xref: /dragonfly/sys/netinet/ip_output.c (revision 8edfbc5e)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30  * $FreeBSD: src/sys/netinet/ip_output.c,v 1.99.2.37 2003/04/15 06:44:45 silby Exp $
31  */
32 
33 #define _IP_VHL
34 
35 #include "opt_ipdn.h"
36 #include "opt_ipdivert.h"
37 #include "opt_ipsec.h"
38 #include "opt_mbuf_stress_test.h"
39 #include "opt_mpls.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/protosw.h>
47 #include <sys/socket.h>
48 #include <sys/socketvar.h>
49 #include <sys/proc.h>
50 #include <sys/priv.h>
51 #include <sys/sysctl.h>
52 #include <sys/in_cksum.h>
53 #include <sys/lock.h>
54 
55 #include <sys/thread2.h>
56 #include <sys/mplock2.h>
57 #include <sys/msgport2.h>
58 
59 #include <net/if.h>
60 #include <net/netisr.h>
61 #include <net/pfil.h>
62 #include <net/route.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/ip.h>
67 #include <netinet/in_pcb.h>
68 #include <netinet/in_var.h>
69 #include <netinet/ip_var.h>
70 
71 #include <netproto/mpls/mpls_var.h>
72 
73 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
74 
75 #ifdef IPSEC
76 #include <netinet6/ipsec.h>
77 #include <netproto/key/key.h>
78 #ifdef IPSEC_DEBUG
79 #include <netproto/key/key_debug.h>
80 #else
81 #define	KEYDEBUG(lev,arg)
82 #endif
83 #endif /*IPSEC*/
84 
85 #ifdef FAST_IPSEC
86 #include <netproto/ipsec/ipsec.h>
87 #include <netproto/ipsec/xform.h>
88 #include <netproto/ipsec/key.h>
89 #endif /*FAST_IPSEC*/
90 
91 #include <net/ipfw/ip_fw.h>
92 #include <net/dummynet/ip_dummynet.h>
93 
94 #define print_ip(x, a, y)	 kprintf("%s %d.%d.%d.%d%s",\
95 				x, (ntohl(a.s_addr)>>24)&0xFF,\
96 				  (ntohl(a.s_addr)>>16)&0xFF,\
97 				  (ntohl(a.s_addr)>>8)&0xFF,\
98 				  (ntohl(a.s_addr))&0xFF, y);
99 
100 u_short ip_id;
101 
102 #ifdef MBUF_STRESS_TEST
103 int mbuf_frag_size = 0;
104 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
105 	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
106 #endif
107 
108 static int ip_do_rfc6864 = 1;
109 SYSCTL_INT(_net_inet_ip, OID_AUTO, rfc6864, CTLFLAG_RW, &ip_do_rfc6864, 0,
110     "Don't generate IP ID for DF IP datagrams");
111 
112 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
113 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
114 static void	ip_mloopback
115 	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
116 static int	ip_getmoptions
117 	(struct sockopt *, struct ip_moptions *);
118 static int	ip_pcbopts(int, struct mbuf **, struct mbuf *);
119 static int	ip_setmoptions
120 	(struct sockopt *, struct ip_moptions **);
121 
122 int	ip_optcopy(struct ip *, struct ip *);
123 
124 extern	struct protosw inetsw[];
125 
126 static int
127 ip_localforward(struct mbuf *m, const struct sockaddr_in *dst, int hlen)
128 {
129 	struct in_ifaddr_container *iac;
130 
131 	/*
132 	 * We need to figure out if we have been forwarded to a local
133 	 * socket.  If so, then we should somehow "loop back" to
134 	 * ip_input(), and get directed to the PCB as if we had received
135 	 * this packet.  This is because it may be difficult to identify
136 	 * the packets you want to forward until they are being output
137 	 * and have selected an interface (e.g. locally initiated
138 	 * packets).  If we used the loopback inteface, we would not be
139 	 * able to control what happens as the packet runs through
140 	 * ip_input() as it is done through a ISR.
141 	 */
142 	LIST_FOREACH(iac, INADDR_HASH(dst->sin_addr.s_addr), ia_hash) {
143 		/*
144 		 * If the addr to forward to is one of ours, we pretend
145 		 * to be the destination for this packet.
146 		 */
147 		if (IA_SIN(iac->ia)->sin_addr.s_addr == dst->sin_addr.s_addr)
148 			break;
149 	}
150 	if (iac != NULL) {
151 		struct ip *ip;
152 
153 		if (m->m_pkthdr.rcvif == NULL)
154 			m->m_pkthdr.rcvif = ifunit_netisr("lo0");
155 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
156 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
157 						  CSUM_PSEUDO_HDR;
158 			m->m_pkthdr.csum_data = 0xffff;
159 		}
160 		m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
161 
162 		/*
163 		 * Make sure that the IP header is in one mbuf,
164 		 * required by ip_input
165 		 */
166 		if (m->m_len < hlen) {
167 			m = m_pullup(m, hlen);
168 			if (m == NULL) {
169 				/* The packet was freed; we are done */
170 				return 1;
171 			}
172 		}
173 		ip = mtod(m, struct ip *);
174 
175 		ip->ip_len = htons(ip->ip_len);
176 		ip->ip_off = htons(ip->ip_off);
177 		ip_input(m);
178 
179 		return 1; /* The packet gets forwarded locally */
180 	}
181 	return 0;
182 }
183 
184 /*
185  * IP output.  The packet in mbuf chain m contains a skeletal IP
186  * header (with len, off, ttl, proto, tos, src, dst).
187  * The mbuf chain containing the packet will be freed.
188  * The mbuf opt, if present, will not be freed.
189  */
190 int
191 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro,
192 	  int flags, struct ip_moptions *imo, struct inpcb *inp)
193 {
194 	struct ip *ip;
195 	struct ifnet *ifp = NULL;	/* keep compiler happy */
196 	struct mbuf *m;
197 	int hlen = sizeof(struct ip);
198 	int len, error = 0;
199 	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
200 	struct in_ifaddr *ia = NULL;
201 	int isbroadcast, sw_csum;
202 	struct in_addr pkt_dst;
203 	struct route iproute;
204 	struct m_tag *mtag;
205 #ifdef IPSEC
206 	struct secpolicy *sp = NULL;
207 	struct socket *so = inp ? inp->inp_socket : NULL;
208 #endif
209 #ifdef FAST_IPSEC
210 	struct secpolicy *sp = NULL;
211 	struct tdb_ident *tdbi;
212 #endif /* FAST_IPSEC */
213 	struct sockaddr_in *next_hop = NULL;
214 	int src_was_INADDR_ANY = 0;	/* as the name says... */
215 
216 	m = m0;
217 	M_ASSERTPKTHDR(m);
218 
219 	if (ro == NULL) {
220 		ro = &iproute;
221 		bzero(ro, sizeof *ro);
222 	} else if (ro->ro_rt != NULL && ro->ro_rt->rt_cpuid != mycpuid) {
223 		if (flags & IP_DEBUGROUTE) {
224 			panic("ip_output: rt rt_cpuid %d accessed on cpu %d\n",
225 			    ro->ro_rt->rt_cpuid, mycpuid);
226 		}
227 
228 		/*
229 		 * XXX
230 		 * If the cached rtentry's owner CPU is not the current CPU,
231 		 * then don't touch the cached rtentry (remote free is too
232 		 * expensive in this context); just relocate the route.
233 		 */
234 		ro = &iproute;
235 		bzero(ro, sizeof *ro);
236 	}
237 
238 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
239 		/* Next hop */
240 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
241 		KKASSERT(mtag != NULL);
242 		next_hop = m_tag_data(mtag);
243 	}
244 
245 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
246 		struct dn_pkt *dn_pkt;
247 
248 		/* Extract info from dummynet tag */
249 		mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
250 		KKASSERT(mtag != NULL);
251 		dn_pkt = m_tag_data(mtag);
252 
253 		/*
254 		 * The packet was already tagged, so part of the
255 		 * processing was already done, and we need to go down.
256 		 * Get the calculated parameters from the tag.
257 		 */
258 		ifp = dn_pkt->ifp;
259 
260 		KKASSERT(ro == &iproute);
261 		*ro = dn_pkt->ro; /* structure copy */
262 		KKASSERT(ro->ro_rt == NULL || ro->ro_rt->rt_cpuid == mycpuid);
263 
264 		dst = dn_pkt->dn_dst;
265 		if (dst == (struct sockaddr_in *)&(dn_pkt->ro.ro_dst)) {
266 			/* If 'dst' points into dummynet tag, adjust it */
267 			dst = (struct sockaddr_in *)&(ro->ro_dst);
268 		}
269 
270 		ip = mtod(m, struct ip *);
271 		hlen = IP_VHL_HL(ip->ip_vhl) << 2 ;
272 		if (ro->ro_rt)
273 			ia = ifatoia(ro->ro_rt->rt_ifa);
274 		goto sendit;
275 	}
276 
277 	if (opt) {
278 		len = 0;
279 		m = ip_insertoptions(m, opt, &len);
280 		if (len != 0)
281 			hlen = len;
282 	}
283 	ip = mtod(m, struct ip *);
284 
285 	/*
286 	 * Fill in IP header.
287 	 */
288 	if (!(flags & (IP_FORWARDING|IP_RAWOUTPUT))) {
289 		ip->ip_vhl = IP_MAKE_VHL(IPVERSION, hlen >> 2);
290 		ip->ip_off &= IP_DF;
291 		if (ip_do_rfc6864 && (ip->ip_off & IP_DF))
292 			ip->ip_id = 0;
293 		else
294 			ip->ip_id = ip_newid();
295 		ipstat.ips_localout++;
296 	} else {
297 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
298 	}
299 
300 reroute:
301 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
302 
303 	dst = (struct sockaddr_in *)&ro->ro_dst;
304 	/*
305 	 * If there is a cached route,
306 	 * check that it is to the same destination
307 	 * and is still up.  If not, free it and try again.
308 	 * The address family should also be checked in case of sharing the
309 	 * cache with IPv6.
310 	 */
311 	if (ro->ro_rt &&
312 	    (!(ro->ro_rt->rt_flags & RTF_UP) ||
313 	     dst->sin_family != AF_INET ||
314 	     dst->sin_addr.s_addr != pkt_dst.s_addr)) {
315 		rtfree(ro->ro_rt);
316 		ro->ro_rt = NULL;
317 	}
318 	if (ro->ro_rt == NULL) {
319 		bzero(dst, sizeof *dst);
320 		dst->sin_family = AF_INET;
321 		dst->sin_len = sizeof *dst;
322 		dst->sin_addr = pkt_dst;
323 	}
324 	/*
325 	 * If routing to interface only,
326 	 * short circuit routing lookup.
327 	 */
328 	if (flags & IP_ROUTETOIF) {
329 		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
330 		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == NULL) {
331 			ipstat.ips_noroute++;
332 			error = ENETUNREACH;
333 			goto bad;
334 		}
335 		ifp = ia->ia_ifp;
336 		ip->ip_ttl = 1;
337 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
338 	} else if (IN_MULTICAST(ntohl(pkt_dst.s_addr)) &&
339 		   imo != NULL && imo->imo_multicast_ifp != NULL) {
340 		/*
341 		 * Bypass the normal routing lookup for multicast
342 		 * packets if the interface is specified.
343 		 */
344 		ifp = imo->imo_multicast_ifp;
345 		ia = IFP_TO_IA(ifp);
346 		isbroadcast = 0;	/* fool gcc */
347 	} else {
348 		/*
349 		 * If this is the case, we probably don't want to allocate
350 		 * a protocol-cloned route since we didn't get one from the
351 		 * ULP.  This lets TCP do its thing, while not burdening
352 		 * forwarding or ICMP with the overhead of cloning a route.
353 		 * Of course, we still want to do any cloning requested by
354 		 * the link layer, as this is probably required in all cases
355 		 * for correct operation (as it is for ARP).
356 		 */
357 		if (ro->ro_rt == NULL)
358 			rtalloc_ign(ro, RTF_PRCLONING);
359 		if (ro->ro_rt == NULL) {
360 			ipstat.ips_noroute++;
361 			error = EHOSTUNREACH;
362 			goto bad;
363 		}
364 		ia = ifatoia(ro->ro_rt->rt_ifa);
365 		ifp = ro->ro_rt->rt_ifp;
366 		ro->ro_rt->rt_use++;
367 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
368 			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
369 		if (ro->ro_rt->rt_flags & RTF_HOST)
370 			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
371 		else
372 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
373 	}
374 	if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
375 		m->m_flags |= M_MCAST;
376 		/*
377 		 * IP destination address is multicast.  Make sure "dst"
378 		 * still points to the address in "ro".  (It may have been
379 		 * changed to point to a gateway address, above.)
380 		 */
381 		dst = (struct sockaddr_in *)&ro->ro_dst;
382 		/*
383 		 * See if the caller provided any multicast options
384 		 */
385 		if (imo != NULL) {
386 			ip->ip_ttl = imo->imo_multicast_ttl;
387 			if (imo->imo_multicast_vif != -1) {
388 				ip->ip_src.s_addr =
389 				    ip_mcast_src ?
390 				    ip_mcast_src(imo->imo_multicast_vif) :
391 				    INADDR_ANY;
392 			}
393 		} else {
394 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
395 		}
396 		/*
397 		 * Confirm that the outgoing interface supports multicast.
398 		 */
399 		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
400 			if (!(ifp->if_flags & IFF_MULTICAST)) {
401 				ipstat.ips_noroute++;
402 				error = ENETUNREACH;
403 				goto bad;
404 			}
405 		}
406 		/*
407 		 * If source address not specified yet, use address of the
408 		 * outgoing interface.  In case, keep note we did that, so
409 		 * if the the firewall changes the next-hop causing the
410 		 * output interface to change, we can fix that.
411 		 */
412 		if (ip->ip_src.s_addr == INADDR_ANY || src_was_INADDR_ANY) {
413 			/* Interface may have no addresses. */
414 			if (ia != NULL) {
415 				ip->ip_src = IA_SIN(ia)->sin_addr;
416 				src_was_INADDR_ANY = 1;
417 			}
418 		}
419 
420 		if (ip->ip_src.s_addr != INADDR_ANY) {
421 			struct in_multi *inm;
422 
423 			inm = IN_LOOKUP_MULTI(&pkt_dst, ifp);
424 			if (inm != NULL &&
425 			    (imo == NULL || imo->imo_multicast_loop)) {
426 				/*
427 				 * If we belong to the destination multicast
428 				 * group on the outgoing interface, and the
429 				 * caller did not forbid loopback, loop back
430 				 * a copy.
431 				 */
432 				ip_mloopback(ifp, m, dst, hlen);
433 			} else {
434 				/*
435 				 * If we are acting as a multicast router,
436 				 * perform multicast forwarding as if the
437 				 * packet had just arrived on the interface
438 				 * to which we are about to send.  The
439 				 * multicast forwarding function recursively
440 				 * calls this function, using the IP_FORWARDING
441 				 * flag to prevent infinite recursion.
442 				 *
443 				 * Multicasts that are looped back by
444 				 * ip_mloopback(), above, will be forwarded by
445 				 * the ip_input() routine, if necessary.
446 				 */
447 				if (ip_mrouter && !(flags & IP_FORWARDING)) {
448 					/*
449 					 * If rsvp daemon is not running, do
450 					 * not set ip_moptions. This ensures
451 					 * that the packet is multicast and
452 					 * not just sent down one link as
453 					 * prescribed by rsvpd.
454 					 */
455 					if (!rsvp_on)
456 						imo = NULL;
457 					if (ip_mforward) {
458 						get_mplock();
459 						if (ip_mforward(ip, ifp,
460 						    m, imo) != 0) {
461 							m_freem(m);
462 							rel_mplock();
463 							goto done;
464 						}
465 						rel_mplock();
466 					}
467 				}
468 			}
469 		}
470 
471 		/*
472 		 * Multicasts with a time-to-live of zero may be looped-
473 		 * back, above, but must not be transmitted on a network.
474 		 * Also, multicasts addressed to the loopback interface
475 		 * are not sent -- the above call to ip_mloopback() will
476 		 * loop back a copy if this host actually belongs to the
477 		 * destination group on the loopback interface.
478 		 */
479 		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
480 			m_freem(m);
481 			goto done;
482 		}
483 
484 		goto sendit;
485 	} else {
486 		m->m_flags &= ~M_MCAST;
487 	}
488 
489 	/*
490 	 * If the source address is not specified yet, use the address
491 	 * of the outgoing interface.  In case, keep note we did that,
492 	 * so if the the firewall changes the next-hop causing the output
493 	 * interface to change, we can fix that.
494 	 */
495 	if (ip->ip_src.s_addr == INADDR_ANY || src_was_INADDR_ANY) {
496 		/* Interface may have no addresses. */
497 		if (ia != NULL) {
498 			ip->ip_src = IA_SIN(ia)->sin_addr;
499 			src_was_INADDR_ANY = 1;
500 		}
501 	}
502 
503 	/*
504 	 * Look for broadcast address and
505 	 * verify user is allowed to send
506 	 * such a packet.
507 	 */
508 	if (isbroadcast) {
509 		if (!(ifp->if_flags & IFF_BROADCAST)) {
510 			error = EADDRNOTAVAIL;
511 			goto bad;
512 		}
513 		if (!(flags & IP_ALLOWBROADCAST)) {
514 			error = EACCES;
515 			goto bad;
516 		}
517 		/* don't allow broadcast messages to be fragmented */
518 		if (ip->ip_len > ifp->if_mtu) {
519 			error = EMSGSIZE;
520 			goto bad;
521 		}
522 		m->m_flags |= M_BCAST;
523 	} else {
524 		m->m_flags &= ~M_BCAST;
525 	}
526 
527 sendit:
528 #ifdef IPSEC
529 	/* get SP for this packet */
530 	if (so == NULL)
531 		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, flags, &error);
532 	else
533 		sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
534 
535 	if (sp == NULL) {
536 		ipsecstat.out_inval++;
537 		goto bad;
538 	}
539 
540 	error = 0;
541 
542 	/* check policy */
543 	switch (sp->policy) {
544 	case IPSEC_POLICY_DISCARD:
545 		/*
546 		 * This packet is just discarded.
547 		 */
548 		ipsecstat.out_polvio++;
549 		goto bad;
550 
551 	case IPSEC_POLICY_BYPASS:
552 	case IPSEC_POLICY_NONE:
553 	case IPSEC_POLICY_TCP:
554 		/* no need to do IPsec. */
555 		goto skip_ipsec;
556 
557 	case IPSEC_POLICY_IPSEC:
558 		if (sp->req == NULL) {
559 			/* acquire a policy */
560 			error = key_spdacquire(sp);
561 			goto bad;
562 		}
563 		break;
564 
565 	case IPSEC_POLICY_ENTRUST:
566 	default:
567 		kprintf("ip_output: Invalid policy found. %d\n", sp->policy);
568 	}
569     {
570 	struct ipsec_output_state state;
571 	bzero(&state, sizeof state);
572 	state.m = m;
573 	if (flags & IP_ROUTETOIF) {
574 		state.ro = &iproute;
575 		bzero(&iproute, sizeof iproute);
576 	} else
577 		state.ro = ro;
578 	state.dst = (struct sockaddr *)dst;
579 
580 	ip->ip_sum = 0;
581 
582 	/*
583 	 * XXX
584 	 * delayed checksums are not currently compatible with IPsec
585 	 */
586 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
587 		in_delayed_cksum(m);
588 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
589 	}
590 
591 	ip->ip_len = htons(ip->ip_len);
592 	ip->ip_off = htons(ip->ip_off);
593 
594 	error = ipsec4_output(&state, sp, flags);
595 
596 	m = state.m;
597 	if (flags & IP_ROUTETOIF) {
598 		/*
599 		 * if we have tunnel mode SA, we may need to ignore
600 		 * IP_ROUTETOIF.
601 		 */
602 		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
603 			flags &= ~IP_ROUTETOIF;
604 			ro = state.ro;
605 		}
606 	} else
607 		ro = state.ro;
608 	dst = (struct sockaddr_in *)state.dst;
609 	if (error) {
610 		/* mbuf is already reclaimed in ipsec4_output. */
611 		m0 = NULL;
612 		switch (error) {
613 		case EHOSTUNREACH:
614 		case ENETUNREACH:
615 		case EMSGSIZE:
616 		case ENOBUFS:
617 		case ENOMEM:
618 			break;
619 		default:
620 			kprintf("ip4_output (ipsec): error code %d\n", error);
621 			/*fall through*/
622 		case ENOENT:
623 			/* don't show these error codes to the user */
624 			error = 0;
625 			break;
626 		}
627 		goto bad;
628 	}
629     }
630 
631 	/* be sure to update variables that are affected by ipsec4_output() */
632 	ip = mtod(m, struct ip *);
633 #ifdef _IP_VHL
634 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
635 #else
636 	hlen = ip->ip_hl << 2;
637 #endif
638 	if (ro->ro_rt == NULL) {
639 		if (!(flags & IP_ROUTETOIF)) {
640 			kprintf("ip_output: "
641 				"can't update route after IPsec processing\n");
642 			error = EHOSTUNREACH;	/*XXX*/
643 			goto bad;
644 		}
645 	} else {
646 		ia = ifatoia(ro->ro_rt->rt_ifa);
647 		ifp = ro->ro_rt->rt_ifp;
648 	}
649 
650 	/* make it flipped, again. */
651 	ip->ip_len = ntohs(ip->ip_len);
652 	ip->ip_off = ntohs(ip->ip_off);
653 skip_ipsec:
654 #endif /*IPSEC*/
655 #ifdef FAST_IPSEC
656 	/*
657 	 * Check the security policy (SP) for the packet and, if
658 	 * required, do IPsec-related processing.  There are two
659 	 * cases here; the first time a packet is sent through
660 	 * it will be untagged and handled by ipsec4_checkpolicy.
661 	 * If the packet is resubmitted to ip_output (e.g. after
662 	 * AH, ESP, etc. processing), there will be a tag to bypass
663 	 * the lookup and related policy checking.
664 	 */
665 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
666 	crit_enter();
667 	if (mtag != NULL) {
668 		tdbi = (struct tdb_ident *)m_tag_data(mtag);
669 		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
670 		if (sp == NULL)
671 			error = -EINVAL;	/* force silent drop */
672 		m_tag_delete(m, mtag);
673 	} else {
674 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
675 					&error, inp);
676 	}
677 	/*
678 	 * There are four return cases:
679 	 *    sp != NULL		    apply IPsec policy
680 	 *    sp == NULL, error == 0	    no IPsec handling needed
681 	 *    sp == NULL, error == -EINVAL  discard packet w/o error
682 	 *    sp == NULL, error != 0	    discard packet, report error
683 	 */
684 	if (sp != NULL) {
685 		/* Loop detection, check if ipsec processing already done */
686 		KASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
687 		for (mtag = m_tag_first(m); mtag != NULL;
688 		     mtag = m_tag_next(m, mtag)) {
689 			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
690 				continue;
691 			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
692 			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
693 				continue;
694 			/*
695 			 * Check if policy has an SA associated with it.
696 			 * This can happen when an SP has yet to acquire
697 			 * an SA; e.g. on first reference.  If it occurs,
698 			 * then we let ipsec4_process_packet do its thing.
699 			 */
700 			if (sp->req->sav == NULL)
701 				break;
702 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
703 			if (tdbi->spi == sp->req->sav->spi &&
704 			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
705 			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
706 				 sizeof(union sockaddr_union)) == 0) {
707 				/*
708 				 * No IPsec processing is needed, free
709 				 * reference to SP.
710 				 *
711 				 * NB: null pointer to avoid free at
712 				 *     done: below.
713 				 */
714 				KEY_FREESP(&sp), sp = NULL;
715 				crit_exit();
716 				goto spd_done;
717 			}
718 		}
719 
720 		/*
721 		 * Do delayed checksums now because we send before
722 		 * this is done in the normal processing path.
723 		 */
724 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
725 			in_delayed_cksum(m);
726 			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
727 		}
728 
729 		ip->ip_len = htons(ip->ip_len);
730 		ip->ip_off = htons(ip->ip_off);
731 
732 		/* NB: callee frees mbuf */
733 		error = ipsec4_process_packet(m, sp->req, flags, 0);
734 		/*
735 		 * Preserve KAME behaviour: ENOENT can be returned
736 		 * when an SA acquire is in progress.  Don't propagate
737 		 * this to user-level; it confuses applications.
738 		 *
739 		 * XXX this will go away when the SADB is redone.
740 		 */
741 		if (error == ENOENT)
742 			error = 0;
743 		crit_exit();
744 		goto done;
745 	} else {
746 		crit_exit();
747 
748 		if (error != 0) {
749 			/*
750 			 * Hack: -EINVAL is used to signal that a packet
751 			 * should be silently discarded.  This is typically
752 			 * because we asked key management for an SA and
753 			 * it was delayed (e.g. kicked up to IKE).
754 			 */
755 			if (error == -EINVAL)
756 				error = 0;
757 			goto bad;
758 		} else {
759 			/* No IPsec processing for this packet. */
760 		}
761 #ifdef notyet
762 		/*
763 		 * If deferred crypto processing is needed, check that
764 		 * the interface supports it.
765 		 */
766 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
767 		if (mtag != NULL && !(ifp->if_capenable & IFCAP_IPSEC)) {
768 			/* notify IPsec to do its own crypto */
769 			ipsp_skipcrypto_unmark((struct tdb_ident *)m_tag_data(mtag));
770 			error = EHOSTUNREACH;
771 			goto bad;
772 		}
773 #endif
774 	}
775 spd_done:
776 #endif /* FAST_IPSEC */
777 
778 	/* We are already being fwd'd from a firewall. */
779 	if (next_hop != NULL)
780 		goto pass;
781 
782 	/* No pfil hooks */
783 	if (!pfil_has_hooks(&inet_pfil_hook)) {
784 		if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
785 			/*
786 			 * Strip dummynet tags from stranded packets
787 			 */
788 			mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
789 			KKASSERT(mtag != NULL);
790 			m_tag_delete(m, mtag);
791 			m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
792 		}
793 		goto pass;
794 	}
795 
796 	/*
797 	 * IpHack's section.
798 	 * - Xlate: translate packet's addr/port (NAT).
799 	 * - Firewall: deny/allow/etc.
800 	 * - Wrap: fake packet's addr/port <unimpl.>
801 	 * - Encapsulate: put it in another IP and send out. <unimp.>
802 	 */
803 
804 	/*
805 	 * Run through list of hooks for output packets.
806 	 */
807 	error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT);
808 	if (error != 0 || m == NULL)
809 		goto done;
810 	ip = mtod(m, struct ip *);
811 
812 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
813 		/*
814 		 * Check dst to make sure it is directly reachable on the
815 		 * interface we previously thought it was.
816 		 * If it isn't (which may be likely in some situations) we have
817 		 * to re-route it (ie, find a route for the next-hop and the
818 		 * associated interface) and set them here. This is nested
819 		 * forwarding which in most cases is undesirable, except where
820 		 * such control is nigh impossible. So we do it here.
821 		 * And I'm babbling.
822 		 */
823 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
824 		KKASSERT(mtag != NULL);
825 		next_hop = m_tag_data(mtag);
826 
827 		/*
828 		 * Try local forwarding first
829 		 */
830 		if (ip_localforward(m, next_hop, hlen))
831 			goto done;
832 
833 		/*
834 		 * Relocate the route based on next_hop.
835 		 * If the current route is inp's cache, keep it untouched.
836 		 */
837 		if (ro == &iproute && ro->ro_rt != NULL) {
838 			RTFREE(ro->ro_rt);
839 			ro->ro_rt = NULL;
840 		}
841 		ro = &iproute;
842 		bzero(ro, sizeof *ro);
843 
844 		/*
845 		 * Forwarding to broadcast address is not allowed.
846 		 * XXX Should we follow IP_ROUTETOIF?
847 		 */
848 		flags &= ~(IP_ALLOWBROADCAST | IP_ROUTETOIF);
849 
850 		/* We are doing forwarding now */
851 		flags |= IP_FORWARDING;
852 
853 		goto reroute;
854 	}
855 
856 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
857 		struct dn_pkt *dn_pkt;
858 
859 		mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
860 		KKASSERT(mtag != NULL);
861 		dn_pkt = m_tag_data(mtag);
862 
863 		/*
864 		 * Under certain cases it is not possible to recalculate
865 		 * 'ro' and 'dst', let alone 'flags', so just save them in
866 		 * dummynet tag and avoid the possible wrong reculcalation
867 		 * when we come back to ip_output() again.
868 		 *
869 		 * All other parameters have been already used and so they
870 		 * are not needed anymore.
871 		 * XXX if the ifp is deleted while a pkt is in dummynet,
872 		 * we are in trouble! (TODO use ifnet_detach_event)
873 		 *
874 		 * We need to copy *ro because for ICMP pkts (and maybe
875 		 * others) the caller passed a pointer into the stack;
876 		 * dst might also be a pointer into *ro so it needs to
877 		 * be updated.
878 		 */
879 		dn_pkt->ro = *ro;
880 		if (ro->ro_rt)
881 			ro->ro_rt->rt_refcnt++;
882 		if (dst == (struct sockaddr_in *)&ro->ro_dst) {
883 			/* 'dst' points into 'ro' */
884 			dst = (struct sockaddr_in *)&(dn_pkt->ro.ro_dst);
885 		}
886 		dn_pkt->dn_dst = dst;
887 		dn_pkt->flags = flags;
888 
889 		ip_dn_queue(m);
890 		goto done;
891 	}
892 pass:
893 	/* 127/8 must not appear on wire - RFC1122. */
894 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
895 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
896 		if (!(ifp->if_flags & IFF_LOOPBACK)) {
897 			ipstat.ips_badaddr++;
898 			error = EADDRNOTAVAIL;
899 			goto bad;
900 		}
901 	}
902 	if (ip->ip_src.s_addr == INADDR_ANY ||
903 	    IN_MULTICAST(ntohl(ip->ip_src.s_addr))) {
904 		ipstat.ips_badaddr++;
905 		error = EADDRNOTAVAIL;
906 		goto bad;
907 	}
908 
909 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
910 		m->m_pkthdr.csum_flags |= CSUM_IP;
911 		sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
912 		if (sw_csum & CSUM_DELAY_DATA) {
913 			in_delayed_cksum(m);
914 			sw_csum &= ~CSUM_DELAY_DATA;
915 		}
916 		m->m_pkthdr.csum_flags &= ifp->if_hwassist;
917 	} else {
918 		sw_csum = 0;
919 	}
920 	m->m_pkthdr.csum_iphlen = hlen;
921 
922 	/*
923 	 * If small enough for interface, or the interface will take
924 	 * care of the fragmentation or segmentation for us, can just
925 	 * send directly.
926 	 */
927 	if (ip->ip_len <= ifp->if_mtu ||
928 	    ((ifp->if_hwassist & CSUM_FRAGMENT) && !(ip->ip_off & IP_DF)) ||
929 	    (m->m_pkthdr.csum_flags & CSUM_TSO)) {
930 		ip->ip_len = htons(ip->ip_len);
931 		ip->ip_off = htons(ip->ip_off);
932 		ip->ip_sum = 0;
933 		if (sw_csum & CSUM_DELAY_IP) {
934 			if (ip->ip_vhl == IP_VHL_BORING)
935 				ip->ip_sum = in_cksum_hdr(ip);
936 			else
937 				ip->ip_sum = in_cksum(m, hlen);
938 		}
939 
940 		/* Record statistics for this interface address. */
941 		if (!(flags & IP_FORWARDING) && ia) {
942 			IFA_STAT_INC(&ia->ia_ifa, opackets, 1);
943 			IFA_STAT_INC(&ia->ia_ifa, obytes, m->m_pkthdr.len);
944 		}
945 
946 #ifdef IPSEC
947 		/* clean ipsec history once it goes out of the node */
948 		ipsec_delaux(m);
949 #endif
950 
951 #ifdef MBUF_STRESS_TEST
952 		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) {
953 			struct mbuf *m1, *m2;
954 			int length, tmp;
955 
956 			tmp = length = m->m_pkthdr.len;
957 
958 			while ((length -= mbuf_frag_size) >= 1) {
959 				m1 = m_split(m, length, M_NOWAIT);
960 				if (m1 == NULL)
961 					break;
962 				m2 = m;
963 				while (m2->m_next != NULL)
964 					m2 = m2->m_next;
965 				m2->m_next = m1;
966 			}
967 			m->m_pkthdr.len = tmp;
968 		}
969 #endif
970 
971 #ifdef MPLS
972 		if (!mpls_output_process(m, ro->ro_rt))
973 			goto done;
974 #endif
975 		error = ifp->if_output(ifp, m, (struct sockaddr *)dst,
976 				       ro->ro_rt);
977 		goto done;
978 	}
979 
980 	if (ip->ip_off & IP_DF) {
981 		error = EMSGSIZE;
982 		/*
983 		 * This case can happen if the user changed the MTU
984 		 * of an interface after enabling IP on it.  Because
985 		 * most netifs don't keep track of routes pointing to
986 		 * them, there is no way for one to update all its
987 		 * routes when the MTU is changed.
988 		 */
989 		if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
990 		    !(ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) &&
991 		    (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
992 			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
993 		}
994 		ipstat.ips_cantfrag++;
995 		goto bad;
996 	}
997 
998 	/*
999 	 * Too large for interface; fragment if possible. If successful,
1000 	 * on return, m will point to a list of packets to be sent.
1001 	 */
1002 	error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum);
1003 	if (error)
1004 		goto bad;
1005 	for (; m; m = m0) {
1006 		m0 = m->m_nextpkt;
1007 		m->m_nextpkt = NULL;
1008 #ifdef IPSEC
1009 		/* clean ipsec history once it goes out of the node */
1010 		ipsec_delaux(m);
1011 #endif
1012 		if (error == 0) {
1013 			/* Record statistics for this interface address. */
1014 			if (ia != NULL) {
1015 				IFA_STAT_INC(&ia->ia_ifa, opackets, 1);
1016 				IFA_STAT_INC(&ia->ia_ifa, obytes,
1017 				    m->m_pkthdr.len);
1018 			}
1019 #ifdef MPLS
1020 			if (!mpls_output_process(m, ro->ro_rt))
1021 				continue;
1022 #endif
1023 			error = ifp->if_output(ifp, m, (struct sockaddr *)dst,
1024 					       ro->ro_rt);
1025 		} else {
1026 			m_freem(m);
1027 		}
1028 	}
1029 
1030 	if (error == 0)
1031 		ipstat.ips_fragmented++;
1032 
1033 done:
1034 	if (ro == &iproute && ro->ro_rt != NULL) {
1035 		RTFREE(ro->ro_rt);
1036 		ro->ro_rt = NULL;
1037 	}
1038 #ifdef IPSEC
1039 	if (sp != NULL) {
1040 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1041 			kprintf("DP ip_output call free SP:%p\n", sp));
1042 		key_freesp(sp);
1043 	}
1044 #endif
1045 #ifdef FAST_IPSEC
1046 	if (sp != NULL)
1047 		KEY_FREESP(&sp);
1048 #endif
1049 	return (error);
1050 bad:
1051 	m_freem(m);
1052 	goto done;
1053 }
1054 
1055 /*
1056  * Create a chain of fragments which fit the given mtu. m_frag points to the
1057  * mbuf to be fragmented; on return it points to the chain with the fragments.
1058  * Return 0 if no error. If error, m_frag may contain a partially built
1059  * chain of fragments that should be freed by the caller.
1060  *
1061  * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
1062  * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
1063  */
1064 int
1065 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
1066 	    u_long if_hwassist_flags, int sw_csum)
1067 {
1068 	int error = 0;
1069 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1070 	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
1071 	int off;
1072 	struct mbuf *m0 = *m_frag;	/* the original packet		*/
1073 	int firstlen;
1074 	struct mbuf **mnext;
1075 	int nfrags;
1076 
1077 	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
1078 		ipstat.ips_cantfrag++;
1079 		return EMSGSIZE;
1080 	}
1081 
1082 	/*
1083 	 * Must be able to put at least 8 bytes per fragment.
1084 	 */
1085 	if (len < 8)
1086 		return EMSGSIZE;
1087 
1088 	/*
1089 	 * If the interface will not calculate checksums on
1090 	 * fragmented packets, then do it here.
1091 	 */
1092 	if ((m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) &&
1093 	    !(if_hwassist_flags & CSUM_IP_FRAGS)) {
1094 		in_delayed_cksum(m0);
1095 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1096 	}
1097 
1098 	if (len > PAGE_SIZE) {
1099 		/*
1100 		 * Fragment large datagrams such that each segment
1101 		 * contains a multiple of PAGE_SIZE amount of data,
1102 		 * plus headers. This enables a receiver to perform
1103 		 * page-flipping zero-copy optimizations.
1104 		 *
1105 		 * XXX When does this help given that sender and receiver
1106 		 * could have different page sizes, and also mtu could
1107 		 * be less than the receiver's page size ?
1108 		 */
1109 		int newlen;
1110 		struct mbuf *m;
1111 
1112 		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
1113 			off += m->m_len;
1114 
1115 		/*
1116 		 * firstlen (off - hlen) must be aligned on an
1117 		 * 8-byte boundary
1118 		 */
1119 		if (off < hlen)
1120 			goto smart_frag_failure;
1121 		off = ((off - hlen) & ~7) + hlen;
1122 		newlen = (~PAGE_MASK) & mtu;
1123 		if ((newlen + sizeof(struct ip)) > mtu) {
1124 			/* we failed, go back the default */
1125 smart_frag_failure:
1126 			newlen = len;
1127 			off = hlen + len;
1128 		}
1129 		len = newlen;
1130 
1131 	} else {
1132 		off = hlen + len;
1133 	}
1134 
1135 	firstlen = off - hlen;
1136 	mnext = &m0->m_nextpkt;		/* pointer to next packet */
1137 
1138 	/*
1139 	 * Loop through length of segment after first fragment,
1140 	 * make new header and copy data of each part and link onto chain.
1141 	 * Here, m0 is the original packet, m is the fragment being created.
1142 	 * The fragments are linked off the m_nextpkt of the original
1143 	 * packet, which after processing serves as the first fragment.
1144 	 */
1145 	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
1146 		struct ip *mhip;	/* ip header on the fragment */
1147 		struct mbuf *m;
1148 		int mhlen = sizeof(struct ip);
1149 
1150 		MGETHDR(m, M_NOWAIT, MT_HEADER);
1151 		if (m == NULL) {
1152 			error = ENOBUFS;
1153 			ipstat.ips_odropped++;
1154 			goto done;
1155 		}
1156 		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
1157 		/*
1158 		 * In the first mbuf, leave room for the link header, then
1159 		 * copy the original IP header including options. The payload
1160 		 * goes into an additional mbuf chain returned by m_copy().
1161 		 */
1162 		m->m_data += max_linkhdr;
1163 		mhip = mtod(m, struct ip *);
1164 		*mhip = *ip;
1165 		if (hlen > sizeof(struct ip)) {
1166 			mhlen = ip_optcopy(ip, mhip) + sizeof(struct ip);
1167 			mhip->ip_vhl = IP_MAKE_VHL(IPVERSION, mhlen >> 2);
1168 		}
1169 		m->m_len = mhlen;
1170 		/* XXX do we need to add ip->ip_off below ? */
1171 		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
1172 		if (off + len >= ip->ip_len) {	/* last fragment */
1173 			len = ip->ip_len - off;
1174 			m->m_flags |= M_LASTFRAG;
1175 		} else
1176 			mhip->ip_off |= IP_MF;
1177 		mhip->ip_len = htons((u_short)(len + mhlen));
1178 		m->m_next = m_copy(m0, off, len);
1179 		if (m->m_next == NULL) {		/* copy failed */
1180 			m_free(m);
1181 			error = ENOBUFS;	/* ??? */
1182 			ipstat.ips_odropped++;
1183 			goto done;
1184 		}
1185 		m->m_pkthdr.len = mhlen + len;
1186 		m->m_pkthdr.rcvif = NULL;
1187 		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
1188 		m->m_pkthdr.csum_iphlen = mhlen;
1189 		mhip->ip_off = htons(mhip->ip_off);
1190 		mhip->ip_sum = 0;
1191 		if (sw_csum & CSUM_DELAY_IP)
1192 			mhip->ip_sum = in_cksum(m, mhlen);
1193 		*mnext = m;
1194 		mnext = &m->m_nextpkt;
1195 	}
1196 	ipstat.ips_ofragments += nfrags;
1197 
1198 	/* set first marker for fragment chain */
1199 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1200 	m0->m_pkthdr.csum_data = nfrags;
1201 
1202 	/*
1203 	 * Update first fragment by trimming what's been copied out
1204 	 * and updating header.
1205 	 */
1206 	m_adj(m0, hlen + firstlen - ip->ip_len);
1207 	m0->m_pkthdr.len = hlen + firstlen;
1208 	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1209 	ip->ip_off |= IP_MF;
1210 	ip->ip_off = htons(ip->ip_off);
1211 	ip->ip_sum = 0;
1212 	if (sw_csum & CSUM_DELAY_IP)
1213 		ip->ip_sum = in_cksum(m0, hlen);
1214 
1215 done:
1216 	*m_frag = m0;
1217 	return error;
1218 }
1219 
1220 void
1221 in_delayed_cksum(struct mbuf *m)
1222 {
1223 	struct ip *ip;
1224 	u_short csum, offset;
1225 
1226 	ip = mtod(m, struct ip *);
1227 	offset = IP_VHL_HL(ip->ip_vhl) << 2 ;
1228 	csum = in_cksum_skip(m, ip->ip_len, offset);
1229 	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
1230 		csum = 0xffff;
1231 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
1232 
1233 	if (offset + sizeof(u_short) > m->m_len) {
1234 		kprintf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
1235 		    m->m_len, offset, ip->ip_p);
1236 		/*
1237 		 * XXX
1238 		 * this shouldn't happen, but if it does, the
1239 		 * correct behavior may be to insert the checksum
1240 		 * in the existing chain instead of rearranging it.
1241 		 */
1242 		m = m_pullup(m, offset + sizeof(u_short));
1243 	}
1244 	*(u_short *)(m->m_data + offset) = csum;
1245 }
1246 
1247 /*
1248  * Insert IP options into preformed packet.
1249  * Adjust IP destination as required for IP source routing,
1250  * as indicated by a non-zero in_addr at the start of the options.
1251  *
1252  * XXX This routine assumes that the packet has no options in place.
1253  */
1254 static struct mbuf *
1255 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1256 {
1257 	struct ipoption *p = mtod(opt, struct ipoption *);
1258 	struct mbuf *n;
1259 	struct ip *ip = mtod(m, struct ip *);
1260 	unsigned optlen;
1261 
1262 	optlen = opt->m_len - sizeof p->ipopt_dst;
1263 	if (optlen + (u_short)ip->ip_len > IP_MAXPACKET) {
1264 		*phlen = 0;
1265 		return (m);		/* XXX should fail */
1266 	}
1267 	if (p->ipopt_dst.s_addr)
1268 		ip->ip_dst = p->ipopt_dst;
1269 	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
1270 		MGETHDR(n, M_NOWAIT, MT_HEADER);
1271 		if (n == NULL) {
1272 			*phlen = 0;
1273 			return (m);
1274 		}
1275 		n->m_pkthdr.rcvif = NULL;
1276 		n->m_pkthdr.len = m->m_pkthdr.len + optlen;
1277 		m->m_len -= sizeof(struct ip);
1278 		m->m_data += sizeof(struct ip);
1279 		n->m_next = m;
1280 		m = n;
1281 		m->m_len = optlen + sizeof(struct ip);
1282 		m->m_data += max_linkhdr;
1283 		memcpy(mtod(m, void *), ip, sizeof(struct ip));
1284 	} else {
1285 		m->m_data -= optlen;
1286 		m->m_len += optlen;
1287 		m->m_pkthdr.len += optlen;
1288 		bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
1289 	}
1290 	ip = mtod(m, struct ip *);
1291 	bcopy(p->ipopt_list, ip + 1, optlen);
1292 	*phlen = sizeof(struct ip) + optlen;
1293 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, *phlen >> 2);
1294 	ip->ip_len += optlen;
1295 	return (m);
1296 }
1297 
1298 /*
1299  * Copy options from ip to jp,
1300  * omitting those not copied during fragmentation.
1301  */
1302 int
1303 ip_optcopy(struct ip *ip, struct ip *jp)
1304 {
1305 	u_char *cp, *dp;
1306 	int opt, optlen, cnt;
1307 
1308 	cp = (u_char *)(ip + 1);
1309 	dp = (u_char *)(jp + 1);
1310 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1311 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1312 		opt = cp[0];
1313 		if (opt == IPOPT_EOL)
1314 			break;
1315 		if (opt == IPOPT_NOP) {
1316 			/* Preserve for IP mcast tunnel's LSRR alignment. */
1317 			*dp++ = IPOPT_NOP;
1318 			optlen = 1;
1319 			continue;
1320 		}
1321 
1322 		KASSERT(cnt >= IPOPT_OLEN + sizeof *cp,
1323 		    ("ip_optcopy: malformed ipv4 option"));
1324 		optlen = cp[IPOPT_OLEN];
1325 		KASSERT(optlen >= IPOPT_OLEN + sizeof *cp && optlen <= cnt,
1326 		    ("ip_optcopy: malformed ipv4 option"));
1327 
1328 		/* bogus lengths should have been caught by ip_dooptions */
1329 		if (optlen > cnt)
1330 			optlen = cnt;
1331 		if (IPOPT_COPIED(opt)) {
1332 			bcopy(cp, dp, optlen);
1333 			dp += optlen;
1334 		}
1335 	}
1336 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1337 		*dp++ = IPOPT_EOL;
1338 	return (optlen);
1339 }
1340 
1341 /*
1342  * IP socket option processing.
1343  */
1344 void
1345 ip_ctloutput(netmsg_t msg)
1346 {
1347 	struct socket *so = msg->base.nm_so;
1348 	struct sockopt *sopt = msg->ctloutput.nm_sopt;
1349 	struct	inpcb *inp = so->so_pcb;
1350 	int	error, optval;
1351 
1352 	error = optval = 0;
1353 
1354 	/* Get socket's owner cpuid hint */
1355 	if (sopt->sopt_level == SOL_SOCKET &&
1356 	    sopt->sopt_dir == SOPT_GET &&
1357 	    sopt->sopt_name == SO_CPUHINT) {
1358 		optval = mycpuid;
1359 		soopt_from_kbuf(sopt, &optval, sizeof(optval));
1360 		goto done;
1361 	}
1362 
1363 	if (sopt->sopt_level != IPPROTO_IP) {
1364 		error = EINVAL;
1365 		goto done;
1366 	}
1367 
1368 	switch (sopt->sopt_name) {
1369 	case IP_MULTICAST_IF:
1370 	case IP_MULTICAST_VIF:
1371 	case IP_MULTICAST_TTL:
1372 	case IP_MULTICAST_LOOP:
1373 	case IP_ADD_MEMBERSHIP:
1374 	case IP_DROP_MEMBERSHIP:
1375 		/*
1376 		 * Handle multicast options in netisr0
1377 		 */
1378 		if (&curthread->td_msgport != netisr_cpuport(0)) {
1379 			/* NOTE: so_port MUST NOT be checked in netisr0 */
1380 			msg->lmsg.ms_flags |= MSGF_IGNSOPORT;
1381 			lwkt_forwardmsg(netisr_cpuport(0), &msg->lmsg);
1382 			return;
1383 		}
1384 		break;
1385 	}
1386 
1387 	switch (sopt->sopt_dir) {
1388 	case SOPT_SET:
1389 		switch (sopt->sopt_name) {
1390 		case IP_OPTIONS:
1391 #ifdef notyet
1392 		case IP_RETOPTS:
1393 #endif
1394 		{
1395 			struct mbuf *m;
1396 			if (sopt->sopt_valsize > MLEN) {
1397 				error = EMSGSIZE;
1398 				break;
1399 			}
1400 			MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_HEADER);
1401 			if (m == NULL) {
1402 				error = ENOBUFS;
1403 				break;
1404 			}
1405 			m->m_len = sopt->sopt_valsize;
1406 			error = soopt_to_kbuf(sopt, mtod(m, void *), m->m_len,
1407 					      m->m_len);
1408 			error = ip_pcbopts(sopt->sopt_name,
1409 					   &inp->inp_options, m);
1410 			goto done;
1411 		}
1412 
1413 		case IP_TOS:
1414 		case IP_TTL:
1415 		case IP_MINTTL:
1416 		case IP_RECVOPTS:
1417 		case IP_RECVRETOPTS:
1418 		case IP_RECVDSTADDR:
1419 		case IP_RECVIF:
1420 		case IP_RECVTTL:
1421 		case IP_FAITH:
1422 			error = soopt_to_kbuf(sopt, &optval, sizeof optval,
1423 					     sizeof optval);
1424 			if (error)
1425 				break;
1426 			switch (sopt->sopt_name) {
1427 			case IP_TOS:
1428 				inp->inp_ip_tos = optval;
1429 				break;
1430 
1431 			case IP_TTL:
1432 				inp->inp_ip_ttl = optval;
1433 				break;
1434 			case IP_MINTTL:
1435 				if (optval >= 0 && optval <= MAXTTL)
1436 					inp->inp_ip_minttl = optval;
1437 				else
1438 					error = EINVAL;
1439 				break;
1440 #define	OPTSET(bit) \
1441 	if (optval) \
1442 		inp->inp_flags |= bit; \
1443 	else \
1444 		inp->inp_flags &= ~bit;
1445 
1446 			case IP_RECVOPTS:
1447 				OPTSET(INP_RECVOPTS);
1448 				break;
1449 
1450 			case IP_RECVRETOPTS:
1451 				OPTSET(INP_RECVRETOPTS);
1452 				break;
1453 
1454 			case IP_RECVDSTADDR:
1455 				OPTSET(INP_RECVDSTADDR);
1456 				break;
1457 
1458 			case IP_RECVIF:
1459 				OPTSET(INP_RECVIF);
1460 				break;
1461 
1462 			case IP_RECVTTL:
1463 				OPTSET(INP_RECVTTL);
1464 				break;
1465 
1466 			case IP_FAITH:
1467 				OPTSET(INP_FAITH);
1468 				break;
1469 			}
1470 			break;
1471 #undef OPTSET
1472 
1473 		case IP_MULTICAST_IF:
1474 		case IP_MULTICAST_VIF:
1475 		case IP_MULTICAST_TTL:
1476 		case IP_MULTICAST_LOOP:
1477 		case IP_ADD_MEMBERSHIP:
1478 		case IP_DROP_MEMBERSHIP:
1479 			error = ip_setmoptions(sopt, &inp->inp_moptions);
1480 			break;
1481 
1482 		case IP_PORTRANGE:
1483 			error = soopt_to_kbuf(sopt, &optval, sizeof optval,
1484 					    sizeof optval);
1485 			if (error)
1486 				break;
1487 
1488 			switch (optval) {
1489 			case IP_PORTRANGE_DEFAULT:
1490 				inp->inp_flags &= ~(INP_LOWPORT);
1491 				inp->inp_flags &= ~(INP_HIGHPORT);
1492 				break;
1493 
1494 			case IP_PORTRANGE_HIGH:
1495 				inp->inp_flags &= ~(INP_LOWPORT);
1496 				inp->inp_flags |= INP_HIGHPORT;
1497 				break;
1498 
1499 			case IP_PORTRANGE_LOW:
1500 				inp->inp_flags &= ~(INP_HIGHPORT);
1501 				inp->inp_flags |= INP_LOWPORT;
1502 				break;
1503 
1504 			default:
1505 				error = EINVAL;
1506 				break;
1507 			}
1508 			break;
1509 
1510 #if defined(IPSEC) || defined(FAST_IPSEC)
1511 		case IP_IPSEC_POLICY:
1512 		{
1513 			caddr_t req;
1514 			size_t len = 0;
1515 			int priv;
1516 			struct mbuf *m;
1517 			int optname;
1518 
1519 			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1520 				break;
1521 			soopt_to_mbuf(sopt, m);
1522 			priv = (sopt->sopt_td != NULL &&
1523 				priv_check(sopt->sopt_td, PRIV_ROOT) != 0) ? 0 : 1;
1524 			req = mtod(m, caddr_t);
1525 			len = m->m_len;
1526 			optname = sopt->sopt_name;
1527 			error = ipsec4_set_policy(inp, optname, req, len, priv);
1528 			m_freem(m);
1529 			break;
1530 		}
1531 #endif /*IPSEC*/
1532 
1533 		default:
1534 			error = ENOPROTOOPT;
1535 			break;
1536 		}
1537 		break;
1538 
1539 	case SOPT_GET:
1540 		switch (sopt->sopt_name) {
1541 		case IP_OPTIONS:
1542 		case IP_RETOPTS:
1543 			if (inp->inp_options)
1544 				soopt_from_kbuf(sopt, mtod(inp->inp_options,
1545 							   char *),
1546 						inp->inp_options->m_len);
1547 			else
1548 				sopt->sopt_valsize = 0;
1549 			break;
1550 
1551 		case IP_TOS:
1552 		case IP_TTL:
1553 		case IP_MINTTL:
1554 		case IP_RECVOPTS:
1555 		case IP_RECVRETOPTS:
1556 		case IP_RECVDSTADDR:
1557 		case IP_RECVTTL:
1558 		case IP_RECVIF:
1559 		case IP_PORTRANGE:
1560 		case IP_FAITH:
1561 			switch (sopt->sopt_name) {
1562 
1563 			case IP_TOS:
1564 				optval = inp->inp_ip_tos;
1565 				break;
1566 
1567 			case IP_TTL:
1568 				optval = inp->inp_ip_ttl;
1569 				break;
1570 			case IP_MINTTL:
1571 				optval = inp->inp_ip_minttl;
1572 				break;
1573 
1574 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1575 
1576 			case IP_RECVOPTS:
1577 				optval = OPTBIT(INP_RECVOPTS);
1578 				break;
1579 
1580 			case IP_RECVRETOPTS:
1581 				optval = OPTBIT(INP_RECVRETOPTS);
1582 				break;
1583 
1584 			case IP_RECVDSTADDR:
1585 				optval = OPTBIT(INP_RECVDSTADDR);
1586 				break;
1587 
1588 			case IP_RECVTTL:
1589 				optval = OPTBIT(INP_RECVTTL);
1590 				break;
1591 
1592 			case IP_RECVIF:
1593 				optval = OPTBIT(INP_RECVIF);
1594 				break;
1595 
1596 			case IP_PORTRANGE:
1597 				if (inp->inp_flags & INP_HIGHPORT)
1598 					optval = IP_PORTRANGE_HIGH;
1599 				else if (inp->inp_flags & INP_LOWPORT)
1600 					optval = IP_PORTRANGE_LOW;
1601 				else
1602 					optval = 0;
1603 				break;
1604 
1605 			case IP_FAITH:
1606 				optval = OPTBIT(INP_FAITH);
1607 				break;
1608 			}
1609 			soopt_from_kbuf(sopt, &optval, sizeof optval);
1610 			break;
1611 
1612 		case IP_MULTICAST_IF:
1613 		case IP_MULTICAST_VIF:
1614 		case IP_MULTICAST_TTL:
1615 		case IP_MULTICAST_LOOP:
1616 		case IP_ADD_MEMBERSHIP:
1617 		case IP_DROP_MEMBERSHIP:
1618 			error = ip_getmoptions(sopt, inp->inp_moptions);
1619 			break;
1620 
1621 #if defined(IPSEC) || defined(FAST_IPSEC)
1622 		case IP_IPSEC_POLICY:
1623 		{
1624 			struct mbuf *m = NULL;
1625 			caddr_t req = NULL;
1626 			size_t len = 0;
1627 
1628 			if (m != NULL) {
1629 				req = mtod(m, caddr_t);
1630 				len = m->m_len;
1631 			}
1632 			error = ipsec4_get_policy(so->so_pcb, req, len, &m);
1633 			if (error == 0)
1634 				error = soopt_from_mbuf(sopt, m); /* XXX */
1635 			if (error == 0)
1636 				m_freem(m);
1637 			break;
1638 		}
1639 #endif /*IPSEC*/
1640 
1641 		default:
1642 			error = ENOPROTOOPT;
1643 			break;
1644 		}
1645 		break;
1646 	}
1647 done:
1648 	lwkt_replymsg(&msg->lmsg, error);
1649 }
1650 
1651 /*
1652  * Set up IP options in pcb for insertion in output packets.
1653  * Store in mbuf with pointer in pcbopt, adding pseudo-option
1654  * with destination address if source routed.
1655  */
1656 static int
1657 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1658 {
1659 	int cnt, optlen;
1660 	u_char *cp;
1661 	u_char opt;
1662 
1663 	/* turn off any old options */
1664 	if (*pcbopt)
1665 		m_free(*pcbopt);
1666 	*pcbopt = NULL;
1667 	if (m == NULL || m->m_len == 0) {
1668 		/*
1669 		 * Only turning off any previous options.
1670 		 */
1671 		if (m != NULL)
1672 			m_free(m);
1673 		return (0);
1674 	}
1675 
1676 	if (m->m_len % sizeof(int32_t))
1677 		goto bad;
1678 	/*
1679 	 * IP first-hop destination address will be stored before
1680 	 * actual options; move other options back
1681 	 * and clear it when none present.
1682 	 */
1683 	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1684 		goto bad;
1685 	cnt = m->m_len;
1686 	m->m_len += sizeof(struct in_addr);
1687 	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1688 	bcopy(mtod(m, caddr_t), cp, cnt);
1689 	bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1690 
1691 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1692 		opt = cp[IPOPT_OPTVAL];
1693 		if (opt == IPOPT_EOL)
1694 			break;
1695 		if (opt == IPOPT_NOP)
1696 			optlen = 1;
1697 		else {
1698 			if (cnt < IPOPT_OLEN + sizeof *cp)
1699 				goto bad;
1700 			optlen = cp[IPOPT_OLEN];
1701 			if (optlen < IPOPT_OLEN + sizeof *cp || optlen > cnt)
1702 				goto bad;
1703 		}
1704 		switch (opt) {
1705 
1706 		default:
1707 			break;
1708 
1709 		case IPOPT_LSRR:
1710 		case IPOPT_SSRR:
1711 			/*
1712 			 * user process specifies route as:
1713 			 *	->A->B->C->D
1714 			 * D must be our final destination (but we can't
1715 			 * check that since we may not have connected yet).
1716 			 * A is first hop destination, which doesn't appear in
1717 			 * actual IP option, but is stored before the options.
1718 			 */
1719 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1720 				goto bad;
1721 			m->m_len -= sizeof(struct in_addr);
1722 			cnt -= sizeof(struct in_addr);
1723 			optlen -= sizeof(struct in_addr);
1724 			cp[IPOPT_OLEN] = optlen;
1725 			/*
1726 			 * Move first hop before start of options.
1727 			 */
1728 			bcopy(&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1729 			      sizeof(struct in_addr));
1730 			/*
1731 			 * Then copy rest of options back
1732 			 * to close up the deleted entry.
1733 			 */
1734 			bcopy(&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1735 			      &cp[IPOPT_OFFSET+1],
1736 			      cnt - (IPOPT_MINOFF - 1));
1737 			break;
1738 		}
1739 	}
1740 	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1741 		goto bad;
1742 	*pcbopt = m;
1743 	return (0);
1744 
1745 bad:
1746 	m_free(m);
1747 	return (EINVAL);
1748 }
1749 
1750 /*
1751  * XXX
1752  * The whole multicast option thing needs to be re-thought.
1753  * Several of these options are equally applicable to non-multicast
1754  * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1755  * standard option (IP_TTL).
1756  */
1757 
1758 /*
1759  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1760  */
1761 static struct ifnet *
1762 ip_multicast_if(struct in_addr *a, int *ifindexp)
1763 {
1764 	int ifindex;
1765 	struct ifnet *ifp;
1766 
1767 	if (ifindexp)
1768 		*ifindexp = 0;
1769 	if (ntohl(a->s_addr) >> 24 == 0) {
1770 		ifindex = ntohl(a->s_addr) & 0xffffff;
1771 		if (ifindex < 0 || if_index < ifindex)
1772 			return NULL;
1773 		ifp = ifindex2ifnet[ifindex];
1774 		if (ifindexp)
1775 			*ifindexp = ifindex;
1776 	} else {
1777 		ifp = INADDR_TO_IFP(a);
1778 	}
1779 	return ifp;
1780 }
1781 
1782 /*
1783  * Set the IP multicast options in response to user setsockopt().
1784  */
1785 static int
1786 ip_setmoptions(struct sockopt *sopt, struct ip_moptions **imop)
1787 {
1788 	int error = 0;
1789 	int i;
1790 	struct in_addr addr;
1791 	struct ip_mreq mreq;
1792 	struct ifnet *ifp;
1793 	struct ip_moptions *imo = *imop;
1794 	int ifindex;
1795 
1796 	if (imo == NULL) {
1797 		/*
1798 		 * No multicast option buffer attached to the pcb;
1799 		 * allocate one and initialize to default values.
1800 		 */
1801 		imo = kmalloc(sizeof *imo, M_IPMOPTS, M_WAITOK);
1802 
1803 		imo->imo_multicast_ifp = NULL;
1804 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
1805 		imo->imo_multicast_vif = -1;
1806 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1807 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1808 		imo->imo_num_memberships = 0;
1809 		/* Assign imo to imop after all fields are setup */
1810 		cpu_sfence();
1811 		*imop = imo;
1812 	}
1813 	switch (sopt->sopt_name) {
1814 	/* store an index number for the vif you wanna use in the send */
1815 	case IP_MULTICAST_VIF:
1816 		if (legal_vif_num == 0) {
1817 			error = EOPNOTSUPP;
1818 			break;
1819 		}
1820 		error = soopt_to_kbuf(sopt, &i, sizeof i, sizeof i);
1821 		if (error)
1822 			break;
1823 		if (!legal_vif_num(i) && (i != -1)) {
1824 			error = EINVAL;
1825 			break;
1826 		}
1827 		imo->imo_multicast_vif = i;
1828 		break;
1829 
1830 	case IP_MULTICAST_IF:
1831 		/*
1832 		 * Select the interface for outgoing multicast packets.
1833 		 */
1834 		error = soopt_to_kbuf(sopt, &addr, sizeof addr, sizeof addr);
1835 		if (error)
1836 			break;
1837 
1838 		/*
1839 		 * INADDR_ANY is used to remove a previous selection.
1840 		 * When no interface is selected, a default one is
1841 		 * chosen every time a multicast packet is sent.
1842 		 */
1843 		if (addr.s_addr == INADDR_ANY) {
1844 			imo->imo_multicast_ifp = NULL;
1845 			break;
1846 		}
1847 		/*
1848 		 * The selected interface is identified by its local
1849 		 * IP address.  Find the interface and confirm that
1850 		 * it supports multicasting.
1851 		 */
1852 		crit_enter();
1853 		ifp = ip_multicast_if(&addr, &ifindex);
1854 		if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
1855 			crit_exit();
1856 			error = EADDRNOTAVAIL;
1857 			break;
1858 		}
1859 		imo->imo_multicast_ifp = ifp;
1860 		if (ifindex)
1861 			imo->imo_multicast_addr = addr;
1862 		else
1863 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1864 		crit_exit();
1865 		break;
1866 
1867 	case IP_MULTICAST_TTL:
1868 		/*
1869 		 * Set the IP time-to-live for outgoing multicast packets.
1870 		 * The original multicast API required a char argument,
1871 		 * which is inconsistent with the rest of the socket API.
1872 		 * We allow either a char or an int.
1873 		 */
1874 		if (sopt->sopt_valsize == 1) {
1875 			u_char ttl;
1876 			error = soopt_to_kbuf(sopt, &ttl, 1, 1);
1877 			if (error)
1878 				break;
1879 			imo->imo_multicast_ttl = ttl;
1880 		} else {
1881 			u_int ttl;
1882 			error = soopt_to_kbuf(sopt, &ttl, sizeof ttl, sizeof ttl);
1883 			if (error)
1884 				break;
1885 			if (ttl > 255)
1886 				error = EINVAL;
1887 			else
1888 				imo->imo_multicast_ttl = ttl;
1889 		}
1890 		break;
1891 
1892 	case IP_MULTICAST_LOOP:
1893 		/*
1894 		 * Set the loopback flag for outgoing multicast packets.
1895 		 * Must be zero or one.  The original multicast API required a
1896 		 * char argument, which is inconsistent with the rest
1897 		 * of the socket API.  We allow either a char or an int.
1898 		 */
1899 		if (sopt->sopt_valsize == 1) {
1900 			u_char loop;
1901 
1902 			error = soopt_to_kbuf(sopt, &loop, 1, 1);
1903 			if (error)
1904 				break;
1905 			imo->imo_multicast_loop = !!loop;
1906 		} else {
1907 			u_int loop;
1908 
1909 			error = soopt_to_kbuf(sopt, &loop, sizeof loop,
1910 					    sizeof loop);
1911 			if (error)
1912 				break;
1913 			imo->imo_multicast_loop = !!loop;
1914 		}
1915 		break;
1916 
1917 	case IP_ADD_MEMBERSHIP:
1918 		/*
1919 		 * Add a multicast group membership.
1920 		 * Group must be a valid IP multicast address.
1921 		 */
1922 		error = soopt_to_kbuf(sopt, &mreq, sizeof mreq, sizeof mreq);
1923 		if (error)
1924 			break;
1925 
1926 		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1927 			error = EINVAL;
1928 			break;
1929 		}
1930 		crit_enter();
1931 		/*
1932 		 * If no interface address was provided, use the interface of
1933 		 * the route to the given multicast address.
1934 		 */
1935 		if (mreq.imr_interface.s_addr == INADDR_ANY) {
1936 			struct sockaddr_in dst;
1937 			struct rtentry *rt;
1938 
1939 			bzero(&dst, sizeof(struct sockaddr_in));
1940 			dst.sin_len = sizeof(struct sockaddr_in);
1941 			dst.sin_family = AF_INET;
1942 			dst.sin_addr = mreq.imr_multiaddr;
1943 			rt = rtlookup((struct sockaddr *)&dst);
1944 			if (rt == NULL) {
1945 				error = EADDRNOTAVAIL;
1946 				crit_exit();
1947 				break;
1948 			}
1949 			--rt->rt_refcnt;
1950 			ifp = rt->rt_ifp;
1951 		} else {
1952 			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1953 		}
1954 
1955 		/*
1956 		 * See if we found an interface, and confirm that it
1957 		 * supports multicast.
1958 		 */
1959 		if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
1960 			error = EADDRNOTAVAIL;
1961 			crit_exit();
1962 			break;
1963 		}
1964 		/*
1965 		 * See if the membership already exists or if all the
1966 		 * membership slots are full.
1967 		 */
1968 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1969 			if (imo->imo_membership[i]->inm_ifp == ifp &&
1970 			    imo->imo_membership[i]->inm_addr.s_addr
1971 						== mreq.imr_multiaddr.s_addr)
1972 				break;
1973 		}
1974 		if (i < imo->imo_num_memberships) {
1975 			error = EADDRINUSE;
1976 			crit_exit();
1977 			break;
1978 		}
1979 		if (i == IP_MAX_MEMBERSHIPS) {
1980 			error = ETOOMANYREFS;
1981 			crit_exit();
1982 			break;
1983 		}
1984 		/*
1985 		 * Everything looks good; add a new record to the multicast
1986 		 * address list for the given interface.
1987 		 */
1988 		if ((imo->imo_membership[i] =
1989 		     in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
1990 			error = ENOBUFS;
1991 			crit_exit();
1992 			break;
1993 		}
1994 		++imo->imo_num_memberships;
1995 		crit_exit();
1996 		break;
1997 
1998 	case IP_DROP_MEMBERSHIP:
1999 		/*
2000 		 * Drop a multicast group membership.
2001 		 * Group must be a valid IP multicast address.
2002 		 */
2003 		error = soopt_to_kbuf(sopt, &mreq, sizeof mreq, sizeof mreq);
2004 		if (error)
2005 			break;
2006 
2007 		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
2008 			error = EINVAL;
2009 			break;
2010 		}
2011 
2012 		crit_enter();
2013 		/*
2014 		 * If an interface address was specified, get a pointer
2015 		 * to its ifnet structure.
2016 		 */
2017 		if (mreq.imr_interface.s_addr == INADDR_ANY)
2018 			ifp = NULL;
2019 		else {
2020 			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
2021 			if (ifp == NULL) {
2022 				error = EADDRNOTAVAIL;
2023 				crit_exit();
2024 				break;
2025 			}
2026 		}
2027 		/*
2028 		 * Find the membership in the membership array.
2029 		 */
2030 		for (i = 0; i < imo->imo_num_memberships; ++i) {
2031 			if ((ifp == NULL ||
2032 			     imo->imo_membership[i]->inm_ifp == ifp) &&
2033 			    imo->imo_membership[i]->inm_addr.s_addr ==
2034 			    mreq.imr_multiaddr.s_addr)
2035 				break;
2036 		}
2037 		if (i == imo->imo_num_memberships) {
2038 			error = EADDRNOTAVAIL;
2039 			crit_exit();
2040 			break;
2041 		}
2042 		/*
2043 		 * Give up the multicast address record to which the
2044 		 * membership points.
2045 		 */
2046 		in_delmulti(imo->imo_membership[i]);
2047 		/*
2048 		 * Remove the gap in the membership array.
2049 		 */
2050 		for (++i; i < imo->imo_num_memberships; ++i)
2051 			imo->imo_membership[i-1] = imo->imo_membership[i];
2052 		--imo->imo_num_memberships;
2053 		crit_exit();
2054 		break;
2055 
2056 	default:
2057 		error = EOPNOTSUPP;
2058 		break;
2059 	}
2060 
2061 	return (error);
2062 }
2063 
2064 /*
2065  * Return the IP multicast options in response to user getsockopt().
2066  */
2067 static int
2068 ip_getmoptions(struct sockopt *sopt, struct ip_moptions *imo)
2069 {
2070 	struct in_addr addr;
2071 	struct in_ifaddr *ia;
2072 	int error, optval;
2073 	u_char coptval;
2074 
2075 	error = 0;
2076 	switch (sopt->sopt_name) {
2077 	case IP_MULTICAST_VIF:
2078 		if (imo != NULL)
2079 			optval = imo->imo_multicast_vif;
2080 		else
2081 			optval = -1;
2082 		soopt_from_kbuf(sopt, &optval, sizeof optval);
2083 		break;
2084 
2085 	case IP_MULTICAST_IF:
2086 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
2087 			addr.s_addr = INADDR_ANY;
2088 		else if (imo->imo_multicast_addr.s_addr) {
2089 			/* return the value user has set */
2090 			addr = imo->imo_multicast_addr;
2091 		} else {
2092 			ia = IFP_TO_IA(imo->imo_multicast_ifp);
2093 			addr.s_addr = (ia == NULL) ? INADDR_ANY
2094 				: IA_SIN(ia)->sin_addr.s_addr;
2095 		}
2096 		soopt_from_kbuf(sopt, &addr, sizeof addr);
2097 		break;
2098 
2099 	case IP_MULTICAST_TTL:
2100 		if (imo == NULL)
2101 			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
2102 		else
2103 			optval = coptval = imo->imo_multicast_ttl;
2104 		if (sopt->sopt_valsize == 1)
2105 			soopt_from_kbuf(sopt, &coptval, 1);
2106 		else
2107 			soopt_from_kbuf(sopt, &optval, sizeof optval);
2108 		break;
2109 
2110 	case IP_MULTICAST_LOOP:
2111 		if (imo == NULL)
2112 			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
2113 		else
2114 			optval = coptval = imo->imo_multicast_loop;
2115 		if (sopt->sopt_valsize == 1)
2116 			soopt_from_kbuf(sopt, &coptval, 1);
2117 		else
2118 			soopt_from_kbuf(sopt, &optval, sizeof optval);
2119 		break;
2120 
2121 	default:
2122 		error = ENOPROTOOPT;
2123 		break;
2124 	}
2125 	return (error);
2126 }
2127 
2128 /*
2129  * Discard the IP multicast options.
2130  */
2131 void
2132 ip_freemoptions(struct ip_moptions *imo)
2133 {
2134 	int i;
2135 
2136 	if (imo != NULL) {
2137 		for (i = 0; i < imo->imo_num_memberships; ++i)
2138 			in_delmulti(imo->imo_membership[i]);
2139 		kfree(imo, M_IPMOPTS);
2140 	}
2141 }
2142 
2143 /*
2144  * Routine called from ip_output() to loop back a copy of an IP multicast
2145  * packet to the input queue of a specified interface.  Note that this
2146  * calls the output routine of the loopback "driver", but with an interface
2147  * pointer that might NOT be a loopback interface -- evil, but easier than
2148  * replicating that code here.
2149  */
2150 static void
2151 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst,
2152 	     int hlen)
2153 {
2154 	struct ip *ip;
2155 	struct mbuf *copym;
2156 
2157 	copym = m_copypacket(m, M_NOWAIT);
2158 	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
2159 		copym = m_pullup(copym, hlen);
2160 	if (copym != NULL) {
2161 		/*
2162 		 * if the checksum hasn't been computed, mark it as valid
2163 		 */
2164 		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2165 			in_delayed_cksum(copym);
2166 			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2167 			copym->m_pkthdr.csum_flags |=
2168 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2169 			copym->m_pkthdr.csum_data = 0xffff;
2170 		}
2171 		/*
2172 		 * We don't bother to fragment if the IP length is greater
2173 		 * than the interface's MTU.  Can this possibly matter?
2174 		 */
2175 		ip = mtod(copym, struct ip *);
2176 		ip->ip_len = htons(ip->ip_len);
2177 		ip->ip_off = htons(ip->ip_off);
2178 		ip->ip_sum = 0;
2179 		if (ip->ip_vhl == IP_VHL_BORING) {
2180 			ip->ip_sum = in_cksum_hdr(ip);
2181 		} else {
2182 			ip->ip_sum = in_cksum(copym, hlen);
2183 		}
2184 		/*
2185 		 * NB:
2186 		 * It's not clear whether there are any lingering
2187 		 * reentrancy problems in other areas which might
2188 		 * be exposed by using ip_input directly (in
2189 		 * particular, everything which modifies the packet
2190 		 * in-place).  Yet another option is using the
2191 		 * protosw directly to deliver the looped back
2192 		 * packet.  For the moment, we'll err on the side
2193 		 * of safety by using if_simloop().
2194 		 */
2195 #if 1 /* XXX */
2196 		if (dst->sin_family != AF_INET) {
2197 			kprintf("ip_mloopback: bad address family %d\n",
2198 						dst->sin_family);
2199 			dst->sin_family = AF_INET;
2200 		}
2201 #endif
2202 		if_simloop(ifp, copym, dst->sin_family, 0);
2203 	}
2204 }
2205