xref: /dragonfly/sys/netinet/ip_output.c (revision 8e9b4bd4)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30  * $FreeBSD: src/sys/netinet/ip_output.c,v 1.99.2.37 2003/04/15 06:44:45 silby Exp $
31  * $DragonFly: src/sys/netinet/ip_output.c,v 1.38 2007/10/25 13:13:18 sephe Exp $
32  */
33 
34 #define _IP_VHL
35 
36 #include "opt_ipfw.h"
37 #include "opt_ipdn.h"
38 #include "opt_ipdivert.h"
39 #include "opt_ipfilter.h"
40 #include "opt_ipsec.h"
41 #include "opt_mbuf_stress_test.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/protosw.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/proc.h>
52 #include <sys/sysctl.h>
53 #include <sys/thread2.h>
54 #include <sys/in_cksum.h>
55 
56 #include <net/if.h>
57 #include <net/netisr.h>
58 #include <net/pfil.h>
59 #include <net/route.h>
60 
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/ip.h>
64 #include <netinet/in_pcb.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip_var.h>
67 
68 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
69 
70 #ifdef IPSEC
71 #include <netinet6/ipsec.h>
72 #include <netproto/key/key.h>
73 #ifdef IPSEC_DEBUG
74 #include <netproto/key/key_debug.h>
75 #else
76 #define	KEYDEBUG(lev,arg)
77 #endif
78 #endif /*IPSEC*/
79 
80 #ifdef FAST_IPSEC
81 #include <netproto/ipsec/ipsec.h>
82 #include <netproto/ipsec/xform.h>
83 #include <netproto/ipsec/key.h>
84 #endif /*FAST_IPSEC*/
85 
86 #include <net/ipfw/ip_fw.h>
87 #include <net/dummynet/ip_dummynet.h>
88 
89 #define print_ip(x, a, y)	 kprintf("%s %d.%d.%d.%d%s",\
90 				x, (ntohl(a.s_addr)>>24)&0xFF,\
91 				  (ntohl(a.s_addr)>>16)&0xFF,\
92 				  (ntohl(a.s_addr)>>8)&0xFF,\
93 				  (ntohl(a.s_addr))&0xFF, y);
94 
95 u_short ip_id;
96 
97 #ifdef MBUF_STRESS_TEST
98 int mbuf_frag_size = 0;
99 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
100 	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
101 #endif
102 
103 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
104 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
105 static void	ip_mloopback
106 	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
107 static int	ip_getmoptions
108 	(struct sockopt *, struct ip_moptions *);
109 static int	ip_pcbopts(int, struct mbuf **, struct mbuf *);
110 static int	ip_setmoptions
111 	(struct sockopt *, struct ip_moptions **);
112 
113 int	ip_optcopy(struct ip *, struct ip *);
114 
115 
116 extern	struct protosw inetsw[];
117 
118 /*
119  * IP output.  The packet in mbuf chain m contains a skeletal IP
120  * header (with len, off, ttl, proto, tos, src, dst).
121  * The mbuf chain containing the packet will be freed.
122  * The mbuf opt, if present, will not be freed.
123  */
124 int
125 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro,
126 	  int flags, struct ip_moptions *imo, struct inpcb *inp)
127 {
128 	struct ip *ip;
129 	struct ifnet *ifp = NULL;	/* keep compiler happy */
130 	struct mbuf *m;
131 	int hlen = sizeof(struct ip);
132 	int len, off, error = 0;
133 	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
134 	struct in_ifaddr *ia = NULL;
135 	int isbroadcast, sw_csum;
136 	struct in_addr pkt_dst;
137 	struct route iproute;
138 	struct m_tag *dn_mtag = NULL;
139 #ifdef IPSEC
140 	struct secpolicy *sp = NULL;
141 	struct socket *so = inp ? inp->inp_socket : NULL;
142 #endif
143 #ifdef FAST_IPSEC
144 	struct m_tag *mtag;
145 	struct secpolicy *sp = NULL;
146 	struct tdb_ident *tdbi;
147 #endif /* FAST_IPSEC */
148 	struct ip_fw_args args;
149 	int src_was_INADDR_ANY = 0;	/* as the name says... */
150 
151 	args.eh = NULL;
152 	args.rule = NULL;
153 	args.next_hop = NULL;
154 
155 	/* Grab info from MT_TAG mbufs prepended to the chain. */
156 	while (m0 != NULL && m0->m_type == MT_TAG) {
157 		switch(m0->_m_tag_id) {
158 		case PACKET_TAG_IPFORWARD:
159 			args.next_hop = (struct sockaddr_in *)m0->m_data;
160 			break;
161 		default:
162 			kprintf("ip_output: unrecognised MT_TAG tag %d\n",
163 			    m0->_m_tag_id);
164 			break;
165 		}
166 		m0 = m0->m_next;
167 	}
168 	m = m0;
169 	KASSERT(m != NULL && (m->m_flags & M_PKTHDR), ("ip_output: no HDR"));
170 
171 	/* Extract info from dummynet tag */
172 	dn_mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
173 	if (dn_mtag != NULL) {
174 		struct dn_pkt *dn_pkt = m_tag_data(dn_mtag);
175 
176 		/*
177 		 * The packet was already tagged, so part of the
178 		 * processing was already done, and we need to go down.
179 		 * Get parameters from the tag.
180 		 */
181 		args.rule = dn_pkt->rule;
182 		opt = NULL;
183 		ro = &dn_pkt->ro;
184 		imo = NULL;
185 		dst = dn_pkt->dn_dst;
186 		ifp = dn_pkt->ifp;
187 		flags = dn_pkt->flags;
188 
189 		/*
190 		 * Don't delete the dummynet tag here, just unlink it,
191 		 * since some local variables (like 'ro' and 'dst') are
192 		 * still referencing certain parts of it.
193 		 * The dummynet tag will be freed at the end of the
194 		 * output process.
195 		 */
196 		m_tag_unlink(m, dn_mtag);
197 	}
198 
199 	if (ro == NULL) {
200 		ro = &iproute;
201 		bzero(ro, sizeof *ro);
202 	}
203 
204 	if (args.rule != NULL) {	/* dummynet already saw us */
205 		ip = mtod(m, struct ip *);
206 		hlen = IP_VHL_HL(ip->ip_vhl) << 2 ;
207 		if (ro->ro_rt)
208 			ia = ifatoia(ro->ro_rt->rt_ifa);
209 		goto sendit;
210 	}
211 
212 	if (opt) {
213 		len = 0;
214 		m = ip_insertoptions(m, opt, &len);
215 		if (len != 0)
216 			hlen = len;
217 	}
218 	ip = mtod(m, struct ip *);
219 	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
220 
221 	/*
222 	 * Fill in IP header.
223 	 */
224 	if (!(flags & (IP_FORWARDING|IP_RAWOUTPUT))) {
225 		ip->ip_vhl = IP_MAKE_VHL(IPVERSION, hlen >> 2);
226 		ip->ip_off &= IP_DF;
227 		ip->ip_id = ip_newid();
228 		ipstat.ips_localout++;
229 	} else {
230 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
231 	}
232 
233 	dst = (struct sockaddr_in *)&ro->ro_dst;
234 	/*
235 	 * If there is a cached route,
236 	 * check that it is to the same destination
237 	 * and is still up.  If not, free it and try again.
238 	 * The address family should also be checked in case of sharing the
239 	 * cache with IPv6.
240 	 */
241 	if (ro->ro_rt &&
242 	    (!(ro->ro_rt->rt_flags & RTF_UP) ||
243 	     dst->sin_family != AF_INET ||
244 	     dst->sin_addr.s_addr != pkt_dst.s_addr)) {
245 		rtfree(ro->ro_rt);
246 		ro->ro_rt = (struct rtentry *)NULL;
247 	}
248 	if (ro->ro_rt == NULL) {
249 		bzero(dst, sizeof *dst);
250 		dst->sin_family = AF_INET;
251 		dst->sin_len = sizeof *dst;
252 		dst->sin_addr = pkt_dst;
253 	}
254 	/*
255 	 * If routing to interface only,
256 	 * short circuit routing lookup.
257 	 */
258 	if (flags & IP_ROUTETOIF) {
259 		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
260 		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == NULL) {
261 			ipstat.ips_noroute++;
262 			error = ENETUNREACH;
263 			goto bad;
264 		}
265 		ifp = ia->ia_ifp;
266 		ip->ip_ttl = 1;
267 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
268 	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
269 		   imo != NULL && imo->imo_multicast_ifp != NULL) {
270 		/*
271 		 * Bypass the normal routing lookup for multicast
272 		 * packets if the interface is specified.
273 		 */
274 		ifp = imo->imo_multicast_ifp;
275 		IFP_TO_IA(ifp, ia);
276 		isbroadcast = 0;	/* fool gcc */
277 	} else {
278 		/*
279 		 * If this is the case, we probably don't want to allocate
280 		 * a protocol-cloned route since we didn't get one from the
281 		 * ULP.  This lets TCP do its thing, while not burdening
282 		 * forwarding or ICMP with the overhead of cloning a route.
283 		 * Of course, we still want to do any cloning requested by
284 		 * the link layer, as this is probably required in all cases
285 		 * for correct operation (as it is for ARP).
286 		 */
287 		if (ro->ro_rt == NULL)
288 			rtalloc_ign(ro, RTF_PRCLONING);
289 		if (ro->ro_rt == NULL) {
290 			ipstat.ips_noroute++;
291 			error = EHOSTUNREACH;
292 			goto bad;
293 		}
294 		ia = ifatoia(ro->ro_rt->rt_ifa);
295 		ifp = ro->ro_rt->rt_ifp;
296 		ro->ro_rt->rt_use++;
297 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
298 			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
299 		if (ro->ro_rt->rt_flags & RTF_HOST)
300 			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
301 		else
302 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
303 	}
304 	if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
305 		struct in_multi *inm;
306 
307 		m->m_flags |= M_MCAST;
308 		/*
309 		 * IP destination address is multicast.  Make sure "dst"
310 		 * still points to the address in "ro".  (It may have been
311 		 * changed to point to a gateway address, above.)
312 		 */
313 		dst = (struct sockaddr_in *)&ro->ro_dst;
314 		/*
315 		 * See if the caller provided any multicast options
316 		 */
317 		if (imo != NULL) {
318 			ip->ip_ttl = imo->imo_multicast_ttl;
319 			if (imo->imo_multicast_vif != -1)
320 				ip->ip_src.s_addr =
321 				    ip_mcast_src ?
322 				    ip_mcast_src(imo->imo_multicast_vif) :
323 				    INADDR_ANY;
324 		} else
325 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
326 		/*
327 		 * Confirm that the outgoing interface supports multicast.
328 		 */
329 		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
330 			if (!(ifp->if_flags & IFF_MULTICAST)) {
331 				ipstat.ips_noroute++;
332 				error = ENETUNREACH;
333 				goto bad;
334 			}
335 		}
336 		/*
337 		 * If source address not specified yet, use address
338 		 * of outgoing interface.
339 		 */
340 		if (ip->ip_src.s_addr == INADDR_ANY) {
341 			/* Interface may have no addresses. */
342 			if (ia != NULL)
343 				ip->ip_src = IA_SIN(ia)->sin_addr;
344 		}
345 
346 		IN_LOOKUP_MULTI(pkt_dst, ifp, inm);
347 		if (inm != NULL &&
348 		   (imo == NULL || imo->imo_multicast_loop)) {
349 			/*
350 			 * If we belong to the destination multicast group
351 			 * on the outgoing interface, and the caller did not
352 			 * forbid loopback, loop back a copy.
353 			 */
354 			ip_mloopback(ifp, m, dst, hlen);
355 		}
356 		else {
357 			/*
358 			 * If we are acting as a multicast router, perform
359 			 * multicast forwarding as if the packet had just
360 			 * arrived on the interface to which we are about
361 			 * to send.  The multicast forwarding function
362 			 * recursively calls this function, using the
363 			 * IP_FORWARDING flag to prevent infinite recursion.
364 			 *
365 			 * Multicasts that are looped back by ip_mloopback(),
366 			 * above, will be forwarded by the ip_input() routine,
367 			 * if necessary.
368 			 */
369 			if (ip_mrouter && !(flags & IP_FORWARDING)) {
370 				/*
371 				 * If rsvp daemon is not running, do not
372 				 * set ip_moptions. This ensures that the packet
373 				 * is multicast and not just sent down one link
374 				 * as prescribed by rsvpd.
375 				 */
376 				if (!rsvp_on)
377 					imo = NULL;
378 				if (ip_mforward &&
379 				    ip_mforward(ip, ifp, m, imo) != 0) {
380 					m_freem(m);
381 					goto done;
382 				}
383 			}
384 		}
385 
386 		/*
387 		 * Multicasts with a time-to-live of zero may be looped-
388 		 * back, above, but must not be transmitted on a network.
389 		 * Also, multicasts addressed to the loopback interface
390 		 * are not sent -- the above call to ip_mloopback() will
391 		 * loop back a copy if this host actually belongs to the
392 		 * destination group on the loopback interface.
393 		 */
394 		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
395 			m_freem(m);
396 			goto done;
397 		}
398 
399 		goto sendit;
400 	}
401 #ifndef notdef
402 	/*
403 	 * If the source address is not specified yet, use the address
404 	 * of the outoing interface. In case, keep note we did that, so
405 	 * if the the firewall changes the next-hop causing the output
406 	 * interface to change, we can fix that.
407 	 */
408 	if (ip->ip_src.s_addr == INADDR_ANY) {
409 		/* Interface may have no addresses. */
410 		if (ia != NULL) {
411 			ip->ip_src = IA_SIN(ia)->sin_addr;
412 			src_was_INADDR_ANY = 1;
413 		}
414 	}
415 #endif /* notdef */
416 #ifdef ALTQ
417 	/*
418 	 * Disable packet drop hack.
419 	 * Packetdrop should be done by queueing.
420 	 */
421 #else /* !ALTQ */
422 	/*
423 	 * Verify that we have any chance at all of being able to queue
424 	 *      the packet or packet fragments
425 	 */
426 	if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
427 		ifp->if_snd.ifq_maxlen) {
428 			error = ENOBUFS;
429 			ipstat.ips_odropped++;
430 			goto bad;
431 	}
432 #endif /* !ALTQ */
433 
434 	/*
435 	 * Look for broadcast address and
436 	 * verify user is allowed to send
437 	 * such a packet.
438 	 */
439 	if (isbroadcast) {
440 		if (!(ifp->if_flags & IFF_BROADCAST)) {
441 			error = EADDRNOTAVAIL;
442 			goto bad;
443 		}
444 		if (!(flags & IP_ALLOWBROADCAST)) {
445 			error = EACCES;
446 			goto bad;
447 		}
448 		/* don't allow broadcast messages to be fragmented */
449 		if (ip->ip_len > ifp->if_mtu) {
450 			error = EMSGSIZE;
451 			goto bad;
452 		}
453 		m->m_flags |= M_BCAST;
454 	} else {
455 		m->m_flags &= ~M_BCAST;
456 	}
457 
458 sendit:
459 #ifdef IPSEC
460 	/* get SP for this packet */
461 	if (so == NULL)
462 		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, flags, &error);
463 	else
464 		sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
465 
466 	if (sp == NULL) {
467 		ipsecstat.out_inval++;
468 		goto bad;
469 	}
470 
471 	error = 0;
472 
473 	/* check policy */
474 	switch (sp->policy) {
475 	case IPSEC_POLICY_DISCARD:
476 		/*
477 		 * This packet is just discarded.
478 		 */
479 		ipsecstat.out_polvio++;
480 		goto bad;
481 
482 	case IPSEC_POLICY_BYPASS:
483 	case IPSEC_POLICY_NONE:
484 		/* no need to do IPsec. */
485 		goto skip_ipsec;
486 
487 	case IPSEC_POLICY_IPSEC:
488 		if (sp->req == NULL) {
489 			/* acquire a policy */
490 			error = key_spdacquire(sp);
491 			goto bad;
492 		}
493 		break;
494 
495 	case IPSEC_POLICY_ENTRUST:
496 	default:
497 		kprintf("ip_output: Invalid policy found. %d\n", sp->policy);
498 	}
499     {
500 	struct ipsec_output_state state;
501 	bzero(&state, sizeof state);
502 	state.m = m;
503 	if (flags & IP_ROUTETOIF) {
504 		state.ro = &iproute;
505 		bzero(&iproute, sizeof iproute);
506 	} else
507 		state.ro = ro;
508 	state.dst = (struct sockaddr *)dst;
509 
510 	ip->ip_sum = 0;
511 
512 	/*
513 	 * XXX
514 	 * delayed checksums are not currently compatible with IPsec
515 	 */
516 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
517 		in_delayed_cksum(m);
518 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
519 	}
520 
521 	ip->ip_len = htons(ip->ip_len);
522 	ip->ip_off = htons(ip->ip_off);
523 
524 	error = ipsec4_output(&state, sp, flags);
525 
526 	m = state.m;
527 	if (flags & IP_ROUTETOIF) {
528 		/*
529 		 * if we have tunnel mode SA, we may need to ignore
530 		 * IP_ROUTETOIF.
531 		 */
532 		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
533 			flags &= ~IP_ROUTETOIF;
534 			ro = state.ro;
535 		}
536 	} else
537 		ro = state.ro;
538 	dst = (struct sockaddr_in *)state.dst;
539 	if (error) {
540 		/* mbuf is already reclaimed in ipsec4_output. */
541 		m0 = NULL;
542 		switch (error) {
543 		case EHOSTUNREACH:
544 		case ENETUNREACH:
545 		case EMSGSIZE:
546 		case ENOBUFS:
547 		case ENOMEM:
548 			break;
549 		default:
550 			kprintf("ip4_output (ipsec): error code %d\n", error);
551 			/*fall through*/
552 		case ENOENT:
553 			/* don't show these error codes to the user */
554 			error = 0;
555 			break;
556 		}
557 		goto bad;
558 	}
559     }
560 
561 	/* be sure to update variables that are affected by ipsec4_output() */
562 	ip = mtod(m, struct ip *);
563 #ifdef _IP_VHL
564 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
565 #else
566 	hlen = ip->ip_hl << 2;
567 #endif
568 	if (ro->ro_rt == NULL) {
569 		if (!(flags & IP_ROUTETOIF)) {
570 			kprintf("ip_output: "
571 				"can't update route after IPsec processing\n");
572 			error = EHOSTUNREACH;	/*XXX*/
573 			goto bad;
574 		}
575 	} else {
576 		ia = ifatoia(ro->ro_rt->rt_ifa);
577 		ifp = ro->ro_rt->rt_ifp;
578 	}
579 
580 	/* make it flipped, again. */
581 	ip->ip_len = ntohs(ip->ip_len);
582 	ip->ip_off = ntohs(ip->ip_off);
583 skip_ipsec:
584 #endif /*IPSEC*/
585 #ifdef FAST_IPSEC
586 	/*
587 	 * Check the security policy (SP) for the packet and, if
588 	 * required, do IPsec-related processing.  There are two
589 	 * cases here; the first time a packet is sent through
590 	 * it will be untagged and handled by ipsec4_checkpolicy.
591 	 * If the packet is resubmitted to ip_output (e.g. after
592 	 * AH, ESP, etc. processing), there will be a tag to bypass
593 	 * the lookup and related policy checking.
594 	 */
595 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
596 	crit_enter();
597 	if (mtag != NULL) {
598 		tdbi = (struct tdb_ident *)m_tag_data(mtag);
599 		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
600 		if (sp == NULL)
601 			error = -EINVAL;	/* force silent drop */
602 		m_tag_delete(m, mtag);
603 	} else {
604 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
605 					&error, inp);
606 	}
607 	/*
608 	 * There are four return cases:
609 	 *    sp != NULL		    apply IPsec policy
610 	 *    sp == NULL, error == 0	    no IPsec handling needed
611 	 *    sp == NULL, error == -EINVAL  discard packet w/o error
612 	 *    sp == NULL, error != 0	    discard packet, report error
613 	 */
614 	if (sp != NULL) {
615 		/* Loop detection, check if ipsec processing already done */
616 		KASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
617 		for (mtag = m_tag_first(m); mtag != NULL;
618 		     mtag = m_tag_next(m, mtag)) {
619 			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
620 				continue;
621 			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
622 			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
623 				continue;
624 			/*
625 			 * Check if policy has an SA associated with it.
626 			 * This can happen when an SP has yet to acquire
627 			 * an SA; e.g. on first reference.  If it occurs,
628 			 * then we let ipsec4_process_packet do its thing.
629 			 */
630 			if (sp->req->sav == NULL)
631 				break;
632 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
633 			if (tdbi->spi == sp->req->sav->spi &&
634 			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
635 			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
636 				 sizeof(union sockaddr_union)) == 0) {
637 				/*
638 				 * No IPsec processing is needed, free
639 				 * reference to SP.
640 				 *
641 				 * NB: null pointer to avoid free at
642 				 *     done: below.
643 				 */
644 				KEY_FREESP(&sp), sp = NULL;
645 				crit_exit();
646 				goto spd_done;
647 			}
648 		}
649 
650 		/*
651 		 * Do delayed checksums now because we send before
652 		 * this is done in the normal processing path.
653 		 */
654 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
655 			in_delayed_cksum(m);
656 			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
657 		}
658 
659 		ip->ip_len = htons(ip->ip_len);
660 		ip->ip_off = htons(ip->ip_off);
661 
662 		/* NB: callee frees mbuf */
663 		error = ipsec4_process_packet(m, sp->req, flags, 0);
664 		/*
665 		 * Preserve KAME behaviour: ENOENT can be returned
666 		 * when an SA acquire is in progress.  Don't propagate
667 		 * this to user-level; it confuses applications.
668 		 *
669 		 * XXX this will go away when the SADB is redone.
670 		 */
671 		if (error == ENOENT)
672 			error = 0;
673 		crit_exit();
674 		goto done;
675 	} else {
676 		crit_exit();
677 
678 		if (error != 0) {
679 			/*
680 			 * Hack: -EINVAL is used to signal that a packet
681 			 * should be silently discarded.  This is typically
682 			 * because we asked key management for an SA and
683 			 * it was delayed (e.g. kicked up to IKE).
684 			 */
685 			if (error == -EINVAL)
686 				error = 0;
687 			goto bad;
688 		} else {
689 			/* No IPsec processing for this packet. */
690 		}
691 #ifdef notyet
692 		/*
693 		 * If deferred crypto processing is needed, check that
694 		 * the interface supports it.
695 		 */
696 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
697 		if (mtag != NULL && !(ifp->if_capenable & IFCAP_IPSEC)) {
698 			/* notify IPsec to do its own crypto */
699 			ipsp_skipcrypto_unmark((struct tdb_ident *)m_tag_data(mtag));
700 			error = EHOSTUNREACH;
701 			goto bad;
702 		}
703 #endif
704 	}
705 spd_done:
706 #endif /* FAST_IPSEC */
707 	/*
708 	 * IpHack's section.
709 	 * - Xlate: translate packet's addr/port (NAT).
710 	 * - Firewall: deny/allow/etc.
711 	 * - Wrap: fake packet's addr/port <unimpl.>
712 	 * - Encapsulate: put it in another IP and send out. <unimp.>
713 	 */
714 
715 	/*
716 	 * Run through list of hooks for output packets.
717 	 */
718 	if (pfil_has_hooks(&inet_pfil_hook)) {
719 		error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT);
720 		if (error != 0 || m == NULL)
721 			goto done;
722 		ip = mtod(m, struct ip *);
723 	}
724 
725 	/*
726 	 * Check with the firewall...
727 	 * but not if we are already being fwd'd from a firewall.
728 	 */
729 	if (fw_enable && IPFW_LOADED && !args.next_hop) {
730 		struct sockaddr_in *old = dst;
731 
732 		args.m = m;
733 		args.next_hop = dst;
734 		args.oif = ifp;
735 		off = ip_fw_chk_ptr(&args);
736 		m = args.m;
737 		dst = args.next_hop;
738 
739 		/*
740 		 * On return we must do the following:
741 		 * m == NULL	-> drop the pkt (old interface, deprecated)
742 		 * (off & IP_FW_PORT_DENY_FLAG)	-> drop the pkt (new interface)
743 		 * 1<=off<= 0xffff		-> DIVERT
744 		 * (off & IP_FW_PORT_DYNT_FLAG)	-> send to a DUMMYNET pipe
745 		 * (off & IP_FW_PORT_TEE_FLAG)	-> TEE the packet
746 		 * dst != old			-> IPFIREWALL_FORWARD
747 		 * off==0, dst==old		-> accept
748 		 * If some of the above modules are not compiled in, then
749 		 * we should't have to check the corresponding condition
750 		 * (because the ipfw control socket should not accept
751 		 * unsupported rules), but better play safe and drop
752 		 * packets in case of doubt.
753 		 */
754 		if ( (off & IP_FW_PORT_DENY_FLAG) || m == NULL) {
755 			if (m)
756 				m_freem(m);
757 			error = EACCES;
758 			goto done;
759 		}
760 		ip = mtod(m, struct ip *);
761 		if (off == 0 && dst == old)		/* common case */
762 			goto pass;
763 		if (DUMMYNET_LOADED && (off & IP_FW_PORT_DYNT_FLAG)) {
764 			/*
765 			 * pass the pkt to dummynet. Need to include
766 			 * pipe number, m, ifp, ro, dst because these are
767 			 * not recomputed in the next pass.
768 			 * All other parameters have been already used and
769 			 * so they are not needed anymore.
770 			 * XXX note: if the ifp or ro entry are deleted
771 			 * while a pkt is in dummynet, we are in trouble!
772 			 */
773 			args.ro = ro;
774 			args.dst = dst;
775 			args.flags = flags;
776 
777 			error = ip_dn_io_ptr(m, off & 0xffff, DN_TO_IP_OUT,
778 				&args);
779 			goto done;
780 		}
781 #ifdef IPDIVERT
782 		if (off != 0 && !(off & IP_FW_PORT_DYNT_FLAG)) {
783 			struct mbuf *clone = NULL;
784 
785 			/* Clone packet if we're doing a 'tee' */
786 			if ((off & IP_FW_PORT_TEE_FLAG))
787 				clone = m_dup(m, MB_DONTWAIT);
788 
789 			/*
790 			 * XXX
791 			 * delayed checksums are not currently compatible
792 			 * with divert sockets.
793 			 */
794 			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
795 				in_delayed_cksum(m);
796 				m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
797 			}
798 
799 			/* Restore packet header fields to original values */
800 			ip->ip_len = htons(ip->ip_len);
801 			ip->ip_off = htons(ip->ip_off);
802 
803 			/* Deliver packet to divert input routine */
804 			divert_packet(m, 0, off & 0xffff);
805 
806 			/* If 'tee', continue with original packet */
807 			if (clone != NULL) {
808 				m = clone;
809 				ip = mtod(m, struct ip *);
810 				goto pass;
811 			}
812 			goto done;
813 		}
814 #endif
815 
816 		/* IPFIREWALL_FORWARD */
817 		/*
818 		 * Check dst to make sure it is directly reachable on the
819 		 * interface we previously thought it was.
820 		 * If it isn't (which may be likely in some situations) we have
821 		 * to re-route it (ie, find a route for the next-hop and the
822 		 * associated interface) and set them here. This is nested
823 		 * forwarding which in most cases is undesirable, except where
824 		 * such control is nigh impossible. So we do it here.
825 		 * And I'm babbling.
826 		 */
827 		if (off == 0 && old != dst) { /* FORWARD, dst has changed */
828 #if 0
829 			/*
830 			 * XXX To improve readability, this block should be
831 			 * changed into a function call as below:
832 			 */
833 			error = ip_ipforward(&m, &dst, &ifp);
834 			if (error)
835 				goto bad;
836 			if (m == NULL) /* ip_input consumed the mbuf */
837 				goto done;
838 #else
839 			struct in_ifaddr *ia;
840 
841 			/*
842 			 * XXX sro_fwd below is static, and a pointer
843 			 * to it gets passed to routines downstream.
844 			 * This could have surprisingly bad results in
845 			 * practice, because its content is overwritten
846 			 * by subsequent packets.
847 			 */
848 			/* There must be a better way to do this next line... */
849 			static struct route sro_fwd;
850 			struct route *ro_fwd = &sro_fwd;
851 
852 #if 0
853 			print_ip("IPFIREWALL_FORWARD: New dst ip: ",
854 			    dst->sin_addr, "\n");
855 #endif
856 
857 			/*
858 			 * We need to figure out if we have been forwarded
859 			 * to a local socket. If so, then we should somehow
860 			 * "loop back" to ip_input, and get directed to the
861 			 * PCB as if we had received this packet. This is
862 			 * because it may be dificult to identify the packets
863 			 * you want to forward until they are being output
864 			 * and have selected an interface. (e.g. locally
865 			 * initiated packets) If we used the loopback inteface,
866 			 * we would not be able to control what happens
867 			 * as the packet runs through ip_input() as
868 			 * it is done through a ISR.
869 			 */
870 			LIST_FOREACH(ia, INADDR_HASH(dst->sin_addr.s_addr),
871 				     ia_hash) {
872 				/*
873 				 * If the addr to forward to is one
874 				 * of ours, we pretend to
875 				 * be the destination for this packet.
876 				 */
877 				if (IA_SIN(ia)->sin_addr.s_addr ==
878 						 dst->sin_addr.s_addr)
879 					break;
880 			}
881 			if (ia != NULL) {    /* tell ip_input "dont filter" */
882 				struct m_hdr tag;
883 
884 				tag.mh_type = MT_TAG;
885 				tag.mh_flags = PACKET_TAG_IPFORWARD;
886 				tag.mh_data = (caddr_t)args.next_hop;
887 				tag.mh_next = m;
888 
889 				if (m->m_pkthdr.rcvif == NULL)
890 					m->m_pkthdr.rcvif = ifunit("lo0");
891 				if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
892 					m->m_pkthdr.csum_flags |=
893 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
894 					m->m_pkthdr.csum_data = 0xffff;
895 				}
896 				m->m_pkthdr.csum_flags |=
897 				    CSUM_IP_CHECKED | CSUM_IP_VALID;
898 				ip->ip_len = htons(ip->ip_len);
899 				ip->ip_off = htons(ip->ip_off);
900 				ip_input((struct mbuf *)&tag);
901 				goto done;
902 			}
903 			/* Some of the logic for this was nicked from above.
904 			 *
905 			 * This rewrites the cached route in a local PCB.
906 			 * Is this what we want to do?
907 			 */
908 			bcopy(dst, &ro_fwd->ro_dst, sizeof *dst);
909 			ro_fwd->ro_rt = NULL;
910 
911 			rtalloc_ign(ro_fwd, RTF_PRCLONING);
912 			if (ro_fwd->ro_rt == NULL) {
913 				ipstat.ips_noroute++;
914 				error = EHOSTUNREACH;
915 				goto bad;
916 			}
917 
918 			ia = ifatoia(ro_fwd->ro_rt->rt_ifa);
919 			ifp = ro_fwd->ro_rt->rt_ifp;
920 			ro_fwd->ro_rt->rt_use++;
921 			if (ro_fwd->ro_rt->rt_flags & RTF_GATEWAY)
922 				dst = (struct sockaddr_in *)
923 				    ro_fwd->ro_rt->rt_gateway;
924 			if (ro_fwd->ro_rt->rt_flags & RTF_HOST)
925 				isbroadcast =
926 				    (ro_fwd->ro_rt->rt_flags & RTF_BROADCAST);
927 			else
928 				isbroadcast = in_broadcast(dst->sin_addr, ifp);
929 			if (ro->ro_rt != NULL)
930 				rtfree(ro->ro_rt);
931 			ro->ro_rt = ro_fwd->ro_rt;
932 			dst = (struct sockaddr_in *)&ro_fwd->ro_dst;
933 
934 #endif	/* ... block to be put into a function */
935 			/*
936 			 * If we added a default src ip earlier,
937 			 * which would have been gotten from the-then
938 			 * interface, do it again, from the new one.
939 			 */
940 			if (src_was_INADDR_ANY)
941 				ip->ip_src = IA_SIN(ia)->sin_addr;
942 			goto pass ;
943 		}
944 
945 		/*
946 		 * if we get here, none of the above matches, and
947 		 * we have to drop the pkt
948 		 */
949 		m_freem(m);
950 		error = EACCES; /* not sure this is the right error msg */
951 		goto done;
952 	}
953 
954 pass:
955 	/* 127/8 must not appear on wire - RFC1122. */
956 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
957 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
958 		if (!(ifp->if_flags & IFF_LOOPBACK)) {
959 			ipstat.ips_badaddr++;
960 			error = EADDRNOTAVAIL;
961 			goto bad;
962 		}
963 	}
964 
965 	m->m_pkthdr.csum_flags |= CSUM_IP;
966 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
967 	if (sw_csum & CSUM_DELAY_DATA) {
968 		in_delayed_cksum(m);
969 		sw_csum &= ~CSUM_DELAY_DATA;
970 	}
971 	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
972 
973 	/*
974 	 * If small enough for interface, or the interface will take
975 	 * care of the fragmentation for us, can just send directly.
976 	 */
977 	if (ip->ip_len <= ifp->if_mtu || ((ifp->if_hwassist & CSUM_FRAGMENT) &&
978 	    !(ip->ip_off & IP_DF))) {
979 		ip->ip_len = htons(ip->ip_len);
980 		ip->ip_off = htons(ip->ip_off);
981 		ip->ip_sum = 0;
982 		if (sw_csum & CSUM_DELAY_IP) {
983 			if (ip->ip_vhl == IP_VHL_BORING) {
984 				ip->ip_sum = in_cksum_hdr(ip);
985 			} else {
986 				ip->ip_sum = in_cksum(m, hlen);
987 			}
988 		}
989 
990 		/* Record statistics for this interface address. */
991 		if (!(flags & IP_FORWARDING) && ia) {
992 			ia->ia_ifa.if_opackets++;
993 			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
994 		}
995 
996 #ifdef IPSEC
997 		/* clean ipsec history once it goes out of the node */
998 		ipsec_delaux(m);
999 #endif
1000 
1001 #ifdef MBUF_STRESS_TEST
1002 		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) {
1003 			struct mbuf *m1, *m2;
1004 			int length, tmp;
1005 
1006 			tmp = length = m->m_pkthdr.len;
1007 
1008 			while ((length -= mbuf_frag_size) >= 1) {
1009 				m1 = m_split(m, length, MB_DONTWAIT);
1010 				if (m1 == NULL)
1011 					break;
1012 				m2 = m;
1013 				while (m2->m_next != NULL)
1014 					m2 = m2->m_next;
1015 				m2->m_next = m1;
1016 			}
1017 			m->m_pkthdr.len = tmp;
1018 		}
1019 #endif
1020 		lwkt_serialize_enter(ifp->if_serializer);
1021 		error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst,
1022 					  ro->ro_rt);
1023 		lwkt_serialize_exit(ifp->if_serializer);
1024 		goto done;
1025 	}
1026 
1027 	if (ip->ip_off & IP_DF) {
1028 		error = EMSGSIZE;
1029 		/*
1030 		 * This case can happen if the user changed the MTU
1031 		 * of an interface after enabling IP on it.  Because
1032 		 * most netifs don't keep track of routes pointing to
1033 		 * them, there is no way for one to update all its
1034 		 * routes when the MTU is changed.
1035 		 */
1036 		if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
1037 		    !(ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) &&
1038 		    (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
1039 			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
1040 		}
1041 		ipstat.ips_cantfrag++;
1042 		goto bad;
1043 	}
1044 
1045 	/*
1046 	 * Too large for interface; fragment if possible. If successful,
1047 	 * on return, m will point to a list of packets to be sent.
1048 	 */
1049 	error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum);
1050 	if (error)
1051 		goto bad;
1052 	for (; m; m = m0) {
1053 		m0 = m->m_nextpkt;
1054 		m->m_nextpkt = NULL;
1055 #ifdef IPSEC
1056 		/* clean ipsec history once it goes out of the node */
1057 		ipsec_delaux(m);
1058 #endif
1059 		if (error == 0) {
1060 			/* Record statistics for this interface address. */
1061 			if (ia != NULL) {
1062 				ia->ia_ifa.if_opackets++;
1063 				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1064 			}
1065 			lwkt_serialize_enter(ifp->if_serializer);
1066 			error = (*ifp->if_output)(ifp, m,
1067 						  (struct sockaddr *)dst,
1068 						  ro->ro_rt);
1069 			lwkt_serialize_exit(ifp->if_serializer);
1070 		} else {
1071 			m_freem(m);
1072 		}
1073 	}
1074 
1075 	if (error == 0)
1076 		ipstat.ips_fragmented++;
1077 
1078 done:
1079 	if (ro == &iproute && ro->ro_rt != NULL) {
1080 		RTFREE(ro->ro_rt);
1081 		ro->ro_rt = NULL;
1082 	}
1083 #ifdef IPSEC
1084 	if (sp != NULL) {
1085 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1086 			kprintf("DP ip_output call free SP:%p\n", sp));
1087 		key_freesp(sp);
1088 	}
1089 #endif
1090 #ifdef FAST_IPSEC
1091 	if (sp != NULL)
1092 		KEY_FREESP(&sp);
1093 #endif
1094 	if (dn_mtag != NULL)
1095 		m_tag_free(dn_mtag);
1096 
1097 	return (error);
1098 bad:
1099 	m_freem(m);
1100 	goto done;
1101 }
1102 
1103 /*
1104  * Create a chain of fragments which fit the given mtu. m_frag points to the
1105  * mbuf to be fragmented; on return it points to the chain with the fragments.
1106  * Return 0 if no error. If error, m_frag may contain a partially built
1107  * chain of fragments that should be freed by the caller.
1108  *
1109  * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
1110  * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
1111  */
1112 int
1113 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
1114 	    u_long if_hwassist_flags, int sw_csum)
1115 {
1116 	int error = 0;
1117 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1118 	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
1119 	int off;
1120 	struct mbuf *m0 = *m_frag;	/* the original packet		*/
1121 	int firstlen;
1122 	struct mbuf **mnext;
1123 	int nfrags;
1124 
1125 	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
1126 		ipstat.ips_cantfrag++;
1127 		return EMSGSIZE;
1128 	}
1129 
1130 	/*
1131 	 * Must be able to put at least 8 bytes per fragment.
1132 	 */
1133 	if (len < 8)
1134 		return EMSGSIZE;
1135 
1136 	/*
1137 	 * If the interface will not calculate checksums on
1138 	 * fragmented packets, then do it here.
1139 	 */
1140 	if ((m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) &&
1141 	    !(if_hwassist_flags & CSUM_IP_FRAGS)) {
1142 		in_delayed_cksum(m0);
1143 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1144 	}
1145 
1146 	if (len > PAGE_SIZE) {
1147 		/*
1148 		 * Fragment large datagrams such that each segment
1149 		 * contains a multiple of PAGE_SIZE amount of data,
1150 		 * plus headers. This enables a receiver to perform
1151 		 * page-flipping zero-copy optimizations.
1152 		 *
1153 		 * XXX When does this help given that sender and receiver
1154 		 * could have different page sizes, and also mtu could
1155 		 * be less than the receiver's page size ?
1156 		 */
1157 		int newlen;
1158 		struct mbuf *m;
1159 
1160 		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
1161 			off += m->m_len;
1162 
1163 		/*
1164 		 * firstlen (off - hlen) must be aligned on an
1165 		 * 8-byte boundary
1166 		 */
1167 		if (off < hlen)
1168 			goto smart_frag_failure;
1169 		off = ((off - hlen) & ~7) + hlen;
1170 		newlen = (~PAGE_MASK) & mtu;
1171 		if ((newlen + sizeof(struct ip)) > mtu) {
1172 			/* we failed, go back the default */
1173 smart_frag_failure:
1174 			newlen = len;
1175 			off = hlen + len;
1176 		}
1177 		len = newlen;
1178 
1179 	} else {
1180 		off = hlen + len;
1181 	}
1182 
1183 	firstlen = off - hlen;
1184 	mnext = &m0->m_nextpkt;		/* pointer to next packet */
1185 
1186 	/*
1187 	 * Loop through length of segment after first fragment,
1188 	 * make new header and copy data of each part and link onto chain.
1189 	 * Here, m0 is the original packet, m is the fragment being created.
1190 	 * The fragments are linked off the m_nextpkt of the original
1191 	 * packet, which after processing serves as the first fragment.
1192 	 */
1193 	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
1194 		struct ip *mhip;	/* ip header on the fragment */
1195 		struct mbuf *m;
1196 		int mhlen = sizeof(struct ip);
1197 
1198 		MGETHDR(m, MB_DONTWAIT, MT_HEADER);
1199 		if (m == NULL) {
1200 			error = ENOBUFS;
1201 			ipstat.ips_odropped++;
1202 			goto done;
1203 		}
1204 		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
1205 		/*
1206 		 * In the first mbuf, leave room for the link header, then
1207 		 * copy the original IP header including options. The payload
1208 		 * goes into an additional mbuf chain returned by m_copy().
1209 		 */
1210 		m->m_data += max_linkhdr;
1211 		mhip = mtod(m, struct ip *);
1212 		*mhip = *ip;
1213 		if (hlen > sizeof(struct ip)) {
1214 			mhlen = ip_optcopy(ip, mhip) + sizeof(struct ip);
1215 			mhip->ip_vhl = IP_MAKE_VHL(IPVERSION, mhlen >> 2);
1216 		}
1217 		m->m_len = mhlen;
1218 		/* XXX do we need to add ip->ip_off below ? */
1219 		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
1220 		if (off + len >= ip->ip_len) {	/* last fragment */
1221 			len = ip->ip_len - off;
1222 			m->m_flags |= M_LASTFRAG;
1223 		} else
1224 			mhip->ip_off |= IP_MF;
1225 		mhip->ip_len = htons((u_short)(len + mhlen));
1226 		m->m_next = m_copy(m0, off, len);
1227 		if (m->m_next == NULL) {		/* copy failed */
1228 			m_free(m);
1229 			error = ENOBUFS;	/* ??? */
1230 			ipstat.ips_odropped++;
1231 			goto done;
1232 		}
1233 		m->m_pkthdr.len = mhlen + len;
1234 		m->m_pkthdr.rcvif = (struct ifnet *)NULL;
1235 		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
1236 		mhip->ip_off = htons(mhip->ip_off);
1237 		mhip->ip_sum = 0;
1238 		if (sw_csum & CSUM_DELAY_IP)
1239 			mhip->ip_sum = in_cksum(m, mhlen);
1240 		*mnext = m;
1241 		mnext = &m->m_nextpkt;
1242 	}
1243 	ipstat.ips_ofragments += nfrags;
1244 
1245 	/* set first marker for fragment chain */
1246 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1247 	m0->m_pkthdr.csum_data = nfrags;
1248 
1249 	/*
1250 	 * Update first fragment by trimming what's been copied out
1251 	 * and updating header.
1252 	 */
1253 	m_adj(m0, hlen + firstlen - ip->ip_len);
1254 	m0->m_pkthdr.len = hlen + firstlen;
1255 	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1256 	ip->ip_off |= IP_MF;
1257 	ip->ip_off = htons(ip->ip_off);
1258 	ip->ip_sum = 0;
1259 	if (sw_csum & CSUM_DELAY_IP)
1260 		ip->ip_sum = in_cksum(m0, hlen);
1261 
1262 done:
1263 	*m_frag = m0;
1264 	return error;
1265 }
1266 
1267 void
1268 in_delayed_cksum(struct mbuf *m)
1269 {
1270 	struct ip *ip;
1271 	u_short csum, offset;
1272 
1273 	ip = mtod(m, struct ip *);
1274 	offset = IP_VHL_HL(ip->ip_vhl) << 2 ;
1275 	csum = in_cksum_skip(m, ip->ip_len, offset);
1276 	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
1277 		csum = 0xffff;
1278 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
1279 
1280 	if (offset + sizeof(u_short) > m->m_len) {
1281 		kprintf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
1282 		    m->m_len, offset, ip->ip_p);
1283 		/*
1284 		 * XXX
1285 		 * this shouldn't happen, but if it does, the
1286 		 * correct behavior may be to insert the checksum
1287 		 * in the existing chain instead of rearranging it.
1288 		 */
1289 		m = m_pullup(m, offset + sizeof(u_short));
1290 	}
1291 	*(u_short *)(m->m_data + offset) = csum;
1292 }
1293 
1294 /*
1295  * Insert IP options into preformed packet.
1296  * Adjust IP destination as required for IP source routing,
1297  * as indicated by a non-zero in_addr at the start of the options.
1298  *
1299  * XXX This routine assumes that the packet has no options in place.
1300  */
1301 static struct mbuf *
1302 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1303 {
1304 	struct ipoption *p = mtod(opt, struct ipoption *);
1305 	struct mbuf *n;
1306 	struct ip *ip = mtod(m, struct ip *);
1307 	unsigned optlen;
1308 
1309 	optlen = opt->m_len - sizeof p->ipopt_dst;
1310 	if (optlen + (u_short)ip->ip_len > IP_MAXPACKET) {
1311 		*phlen = 0;
1312 		return (m);		/* XXX should fail */
1313 	}
1314 	if (p->ipopt_dst.s_addr)
1315 		ip->ip_dst = p->ipopt_dst;
1316 	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
1317 		MGETHDR(n, MB_DONTWAIT, MT_HEADER);
1318 		if (n == NULL) {
1319 			*phlen = 0;
1320 			return (m);
1321 		}
1322 		n->m_pkthdr.rcvif = (struct ifnet *)NULL;
1323 		n->m_pkthdr.len = m->m_pkthdr.len + optlen;
1324 		m->m_len -= sizeof(struct ip);
1325 		m->m_data += sizeof(struct ip);
1326 		n->m_next = m;
1327 		m = n;
1328 		m->m_len = optlen + sizeof(struct ip);
1329 		m->m_data += max_linkhdr;
1330 		memcpy(mtod(m, void *), ip, sizeof(struct ip));
1331 	} else {
1332 		m->m_data -= optlen;
1333 		m->m_len += optlen;
1334 		m->m_pkthdr.len += optlen;
1335 		ovbcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
1336 	}
1337 	ip = mtod(m, struct ip *);
1338 	bcopy(p->ipopt_list, ip + 1, optlen);
1339 	*phlen = sizeof(struct ip) + optlen;
1340 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, *phlen >> 2);
1341 	ip->ip_len += optlen;
1342 	return (m);
1343 }
1344 
1345 /*
1346  * Copy options from ip to jp,
1347  * omitting those not copied during fragmentation.
1348  */
1349 int
1350 ip_optcopy(struct ip *ip, struct ip *jp)
1351 {
1352 	u_char *cp, *dp;
1353 	int opt, optlen, cnt;
1354 
1355 	cp = (u_char *)(ip + 1);
1356 	dp = (u_char *)(jp + 1);
1357 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1358 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1359 		opt = cp[0];
1360 		if (opt == IPOPT_EOL)
1361 			break;
1362 		if (opt == IPOPT_NOP) {
1363 			/* Preserve for IP mcast tunnel's LSRR alignment. */
1364 			*dp++ = IPOPT_NOP;
1365 			optlen = 1;
1366 			continue;
1367 		}
1368 
1369 		KASSERT(cnt >= IPOPT_OLEN + sizeof *cp,
1370 		    ("ip_optcopy: malformed ipv4 option"));
1371 		optlen = cp[IPOPT_OLEN];
1372 		KASSERT(optlen >= IPOPT_OLEN + sizeof *cp && optlen <= cnt,
1373 		    ("ip_optcopy: malformed ipv4 option"));
1374 
1375 		/* bogus lengths should have been caught by ip_dooptions */
1376 		if (optlen > cnt)
1377 			optlen = cnt;
1378 		if (IPOPT_COPIED(opt)) {
1379 			bcopy(cp, dp, optlen);
1380 			dp += optlen;
1381 		}
1382 	}
1383 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1384 		*dp++ = IPOPT_EOL;
1385 	return (optlen);
1386 }
1387 
1388 /*
1389  * IP socket option processing.
1390  */
1391 int
1392 ip_ctloutput(struct socket *so, struct sockopt *sopt)
1393 {
1394 	struct	inpcb *inp = so->so_pcb;
1395 	int	error, optval;
1396 
1397 	error = optval = 0;
1398 	if (sopt->sopt_level != IPPROTO_IP) {
1399 		return (EINVAL);
1400 	}
1401 
1402 	switch (sopt->sopt_dir) {
1403 	case SOPT_SET:
1404 		switch (sopt->sopt_name) {
1405 		case IP_OPTIONS:
1406 #ifdef notyet
1407 		case IP_RETOPTS:
1408 #endif
1409 		{
1410 			struct mbuf *m;
1411 			if (sopt->sopt_valsize > MLEN) {
1412 				error = EMSGSIZE;
1413 				break;
1414 			}
1415 			MGET(m, sopt->sopt_td ? MB_WAIT : MB_DONTWAIT, MT_HEADER);
1416 			if (m == NULL) {
1417 				error = ENOBUFS;
1418 				break;
1419 			}
1420 			m->m_len = sopt->sopt_valsize;
1421 			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1422 					    m->m_len);
1423 
1424 			return (ip_pcbopts(sopt->sopt_name, &inp->inp_options,
1425 					   m));
1426 		}
1427 
1428 		case IP_TOS:
1429 		case IP_TTL:
1430 		case IP_MINTTL:
1431 		case IP_RECVOPTS:
1432 		case IP_RECVRETOPTS:
1433 		case IP_RECVDSTADDR:
1434 		case IP_RECVIF:
1435 		case IP_RECVTTL:
1436 		case IP_FAITH:
1437 			error = sooptcopyin(sopt, &optval, sizeof optval,
1438 					    sizeof optval);
1439 			if (error)
1440 				break;
1441 
1442 			switch (sopt->sopt_name) {
1443 			case IP_TOS:
1444 				inp->inp_ip_tos = optval;
1445 				break;
1446 
1447 			case IP_TTL:
1448 				inp->inp_ip_ttl = optval;
1449 				break;
1450 			case IP_MINTTL:
1451 				if (optval > 0 && optval <= MAXTTL)
1452 					inp->inp_ip_minttl = optval;
1453 				else
1454 					error = EINVAL;
1455 				break;
1456 #define	OPTSET(bit) \
1457 	if (optval) \
1458 		inp->inp_flags |= bit; \
1459 	else \
1460 		inp->inp_flags &= ~bit;
1461 
1462 			case IP_RECVOPTS:
1463 				OPTSET(INP_RECVOPTS);
1464 				break;
1465 
1466 			case IP_RECVRETOPTS:
1467 				OPTSET(INP_RECVRETOPTS);
1468 				break;
1469 
1470 			case IP_RECVDSTADDR:
1471 				OPTSET(INP_RECVDSTADDR);
1472 				break;
1473 
1474 			case IP_RECVIF:
1475 				OPTSET(INP_RECVIF);
1476 				break;
1477 
1478 			case IP_RECVTTL:
1479 				OPTSET(INP_RECVTTL);
1480 				break;
1481 
1482 			case IP_FAITH:
1483 				OPTSET(INP_FAITH);
1484 				break;
1485 			}
1486 			break;
1487 #undef OPTSET
1488 
1489 		case IP_MULTICAST_IF:
1490 		case IP_MULTICAST_VIF:
1491 		case IP_MULTICAST_TTL:
1492 		case IP_MULTICAST_LOOP:
1493 		case IP_ADD_MEMBERSHIP:
1494 		case IP_DROP_MEMBERSHIP:
1495 			error = ip_setmoptions(sopt, &inp->inp_moptions);
1496 			break;
1497 
1498 		case IP_PORTRANGE:
1499 			error = sooptcopyin(sopt, &optval, sizeof optval,
1500 					    sizeof optval);
1501 			if (error)
1502 				break;
1503 
1504 			switch (optval) {
1505 			case IP_PORTRANGE_DEFAULT:
1506 				inp->inp_flags &= ~(INP_LOWPORT);
1507 				inp->inp_flags &= ~(INP_HIGHPORT);
1508 				break;
1509 
1510 			case IP_PORTRANGE_HIGH:
1511 				inp->inp_flags &= ~(INP_LOWPORT);
1512 				inp->inp_flags |= INP_HIGHPORT;
1513 				break;
1514 
1515 			case IP_PORTRANGE_LOW:
1516 				inp->inp_flags &= ~(INP_HIGHPORT);
1517 				inp->inp_flags |= INP_LOWPORT;
1518 				break;
1519 
1520 			default:
1521 				error = EINVAL;
1522 				break;
1523 			}
1524 			break;
1525 
1526 #if defined(IPSEC) || defined(FAST_IPSEC)
1527 		case IP_IPSEC_POLICY:
1528 		{
1529 			caddr_t req;
1530 			size_t len = 0;
1531 			int priv;
1532 			struct mbuf *m;
1533 			int optname;
1534 
1535 			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1536 				break;
1537 			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1538 				break;
1539 			priv = (sopt->sopt_td != NULL &&
1540 				suser(sopt->sopt_td) != 0) ? 0 : 1;
1541 			req = mtod(m, caddr_t);
1542 			len = m->m_len;
1543 			optname = sopt->sopt_name;
1544 			error = ipsec4_set_policy(inp, optname, req, len, priv);
1545 			m_freem(m);
1546 			break;
1547 		}
1548 #endif /*IPSEC*/
1549 
1550 		default:
1551 			error = ENOPROTOOPT;
1552 			break;
1553 		}
1554 		break;
1555 
1556 	case SOPT_GET:
1557 		switch (sopt->sopt_name) {
1558 		case IP_OPTIONS:
1559 		case IP_RETOPTS:
1560 			if (inp->inp_options)
1561 				error = sooptcopyout(sopt,
1562 						     mtod(inp->inp_options,
1563 							  char *),
1564 						     inp->inp_options->m_len);
1565 			else
1566 				sopt->sopt_valsize = 0;
1567 			break;
1568 
1569 		case IP_TOS:
1570 		case IP_TTL:
1571 		case IP_MINTTL:
1572 		case IP_RECVOPTS:
1573 		case IP_RECVRETOPTS:
1574 		case IP_RECVDSTADDR:
1575 		case IP_RECVTTL:
1576 		case IP_RECVIF:
1577 		case IP_PORTRANGE:
1578 		case IP_FAITH:
1579 			switch (sopt->sopt_name) {
1580 
1581 			case IP_TOS:
1582 				optval = inp->inp_ip_tos;
1583 				break;
1584 
1585 			case IP_TTL:
1586 				optval = inp->inp_ip_ttl;
1587 				break;
1588 			case IP_MINTTL:
1589 				optval = inp->inp_ip_minttl;
1590 				break;
1591 
1592 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1593 
1594 			case IP_RECVOPTS:
1595 				optval = OPTBIT(INP_RECVOPTS);
1596 				break;
1597 
1598 			case IP_RECVRETOPTS:
1599 				optval = OPTBIT(INP_RECVRETOPTS);
1600 				break;
1601 
1602 			case IP_RECVDSTADDR:
1603 				optval = OPTBIT(INP_RECVDSTADDR);
1604 				break;
1605 
1606 			case IP_RECVTTL:
1607 				optval = OPTBIT(INP_RECVTTL);
1608 				break;
1609 
1610 			case IP_RECVIF:
1611 				optval = OPTBIT(INP_RECVIF);
1612 				break;
1613 
1614 			case IP_PORTRANGE:
1615 				if (inp->inp_flags & INP_HIGHPORT)
1616 					optval = IP_PORTRANGE_HIGH;
1617 				else if (inp->inp_flags & INP_LOWPORT)
1618 					optval = IP_PORTRANGE_LOW;
1619 				else
1620 					optval = 0;
1621 				break;
1622 
1623 			case IP_FAITH:
1624 				optval = OPTBIT(INP_FAITH);
1625 				break;
1626 			}
1627 			error = sooptcopyout(sopt, &optval, sizeof optval);
1628 			break;
1629 
1630 		case IP_MULTICAST_IF:
1631 		case IP_MULTICAST_VIF:
1632 		case IP_MULTICAST_TTL:
1633 		case IP_MULTICAST_LOOP:
1634 		case IP_ADD_MEMBERSHIP:
1635 		case IP_DROP_MEMBERSHIP:
1636 			error = ip_getmoptions(sopt, inp->inp_moptions);
1637 			break;
1638 
1639 #if defined(IPSEC) || defined(FAST_IPSEC)
1640 		case IP_IPSEC_POLICY:
1641 		{
1642 			struct mbuf *m = NULL;
1643 			caddr_t req = NULL;
1644 			size_t len = 0;
1645 
1646 			if (m != NULL) {
1647 				req = mtod(m, caddr_t);
1648 				len = m->m_len;
1649 			}
1650 			error = ipsec4_get_policy(so->so_pcb, req, len, &m);
1651 			if (error == 0)
1652 				error = soopt_mcopyout(sopt, m); /* XXX */
1653 			if (error == 0)
1654 				m_freem(m);
1655 			break;
1656 		}
1657 #endif /*IPSEC*/
1658 
1659 		default:
1660 			error = ENOPROTOOPT;
1661 			break;
1662 		}
1663 		break;
1664 	}
1665 	return (error);
1666 }
1667 
1668 /*
1669  * Set up IP options in pcb for insertion in output packets.
1670  * Store in mbuf with pointer in pcbopt, adding pseudo-option
1671  * with destination address if source routed.
1672  */
1673 static int
1674 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1675 {
1676 	int cnt, optlen;
1677 	u_char *cp;
1678 	u_char opt;
1679 
1680 	/* turn off any old options */
1681 	if (*pcbopt)
1682 		m_free(*pcbopt);
1683 	*pcbopt = 0;
1684 	if (m == NULL || m->m_len == 0) {
1685 		/*
1686 		 * Only turning off any previous options.
1687 		 */
1688 		if (m != NULL)
1689 			m_free(m);
1690 		return (0);
1691 	}
1692 
1693 	if (m->m_len % sizeof(int32_t))
1694 		goto bad;
1695 	/*
1696 	 * IP first-hop destination address will be stored before
1697 	 * actual options; move other options back
1698 	 * and clear it when none present.
1699 	 */
1700 	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1701 		goto bad;
1702 	cnt = m->m_len;
1703 	m->m_len += sizeof(struct in_addr);
1704 	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1705 	ovbcopy(mtod(m, caddr_t), cp, cnt);
1706 	bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1707 
1708 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1709 		opt = cp[IPOPT_OPTVAL];
1710 		if (opt == IPOPT_EOL)
1711 			break;
1712 		if (opt == IPOPT_NOP)
1713 			optlen = 1;
1714 		else {
1715 			if (cnt < IPOPT_OLEN + sizeof *cp)
1716 				goto bad;
1717 			optlen = cp[IPOPT_OLEN];
1718 			if (optlen < IPOPT_OLEN + sizeof *cp || optlen > cnt)
1719 				goto bad;
1720 		}
1721 		switch (opt) {
1722 
1723 		default:
1724 			break;
1725 
1726 		case IPOPT_LSRR:
1727 		case IPOPT_SSRR:
1728 			/*
1729 			 * user process specifies route as:
1730 			 *	->A->B->C->D
1731 			 * D must be our final destination (but we can't
1732 			 * check that since we may not have connected yet).
1733 			 * A is first hop destination, which doesn't appear in
1734 			 * actual IP option, but is stored before the options.
1735 			 */
1736 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1737 				goto bad;
1738 			m->m_len -= sizeof(struct in_addr);
1739 			cnt -= sizeof(struct in_addr);
1740 			optlen -= sizeof(struct in_addr);
1741 			cp[IPOPT_OLEN] = optlen;
1742 			/*
1743 			 * Move first hop before start of options.
1744 			 */
1745 			bcopy(&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1746 			      sizeof(struct in_addr));
1747 			/*
1748 			 * Then copy rest of options back
1749 			 * to close up the deleted entry.
1750 			 */
1751 			ovbcopy(&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1752 				&cp[IPOPT_OFFSET+1],
1753 				cnt - (IPOPT_MINOFF - 1));
1754 			break;
1755 		}
1756 	}
1757 	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1758 		goto bad;
1759 	*pcbopt = m;
1760 	return (0);
1761 
1762 bad:
1763 	m_free(m);
1764 	return (EINVAL);
1765 }
1766 
1767 /*
1768  * XXX
1769  * The whole multicast option thing needs to be re-thought.
1770  * Several of these options are equally applicable to non-multicast
1771  * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1772  * standard option (IP_TTL).
1773  */
1774 
1775 /*
1776  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1777  */
1778 static struct ifnet *
1779 ip_multicast_if(struct in_addr *a, int *ifindexp)
1780 {
1781 	int ifindex;
1782 	struct ifnet *ifp;
1783 
1784 	if (ifindexp)
1785 		*ifindexp = 0;
1786 	if (ntohl(a->s_addr) >> 24 == 0) {
1787 		ifindex = ntohl(a->s_addr) & 0xffffff;
1788 		if (ifindex < 0 || if_index < ifindex)
1789 			return NULL;
1790 		ifp = ifindex2ifnet[ifindex];
1791 		if (ifindexp)
1792 			*ifindexp = ifindex;
1793 	} else {
1794 		INADDR_TO_IFP(*a, ifp);
1795 	}
1796 	return ifp;
1797 }
1798 
1799 /*
1800  * Set the IP multicast options in response to user setsockopt().
1801  */
1802 static int
1803 ip_setmoptions(struct sockopt *sopt, struct ip_moptions **imop)
1804 {
1805 	int error = 0;
1806 	int i;
1807 	struct in_addr addr;
1808 	struct ip_mreq mreq;
1809 	struct ifnet *ifp;
1810 	struct ip_moptions *imo = *imop;
1811 	int ifindex;
1812 
1813 	if (imo == NULL) {
1814 		/*
1815 		 * No multicast option buffer attached to the pcb;
1816 		 * allocate one and initialize to default values.
1817 		 */
1818 		imo = kmalloc(sizeof *imo, M_IPMOPTS, M_WAITOK);
1819 
1820 		if (imo == NULL)
1821 			return (ENOBUFS);
1822 		*imop = imo;
1823 		imo->imo_multicast_ifp = NULL;
1824 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
1825 		imo->imo_multicast_vif = -1;
1826 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1827 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1828 		imo->imo_num_memberships = 0;
1829 	}
1830 
1831 	switch (sopt->sopt_name) {
1832 	/* store an index number for the vif you wanna use in the send */
1833 	case IP_MULTICAST_VIF:
1834 		if (legal_vif_num == 0) {
1835 			error = EOPNOTSUPP;
1836 			break;
1837 		}
1838 		error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1839 		if (error)
1840 			break;
1841 		if (!legal_vif_num(i) && (i != -1)) {
1842 			error = EINVAL;
1843 			break;
1844 		}
1845 		imo->imo_multicast_vif = i;
1846 		break;
1847 
1848 	case IP_MULTICAST_IF:
1849 		/*
1850 		 * Select the interface for outgoing multicast packets.
1851 		 */
1852 		error = sooptcopyin(sopt, &addr, sizeof addr, sizeof addr);
1853 		if (error)
1854 			break;
1855 		/*
1856 		 * INADDR_ANY is used to remove a previous selection.
1857 		 * When no interface is selected, a default one is
1858 		 * chosen every time a multicast packet is sent.
1859 		 */
1860 		if (addr.s_addr == INADDR_ANY) {
1861 			imo->imo_multicast_ifp = NULL;
1862 			break;
1863 		}
1864 		/*
1865 		 * The selected interface is identified by its local
1866 		 * IP address.  Find the interface and confirm that
1867 		 * it supports multicasting.
1868 		 */
1869 		crit_enter();
1870 		ifp = ip_multicast_if(&addr, &ifindex);
1871 		if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
1872 			crit_exit();
1873 			error = EADDRNOTAVAIL;
1874 			break;
1875 		}
1876 		imo->imo_multicast_ifp = ifp;
1877 		if (ifindex)
1878 			imo->imo_multicast_addr = addr;
1879 		else
1880 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1881 		crit_exit();
1882 		break;
1883 
1884 	case IP_MULTICAST_TTL:
1885 		/*
1886 		 * Set the IP time-to-live for outgoing multicast packets.
1887 		 * The original multicast API required a char argument,
1888 		 * which is inconsistent with the rest of the socket API.
1889 		 * We allow either a char or an int.
1890 		 */
1891 		if (sopt->sopt_valsize == 1) {
1892 			u_char ttl;
1893 			error = sooptcopyin(sopt, &ttl, 1, 1);
1894 			if (error)
1895 				break;
1896 			imo->imo_multicast_ttl = ttl;
1897 		} else {
1898 			u_int ttl;
1899 			error = sooptcopyin(sopt, &ttl, sizeof ttl, sizeof ttl);
1900 			if (error)
1901 				break;
1902 			if (ttl > 255)
1903 				error = EINVAL;
1904 			else
1905 				imo->imo_multicast_ttl = ttl;
1906 		}
1907 		break;
1908 
1909 	case IP_MULTICAST_LOOP:
1910 		/*
1911 		 * Set the loopback flag for outgoing multicast packets.
1912 		 * Must be zero or one.  The original multicast API required a
1913 		 * char argument, which is inconsistent with the rest
1914 		 * of the socket API.  We allow either a char or an int.
1915 		 */
1916 		if (sopt->sopt_valsize == 1) {
1917 			u_char loop;
1918 
1919 			error = sooptcopyin(sopt, &loop, 1, 1);
1920 			if (error)
1921 				break;
1922 			imo->imo_multicast_loop = !!loop;
1923 		} else {
1924 			u_int loop;
1925 
1926 			error = sooptcopyin(sopt, &loop, sizeof loop,
1927 					    sizeof loop);
1928 			if (error)
1929 				break;
1930 			imo->imo_multicast_loop = !!loop;
1931 		}
1932 		break;
1933 
1934 	case IP_ADD_MEMBERSHIP:
1935 		/*
1936 		 * Add a multicast group membership.
1937 		 * Group must be a valid IP multicast address.
1938 		 */
1939 		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1940 		if (error)
1941 			break;
1942 
1943 		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1944 			error = EINVAL;
1945 			break;
1946 		}
1947 		crit_enter();
1948 		/*
1949 		 * If no interface address was provided, use the interface of
1950 		 * the route to the given multicast address.
1951 		 */
1952 		if (mreq.imr_interface.s_addr == INADDR_ANY) {
1953 			struct sockaddr_in dst;
1954 			struct rtentry *rt;
1955 
1956 			bzero(&dst, sizeof(struct sockaddr_in));
1957 			dst.sin_len = sizeof(struct sockaddr_in);
1958 			dst.sin_family = AF_INET;
1959 			dst.sin_addr = mreq.imr_multiaddr;
1960 			rt = rtlookup((struct sockaddr *)&dst);
1961 			if (rt == NULL) {
1962 				error = EADDRNOTAVAIL;
1963 				crit_exit();
1964 				break;
1965 			}
1966 			--rt->rt_refcnt;
1967 			ifp = rt->rt_ifp;
1968 		} else {
1969 			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1970 		}
1971 
1972 		/*
1973 		 * See if we found an interface, and confirm that it
1974 		 * supports multicast.
1975 		 */
1976 		if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
1977 			error = EADDRNOTAVAIL;
1978 			crit_exit();
1979 			break;
1980 		}
1981 		/*
1982 		 * See if the membership already exists or if all the
1983 		 * membership slots are full.
1984 		 */
1985 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1986 			if (imo->imo_membership[i]->inm_ifp == ifp &&
1987 			    imo->imo_membership[i]->inm_addr.s_addr
1988 						== mreq.imr_multiaddr.s_addr)
1989 				break;
1990 		}
1991 		if (i < imo->imo_num_memberships) {
1992 			error = EADDRINUSE;
1993 			crit_exit();
1994 			break;
1995 		}
1996 		if (i == IP_MAX_MEMBERSHIPS) {
1997 			error = ETOOMANYREFS;
1998 			crit_exit();
1999 			break;
2000 		}
2001 		/*
2002 		 * Everything looks good; add a new record to the multicast
2003 		 * address list for the given interface.
2004 		 */
2005 		if ((imo->imo_membership[i] =
2006 		     in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
2007 			error = ENOBUFS;
2008 			crit_exit();
2009 			break;
2010 		}
2011 		++imo->imo_num_memberships;
2012 		crit_exit();
2013 		break;
2014 
2015 	case IP_DROP_MEMBERSHIP:
2016 		/*
2017 		 * Drop a multicast group membership.
2018 		 * Group must be a valid IP multicast address.
2019 		 */
2020 		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
2021 		if (error)
2022 			break;
2023 
2024 		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
2025 			error = EINVAL;
2026 			break;
2027 		}
2028 
2029 		crit_enter();
2030 		/*
2031 		 * If an interface address was specified, get a pointer
2032 		 * to its ifnet structure.
2033 		 */
2034 		if (mreq.imr_interface.s_addr == INADDR_ANY)
2035 			ifp = NULL;
2036 		else {
2037 			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
2038 			if (ifp == NULL) {
2039 				error = EADDRNOTAVAIL;
2040 				crit_exit();
2041 				break;
2042 			}
2043 		}
2044 		/*
2045 		 * Find the membership in the membership array.
2046 		 */
2047 		for (i = 0; i < imo->imo_num_memberships; ++i) {
2048 			if ((ifp == NULL ||
2049 			     imo->imo_membership[i]->inm_ifp == ifp) &&
2050 			    imo->imo_membership[i]->inm_addr.s_addr ==
2051 			    mreq.imr_multiaddr.s_addr)
2052 				break;
2053 		}
2054 		if (i == imo->imo_num_memberships) {
2055 			error = EADDRNOTAVAIL;
2056 			crit_exit();
2057 			break;
2058 		}
2059 		/*
2060 		 * Give up the multicast address record to which the
2061 		 * membership points.
2062 		 */
2063 		in_delmulti(imo->imo_membership[i]);
2064 		/*
2065 		 * Remove the gap in the membership array.
2066 		 */
2067 		for (++i; i < imo->imo_num_memberships; ++i)
2068 			imo->imo_membership[i-1] = imo->imo_membership[i];
2069 		--imo->imo_num_memberships;
2070 		crit_exit();
2071 		break;
2072 
2073 	default:
2074 		error = EOPNOTSUPP;
2075 		break;
2076 	}
2077 
2078 	/*
2079 	 * If all options have default values, no need to keep the mbuf.
2080 	 */
2081 	if (imo->imo_multicast_ifp == NULL &&
2082 	    imo->imo_multicast_vif == -1 &&
2083 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
2084 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
2085 	    imo->imo_num_memberships == 0) {
2086 		kfree(*imop, M_IPMOPTS);
2087 		*imop = NULL;
2088 	}
2089 
2090 	return (error);
2091 }
2092 
2093 /*
2094  * Return the IP multicast options in response to user getsockopt().
2095  */
2096 static int
2097 ip_getmoptions(struct sockopt *sopt, struct ip_moptions *imo)
2098 {
2099 	struct in_addr addr;
2100 	struct in_ifaddr *ia;
2101 	int error, optval;
2102 	u_char coptval;
2103 
2104 	error = 0;
2105 	switch (sopt->sopt_name) {
2106 	case IP_MULTICAST_VIF:
2107 		if (imo != NULL)
2108 			optval = imo->imo_multicast_vif;
2109 		else
2110 			optval = -1;
2111 		error = sooptcopyout(sopt, &optval, sizeof optval);
2112 		break;
2113 
2114 	case IP_MULTICAST_IF:
2115 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
2116 			addr.s_addr = INADDR_ANY;
2117 		else if (imo->imo_multicast_addr.s_addr) {
2118 			/* return the value user has set */
2119 			addr = imo->imo_multicast_addr;
2120 		} else {
2121 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
2122 			addr.s_addr = (ia == NULL) ? INADDR_ANY
2123 				: IA_SIN(ia)->sin_addr.s_addr;
2124 		}
2125 		error = sooptcopyout(sopt, &addr, sizeof addr);
2126 		break;
2127 
2128 	case IP_MULTICAST_TTL:
2129 		if (imo == NULL)
2130 			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
2131 		else
2132 			optval = coptval = imo->imo_multicast_ttl;
2133 		if (sopt->sopt_valsize == 1)
2134 			error = sooptcopyout(sopt, &coptval, 1);
2135 		else
2136 			error = sooptcopyout(sopt, &optval, sizeof optval);
2137 		break;
2138 
2139 	case IP_MULTICAST_LOOP:
2140 		if (imo == NULL)
2141 			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
2142 		else
2143 			optval = coptval = imo->imo_multicast_loop;
2144 		if (sopt->sopt_valsize == 1)
2145 			error = sooptcopyout(sopt, &coptval, 1);
2146 		else
2147 			error = sooptcopyout(sopt, &optval, sizeof optval);
2148 		break;
2149 
2150 	default:
2151 		error = ENOPROTOOPT;
2152 		break;
2153 	}
2154 	return (error);
2155 }
2156 
2157 /*
2158  * Discard the IP multicast options.
2159  */
2160 void
2161 ip_freemoptions(struct ip_moptions *imo)
2162 {
2163 	int i;
2164 
2165 	if (imo != NULL) {
2166 		for (i = 0; i < imo->imo_num_memberships; ++i)
2167 			in_delmulti(imo->imo_membership[i]);
2168 		kfree(imo, M_IPMOPTS);
2169 	}
2170 }
2171 
2172 /*
2173  * Routine called from ip_output() to loop back a copy of an IP multicast
2174  * packet to the input queue of a specified interface.  Note that this
2175  * calls the output routine of the loopback "driver", but with an interface
2176  * pointer that might NOT be a loopback interface -- evil, but easier than
2177  * replicating that code here.
2178  */
2179 static void
2180 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst,
2181 	     int hlen)
2182 {
2183 	struct ip *ip;
2184 	struct mbuf *copym;
2185 
2186 	copym = m_copypacket(m, MB_DONTWAIT);
2187 	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
2188 		copym = m_pullup(copym, hlen);
2189 	if (copym != NULL) {
2190 		/*
2191 		 * if the checksum hasn't been computed, mark it as valid
2192 		 */
2193 		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2194 			in_delayed_cksum(copym);
2195 			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2196 			copym->m_pkthdr.csum_flags |=
2197 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2198 			copym->m_pkthdr.csum_data = 0xffff;
2199 		}
2200 		/*
2201 		 * We don't bother to fragment if the IP length is greater
2202 		 * than the interface's MTU.  Can this possibly matter?
2203 		 */
2204 		ip = mtod(copym, struct ip *);
2205 		ip->ip_len = htons(ip->ip_len);
2206 		ip->ip_off = htons(ip->ip_off);
2207 		ip->ip_sum = 0;
2208 		if (ip->ip_vhl == IP_VHL_BORING) {
2209 			ip->ip_sum = in_cksum_hdr(ip);
2210 		} else {
2211 			ip->ip_sum = in_cksum(copym, hlen);
2212 		}
2213 		/*
2214 		 * NB:
2215 		 * It's not clear whether there are any lingering
2216 		 * reentrancy problems in other areas which might
2217 		 * be exposed by using ip_input directly (in
2218 		 * particular, everything which modifies the packet
2219 		 * in-place).  Yet another option is using the
2220 		 * protosw directly to deliver the looped back
2221 		 * packet.  For the moment, we'll err on the side
2222 		 * of safety by using if_simloop().
2223 		 */
2224 #if 1 /* XXX */
2225 		if (dst->sin_family != AF_INET) {
2226 			kprintf("ip_mloopback: bad address family %d\n",
2227 						dst->sin_family);
2228 			dst->sin_family = AF_INET;
2229 		}
2230 #endif
2231 
2232 #ifdef notdef
2233 		copym->m_pkthdr.rcvif = ifp;
2234 		ip_input(copym);
2235 #else
2236 		if_simloop(ifp, copym, dst->sin_family, 0);
2237 #endif
2238 	}
2239 }
2240