips_noroute++;
407 				error = ENETUNREACH;
408 				goto bad;
409 			}
410 		}
411 		/*
412 		 * If source address not specified yet, use address
413 		 * of outgoing interface.
414 		 */
415 		if (ip->ip_src.s_addr == INADDR_ANY) {
416 			/* Interface may have no addresses. */
417 			if (ia != NULL)
418 				ip->ip_src = IA_SIN(ia)->sin_addr;
419 		}
420 
421 		IN_LOOKUP_MULTI(pkt_dst, ifp, inm);
422 		if (inm != NULL &&
423 		    (imo == NULL || imo->imo_multicast_loop)) {
424 			/*
425 			 * If we belong to the destination multicast group
426 			 * on the outgoing interface, and the caller did not
427 			 * forbid loopback, loop back a copy.
428 			 */
429 			ip_mloopback(ifp, m, dst, hlen);
430 		} else {
431 			/*
432 			 * If we are acting as a multicast router, perform
433 			 * multicast forwarding as if the packet had just
434 			 * arrived on the interface to which we are about
435 			 * to send.  The multicast forwarding function
436 			 * recursively calls this function, using the
437 			 * IP_FORWARDING flag to prevent infinite recursion.
438 			 *
439 			 * Multicasts that are looped back by ip_mloopback(),
440 			 * above, will be forwarded by the ip_input() routine,
441 			 * if necessary.
442 			 */
443 			if (ip_mrouter && !(flags & IP_FORWARDING)) {
444 				/*
445 				 * If rsvp daemon is not running, do not
446 				 * set ip_moptions. This ensures that the packet
447 				 * is multicast and not just sent down one link
448 				 * as prescribed by rsvpd.
449 				 */
450 				if (!rsvp_on)
451 					imo = NULL;
452 				if (ip_mforward) {
453 					get_mplock();
454 					if (ip_mforward(ip, ifp, m, imo) != 0) {
455 						m_freem(m);
456 						rel_mplock();
457 						goto done;
458 					}
459 					rel_mplock();
460 				}
461 			}
462 		}
463 
464 		/*
465 		 * Multicasts with a time-to-live of zero may be looped-
466 		 * back, above, but must not be transmitted on a network.
467 		 * Also, multicasts addressed to the loopback interface
468 		 * are not sent -- the above call to ip_mloopback() will
469 		 * loop back a copy if this host actually belongs to the
470 		 * destination group on the loopback interface.
471 		 */
472 		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
473 			m_freem(m);
474 			goto done;
475 		}
476 
477 		goto sendit;
478 	} else {
479 		m->m_flags &= ~M_MCAST;
480 	}
481 
482 	/*
483 	 * If the source address is not specified yet, use the address
484 	 * of the outoing interface. In case, keep note we did that, so
485 	 * if the the firewall changes the next-hop causing the output
486 	 * interface to change, we can fix that.
487 	 */
488 	if (ip->ip_src.s_addr == INADDR_ANY || src_was_INADDR_ANY) {
489 		/* Interface may have no addresses. */
490 		if (ia != NULL) {
491 			ip->ip_src = IA_SIN(ia)->sin_addr;
492 			src_was_INADDR_ANY = 1;
493 		}
494 	}
495 
496 	/*
497 	 * Look for broadcast address and
498 	 * verify user is allowed to send
499 	 * such a packet.
500 	 */
501 	if (isbroadcast) {
502 		if (!(ifp->if_flags & IFF_BROADCAST)) {
503 			error = EADDRNOTAVAIL;
504 			goto bad;
505 		}
506 		if (!(flags & IP_ALLOWBROADCAST)) {
507 			error = EACCES;
508 			goto bad;
509 		}
510 		/* don't allow broadcast messages to be fragmented */
511 		if (ip->ip_len > ifp->if_mtu) {
512 			error = EMSGSIZE;
513 			goto bad;
514 		}
515 		m->m_flags |= M_BCAST;
516 	} else {
517 		m->m_flags &= ~M_BCAST;
518 	}
519 
520 sendit:
521 #ifdef IPSEC
522 	/* get SP for this packet */
523 	if (so == NULL)
524 		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, flags, &error);
525 	else
526 		sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
527 
528 	if (sp == NULL) {
529 		ipsecstat.out_inval++;
530 		goto bad;
531 	}
532 
533 	error = 0;
534 
535 	/* check policy */
536 	switch (sp->policy) {
537 	case IPSEC_POLICY_DISCARD:
538 		/*
539 		 * This packet is just discarded.
540 		 */
541 		ipsecstat.out_polvio++;
542 		goto bad;
543 
544 	case IPSEC_POLICY_BYPASS:
545 	case IPSEC_POLICY_NONE:
546 	case IPSEC_POLICY_TCP:
547 		/* no need to do IPsec. */
548 		goto skip_ipsec;
549 
550 	case IPSEC_POLICY_IPSEC:
551 		if (sp->req == NULL) {
552 			/* acquire a policy */
553 			error = key_spdacquire(sp);
554 			goto bad;
555 		}
556 		break;
557 
558 	case IPSEC_POLICY_ENTRUST:
559 	default:
560 		kprintf("ip_output: Invalid policy found. %d\n", sp->policy);
561 	}
562     {
563 	struct ipsec_output_state state;
564 	bzero(&state, sizeof state);
565 	state.m = m;
566 	if (flags & IP_ROUTETOIF) {
567 		state.ro = &iproute;
568 		bzero(&iproute, sizeof iproute);
569 	} else
570 		state.ro = ro;
571 	state.dst = (struct sockaddr *)dst;
572 
573 	ip->ip_sum = 0;
574 
575 	/*
576 	 * XXX
577 	 * delayed checksums are not currently compatible with IPsec
578 	 */
579 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
580 		in_delayed_cksum(m);
581 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
582 	}
583 
584 	ip->ip_len = htons(ip->ip_len);
585 	ip->ip_off = htons(ip->ip_off);
586 
587 	error = ipsec4_output(&state, sp, flags);
588 
589 	m = state.m;
590 	if (flags & IP_ROUTETOIF) {
591 		/*
592 		 * if we have tunnel mode SA, we may need to ignore
593 		 * IP_ROUTETOIF.
594 		 */
595 		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
596 			flags &= ~IP_ROUTETOIF;
597 			ro = state.ro;
598 		}
599 	} else
600 		ro = state.ro;
601 	dst = (struct sockaddr_in *)state.dst;
602 	if (error) {
603 		/* mbuf is already reclaimed in ipsec4_output. */
604 		m0 = NULL;
605 		switch (error) {
606 		case EHOSTUNREACH:
607 		case ENETUNREACH:
608 		case EMSGSIZE:
609 		case ENOBUFS:
610 		case ENOMEM:
611 			break;
612 		default:
613 			kprintf("ip4_output (ipsec): error code %d\n", error);
614 			/*fall through*/
615 		case ENOENT:
616 			/* don't show these error codes to the user */
617 			error = 0;
618 			break;
619 		}
620 		goto bad;
621 	}
622     }
623 
624 	/* be sure to update variables that are affected by ipsec4_output() */
625 	ip = mtod(m, struct ip *);
626 #ifdef _IP_VHL
627 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
628 #else
629 	hlen = ip->ip_hl << 2;
630 #endif
631 	if (ro->ro_rt == NULL) {
632 		if (!(flags & IP_ROUTETOIF)) {
633 			kprintf("ip_output: "
634 				"can't update route after IPsec processing\n");
635 			error = EHOSTUNREACH;	/*XXX*/
636 			goto bad;
637 		}
638 	} else {
639 		ia = ifatoia(ro->ro_rt->rt_ifa);
640 		ifp = ro->ro_rt->rt_ifp;
641 	}
642 
643 	/* make it flipped, again. */
644 	ip->ip_len = ntohs(ip->ip_len);
645 	ip->ip_off = ntohs(ip->ip_off);
646 skip_ipsec:
647 #endif /*IPSEC*/
648 #ifdef FAST_IPSEC
649 	/*
650 	 * Check the security policy (SP) for the packet and, if
651 	 * required, do IPsec-related processing.  There are two
652 	 * cases here; the first time a packet is sent through
653 	 * it will be untagged and handled by ipsec4_checkpolicy.
654 	 * If the packet is resubmitted to ip_output (e.g. after
655 	 * AH, ESP, etc. processing), there will be a tag to bypass
656 	 * the lookup and related policy checking.
657 	 */
658 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
659 	crit_enter();
660 	if (mtag != NULL) {
661 		tdbi = (struct tdb_ident *)m_tag_data(mtag);
662 		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
663 		if (sp == NULL)
664 			error = -EINVAL;	/* force silent drop */
665 		m_tag_delete(m, mtag);
666 	} else {
667 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
668 					&error, inp);
669 	}
670 	/*
671 	 * There are four return cases:
672 	 *    sp != NULL		    apply IPsec policy
673 	 *    sp == NULL, error == 0	    no IPsec handling needed
674 	 *    sp == NULL, error == -EINVAL  discard packet w/o error
675 	 *    sp == NULL, error != 0	    discard packet, report error
676 	 */
677 	if (sp != NULL) {
678 		/* Loop detection, check if ipsec processing already done */
679 		KASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
680 		for (mtag = m_tag_first(m); mtag != NULL;
681 		     mtag = m_tag_next(m, mtag)) {
682 			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
683 				continue;
684 			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
685 			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
686 				continue;
687 			/*
688 			 * Check if policy has an SA associated with it.
689 			 * This can happen when an SP has yet to acquire
690 			 * an SA; e.g. on first reference.  If it occurs,
691 			 * then we let ipsec4_process_packet do its thing.
692 			 */
693 			if (sp->req->sav == NULL)
694 				break;
695 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
696 			if (tdbi->spi == sp->req->sav->spi &&
697 			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
698 			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
699 				 sizeof(union sockaddr_union)) == 0) {
700 				/*
701 				 * No IPsec processing is needed, free
702 				 * reference to SP.
703 				 *
704 				 * NB: null pointer to avoid free at
705 				 *     done: below.
706 				 */
707 				KEY_FREESP(&sp), sp = NULL;
708 				crit_exit();
709 				goto spd_done;
710 			}
711 		}
712 
713 		/*
714 		 * Do delayed checksums now because we send before
715 		 * this is done in the normal processing path.
716 		 */
717 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
718 			in_delayed_cksum(m);
719 			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
720 		}
721 
722 		ip->ip_len = htons(ip->ip_len);
723 		ip->ip_off = htons(ip->ip_off);
724 
725 		/* NB: callee frees mbuf */
726 		error = ipsec4_process_packet(m, sp->req, flags, 0);
727 		/*
728 		 * Preserve KAME behaviour: ENOENT can be returned
729 		 * when an SA acquire is in progress.  Don't propagate
730 		 * this to user-level; it confuses applications.
731 		 *
732 		 * XXX this will go away when the SADB is redone.
733 		 */
734 		if (error == ENOENT)
735 			error = 0;
736 		crit_exit();
737 		goto done;
738 	} else {
739 		crit_exit();
740 
741 		if (error != 0) {
742 			/*
743 			 * Hack: -EINVAL is used to signal that a packet
744 			 * should be silently discarded.  This is typically
745 			 * because we asked key management for an SA and
746 			 * it was delayed (e.g. kicked up to IKE).
747 			 */
748 			if (error == -EINVAL)
749 				error = 0;
750 			goto bad;
751 		} else {
752 			/* No IPsec processing for this packet. */
753 		}
754 #ifdef notyet
755 		/*
756 		 * If deferred crypto processing is needed, check that
757 		 * the interface supports it.
758 		 */
759 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
760 		if (mtag != NULL && !(ifp->if_capenable & IFCAP_IPSEC)) {
761 			/* notify IPsec to do its own crypto */
762 			ipsp_skipcrypto_unmark((struct tdb_ident *)m_tag_data(mtag));
763 			error = EHOSTUNREACH;
764 			goto bad;
765 		}
766 #endif
767 	}
768 spd_done:
769 #endif /* FAST_IPSEC */
770 
771 	/* We are already being fwd'd from a firewall. */
772 	if (next_hop != NULL)
773 		goto pass;
774 
775 	/* No pfil hooks */
776 	if (!pfil_has_hooks(&inet_pfil_hook)) {
777 		if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
778 			/*
779 			 * Strip dummynet tags from stranded packets
780 			 */
781 			mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
782 			KKASSERT(mtag != NULL);
783 			m_tag_delete(m, mtag);
784 			m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
785 		}
786 		goto pass;
787 	}
788 
789 	/*
790 	 * IpHack's section.
791 	 * - Xlate: translate packet's addr/port (NAT).
792 	 * - Firewall: deny/allow/etc.
793 	 * - Wrap: fake packet's addr/port <unimpl.>
794 	 * - Encapsulate: put it in another IP and send out. <unimp.>
795 	 */
796 
797 	/*
798 	 * Run through list of hooks for output packets.
799 	 */
800 	error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT);
801 	if (error != 0 || m == NULL)
802 		goto done;
803 	ip = mtod(m, struct ip *);
804 
805 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
806 		/*
807 		 * Check dst to make sure it is directly reachable on the
808 		 * interface we previously thought it was.
809 		 * If it isn't (which may be likely in some situations) we have
810 		 * to re-route it (ie, find a route for the next-hop and the
811 		 * associated interface) and set them here. This is nested
812 		 * forwarding which in most cases is undesirable, except where
813 		 * such control is nigh impossible. So we do it here.
814 		 * And I'm babbling.
815 		 */
816 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
817 		KKASSERT(mtag != NULL);
818 		next_hop = m_tag_data(mtag);
819 
820 		/*
821 		 * Try local forwarding first
822 		 */
823 		if (ip_localforward(m, next_hop, hlen))
824 			goto done;
825 
826 		/*
827 		 * Relocate the route based on next_hop.
828 		 * If the current route is inp's cache, keep it untouched.
829 		 */
830 		if (ro == &iproute && ro->ro_rt != NULL) {
831 			RTFREE(ro->ro_rt);
832 			ro->ro_rt = NULL;
833 		}
834 		ro = &iproute;
835 		bzero(ro, sizeof *ro);
836 
837 		/*
838 		 * Forwarding to broadcast address is not allowed.
839 		 * XXX Should we follow IP_ROUTETOIF?
840 		 */
841 		flags &= ~(IP_ALLOWBROADCAST | IP_ROUTETOIF);
842 
843 		/* We are doing forwarding now */
844 		flags |= IP_FORWARDING;
845 
846 		goto reroute;
847 	}
848 
849 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
850 		struct dn_pkt *dn_pkt;
851 
852 		mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
853 		KKASSERT(mtag != NULL);
854 		dn_pkt = m_tag_data(mtag);
855 
856 		/*
857 		 * Under certain cases it is not possible to recalculate
858 		 * 'ro' and 'dst', let alone 'flags', so just save them in
859 		 * dummynet tag and avoid the possible wrong reculcalation
860 		 * when we come back to ip_output() again.
861 		 *
862 		 * All other parameters have been already used and so they
863 		 * are not needed anymore.
864 		 * XXX if the ifp is deleted while a pkt is in dummynet,
865 		 * we are in trouble! (TODO use ifnet_detach_event)
866 		 *
867 		 * We need to copy *ro because for ICMP pkts (and maybe
868 		 * others) the caller passed a pointer into the stack;
869 		 * dst might also be a pointer into *ro so it needs to
870 		 * be updated.
871 		 */
872 		dn_pkt->ro = *ro;
873 		if (ro->ro_rt)
874 			ro->ro_rt->rt_refcnt++;
875 		if (dst == (struct sockaddr_in *)&ro->ro_dst) {
876 			/* 'dst' points into 'ro' */
877 			dst = (struct sockaddr_in *)&(dn_pkt->ro.ro_dst);
878 		}
879 		dn_pkt->dn_dst = dst;
880 		dn_pkt->flags = flags;
881 
882 		ip_dn_queue(m);
883 		goto done;
884 	}
885 pass:
886 	/* 127/8 must not appear on wire - RFC1122. */
887 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
888 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
889 		if (!(ifp->if_flags & IFF_LOOPBACK)) {
890 			ipstat.ips_badaddr++;
891 			error = EADDRNOTAVAIL;
892 			goto bad;
893 		}
894 	}
895 
896 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
897 		m->m_pkthdr.csum_flags |= CSUM_IP;
898 		sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
899 		if (sw_csum & CSUM_DELAY_DATA) {
900 			in_delayed_cksum(m);
901 			sw_csum &= ~CSUM_DELAY_DATA;
902 		}
903 		m->m_pkthdr.csum_flags &= ifp->if_hwassist;
904 	} else {
905 		sw_csum = 0;
906 	}
907 	m->m_pkthdr.csum_iphlen = hlen;
908 
909 	/*
910 	 * If small enough for interface, or the interface will take
911 	 * care of the fragmentation or segmentation for us, can just
912 	 * send directly.
913 	 */
914 	if (ip->ip_len <= ifp->if_mtu ||
915 	    ((ifp->if_hwassist & CSUM_FRAGMENT) && !(ip->ip_off & IP_DF)) ||
916 	    (m->m_pkthdr.csum_flags & CSUM_TSO)) {
917 		ip->ip_len = htons(ip->ip_len);
918 		ip->ip_off = htons(ip->ip_off);
919 		ip->ip_sum = 0;
920 		if (sw_csum & CSUM_DELAY_IP) {
921 			if (ip->ip_vhl == IP_VHL_BORING)
922 				ip->ip_sum = in_cksum_hdr(ip);
923 			else
924 				ip->ip_sum = in_cksum(m, hlen);
925 		}
926 
927 		/* Record statistics for this interface address. */
928 		if (!(flags & IP_FORWARDING) && ia) {
929 			ia->ia_ifa.if_opackets++;
930 			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
931 		}
932 
933 #ifdef IPSEC
934 		/* clean ipsec history once it goes out of the node */
935 		ipsec_delaux(m);
936 #endif
937 
938 #ifdef MBUF_STRESS_TEST
939 		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) {
940 			struct mbuf *m1, *m2;
941 			int length, tmp;
942 
943 			tmp = length = m->m_pkthdr.len;
944 
945 			while ((length -= mbuf_frag_size) >= 1) {
946 				m1 = m_split(m, length, MB_DONTWAIT);
947 				if (m1 == NULL)
948 					break;
949 				m2 = m;
950 				while (m2->m_next != NULL)
951 					m2 = m2->m_next;
952 				m2->m_next = m1;
953 			}
954 			m->m_pkthdr.len = tmp;
955 		}
956 #endif
957 
958 #ifdef MPLS
959 		if (!mpls_output_process(m, ro->ro_rt))
960 			goto done;
961 #endif
962 		error = ifp->if_output(ifp, m, (struct sockaddr *)dst,
963 				       ro->ro_rt);
964 		goto done;
965 	}
966 
967 	if (ip->ip_off & IP_DF) {
968 		error = EMSGSIZE;
969 		/*
970 		 * This case can happen if the user changed the MTU
971 		 * of an interface after enabling IP on it.  Because
972 		 * most netifs don't keep track of routes pointing to
973 		 * them, there is no way for one to update all its
974 		 * routes when the MTU is changed.
975 		 */
976 		if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
977 		    !(ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) &&
978 		    (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
979 			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
980 		}
981 		ipstat.ips_cantfrag++;
982 		goto bad;
983 	}
984 
985 	/*
986 	 * Too large for interface; fragment if possible. If successful,
987 	 * on return, m will point to a list of packets to be sent.
988 	 */
989 	error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum);
990 	if (error)
991 		goto bad;
992 	for (; m; m = m0) {
993 		m0 = m->m_nextpkt;
994 		m->m_nextpkt = NULL;
995 #ifdef IPSEC
996 		/* clean ipsec history once it goes out of the node */
997 		ipsec_delaux(m);
998 #endif
999 		if (error == 0) {
1000 			/* Record statistics for this interface address. */
1001 			if (ia != NULL) {
1002 				ia->ia_ifa.if_opackets++;
1003 				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1004 			}
1005 #ifdef MPLS
1006 			if (!mpls_output_process(m, ro->ro_rt))
1007 				continue;
1008 #endif
1009 			error = ifp->if_output(ifp, m, (struct sockaddr *)dst,
1010 					       ro->ro_rt);
1011 		} else {
1012 			m_freem(m);
1013 		}
1014 	}
1015 
1016 	if (error == 0)
1017 		ipstat.ips_fragmented++;
1018 
1019 done:
1020 	if (ro == &iproute && ro->ro_rt != NULL) {
1021 		RTFREE(ro->ro_rt);
1022 		ro->ro_rt = NULL;
1023 	}
1024 #ifdef IPSEC
1025 	if (sp != NULL) {
1026 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1027 			kprintf("DP ip_output call free SP:%p\n", sp));
1028 		key_freesp(sp);
1029 	}
1030 #endif
1031 #ifdef FAST_IPSEC
1032 	if (sp != NULL)
1033 		KEY_FREESP(&sp);
1034 #endif
1035 	return (error);
1036 bad:
1037 	m_freem(m);
1038 	goto done;
1039 }
1040 
1041 /*
1042  * Create a chain of fragments which fit the given mtu. m_frag points to the
1043  * mbuf to be fragmented; on return it points to the chain with the fragments.
1044  * Return 0 if no error. If error, m_frag may contain a partially built
1045  * chain of fragments that should be freed by the caller.
1046  *
1047  * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
1048  * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
1049  */
1050 int
1051 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
1052 	    u_long if_hwassist_flags, int sw_csum)
1053 {
1054 	int error = 0;
1055 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1056 	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
1057 	int off;
1058 	struct mbuf *m0 = *m_frag;	/* the original packet		*/
1059 	int firstlen;
1060 	struct mbuf **mnext;
1061 	int nfrags;
1062 
1063 	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
1064 		ipstat.ips_cantfrag++;
1065 		return EMSGSIZE;
1066 	}
1067 
1068 	/*
1069 	 * Must be able to put at least 8 bytes per fragment.
1070 	 */
1071 	if (len < 8)
1072 		return EMSGSIZE;
1073 
1074 	/*
1075 	 * If the interface will not calculate checksums on
1076 	 * fragmented packets, then do it here.
1077 	 */
1078 	if ((m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) &&
1079 	    !(if_hwassist_flags & CSUM_IP_FRAGS)) {
1080 		in_delayed_cksum(m0);
1081 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1082 	}
1083 
1084 	if (len > PAGE_SIZE) {
1085 		/*
1086 		 * Fragment large datagrams such that each segment
1087 		 * contains a multiple of PAGE_SIZE amount of data,
1088 		 * plus headers. This enables a receiver to perform
1089 		 * page-flipping zero-copy optimizations.
1090 		 *
1091 		 * XXX When does this help given that sender and receiver
1092 		 * could have different page sizes, and also mtu could
1093 		 * be less than the receiver's page size ?
1094 		 */
1095 		int newlen;
1096 		struct mbuf *m;
1097 
1098 		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
1099 			off += m->m_len;
1100 
1101 		/*
1102 		 * firstlen (off - hlen) must be aligned on an
1103 		 * 8-byte boundary
1104 		 */
1105 		if (off < hlen)
1106 			goto smart_frag_failure;
1107 		off = ((off - hlen) & ~7) + hlen;
1108 		newlen = (~PAGE_MASK) & mtu;
1109 		if ((newlen + sizeof(struct ip)) > mtu) {
1110 			/* we failed, go back the default */
1111 smart_frag_failure:
1112 			newlen = len;
1113 			off = hlen + len;
1114 		}
1115 		len = newlen;
1116 
1117 	} else {
1118 		off = hlen + len;
1119 	}
1120 
1121 	firstlen = off - hlen;
1122 	mnext = &m0->m_nextpkt;		/* pointer to next packet */
1123 
1124 	/*
1125 	 * Loop through length of segment after first fragment,
1126 	 * make new header and copy data of each part and link onto chain.
1127 	 * Here, m0 is the original packet, m is the fragment being created.
1128 	 * The fragments are linked off the m_nextpkt of the original
1129 	 * packet, which after processing serves as the first fragment.
1130 	 */
1131 	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
1132 		struct ip *mhip;	/* ip header on the fragment */
1133 		struct mbuf *m;
1134 		int mhlen = sizeof(struct ip);
1135 
1136 		MGETHDR(m, MB_DONTWAIT, MT_HEADER);
1137 		if (m == NULL) {
1138 			error = ENOBUFS;
1139 			ipstat.ips_odropped++;
1140 			goto done;
1141 		}
1142 		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
1143 		/*
1144 		 * In the first mbuf, leave room for the link header, then
1145 		 * copy the original IP header including options. The payload
1146 		 * goes into an additional mbuf chain returned by m_copy().
1147 		 */
1148 		m->m_data += max_linkhdr;
1149 		mhip = mtod(m, struct ip *);
1150 		*mhip = *ip;
1151 		if (hlen > sizeof(struct ip)) {
1152 			mhlen = ip_optcopy(ip, mhip) + sizeof(struct ip);
1153 			mhip->ip_vhl = IP_MAKE_VHL(IPVERSION, mhlen >> 2);
1154 		}
1155 		m->m_len = mhlen;
1156 		/* XXX do we need to add ip->ip_off below ? */
1157 		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
1158 		if (off + len >= ip->ip_len) {	/* last fragment */
1159 			len = ip->ip_len - off;
1160 			m->m_flags |= M_LASTFRAG;
1161 		} else
1162 			mhip->ip_off |= IP_MF;
1163 		mhip->ip_len = htons((u_short)(len + mhlen));
1164 		m->m_next = m_copy(m0, off, len);
1165 		if (m->m_next == NULL) {		/* copy failed */
1166 			m_free(m);
1167 			error = ENOBUFS;	/* ??? */
1168 			ipstat.ips_odropped++;
1169 			goto done;
1170 		}
1171 		m->m_pkthdr.len = mhlen + len;
1172 		m->m_pkthdr.rcvif = NULL;
1173 		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
1174 		m->m_pkthdr.csum_iphlen = mhlen;
1175 		mhip->ip_off = htons(mhip->ip_off);
1176 		mhip->ip_sum = 0;
1177 		if (sw_csum & CSUM_DELAY_IP)
1178 			mhip->ip_sum = in_cksum(m, mhlen);
1179 		*mnext = m;
1180 		mnext = &m->m_nextpkt;
1181 	}
1182 	ipstat.ips_ofragments += nfrags;
1183 
1184 	/* set first marker for fragment chain */
1185 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1186 	m0->m_pkthdr.csum_data = nfrags;
1187 
1188 	/*
1189 	 * Update first fragment by trimming what's been copied out
1190 	 * and updating header.
1191 	 */
1192 	m_adj(m0, hlen + firstlen - ip->ip_len);
1193 	m0->m_pkthdr.len = hlen + firstlen;
1194 	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1195 	ip->ip_off |= IP_MF;
1196 	ip->ip_off = htons(ip->ip_off);
1197 	ip->ip_sum = 0;
1198 	if (sw_csum & CSUM_DELAY_IP)
1199 		ip->ip_sum = in_cksum(m0, hlen);
1200 
1201 done:
1202 	*m_frag = m0;
1203 	return error;
1204 }
1205 
1206 void
1207 in_delayed_cksum(struct mbuf *m)
1208 {
1209 	struct ip *ip;
1210 	u_short csum, offset;
1211 
1212 	ip = mtod(m, struct ip *);
1213 	offset = IP_VHL_HL(ip->ip_vhl) << 2 ;
1214 	csum = in_cksum_skip(m, ip->ip_len, offset);
1215 	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
1216 		csum = 0xffff;
1217 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
1218 
1219 	if (offset + sizeof(u_short) > m->m_len) {
1220 		kprintf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
1221 		    m->m_len, offset, ip->ip_p);
1222 		/*
1223 		 * XXX
1224 		 * this shouldn't happen, but if it does, the
1225 		 * correct behavior may be to insert the checksum
1226 		 * in the existing chain instead of rearranging it.
1227 		 */
1228 		m = m_pullup(m, offset + sizeof(u_short));
1229 	}
1230 	*(u_short *)(m->m_data + offset) = csum;
1231 }
1232 
1233 /*
1234  * Insert IP options into preformed packet.
1235  * Adjust IP destination as required for IP source routing,
1236  * as indicated by a non-zero in_addr at the start of the options.
1237  *
1238  * XXX This routine assumes that the packet has no options in place.
1239  */
1240 static struct mbuf *
1241 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1242 {
1243 	struct ipoption *p = mtod(opt, struct ipoption *);
1244 	struct mbuf *n;
1245 	struct ip *ip = mtod(m, struct ip *);
1246 	unsigned optlen;
1247 
1248 	optlen = opt->m_len - sizeof p->ipopt_dst;
1249 	if (optlen + (u_short)ip->ip_len > IP_MAXPACKET) {
1250 		*phlen = 0;
1251 		return (m);		/* XXX should fail */
1252 	}
1253 	if (p->ipopt_dst.s_addr)
1254 		ip->ip_dst = p->ipopt_dst;
1255 	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
1256 		MGETHDR(n, MB_DONTWAIT, MT_HEADER);
1257 		if (n == NULL) {
1258 			*phlen = 0;
1259 			return (m);
1260 		}
1261 		n->m_pkthdr.rcvif = NULL;
1262 		n->m_pkthdr.len = m->m_pkthdr.len + optlen;
1263 		m->m_len -= sizeof(struct ip);
1264 		m->m_data += sizeof(struct ip);
1265 		n->m_next = m;
1266 		m = n;
1267 		m->m_len = optlen + sizeof(struct ip);
1268 		m->m_data += max_linkhdr;
1269 		memcpy(mtod(m, void *), ip, sizeof(struct ip));
1270 	} else {
1271 		m->m_data -= optlen;
1272 		m->m_len += optlen;
1273 		m->m_pkthdr.len += optlen;
1274 		ovbcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
1275 	}
1276 	ip = mtod(m, struct ip *);
1277 	bcopy(p->ipopt_list, ip + 1, optlen);
1278 	*phlen = sizeof(struct ip) + optlen;
1279 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, *phlen >> 2);
1280 	ip->ip_len += optlen;
1281 	return (m);
1282 }
1283 
1284 /*
1285  * Copy options from ip to jp,
1286  * omitting those not copied during fragmentation.
1287  */
1288 int
1289 ip_optcopy(struct ip *ip, struct ip *jp)
1290 {
1291 	u_char *cp, *dp;
1292 	int opt, optlen, cnt;
1293 
1294 	cp = (u_char *)(ip + 1);
1295 	dp = (u_char *)(jp + 1);
1296 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1297 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1298 		opt = cp[0];
1299 		if (opt == IPOPT_EOL)
1300 			break;
1301 		if (opt == IPOPT_NOP) {
1302 			/* Preserve for IP mcast tunnel's LSRR alignment. */
1303 			*dp++ = IPOPT_NOP;
1304 			optlen = 1;
1305 			continue;
1306 		}
1307 
1308 		KASSERT(cnt >= IPOPT_OLEN + sizeof *cp,
1309 		    ("ip_optcopy: malformed ipv4 option"));
1310 		optlen = cp[IPOPT_OLEN];
1311 		KASSERT(optlen >= IPOPT_OLEN + sizeof *cp && optlen <= cnt,
1312 		    ("ip_optcopy: malformed ipv4 option"));
1313 
1314 		/* bogus lengths should have been caught by ip_dooptions */
1315 		if (optlen > cnt)
1316 			optlen = cnt;
1317 		if (IPOPT_COPIED(opt)) {
1318 			bcopy(cp, dp, optlen);
1319 			dp += optlen;
1320 		}
1321 	}
1322 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1323 		*dp++ = IPOPT_EOL;
1324 	return (optlen);
1325 }
1326 
1327 /*
1328  * IP socket option processing.
1329  */
1330 void
1331 ip_ctloutput(netmsg_t msg)
1332 {
1333 	struct socket *so = msg->base.nm_so;
1334 	struct sockopt *sopt = msg->ctloutput.nm_sopt;
1335 	struct	inpcb *inp = so->so_pcb;
1336 	int	error, optval;
1337 
1338 	error = optval = 0;
1339 	if (sopt->sopt_level != IPPROTO_IP) {
1340 		error = EINVAL;
1341 		goto done;
1342 	}
1343 
1344 	switch (sopt->sopt_dir) {
1345 	case SOPT_SET:
1346 		switch (sopt->sopt_name) {
1347 		case IP_OPTIONS:
1348 #ifdef notyet
1349 		case IP_RETOPTS:
1350 #endif
1351 		{
1352 			struct mbuf *m;
1353 			if (sopt->sopt_valsize > MLEN) {
1354 				error = EMSGSIZE;
1355 				break;
1356 			}
1357 			MGET(m, sopt->sopt_td ? MB_WAIT : MB_DONTWAIT, MT_HEADER);
1358 			if (m == NULL) {
1359 				error = ENOBUFS;
1360 				break;
1361 			}
1362 			m->m_len = sopt->sopt_valsize;
1363 			error = soopt_to_kbuf(sopt, mtod(m, void *), m->m_len,
1364 					      m->m_len);
1365 			error = ip_pcbopts(sopt->sopt_name,
1366 					   &inp->inp_options, m);
1367 			goto done;
1368 		}
1369 
1370 		case IP_TOS:
1371 		case IP_TTL:
1372 		case IP_MINTTL:
1373 		case IP_RECVOPTS:
1374 		case IP_RECVRETOPTS:
1375 		case IP_RECVDSTADDR:
1376 		case IP_RECVIF:
1377 		case IP_RECVTTL:
1378 		case IP_FAITH:
1379 			error = soopt_to_kbuf(sopt, &optval, sizeof optval,
1380 					     sizeof optval);
1381 			if (error)
1382 				break;
1383 			switch (sopt->sopt_name) {
1384 			case IP_TOS:
1385 				inp->inp_ip_tos = optval;
1386 				break;
1387 
1388 			case IP_TTL:
1389 				inp->inp_ip_ttl = optval;
1390 				break;
1391 			case IP_MINTTL:
1392 				if (optval >= 0 && optval <= MAXTTL)
1393 					inp->inp_ip_minttl = optval;
1394 				else
1395 					error = EINVAL;
1396 				break;
1397 #define	OPTSET(bit) \
1398 	if (optval) \
1399 		inp->inp_flags |= bit; \
1400 	else \
1401 		inp->inp_flags &= ~bit;
1402 
1403 			case IP_RECVOPTS:
1404 				OPTSET(INP_RECVOPTS);
1405 				break;
1406 
1407 			case IP_RECVRETOPTS:
1408 				OPTSET(INP_RECVRETOPTS);
1409 				break;
1410 
1411 			case IP_RECVDSTADDR:
1412 				OPTSET(INP_RECVDSTADDR);
1413 				break;
1414 
1415 			case IP_RECVIF:
1416 				OPTSET(INP_RECVIF);
1417 				break;
1418 
1419 			case IP_RECVTTL:
1420 				OPTSET(INP_RECVTTL);
1421 				break;
1422 
1423 			case IP_FAITH:
1424 				OPTSET(INP_FAITH);
1425 				break;
1426 			}
1427 			break;
1428 #undef OPTSET
1429 
1430 		case IP_MULTICAST_IF:
1431 		case IP_MULTICAST_VIF:
1432 		case IP_MULTICAST_TTL:
1433 		case IP_MULTICAST_LOOP:
1434 		case IP_ADD_MEMBERSHIP:
1435 		case IP_DROP_MEMBERSHIP:
1436 			error = ip_setmoptions(sopt, &inp->inp_moptions);
1437 			break;
1438 
1439 		case IP_PORTRANGE:
1440 			error = soopt_to_kbuf(sopt, &optval, sizeof optval,
1441 					    sizeof optval);
1442 			if (error)
1443 				break;
1444 
1445 			switch (optval) {
1446 			case IP_PORTRANGE_DEFAULT:
1447 				inp->inp_flags &= ~(INP_LOWPORT);
1448 				inp->inp_flags &= ~(INP_HIGHPORT);
1449 				break;
1450 
1451 			case IP_PORTRANGE_HIGH:
1452 				inp->inp_flags &= ~(INP_LOWPORT);
1453 				inp->inp_flags |= INP_HIGHPORT;
1454 				break;
1455 
1456 			case IP_PORTRANGE_LOW:
1457 				inp->inp_flags &= ~(INP_HIGHPORT);
1458 				inp->inp_flags |= INP_LOWPORT;
1459 				break;
1460 
1461 			default:
1462 				error = EINVAL;
1463 				break;
1464 			}
1465 			break;
1466 
1467 #if defined(IPSEC) || defined(FAST_IPSEC)
1468 		case IP_IPSEC_POLICY:
1469 		{
1470 			caddr_t req;
1471 			size_t len = 0;
1472 			int priv;
1473 			struct mbuf *m;
1474 			int optname;
1475 
1476 			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1477 				break;
1478 			soopt_to_mbuf(sopt, m);
1479 			priv = (sopt->sopt_td != NULL &&
1480 				priv_check(sopt->sopt_td, PRIV_ROOT) != 0) ? 0 : 1;
1481 			req = mtod(m, caddr_t);
1482 			len = m->m_len;
1483 			optname = sopt->sopt_name;
1484 			error = ipsec4_set_policy(inp, optname, req, len, priv);
1485 			m_freem(m);
1486 			break;
1487 		}
1488 #endif /*IPSEC*/
1489 
1490 		default:
1491 			error = ENOPROTOOPT;
1492 			break;
1493 		}
1494 		break;
1495 
1496 	case SOPT_GET:
1497 		switch (sopt->sopt_name) {
1498 		case IP_OPTIONS:
1499 		case IP_RETOPTS:
1500 			if (inp->inp_options)
1501 				soopt_from_kbuf(sopt, mtod(inp->inp_options,
1502 							   char *),
1503 						inp->inp_options->m_len);
1504 			else
1505 				sopt->sopt_valsize = 0;
1506 			break;
1507 
1508 		case IP_TOS:
1509 		case IP_TTL:
1510 		case IP_MINTTL:
1511 		case IP_RECVOPTS:
1512 		case IP_RECVRETOPTS:
1513 		case IP_RECVDSTADDR:
1514 		case IP_RECVTTL:
1515 		case IP_RECVIF:
1516 		case IP_PORTRANGE:
1517 		case IP_FAITH:
1518 			switch (sopt->sopt_name) {
1519 
1520 			case IP_TOS:
1521 				optval = inp->inp_ip_tos;
1522 				break;
1523 
1524 			case IP_TTL:
1525 				optval = inp->inp_ip_ttl;
1526 				break;
1527 			case IP_MINTTL:
1528 				optval = inp->inp_ip_minttl;
1529 				break;
1530 
1531 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1532 
1533 			case IP_RECVOPTS:
1534 				optval = OPTBIT(INP_RECVOPTS);
1535 				break;
1536 
1537 			case IP_RECVRETOPTS:
1538 				optval = OPTBIT(INP_RECVRETOPTS);
1539 				break;
1540 
1541 			case IP_RECVDSTADDR:
1542 				optval = OPTBIT(INP_RECVDSTADDR);
1543 				break;
1544 
1545 			case IP_RECVTTL:
1546 				optval = OPTBIT(INP_RECVTTL);
1547 				break;
1548 
1549 			case IP_RECVIF:
1550 				optval = OPTBIT(INP_RECVIF);
1551 				break;
1552 
1553 			case IP_PORTRANGE:
1554 				if (inp->inp_flags & INP_HIGHPORT)
1555 					optval = IP_PORTRANGE_HIGH;
1556 				else if (inp->inp_flags & INP_LOWPORT)
1557 					optval = IP_PORTRANGE_LOW;
1558 				else
1559 					optval = 0;
1560 				break;
1561 
1562 			case IP_FAITH:
1563 				optval = OPTBIT(INP_FAITH);
1564 				break;
1565 			}
1566 			soopt_from_kbuf(sopt, &optval, sizeof optval);
1567 			break;
1568 
1569 		case IP_MULTICAST_IF:
1570 		case IP_MULTICAST_VIF:
1571 		case IP_MULTICAST_TTL:
1572 		case IP_MULTICAST_LOOP:
1573 		case IP_ADD_MEMBERSHIP:
1574 		case IP_DROP_MEMBERSHIP:
1575 			error = ip_getmoptions(sopt, inp->inp_moptions);
1576 			break;
1577 
1578 #if defined(IPSEC) || defined(FAST_IPSEC)
1579 		case IP_IPSEC_POLICY:
1580 		{
1581 			struct mbuf *m = NULL;
1582 			caddr_t req = NULL;
1583 			size_t len = 0;
1584 
1585 			if (m != NULL) {
1586 				req = mtod(m, caddr_t);
1587 				len = m->m_len;
1588 			}
1589 			error = ipsec4_get_policy(so->so_pcb, req, len, &m);
1590 			if (error == 0)
1591 				error = soopt_from_mbuf(sopt, m); /* XXX */
1592 			if (error == 0)
1593 				m_freem(m);
1594 			break;
1595 		}
1596 #endif /*IPSEC*/
1597 
1598 		default:
1599 			error = ENOPROTOOPT;
1600 			break;
1601 		}
1602 		break;
1603 	}
1604 done:
1605 	lwkt_replymsg(&msg->lmsg, error);
1606 }
1607 
1608 /*
1609  * Set up IP options in pcb for insertion in output packets.
1610  * Store in mbuf with pointer in pcbopt, adding pseudo-option
1611  * with destination address if source routed.
1612  */
1613 static int
1614 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1615 {
1616 	int cnt, optlen;
1617 	u_char *cp;
1618 	u_char opt;
1619 
1620 	/* turn off any old options */
1621 	if (*pcbopt)
1622 		m_free(*pcbopt);
1623 	*pcbopt = NULL;
1624 	if (m == NULL || m->m_len == 0) {
1625 		/*
1626 		 * Only turning off any previous options.
1627 		 */
1628 		if (m != NULL)
1629 			m_free(m);
1630 		return (0);
1631 	}
1632 
1633 	if (m->m_len % sizeof(int32_t))
1634 		goto bad;
1635 	/*
1636 	 * IP first-hop destination address will be stored before
1637 	 * actual options; move other options back
1638 	 * and clear it when none present.
1639 	 */
1640 	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1641 		goto bad;
1642 	cnt = m->m_len;
1643 	m->m_len += sizeof(struct in_addr);
1644 	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1645 	ovbcopy(mtod(m, caddr_t), cp, cnt);
1646 	bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1647 
1648 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1649 		opt = cp[IPOPT_OPTVAL];
1650 		if (opt == IPOPT_EOL)
1651 			break;
1652 		if (opt == IPOPT_NOP)
1653 			optlen = 1;
1654 		else {
1655 			if (cnt < IPOPT_OLEN + sizeof *cp)
1656 				goto bad;
1657 			optlen = cp[IPOPT_OLEN];
1658 			if (optlen < IPOPT_OLEN + sizeof *cp || optlen > cnt)
1659 				goto bad;
1660 		}
1661 		switch (opt) {
1662 
1663 		default:
1664 			break;
1665 
1666 		case IPOPT_LSRR:
1667 		case IPOPT_SSRR:
1668 			/*
1669 			 * user process specifies route as:
1670 			 *	->A->B->C->D
1671 			 * D must be our final destination (but we can't
1672 			 * check that since we may not have connected yet).
1673 			 * A is first hop destination, which doesn't appear in
1674 			 * actual IP option, but is stored before the options.
1675 			 */
1676 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1677 				goto bad;
1678 			m->m_len -= sizeof(struct in_addr);
1679 			cnt -= sizeof(struct in_addr);
1680 			optlen -= sizeof(struct in_addr);
1681 			cp[IPOPT_OLEN] = optlen;
1682 			/*
1683 			 * Move first hop before start of options.
1684 			 */
1685 			bcopy(&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1686 			      sizeof(struct in_addr));
1687 			/*
1688 			 * Then copy rest of options back
1689 			 * to close up the deleted entry.
1690 			 */
1691 			ovbcopy(&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1692 				&cp[IPOPT_OFFSET+1],
1693 				cnt - (IPOPT_MINOFF - 1));
1694 			break;
1695 		}
1696 	}
1697 	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1698 		goto bad;
1699 	*pcbopt = m;
1700 	return (0);
1701 
1702 bad:
1703 	m_free(m);
1704 	return (EINVAL);
1705 }
1706 
1707 /*
1708  * XXX
1709  * The whole multicast option thing needs to be re-thought.
1710  * Several of these options are equally applicable to non-multicast
1711  * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1712  * standard option (IP_TTL).
1713  */
1714 
1715 /*
1716  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1717  */
1718 static struct ifnet *
1719 ip_multicast_if(struct in_addr *a, int *ifindexp)
1720 {
1721 	int ifindex;
1722 	struct ifnet *ifp;
1723 
1724 	if (ifindexp)
1725 		*ifindexp = 0;
1726 	if (ntohl(a->s_addr) >> 24 == 0) {
1727 		ifindex = ntohl(a->s_addr) & 0xffffff;
1728 		if (ifindex < 0 || if_index < ifindex)
1729 			return NULL;
1730 		ifp = ifindex2ifnet[ifindex];
1731 		if (ifindexp)
1732 			*ifindexp = ifindex;
1733 	} else {
1734 		ifp = INADDR_TO_IFP(a);
1735 	}
1736 	return ifp;
1737 }
1738 
1739 /*
1740  * Set the IP multicast options in response to user setsockopt().
1741  */
1742 static int
1743 ip_setmoptions(struct sockopt *sopt, struct ip_moptions **imop)
1744 {
1745 	int error = 0;
1746 	int i;
1747 	struct in_addr addr;
1748 	struct ip_mreq mreq;
1749 	struct ifnet *ifp;
1750 	struct ip_moptions *imo = *imop;
1751 	int ifindex;
1752 
1753 	if (imo == NULL) {
1754 		/*
1755 		 * No multicast option buffer attached to the pcb;
1756 		 * allocate one and initialize to default values.
1757 		 */
1758 		imo = kmalloc(sizeof *imo, M_IPMOPTS, M_WAITOK);
1759 
1760 		*imop = imo;
1761 		imo->imo_multicast_ifp = NULL;
1762 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
1763 		imo->imo_multicast_vif = -1;
1764 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1765 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1766 		imo->imo_num_memberships = 0;
1767 	}
1768 	switch (sopt->sopt_name) {
1769 	/* store an index number for the vif you wanna use in the send */
1770 	case IP_MULTICAST_VIF:
1771 		if (legal_vif_num == 0) {
1772 			error = EOPNOTSUPP;
1773 			break;
1774 		}
1775 		error = soopt_to_kbuf(sopt, &i, sizeof i, sizeof i);
1776 		if (error)
1777 			break;
1778 		if (!legal_vif_num(i) && (i != -1)) {
1779 			error = EINVAL;
1780 			break;
1781 		}
1782 		imo->imo_multicast_vif = i;
1783 		break;
1784 
1785 	case IP_MULTICAST_IF:
1786 		/*
1787 		 * Select the interface for outgoing multicast packets.
1788 		 */
1789 		error = soopt_to_kbuf(sopt, &addr, sizeof addr, sizeof addr);
1790 		if (error)
1791 			break;
1792 
1793 		/*
1794 		 * INADDR_ANY is used to remove a previous selection.
1795 		 * When no interface is selected, a default one is
1796 		 * chosen every time a multicast packet is sent.
1797 		 */
1798 		if (addr.s_addr == INADDR_ANY) {
1799 			imo->imo_multicast_ifp = NULL;
1800 			break;
1801 		}
1802 		/*
1803 		 * The selected interface is identified by its local
1804 		 * IP address.  Find the interface and confirm that
1805 		 * it supports multicasting.
1806 		 */
1807 		crit_enter();
1808 		ifp = ip_multicast_if(&addr, &ifindex);
1809 		if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
1810 			crit_exit();
1811 			error = EADDRNOTAVAIL;
1812 			break;
1813 		}
1814 		imo->imo_multicast_ifp = ifp;
1815 		if (ifindex)
1816 			imo->imo_multicast_addr = addr;
1817 		else
1818 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1819 		crit_exit();
1820 		break;
1821 
1822 	case IP_MULTICAST_TTL:
1823 		/*
1824 		 * Set the IP time-to-live for outgoing multicast packets.
1825 		 * The original multicast API required a char argument,
1826 		 * which is inconsistent with the rest of the socket API.
1827 		 * We allow either a char or an int.
1828 		 */
1829 		if (sopt->sopt_valsize == 1) {
1830 			u_char ttl;
1831 			error = soopt_to_kbuf(sopt, &ttl, 1, 1);
1832 			if (error)
1833 				break;
1834 			imo->imo_multicast_ttl = ttl;
1835 		} else {
1836 			u_int ttl;
1837 			error = soopt_to_kbuf(sopt, &ttl, sizeof ttl, sizeof ttl);
1838 			if (error)
1839 				break;
1840 			if (ttl > 255)
1841 				error = EINVAL;
1842 			else
1843 				imo->imo_multicast_ttl = ttl;
1844 		}
1845 		break;
1846 
1847 	case IP_MULTICAST_LOOP:
1848 		/*
1849 		 * Set the loopback flag for outgoing multicast packets.
1850 		 * Must be zero or one.  The original multicast API required a
1851 		 * char argument, which is inconsistent with the rest
1852 		 * of the socket API.  We allow either a char or an int.
1853 		 */
1854 		if (sopt->sopt_valsize == 1) {
1855 			u_char loop;
1856 
1857 			error = soopt_to_kbuf(sopt, &loop, 1, 1);
1858 			if (error)
1859 				break;
1860 			imo->imo_multicast_loop = !!loop;
1861 		} else {
1862 			u_int loop;
1863 
1864 			error = soopt_to_kbuf(sopt, &loop, sizeof loop,
1865 					    sizeof loop);
1866 			if (error)
1867 				break;
1868 			imo->imo_multicast_loop = !!loop;
1869 		}
1870 		break;
1871 
1872 	case IP_ADD_MEMBERSHIP:
1873 		/*
1874 		 * Add a multicast group membership.
1875 		 * Group must be a valid IP multicast address.
1876 		 */
1877 		error = soopt_to_kbuf(sopt, &mreq, sizeof mreq, sizeof mreq);
1878 		if (error)
1879 			break;
1880 
1881 		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1882 			error = EINVAL;
1883 			break;
1884 		}
1885 		crit_enter();
1886 		/*
1887 		 * If no interface address was provided, use the interface of
1888 		 * the route to the given multicast address.
1889 		 */
1890 		if (mreq.imr_interface.s_addr == INADDR_ANY) {
1891 			struct sockaddr_in dst;
1892 			struct rtentry *rt;
1893 
1894 			bzero(&dst, sizeof(struct sockaddr_in));
1895 			dst.sin_len = sizeof(struct sockaddr_in);
1896 			dst.sin_family = AF_INET;
1897 			dst.sin_addr = mreq.imr_multiaddr;
1898 			rt = rtlookup((struct sockaddr *)&dst);
1899 			if (rt == NULL) {
1900 				error = EADDRNOTAVAIL;
1901 				crit_exit();
1902 				break;
1903 			}
1904 			--rt->rt_refcnt;
1905 			ifp = rt->rt_ifp;
1906 		} else {
1907 			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1908 		}
1909 
1910 		/*
1911 		 * See if we found an interface, and confirm that it
1912 		 * supports multicast.
1913 		 */
1914 		if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
1915 			error = EADDRNOTAVAIL;
1916 			crit_exit();
1917 			break;
1918 		}
1919 		/*
1920 		 * See if the membership already exists or if all the
1921 		 * membership slots are full.
1922 		 */
1923 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1924 			if (imo->imo_membership[i]->inm_ifp == ifp &&
1925 			    imo->imo_membership[i]->inm_addr.s_addr
1926 						== mreq.imr_multiaddr.s_addr)
1927 				break;
1928 		}
1929 		if (i < imo->imo_num_memberships) {
1930 			error = EADDRINUSE;
1931 			crit_exit();
1932 			break;
1933 		}
1934 		if (i == IP_MAX_MEMBERSHIPS) {
1935 			error = ETOOMANYREFS;
1936 			crit_exit();
1937 			break;
1938 		}
1939 		/*
1940 		 * Everything looks good; add a new record to the multicast
1941 		 * address list for the given interface.
1942 		 */
1943 		if ((imo->imo_membership[i] =
1944 		     in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
1945 			error = ENOBUFS;
1946 			crit_exit();
1947 			break;
1948 		}
1949 		++imo->imo_num_memberships;
1950 		crit_exit();
1951 		break;
1952 
1953 	case IP_DROP_MEMBERSHIP:
1954 		/*
1955 		 * Drop a multicast group membership.
1956 		 * Group must be a valid IP multicast address.
1957 		 */
1958 		error = soopt_to_kbuf(sopt, &mreq, sizeof mreq, sizeof mreq);
1959 		if (error)
1960 			break;
1961 
1962 		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1963 			error = EINVAL;
1964 			break;
1965 		}
1966 
1967 		crit_enter();
1968 		/*
1969 		 * If an interface address was specified, get a pointer
1970 		 * to its ifnet structure.
1971 		 */
1972 		if (mreq.imr_interface.s_addr == INADDR_ANY)
1973 			ifp = NULL;
1974 		else {
1975 			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1976 			if (ifp == NULL) {
1977 				error = EADDRNOTAVAIL;
1978 				crit_exit();
1979 				break;
1980 			}
1981 		}
1982 		/*
1983 		 * Find the membership in the membership array.
1984 		 */
1985 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1986 			if ((ifp == NULL ||
1987 			     imo->imo_membership[i]->inm_ifp == ifp) &&
1988 			    imo->imo_membership[i]->inm_addr.s_addr ==
1989 			    mreq.imr_multiaddr.s_addr)
1990 				break;
1991 		}
1992 		if (i == imo->imo_num_memberships) {
1993 			error = EADDRNOTAVAIL;
1994 			crit_exit();
1995 			break;
1996 		}
1997 		/*
1998 		 * Give up the multicast address record to which the
1999 		 * membership points.
2000 		 */
2001 		in_delmulti(imo->imo_membership[i]);
2002 		/*
2003 		 * Remove the gap in the membership array.
2004 		 */
2005 		for (++i; i < imo->imo_num_memberships; ++i)
2006 			imo->imo_membership[i-1] = imo->imo_membership[i];
2007 		--imo->imo_num_memberships;
2008 		crit_exit();
2009 		break;
2010 
2011 	default:
2012 		error = EOPNOTSUPP;
2013 		break;
2014 	}
2015 
2016 	/*
2017 	 * If all options have default values, no need to keep the mbuf.
2018 	 */
2019 	if (imo->imo_multicast_ifp == NULL &&
2020 	    imo->imo_multicast_vif == -1 &&
2021 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
2022 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
2023 	    imo->imo_num_memberships == 0) {
2024 		kfree(*imop, M_IPMOPTS);
2025 		*imop = NULL;
2026 	}
2027 
2028 	return (error);
2029 }
2030 
2031 /*
2032  * Return the IP multicast options in response to user getsockopt().
2033  */
2034 static int
2035 ip_getmoptions(struct sockopt *sopt, struct ip_moptions *imo)
2036 {
2037 	struct in_addr addr;
2038 	struct in_ifaddr *ia;
2039 	int error, optval;
2040 	u_char coptval;
2041 
2042 	error = 0;
2043 	switch (sopt->sopt_name) {
2044 	case IP_MULTICAST_VIF:
2045 		if (imo != NULL)
2046 			optval = imo->imo_multicast_vif;
2047 		else
2048 			optval = -1;
2049 		soopt_from_kbuf(sopt, &optval, sizeof optval);
2050 		break;
2051 
2052 	case IP_MULTICAST_IF:
2053 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
2054 			addr.s_addr = INADDR_ANY;
2055 		else if (imo->imo_multicast_addr.s_addr) {
2056 			/* return the value user has set */
2057 			addr = imo->imo_multicast_addr;
2058 		} else {
2059 			ia = IFP_TO_IA(imo->imo_multicast_ifp);
2060 			addr.s_addr = (ia == NULL) ? INADDR_ANY
2061 				: IA_SIN(ia)->sin_addr.s_addr;
2062 		}
2063 		soopt_from_kbuf(sopt, &addr, sizeof addr);
2064 		break;
2065 
2066 	case IP_MULTICAST_TTL:
2067 		if (imo == NULL)
2068 			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
2069 		else
2070 			optval = coptval = imo->imo_multicast_ttl;
2071 		if (sopt->sopt_valsize == 1)
2072 			soopt_from_kbuf(sopt, &coptval, 1);
2073 		else
2074 			soopt_from_kbuf(sopt, &optval, sizeof optval);
2075 		break;
2076 
2077 	case IP_MULTICAST_LOOP:
2078 		if (imo == NULL)
2079 			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
2080 		else
2081 			optval = coptval = imo->imo_multicast_loop;
2082 		if (sopt->sopt_valsize == 1)
2083 			soopt_from_kbuf(sopt, &coptval, 1);
2084 		else
2085 			soopt_from_kbuf(sopt, &optval, sizeof optval);
2086 		break;
2087 
2088 	default:
2089 		error = ENOPROTOOPT;
2090 		break;
2091 	}
2092 	return (error);
2093 }
2094 
2095 /*
2096  * Discard the IP multicast options.
2097  */
2098 void
2099 ip_freemoptions(struct ip_moptions *imo)
2100 {
2101 	int i;
2102 
2103 	if (imo != NULL) {
2104 		for (i = 0; i < imo->imo_num_memberships; ++i)
2105 			in_delmulti(imo->imo_membership[i]);
2106 		kfree(imo, M_IPMOPTS);
2107 	}
2108 }
2109 
2110 /*
2111  * Routine called from ip_output() to loop back a copy of an IP multicast
2112  * packet to the input queue of a specified interface.  Note that this
2113  * calls the output routine of the loopback "driver", but with an interface
2114  * pointer that might NOT be a loopback interface -- evil, but easier than
2115  * replicating that code here.
2116  */
2117 static void
2118 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst,
2119 	     int hlen)
2120 {
2121 	struct ip *ip;
2122 	struct mbuf *copym;
2123 
2124 	copym = m_copypacket(m, MB_DONTWAIT);
2125 	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
2126 		copym = m_pullup(copym, hlen);
2127 	if (copym != NULL) {
2128 		/*
2129 		 * if the checksum hasn't been computed, mark it as valid
2130 		 */
2131 		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2132 			in_delayed_cksum(copym);
2133 			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2134 			copym->m_pkthdr.csum_flags |=
2135 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2136 			copym->m_pkthdr.csum_data = 0xffff;
2137 		}
2138 		/*
2139 		 * We don't bother to fragment if the IP length is greater
2140 		 * than the interface's MTU.  Can this possibly matter?
2141 		 */
2142 		ip = mtod(copym, struct ip *);
2143 		ip->ip_len = htons(ip->ip_len);
2144 		ip->ip_off = htons(ip->ip_off);
2145 		ip->ip_sum = 0;
2146 		if (ip->ip_vhl == IP_VHL_BORING) {
2147 			ip->ip_sum = in_cksum_hdr(ip);
2148 		} else {
2149 			ip->ip_sum = in_cksum(copym, hlen);
2150 		}
2151 		/*
2152 		 * NB:
2153 		 * It's not clear whether there are any lingering
2154 		 * reentrancy problems in other areas which might
2155 		 * be exposed by using ip_input directly (in
2156 		 * particular, everything which modifies the packet
2157 		 * in-place).  Yet another option is using the
2158 		 * protosw directly to deliver the looped back
2159 		 * packet.  For the moment, we'll err on the side
2160 		 * of safety by using if_simloop().
2161 		 */
2162 #if 1 /* XXX */
2163 		if (dst->sin_family != AF_INET) {
2164 			kprintf("ip_mloopback: bad address family %d\n",
2165 						dst->sin_family);
2166 			dst->sin_family = AF_INET;
2167 		}
2168 #endif
2169 		get_mplock();	/* is if_simloop() mpsafe yet? */
2170 		if_simloop(ifp, copym, dst->sin_family, 0);
2171 		rel_mplock();
2172 	}
2173 }
2174