xref: /dragonfly/sys/netinet/ip_output.c (revision 92fc8b5c)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30  * $FreeBSD: src/sys/netinet/ip_output.c,v 1.99.2.37 2003/04/15 06:44:45 silby Exp $
31  */
32 
33 #define _IP_VHL
34 
35 #include "opt_ipfw.h"
36 #include "opt_ipdn.h"
37 #include "opt_ipdivert.h"
38 #include "opt_ipsec.h"
39 #include "opt_mbuf_stress_test.h"
40 #include "opt_mpls.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/protosw.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/proc.h>
51 #include <sys/priv.h>
52 #include <sys/sysctl.h>
53 #include <sys/in_cksum.h>
54 #include <sys/lock.h>
55 
56 #include <sys/thread2.h>
57 #include <sys/mplock2.h>
58 #include <sys/msgport2.h>
59 
60 #include <net/if.h>
61 #include <net/netisr.h>
62 #include <net/pfil.h>
63 #include <net/route.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #include <netinet/in_pcb.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip_var.h>
71 
72 #include <netproto/mpls/mpls_var.h>
73 
74 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
75 
76 #ifdef IPSEC
77 #include <netinet6/ipsec.h>
78 #include <netproto/key/key.h>
79 #ifdef IPSEC_DEBUG
80 #include <netproto/key/key_debug.h>
81 #else
82 #define	KEYDEBUG(lev,arg)
83 #endif
84 #endif /*IPSEC*/
85 
86 #ifdef FAST_IPSEC
87 #include <netproto/ipsec/ipsec.h>
88 #include <netproto/ipsec/xform.h>
89 #include <netproto/ipsec/key.h>
90 #endif /*FAST_IPSEC*/
91 
92 #include <net/ipfw/ip_fw.h>
93 #include <net/dummynet/ip_dummynet.h>
94 
95 #define print_ip(x, a, y)	 kprintf("%s %d.%d.%d.%d%s",\
96 				x, (ntohl(a.s_addr)>>24)&0xFF,\
97 				  (ntohl(a.s_addr)>>16)&0xFF,\
98 				  (ntohl(a.s_addr)>>8)&0xFF,\
99 				  (ntohl(a.s_addr))&0xFF, y);
100 
101 u_short ip_id;
102 
103 #ifdef MBUF_STRESS_TEST
104 int mbuf_frag_size = 0;
105 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
106 	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
107 #endif
108 
109 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
110 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
111 static void	ip_mloopback
112 	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
113 static int	ip_getmoptions
114 	(struct sockopt *, struct ip_moptions *);
115 static int	ip_pcbopts(int, struct mbuf **, struct mbuf *);
116 static int	ip_setmoptions
117 	(struct sockopt *, struct ip_moptions **);
118 
119 int	ip_optcopy(struct ip *, struct ip *);
120 
121 extern	int route_assert_owner_access;
122 
123 extern	struct protosw inetsw[];
124 
125 static int
126 ip_localforward(struct mbuf *m, const struct sockaddr_in *dst, int hlen)
127 {
128 	struct in_ifaddr_container *iac;
129 
130 	/*
131 	 * We need to figure out if we have been forwarded to a local
132 	 * socket.  If so, then we should somehow "loop back" to
133 	 * ip_input(), and get directed to the PCB as if we had received
134 	 * this packet.  This is because it may be difficult to identify
135 	 * the packets you want to forward until they are being output
136 	 * and have selected an interface (e.g. locally initiated
137 	 * packets).  If we used the loopback inteface, we would not be
138 	 * able to control what happens as the packet runs through
139 	 * ip_input() as it is done through a ISR.
140 	 */
141 	LIST_FOREACH(iac, INADDR_HASH(dst->sin_addr.s_addr), ia_hash) {
142 		/*
143 		 * If the addr to forward to is one of ours, we pretend
144 		 * to be the destination for this packet.
145 		 */
146 		if (IA_SIN(iac->ia)->sin_addr.s_addr == dst->sin_addr.s_addr)
147 			break;
148 	}
149 	if (iac != NULL) {
150 		struct ip *ip;
151 
152 		if (m->m_pkthdr.rcvif == NULL)
153 			m->m_pkthdr.rcvif = ifunit("lo0");
154 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
155 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
156 						  CSUM_PSEUDO_HDR;
157 			m->m_pkthdr.csum_data = 0xffff;
158 		}
159 		m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
160 
161 		/*
162 		 * Make sure that the IP header is in one mbuf,
163 		 * required by ip_input
164 		 */
165 		if (m->m_len < hlen) {
166 			m = m_pullup(m, hlen);
167 			if (m == NULL) {
168 				/* The packet was freed; we are done */
169 				return 1;
170 			}
171 		}
172 		ip = mtod(m, struct ip *);
173 
174 		ip->ip_len = htons(ip->ip_len);
175 		ip->ip_off = htons(ip->ip_off);
176 		ip_input(m);
177 
178 		return 1; /* The packet gets forwarded locally */
179 	}
180 	return 0;
181 }
182 
183 /*
184  * IP output.  The packet in mbuf chain m contains a skeletal IP
185  * header (with len, off, ttl, proto, tos, src, dst).
186  * The mbuf chain containing the packet will be freed.
187  * The mbuf opt, if present, will not be freed.
188  */
189 int
190 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro,
191 	  int flags, struct ip_moptions *imo, struct inpcb *inp)
192 {
193 	struct ip *ip;
194 	struct ifnet *ifp = NULL;	/* keep compiler happy */
195 	struct mbuf *m;
196 	int hlen = sizeof(struct ip);
197 	int len, error = 0;
198 	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
199 	struct in_ifaddr *ia = NULL;
200 	int isbroadcast, sw_csum;
201 	struct in_addr pkt_dst;
202 	struct route iproute;
203 	struct m_tag *mtag;
204 #ifdef IPSEC
205 	struct secpolicy *sp = NULL;
206 	struct socket *so = inp ? inp->inp_socket : NULL;
207 #endif
208 #ifdef FAST_IPSEC
209 	struct secpolicy *sp = NULL;
210 	struct tdb_ident *tdbi;
211 #endif /* FAST_IPSEC */
212 	struct sockaddr_in *next_hop = NULL;
213 	int src_was_INADDR_ANY = 0;	/* as the name says... */
214 
215 	m = m0;
216 	M_ASSERTPKTHDR(m);
217 
218 	if (ro == NULL) {
219 		ro = &iproute;
220 		bzero(ro, sizeof *ro);
221 	} else if (ro->ro_rt != NULL && ro->ro_rt->rt_cpuid != mycpuid) {
222 		if (flags & IP_DEBUGROUTE) {
223 			if (route_assert_owner_access) {
224 				panic("ip_output: "
225 				      "rt rt_cpuid %d accessed on cpu %d\n",
226 				      ro->ro_rt->rt_cpuid, mycpuid);
227 			} else {
228 				kprintf("ip_output: "
229 					"rt rt_cpuid %d accessed on cpu %d\n",
230 					ro->ro_rt->rt_cpuid, mycpuid);
231 				print_backtrace(-1);
232 			}
233 		}
234 
235 		/*
236 		 * XXX
237 		 * If the cached rtentry's owner CPU is not the current CPU,
238 		 * then don't touch the cached rtentry (remote free is too
239 		 * expensive in this context); just relocate the route.
240 		 */
241 		ro = &iproute;
242 		bzero(ro, sizeof *ro);
243 	}
244 
245 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
246 		/* Next hop */
247 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
248 		KKASSERT(mtag != NULL);
249 		next_hop = m_tag_data(mtag);
250 	}
251 
252 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
253 		struct dn_pkt *dn_pkt;
254 
255 		/* Extract info from dummynet tag */
256 		mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
257 		KKASSERT(mtag != NULL);
258 		dn_pkt = m_tag_data(mtag);
259 
260 		/*
261 		 * The packet was already tagged, so part of the
262 		 * processing was already done, and we need to go down.
263 		 * Get the calculated parameters from the tag.
264 		 */
265 		ifp = dn_pkt->ifp;
266 
267 		KKASSERT(ro == &iproute);
268 		*ro = dn_pkt->ro; /* structure copy */
269 		KKASSERT(ro->ro_rt == NULL || ro->ro_rt->rt_cpuid == mycpuid);
270 
271 		dst = dn_pkt->dn_dst;
272 		if (dst == (struct sockaddr_in *)&(dn_pkt->ro.ro_dst)) {
273 			/* If 'dst' points into dummynet tag, adjust it */
274 			dst = (struct sockaddr_in *)&(ro->ro_dst);
275 		}
276 
277 		ip = mtod(m, struct ip *);
278 		hlen = IP_VHL_HL(ip->ip_vhl) << 2 ;
279 		if (ro->ro_rt)
280 			ia = ifatoia(ro->ro_rt->rt_ifa);
281 		goto sendit;
282 	}
283 
284 	if (opt) {
285 		len = 0;
286 		m = ip_insertoptions(m, opt, &len);
287 		if (len != 0)
288 			hlen = len;
289 	}
290 	ip = mtod(m, struct ip *);
291 
292 	/*
293 	 * Fill in IP header.
294 	 */
295 	if (!(flags & (IP_FORWARDING|IP_RAWOUTPUT))) {
296 		ip->ip_vhl = IP_MAKE_VHL(IPVERSION, hlen >> 2);
297 		ip->ip_off &= IP_DF;
298 		ip->ip_id = ip_newid();
299 		ipstat.ips_localout++;
300 	} else {
301 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
302 	}
303 
304 reroute:
305 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
306 
307 	dst = (struct sockaddr_in *)&ro->ro_dst;
308 	/*
309 	 * If there is a cached route,
310 	 * check that it is to the same destination
311 	 * and is still up.  If not, free it and try again.
312 	 * The address family should also be checked in case of sharing the
313 	 * cache with IPv6.
314 	 */
315 	if (ro->ro_rt &&
316 	    (!(ro->ro_rt->rt_flags & RTF_UP) ||
317 	     dst->sin_family != AF_INET ||
318 	     dst->sin_addr.s_addr != pkt_dst.s_addr)) {
319 		rtfree(ro->ro_rt);
320 		ro->ro_rt = NULL;
321 	}
322 	if (ro->ro_rt == NULL) {
323 		bzero(dst, sizeof *dst);
324 		dst->sin_family = AF_INET;
325 		dst->sin_len = sizeof *dst;
326 		dst->sin_addr = pkt_dst;
327 	}
328 	/*
329 	 * If routing to interface only,
330 	 * short circuit routing lookup.
331 	 */
332 	if (flags & IP_ROUTETOIF) {
333 		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
334 		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == NULL) {
335 			ipstat.ips_noroute++;
336 			error = ENETUNREACH;
337 			goto bad;
338 		}
339 		ifp = ia->ia_ifp;
340 		ip->ip_ttl = 1;
341 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
342 	} else if (IN_MULTICAST(ntohl(pkt_dst.s_addr)) &&
343 		   imo != NULL && imo->imo_multicast_ifp != NULL) {
344 		/*
345 		 * Bypass the normal routing lookup for multicast
346 		 * packets if the interface is specified.
347 		 */
348 		ifp = imo->imo_multicast_ifp;
349 		ia = IFP_TO_IA(ifp);
350 		isbroadcast = 0;	/* fool gcc */
351 	} else {
352 		/*
353 		 * If this is the case, we probably don't want to allocate
354 		 * a protocol-cloned route since we didn't get one from the
355 		 * ULP.  This lets TCP do its thing, while not burdening
356 		 * forwarding or ICMP with the overhead of cloning a route.
357 		 * Of course, we still want to do any cloning requested by
358 		 * the link layer, as this is probably required in all cases
359 		 * for correct operation (as it is for ARP).
360 		 */
361 		if (ro->ro_rt == NULL)
362 			rtalloc_ign(ro, RTF_PRCLONING);
363 		if (ro->ro_rt == NULL) {
364 			ipstat.ips_noroute++;
365 			error = EHOSTUNREACH;
366 			goto bad;
367 		}
368 		ia = ifatoia(ro->ro_rt->rt_ifa);
369 		ifp = ro->ro_rt->rt_ifp;
370 		ro->ro_rt->rt_use++;
371 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
372 			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
373 		if (ro->ro_rt->rt_flags & RTF_HOST)
374 			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
375 		else
376 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
377 	}
378 	if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
379 		struct in_multi *inm;
380 
381 		m->m_flags |= M_MCAST;
382 		/*
383 		 * IP destination address is multicast.  Make sure "dst"
384 		 * still points to the address in "ro".  (It may have been
385 		 * changed to point to a gateway address, above.)
386 		 */
387 		dst = (struct sockaddr_in *)&ro->ro_dst;
388 		/*
389 		 * See if the caller provided any multicast options
390 		 */
391 		if (imo != NULL) {
392 			ip->ip_ttl = imo->imo_multicast_ttl;
393 			if (imo->imo_multicast_vif != -1) {
394 				ip->ip_src.s_addr =
395 				    ip_mcast_src ?
396 				    ip_mcast_src(imo->imo_multicast_vif) :
397 				    INADDR_ANY;
398 			}
399 		} else {
400 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
401 		}
402 		/*
403 		 * Confirm that the outgoing interface supports multicast.
404 		 */
405 		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
406 			if (!(ifp->if_flags & IFF_MULTICAST)) {
407 				ipstat.ips_noroute++;
408 				error = ENETUNREACH;
409 				goto bad;
410 			}
411 		}
412 		/*
413 		 * If source address not specified yet, use address
414 		 * of outgoing interface.
415 		 */
416 		if (ip->ip_src.s_addr == INADDR_ANY) {
417 			/* Interface may have no addresses. */
418 			if (ia != NULL)
419 				ip->ip_src = IA_SIN(ia)->sin_addr;
420 		}
421 
422 		IN_LOOKUP_MULTI(pkt_dst, ifp, inm);
423 		if (inm != NULL &&
424 		    (imo == NULL || imo->imo_multicast_loop)) {
425 			/*
426 			 * If we belong to the destination multicast group
427 			 * on the outgoing interface, and the caller did not
428 			 * forbid loopback, loop back a copy.
429 			 */
430 			ip_mloopback(ifp, m, dst, hlen);
431 		} else {
432 			/*
433 			 * If we are acting as a multicast router, perform
434 			 * multicast forwarding as if the packet had just
435 			 * arrived on the interface to which we are about
436 			 * to send.  The multicast forwarding function
437 			 * recursively calls this function, using the
438 			 * IP_FORWARDING flag to prevent infinite recursion.
439 			 *
440 			 * Multicasts that are looped back by ip_mloopback(),
441 			 * above, will be forwarded by the ip_input() routine,
442 			 * if necessary.
443 			 */
444 			if (ip_mrouter && !(flags & IP_FORWARDING)) {
445 				/*
446 				 * If rsvp daemon is not running, do not
447 				 * set ip_moptions. This ensures that the packet
448 				 * is multicast and not just sent down one link
449 				 * as prescribed by rsvpd.
450 				 */
451 				if (!rsvp_on)
452 					imo = NULL;
453 				if (ip_mforward) {
454 					get_mplock();
455 					if (ip_mforward(ip, ifp, m, imo) != 0) {
456 						m_freem(m);
457 						rel_mplock();
458 						goto done;
459 					}
460 					rel_mplock();
461 				}
462 			}
463 		}
464 
465 		/*
466 		 * Multicasts with a time-to-live of zero may be looped-
467 		 * back, above, but must not be transmitted on a network.
468 		 * Also, multicasts addressed to the loopback interface
469 		 * are not sent -- the above call to ip_mloopback() will
470 		 * loop back a copy if this host actually belongs to the
471 		 * destination group on the loopback interface.
472 		 */
473 		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
474 			m_freem(m);
475 			goto done;
476 		}
477 
478 		goto sendit;
479 	} else {
480 		m->m_flags &= ~M_MCAST;
481 	}
482 
483 	/*
484 	 * If the source address is not specified yet, use the address
485 	 * of the outoing interface. In case, keep note we did that, so
486 	 * if the the firewall changes the next-hop causing the output
487 	 * interface to change, we can fix that.
488 	 */
489 	if (ip->ip_src.s_addr == INADDR_ANY || src_was_INADDR_ANY) {
490 		/* Interface may have no addresses. */
491 		if (ia != NULL) {
492 			ip->ip_src = IA_SIN(ia)->sin_addr;
493 			src_was_INADDR_ANY = 1;
494 		}
495 	}
496 
497 #ifdef ALTQ
498 	/*
499 	 * Disable packet drop hack.
500 	 * Packetdrop should be done by queueing.
501 	 */
502 #else /* !ALTQ */
503 	/*
504 	 * Verify that we have any chance at all of being able to queue
505 	 *      the packet or packet fragments
506 	 */
507 	if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
508 	    ifp->if_snd.ifq_maxlen) {
509 		error = ENOBUFS;
510 		ipstat.ips_odropped++;
511 		goto bad;
512 	}
513 #endif /* !ALTQ */
514 
515 	/*
516 	 * Look for broadcast address and
517 	 * verify user is allowed to send
518 	 * such a packet.
519 	 */
520 	if (isbroadcast) {
521 		if (!(ifp->if_flags & IFF_BROADCAST)) {
522 			error = EADDRNOTAVAIL;
523 			goto bad;
524 		}
525 		if (!(flags & IP_ALLOWBROADCAST)) {
526 			error = EACCES;
527 			goto bad;
528 		}
529 		/* don't allow broadcast messages to be fragmented */
530 		if (ip->ip_len > ifp->if_mtu) {
531 			error = EMSGSIZE;
532 			goto bad;
533 		}
534 		m->m_flags |= M_BCAST;
535 	} else {
536 		m->m_flags &= ~M_BCAST;
537 	}
538 
539 sendit:
540 #ifdef IPSEC
541 	/* get SP for this packet */
542 	if (so == NULL)
543 		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, flags, &error);
544 	else
545 		sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
546 
547 	if (sp == NULL) {
548 		ipsecstat.out_inval++;
549 		goto bad;
550 	}
551 
552 	error = 0;
553 
554 	/* check policy */
555 	switch (sp->policy) {
556 	case IPSEC_POLICY_DISCARD:
557 		/*
558 		 * This packet is just discarded.
559 		 */
560 		ipsecstat.out_polvio++;
561 		goto bad;
562 
563 	case IPSEC_POLICY_BYPASS:
564 	case IPSEC_POLICY_NONE:
565 	case IPSEC_POLICY_TCP:
566 		/* no need to do IPsec. */
567 		goto skip_ipsec;
568 
569 	case IPSEC_POLICY_IPSEC:
570 		if (sp->req == NULL) {
571 			/* acquire a policy */
572 			error = key_spdacquire(sp);
573 			goto bad;
574 		}
575 		break;
576 
577 	case IPSEC_POLICY_ENTRUST:
578 	default:
579 		kprintf("ip_output: Invalid policy found. %d\n", sp->policy);
580 	}
581     {
582 	struct ipsec_output_state state;
583 	bzero(&state, sizeof state);
584 	state.m = m;
585 	if (flags & IP_ROUTETOIF) {
586 		state.ro = &iproute;
587 		bzero(&iproute, sizeof iproute);
588 	} else
589 		state.ro = ro;
590 	state.dst = (struct sockaddr *)dst;
591 
592 	ip->ip_sum = 0;
593 
594 	/*
595 	 * XXX
596 	 * delayed checksums are not currently compatible with IPsec
597 	 */
598 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
599 		in_delayed_cksum(m);
600 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
601 	}
602 
603 	ip->ip_len = htons(ip->ip_len);
604 	ip->ip_off = htons(ip->ip_off);
605 
606 	error = ipsec4_output(&state, sp, flags);
607 
608 	m = state.m;
609 	if (flags & IP_ROUTETOIF) {
610 		/*
611 		 * if we have tunnel mode SA, we may need to ignore
612 		 * IP_ROUTETOIF.
613 		 */
614 		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
615 			flags &= ~IP_ROUTETOIF;
616 			ro = state.ro;
617 		}
618 	} else
619 		ro = state.ro;
620 	dst = (struct sockaddr_in *)state.dst;
621 	if (error) {
622 		/* mbuf is already reclaimed in ipsec4_output. */
623 		m0 = NULL;
624 		switch (error) {
625 		case EHOSTUNREACH:
626 		case ENETUNREACH:
627 		case EMSGSIZE:
628 		case ENOBUFS:
629 		case ENOMEM:
630 			break;
631 		default:
632 			kprintf("ip4_output (ipsec): error code %d\n", error);
633 			/*fall through*/
634 		case ENOENT:
635 			/* don't show these error codes to the user */
636 			error = 0;
637 			break;
638 		}
639 		goto bad;
640 	}
641     }
642 
643 	/* be sure to update variables that are affected by ipsec4_output() */
644 	ip = mtod(m, struct ip *);
645 #ifdef _IP_VHL
646 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
647 #else
648 	hlen = ip->ip_hl << 2;
649 #endif
650 	if (ro->ro_rt == NULL) {
651 		if (!(flags & IP_ROUTETOIF)) {
652 			kprintf("ip_output: "
653 				"can't update route after IPsec processing\n");
654 			error = EHOSTUNREACH;	/*XXX*/
655 			goto bad;
656 		}
657 	} else {
658 		ia = ifatoia(ro->ro_rt->rt_ifa);
659 		ifp = ro->ro_rt->rt_ifp;
660 	}
661 
662 	/* make it flipped, again. */
663 	ip->ip_len = ntohs(ip->ip_len);
664 	ip->ip_off = ntohs(ip->ip_off);
665 skip_ipsec:
666 #endif /*IPSEC*/
667 #ifdef FAST_IPSEC
668 	/*
669 	 * Check the security policy (SP) for the packet and, if
670 	 * required, do IPsec-related processing.  There are two
671 	 * cases here; the first time a packet is sent through
672 	 * it will be untagged and handled by ipsec4_checkpolicy.
673 	 * If the packet is resubmitted to ip_output (e.g. after
674 	 * AH, ESP, etc. processing), there will be a tag to bypass
675 	 * the lookup and related policy checking.
676 	 */
677 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
678 	crit_enter();
679 	if (mtag != NULL) {
680 		tdbi = (struct tdb_ident *)m_tag_data(mtag);
681 		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
682 		if (sp == NULL)
683 			error = -EINVAL;	/* force silent drop */
684 		m_tag_delete(m, mtag);
685 	} else {
686 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
687 					&error, inp);
688 	}
689 	/*
690 	 * There are four return cases:
691 	 *    sp != NULL		    apply IPsec policy
692 	 *    sp == NULL, error == 0	    no IPsec handling needed
693 	 *    sp == NULL, error == -EINVAL  discard packet w/o error
694 	 *    sp == NULL, error != 0	    discard packet, report error
695 	 */
696 	if (sp != NULL) {
697 		/* Loop detection, check if ipsec processing already done */
698 		KASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
699 		for (mtag = m_tag_first(m); mtag != NULL;
700 		     mtag = m_tag_next(m, mtag)) {
701 			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
702 				continue;
703 			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
704 			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
705 				continue;
706 			/*
707 			 * Check if policy has an SA associated with it.
708 			 * This can happen when an SP has yet to acquire
709 			 * an SA; e.g. on first reference.  If it occurs,
710 			 * then we let ipsec4_process_packet do its thing.
711 			 */
712 			if (sp->req->sav == NULL)
713 				break;
714 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
715 			if (tdbi->spi == sp->req->sav->spi &&
716 			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
717 			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
718 				 sizeof(union sockaddr_union)) == 0) {
719 				/*
720 				 * No IPsec processing is needed, free
721 				 * reference to SP.
722 				 *
723 				 * NB: null pointer to avoid free at
724 				 *     done: below.
725 				 */
726 				KEY_FREESP(&sp), sp = NULL;
727 				crit_exit();
728 				goto spd_done;
729 			}
730 		}
731 
732 		/*
733 		 * Do delayed checksums now because we send before
734 		 * this is done in the normal processing path.
735 		 */
736 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
737 			in_delayed_cksum(m);
738 			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
739 		}
740 
741 		ip->ip_len = htons(ip->ip_len);
742 		ip->ip_off = htons(ip->ip_off);
743 
744 		/* NB: callee frees mbuf */
745 		error = ipsec4_process_packet(m, sp->req, flags, 0);
746 		/*
747 		 * Preserve KAME behaviour: ENOENT can be returned
748 		 * when an SA acquire is in progress.  Don't propagate
749 		 * this to user-level; it confuses applications.
750 		 *
751 		 * XXX this will go away when the SADB is redone.
752 		 */
753 		if (error == ENOENT)
754 			error = 0;
755 		crit_exit();
756 		goto done;
757 	} else {
758 		crit_exit();
759 
760 		if (error != 0) {
761 			/*
762 			 * Hack: -EINVAL is used to signal that a packet
763 			 * should be silently discarded.  This is typically
764 			 * because we asked key management for an SA and
765 			 * it was delayed (e.g. kicked up to IKE).
766 			 */
767 			if (error == -EINVAL)
768 				error = 0;
769 			goto bad;
770 		} else {
771 			/* No IPsec processing for this packet. */
772 		}
773 #ifdef notyet
774 		/*
775 		 * If deferred crypto processing is needed, check that
776 		 * the interface supports it.
777 		 */
778 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
779 		if (mtag != NULL && !(ifp->if_capenable & IFCAP_IPSEC)) {
780 			/* notify IPsec to do its own crypto */
781 			ipsp_skipcrypto_unmark((struct tdb_ident *)m_tag_data(mtag));
782 			error = EHOSTUNREACH;
783 			goto bad;
784 		}
785 #endif
786 	}
787 spd_done:
788 #endif /* FAST_IPSEC */
789 
790 	/* We are already being fwd'd from a firewall. */
791 	if (next_hop != NULL)
792 		goto pass;
793 
794 	/* No pfil hooks */
795 	if (!pfil_has_hooks(&inet_pfil_hook)) {
796 		if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
797 			/*
798 			 * Strip dummynet tags from stranded packets
799 			 */
800 			mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
801 			KKASSERT(mtag != NULL);
802 			m_tag_delete(m, mtag);
803 			m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
804 		}
805 		goto pass;
806 	}
807 
808 	/*
809 	 * IpHack's section.
810 	 * - Xlate: translate packet's addr/port (NAT).
811 	 * - Firewall: deny/allow/etc.
812 	 * - Wrap: fake packet's addr/port <unimpl.>
813 	 * - Encapsulate: put it in another IP and send out. <unimp.>
814 	 */
815 
816 	/*
817 	 * Run through list of hooks for output packets.
818 	 */
819 	error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT);
820 	if (error != 0 || m == NULL)
821 		goto done;
822 	ip = mtod(m, struct ip *);
823 
824 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
825 		/*
826 		 * Check dst to make sure it is directly reachable on the
827 		 * interface we previously thought it was.
828 		 * If it isn't (which may be likely in some situations) we have
829 		 * to re-route it (ie, find a route for the next-hop and the
830 		 * associated interface) and set them here. This is nested
831 		 * forwarding which in most cases is undesirable, except where
832 		 * such control is nigh impossible. So we do it here.
833 		 * And I'm babbling.
834 		 */
835 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
836 		KKASSERT(mtag != NULL);
837 		next_hop = m_tag_data(mtag);
838 
839 		/*
840 		 * Try local forwarding first
841 		 */
842 		if (ip_localforward(m, next_hop, hlen))
843 			goto done;
844 
845 		/*
846 		 * Relocate the route based on next_hop.
847 		 * If the current route is inp's cache, keep it untouched.
848 		 */
849 		if (ro == &iproute && ro->ro_rt != NULL) {
850 			RTFREE(ro->ro_rt);
851 			ro->ro_rt = NULL;
852 		}
853 		ro = &iproute;
854 		bzero(ro, sizeof *ro);
855 
856 		/*
857 		 * Forwarding to broadcast address is not allowed.
858 		 * XXX Should we follow IP_ROUTETOIF?
859 		 */
860 		flags &= ~(IP_ALLOWBROADCAST | IP_ROUTETOIF);
861 
862 		/* We are doing forwarding now */
863 		flags |= IP_FORWARDING;
864 
865 		goto reroute;
866 	}
867 
868 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
869 		struct dn_pkt *dn_pkt;
870 
871 		mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
872 		KKASSERT(mtag != NULL);
873 		dn_pkt = m_tag_data(mtag);
874 
875 		/*
876 		 * Under certain cases it is not possible to recalculate
877 		 * 'ro' and 'dst', let alone 'flags', so just save them in
878 		 * dummynet tag and avoid the possible wrong reculcalation
879 		 * when we come back to ip_output() again.
880 		 *
881 		 * All other parameters have been already used and so they
882 		 * are not needed anymore.
883 		 * XXX if the ifp is deleted while a pkt is in dummynet,
884 		 * we are in trouble! (TODO use ifnet_detach_event)
885 		 *
886 		 * We need to copy *ro because for ICMP pkts (and maybe
887 		 * others) the caller passed a pointer into the stack;
888 		 * dst might also be a pointer into *ro so it needs to
889 		 * be updated.
890 		 */
891 		dn_pkt->ro = *ro;
892 		if (ro->ro_rt)
893 			ro->ro_rt->rt_refcnt++;
894 		if (dst == (struct sockaddr_in *)&ro->ro_dst) {
895 			/* 'dst' points into 'ro' */
896 			dst = (struct sockaddr_in *)&(dn_pkt->ro.ro_dst);
897 		}
898 		dn_pkt->dn_dst = dst;
899 		dn_pkt->flags = flags;
900 
901 		ip_dn_queue(m);
902 		goto done;
903 	}
904 pass:
905 	/* 127/8 must not appear on wire - RFC1122. */
906 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
907 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
908 		if (!(ifp->if_flags & IFF_LOOPBACK)) {
909 			ipstat.ips_badaddr++;
910 			error = EADDRNOTAVAIL;
911 			goto bad;
912 		}
913 	}
914 
915 	m->m_pkthdr.csum_flags |= CSUM_IP;
916 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
917 	if (sw_csum & CSUM_DELAY_DATA) {
918 		in_delayed_cksum(m);
919 		sw_csum &= ~CSUM_DELAY_DATA;
920 	}
921 	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
922 
923 	/*
924 	 * If small enough for interface, or the interface will take
925 	 * care of the fragmentation for us, can just send directly.
926 	 */
927 	if (ip->ip_len <= ifp->if_mtu || ((ifp->if_hwassist & CSUM_FRAGMENT) &&
928 	    !(ip->ip_off & IP_DF))) {
929 		ip->ip_len = htons(ip->ip_len);
930 		ip->ip_off = htons(ip->ip_off);
931 		ip->ip_sum = 0;
932 		if (sw_csum & CSUM_DELAY_IP) {
933 			if (ip->ip_vhl == IP_VHL_BORING)
934 				ip->ip_sum = in_cksum_hdr(ip);
935 			else
936 				ip->ip_sum = in_cksum(m, hlen);
937 		}
938 
939 		/* Record statistics for this interface address. */
940 		if (!(flags & IP_FORWARDING) && ia) {
941 			ia->ia_ifa.if_opackets++;
942 			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
943 		}
944 
945 #ifdef IPSEC
946 		/* clean ipsec history once it goes out of the node */
947 		ipsec_delaux(m);
948 #endif
949 
950 #ifdef MBUF_STRESS_TEST
951 		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) {
952 			struct mbuf *m1, *m2;
953 			int length, tmp;
954 
955 			tmp = length = m->m_pkthdr.len;
956 
957 			while ((length -= mbuf_frag_size) >= 1) {
958 				m1 = m_split(m, length, MB_DONTWAIT);
959 				if (m1 == NULL)
960 					break;
961 				m2 = m;
962 				while (m2->m_next != NULL)
963 					m2 = m2->m_next;
964 				m2->m_next = m1;
965 			}
966 			m->m_pkthdr.len = tmp;
967 		}
968 #endif
969 
970 #ifdef MPLS
971 		if (!mpls_output_process(m, ro->ro_rt))
972 			goto done;
973 #endif
974 		error = ifp->if_output(ifp, m, (struct sockaddr *)dst,
975 				       ro->ro_rt);
976 		goto done;
977 	}
978 
979 	if (ip->ip_off & IP_DF) {
980 		error = EMSGSIZE;
981 		/*
982 		 * This case can happen if the user changed the MTU
983 		 * of an interface after enabling IP on it.  Because
984 		 * most netifs don't keep track of routes pointing to
985 		 * them, there is no way for one to update all its
986 		 * routes when the MTU is changed.
987 		 */
988 		if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
989 		    !(ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) &&
990 		    (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
991 			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
992 		}
993 		ipstat.ips_cantfrag++;
994 		goto bad;
995 	}
996 
997 	/*
998 	 * Too large for interface; fragment if possible. If successful,
999 	 * on return, m will point to a list of packets to be sent.
1000 	 */
1001 	error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum);
1002 	if (error)
1003 		goto bad;
1004 	for (; m; m = m0) {
1005 		m0 = m->m_nextpkt;
1006 		m->m_nextpkt = NULL;
1007 #ifdef IPSEC
1008 		/* clean ipsec history once it goes out of the node */
1009 		ipsec_delaux(m);
1010 #endif
1011 		if (error == 0) {
1012 			/* Record statistics for this interface address. */
1013 			if (ia != NULL) {
1014 				ia->ia_ifa.if_opackets++;
1015 				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1016 			}
1017 #ifdef MPLS
1018 			if (!mpls_output_process(m, ro->ro_rt))
1019 				continue;
1020 #endif
1021 			error = ifp->if_output(ifp, m, (struct sockaddr *)dst,
1022 					       ro->ro_rt);
1023 		} else {
1024 			m_freem(m);
1025 		}
1026 	}
1027 
1028 	if (error == 0)
1029 		ipstat.ips_fragmented++;
1030 
1031 done:
1032 	if (ro == &iproute && ro->ro_rt != NULL) {
1033 		RTFREE(ro->ro_rt);
1034 		ro->ro_rt = NULL;
1035 	}
1036 #ifdef IPSEC
1037 	if (sp != NULL) {
1038 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1039 			kprintf("DP ip_output call free SP:%p\n", sp));
1040 		key_freesp(sp);
1041 	}
1042 #endif
1043 #ifdef FAST_IPSEC
1044 	if (sp != NULL)
1045 		KEY_FREESP(&sp);
1046 #endif
1047 	return (error);
1048 bad:
1049 	m_freem(m);
1050 	goto done;
1051 }
1052 
1053 /*
1054  * Create a chain of fragments which fit the given mtu. m_frag points to the
1055  * mbuf to be fragmented; on return it points to the chain with the fragments.
1056  * Return 0 if no error. If error, m_frag may contain a partially built
1057  * chain of fragments that should be freed by the caller.
1058  *
1059  * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
1060  * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
1061  */
1062 int
1063 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
1064 	    u_long if_hwassist_flags, int sw_csum)
1065 {
1066 	int error = 0;
1067 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1068 	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
1069 	int off;
1070 	struct mbuf *m0 = *m_frag;	/* the original packet		*/
1071 	int firstlen;
1072 	struct mbuf **mnext;
1073 	int nfrags;
1074 
1075 	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
1076 		ipstat.ips_cantfrag++;
1077 		return EMSGSIZE;
1078 	}
1079 
1080 	/*
1081 	 * Must be able to put at least 8 bytes per fragment.
1082 	 */
1083 	if (len < 8)
1084 		return EMSGSIZE;
1085 
1086 	/*
1087 	 * If the interface will not calculate checksums on
1088 	 * fragmented packets, then do it here.
1089 	 */
1090 	if ((m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) &&
1091 	    !(if_hwassist_flags & CSUM_IP_FRAGS)) {
1092 		in_delayed_cksum(m0);
1093 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1094 	}
1095 
1096 	if (len > PAGE_SIZE) {
1097 		/*
1098 		 * Fragment large datagrams such that each segment
1099 		 * contains a multiple of PAGE_SIZE amount of data,
1100 		 * plus headers. This enables a receiver to perform
1101 		 * page-flipping zero-copy optimizations.
1102 		 *
1103 		 * XXX When does this help given that sender and receiver
1104 		 * could have different page sizes, and also mtu could
1105 		 * be less than the receiver's page size ?
1106 		 */
1107 		int newlen;
1108 		struct mbuf *m;
1109 
1110 		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
1111 			off += m->m_len;
1112 
1113 		/*
1114 		 * firstlen (off - hlen) must be aligned on an
1115 		 * 8-byte boundary
1116 		 */
1117 		if (off < hlen)
1118 			goto smart_frag_failure;
1119 		off = ((off - hlen) & ~7) + hlen;
1120 		newlen = (~PAGE_MASK) & mtu;
1121 		if ((newlen + sizeof(struct ip)) > mtu) {
1122 			/* we failed, go back the default */
1123 smart_frag_failure:
1124 			newlen = len;
1125 			off = hlen + len;
1126 		}
1127 		len = newlen;
1128 
1129 	} else {
1130 		off = hlen + len;
1131 	}
1132 
1133 	firstlen = off - hlen;
1134 	mnext = &m0->m_nextpkt;		/* pointer to next packet */
1135 
1136 	/*
1137 	 * Loop through length of segment after first fragment,
1138 	 * make new header and copy data of each part and link onto chain.
1139 	 * Here, m0 is the original packet, m is the fragment being created.
1140 	 * The fragments are linked off the m_nextpkt of the original
1141 	 * packet, which after processing serves as the first fragment.
1142 	 */
1143 	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
1144 		struct ip *mhip;	/* ip header on the fragment */
1145 		struct mbuf *m;
1146 		int mhlen = sizeof(struct ip);
1147 
1148 		MGETHDR(m, MB_DONTWAIT, MT_HEADER);
1149 		if (m == NULL) {
1150 			error = ENOBUFS;
1151 			ipstat.ips_odropped++;
1152 			goto done;
1153 		}
1154 		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
1155 		/*
1156 		 * In the first mbuf, leave room for the link header, then
1157 		 * copy the original IP header including options. The payload
1158 		 * goes into an additional mbuf chain returned by m_copy().
1159 		 */
1160 		m->m_data += max_linkhdr;
1161 		mhip = mtod(m, struct ip *);
1162 		*mhip = *ip;
1163 		if (hlen > sizeof(struct ip)) {
1164 			mhlen = ip_optcopy(ip, mhip) + sizeof(struct ip);
1165 			mhip->ip_vhl = IP_MAKE_VHL(IPVERSION, mhlen >> 2);
1166 		}
1167 		m->m_len = mhlen;
1168 		/* XXX do we need to add ip->ip_off below ? */
1169 		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
1170 		if (off + len >= ip->ip_len) {	/* last fragment */
1171 			len = ip->ip_len - off;
1172 			m->m_flags |= M_LASTFRAG;
1173 		} else
1174 			mhip->ip_off |= IP_MF;
1175 		mhip->ip_len = htons((u_short)(len + mhlen));
1176 		m->m_next = m_copy(m0, off, len);
1177 		if (m->m_next == NULL) {		/* copy failed */
1178 			m_free(m);
1179 			error = ENOBUFS;	/* ??? */
1180 			ipstat.ips_odropped++;
1181 			goto done;
1182 		}
1183 		m->m_pkthdr.len = mhlen + len;
1184 		m->m_pkthdr.rcvif = NULL;
1185 		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
1186 		mhip->ip_off = htons(mhip->ip_off);
1187 		mhip->ip_sum = 0;
1188 		if (sw_csum & CSUM_DELAY_IP)
1189 			mhip->ip_sum = in_cksum(m, mhlen);
1190 		*mnext = m;
1191 		mnext = &m->m_nextpkt;
1192 	}
1193 	ipstat.ips_ofragments += nfrags;
1194 
1195 	/* set first marker for fragment chain */
1196 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1197 	m0->m_pkthdr.csum_data = nfrags;
1198 
1199 	/*
1200 	 * Update first fragment by trimming what's been copied out
1201 	 * and updating header.
1202 	 */
1203 	m_adj(m0, hlen + firstlen - ip->ip_len);
1204 	m0->m_pkthdr.len = hlen + firstlen;
1205 	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1206 	ip->ip_off |= IP_MF;
1207 	ip->ip_off = htons(ip->ip_off);
1208 	ip->ip_sum = 0;
1209 	if (sw_csum & CSUM_DELAY_IP)
1210 		ip->ip_sum = in_cksum(m0, hlen);
1211 
1212 done:
1213 	*m_frag = m0;
1214 	return error;
1215 }
1216 
1217 void
1218 in_delayed_cksum(struct mbuf *m)
1219 {
1220 	struct ip *ip;
1221 	u_short csum, offset;
1222 
1223 	ip = mtod(m, struct ip *);
1224 	offset = IP_VHL_HL(ip->ip_vhl) << 2 ;
1225 	csum = in_cksum_skip(m, ip->ip_len, offset);
1226 	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
1227 		csum = 0xffff;
1228 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
1229 
1230 	if (offset + sizeof(u_short) > m->m_len) {
1231 		kprintf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
1232 		    m->m_len, offset, ip->ip_p);
1233 		/*
1234 		 * XXX
1235 		 * this shouldn't happen, but if it does, the
1236 		 * correct behavior may be to insert the checksum
1237 		 * in the existing chain instead of rearranging it.
1238 		 */
1239 		m = m_pullup(m, offset + sizeof(u_short));
1240 	}
1241 	*(u_short *)(m->m_data + offset) = csum;
1242 }
1243 
1244 /*
1245  * Insert IP options into preformed packet.
1246  * Adjust IP destination as required for IP source routing,
1247  * as indicated by a non-zero in_addr at the start of the options.
1248  *
1249  * XXX This routine assumes that the packet has no options in place.
1250  */
1251 static struct mbuf *
1252 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1253 {
1254 	struct ipoption *p = mtod(opt, struct ipoption *);
1255 	struct mbuf *n;
1256 	struct ip *ip = mtod(m, struct ip *);
1257 	unsigned optlen;
1258 
1259 	optlen = opt->m_len - sizeof p->ipopt_dst;
1260 	if (optlen + (u_short)ip->ip_len > IP_MAXPACKET) {
1261 		*phlen = 0;
1262 		return (m);		/* XXX should fail */
1263 	}
1264 	if (p->ipopt_dst.s_addr)
1265 		ip->ip_dst = p->ipopt_dst;
1266 	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
1267 		MGETHDR(n, MB_DONTWAIT, MT_HEADER);
1268 		if (n == NULL) {
1269 			*phlen = 0;
1270 			return (m);
1271 		}
1272 		n->m_pkthdr.rcvif = NULL;
1273 		n->m_pkthdr.len = m->m_pkthdr.len + optlen;
1274 		m->m_len -= sizeof(struct ip);
1275 		m->m_data += sizeof(struct ip);
1276 		n->m_next = m;
1277 		m = n;
1278 		m->m_len = optlen + sizeof(struct ip);
1279 		m->m_data += max_linkhdr;
1280 		memcpy(mtod(m, void *), ip, sizeof(struct ip));
1281 	} else {
1282 		m->m_data -= optlen;
1283 		m->m_len += optlen;
1284 		m->m_pkthdr.len += optlen;
1285 		ovbcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
1286 	}
1287 	ip = mtod(m, struct ip *);
1288 	bcopy(p->ipopt_list, ip + 1, optlen);
1289 	*phlen = sizeof(struct ip) + optlen;
1290 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, *phlen >> 2);
1291 	ip->ip_len += optlen;
1292 	return (m);
1293 }
1294 
1295 /*
1296  * Copy options from ip to jp,
1297  * omitting those not copied during fragmentation.
1298  */
1299 int
1300 ip_optcopy(struct ip *ip, struct ip *jp)
1301 {
1302 	u_char *cp, *dp;
1303 	int opt, optlen, cnt;
1304 
1305 	cp = (u_char *)(ip + 1);
1306 	dp = (u_char *)(jp + 1);
1307 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1308 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1309 		opt = cp[0];
1310 		if (opt == IPOPT_EOL)
1311 			break;
1312 		if (opt == IPOPT_NOP) {
1313 			/* Preserve for IP mcast tunnel's LSRR alignment. */
1314 			*dp++ = IPOPT_NOP;
1315 			optlen = 1;
1316 			continue;
1317 		}
1318 
1319 		KASSERT(cnt >= IPOPT_OLEN + sizeof *cp,
1320 		    ("ip_optcopy: malformed ipv4 option"));
1321 		optlen = cp[IPOPT_OLEN];
1322 		KASSERT(optlen >= IPOPT_OLEN + sizeof *cp && optlen <= cnt,
1323 		    ("ip_optcopy: malformed ipv4 option"));
1324 
1325 		/* bogus lengths should have been caught by ip_dooptions */
1326 		if (optlen > cnt)
1327 			optlen = cnt;
1328 		if (IPOPT_COPIED(opt)) {
1329 			bcopy(cp, dp, optlen);
1330 			dp += optlen;
1331 		}
1332 	}
1333 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1334 		*dp++ = IPOPT_EOL;
1335 	return (optlen);
1336 }
1337 
1338 /*
1339  * IP socket option processing.
1340  */
1341 void
1342 ip_ctloutput(netmsg_t msg)
1343 {
1344 	struct socket *so = msg->base.nm_so;
1345 	struct sockopt *sopt = msg->ctloutput.nm_sopt;
1346 	struct	inpcb *inp = so->so_pcb;
1347 	int	error, optval;
1348 
1349 	error = optval = 0;
1350 	if (sopt->sopt_level != IPPROTO_IP) {
1351 		error = EINVAL;
1352 		goto done;
1353 	}
1354 
1355 	switch (sopt->sopt_dir) {
1356 	case SOPT_SET:
1357 		switch (sopt->sopt_name) {
1358 		case IP_OPTIONS:
1359 #ifdef notyet
1360 		case IP_RETOPTS:
1361 #endif
1362 		{
1363 			struct mbuf *m;
1364 			if (sopt->sopt_valsize > MLEN) {
1365 				error = EMSGSIZE;
1366 				break;
1367 			}
1368 			MGET(m, sopt->sopt_td ? MB_WAIT : MB_DONTWAIT, MT_HEADER);
1369 			if (m == NULL) {
1370 				error = ENOBUFS;
1371 				break;
1372 			}
1373 			m->m_len = sopt->sopt_valsize;
1374 			error = soopt_to_kbuf(sopt, mtod(m, void *), m->m_len,
1375 					      m->m_len);
1376 			error = ip_pcbopts(sopt->sopt_name,
1377 					   &inp->inp_options, m);
1378 			goto done;
1379 		}
1380 
1381 		case IP_TOS:
1382 		case IP_TTL:
1383 		case IP_MINTTL:
1384 		case IP_RECVOPTS:
1385 		case IP_RECVRETOPTS:
1386 		case IP_RECVDSTADDR:
1387 		case IP_RECVIF:
1388 		case IP_RECVTTL:
1389 		case IP_FAITH:
1390 			error = soopt_to_kbuf(sopt, &optval, sizeof optval,
1391 					     sizeof optval);
1392 			if (error)
1393 				break;
1394 			switch (sopt->sopt_name) {
1395 			case IP_TOS:
1396 				inp->inp_ip_tos = optval;
1397 				break;
1398 
1399 			case IP_TTL:
1400 				inp->inp_ip_ttl = optval;
1401 				break;
1402 			case IP_MINTTL:
1403 				if (optval >= 0 && optval <= MAXTTL)
1404 					inp->inp_ip_minttl = optval;
1405 				else
1406 					error = EINVAL;
1407 				break;
1408 #define	OPTSET(bit) \
1409 	if (optval) \
1410 		inp->inp_flags |= bit; \
1411 	else \
1412 		inp->inp_flags &= ~bit;
1413 
1414 			case IP_RECVOPTS:
1415 				OPTSET(INP_RECVOPTS);
1416 				break;
1417 
1418 			case IP_RECVRETOPTS:
1419 				OPTSET(INP_RECVRETOPTS);
1420 				break;
1421 
1422 			case IP_RECVDSTADDR:
1423 				OPTSET(INP_RECVDSTADDR);
1424 				break;
1425 
1426 			case IP_RECVIF:
1427 				OPTSET(INP_RECVIF);
1428 				break;
1429 
1430 			case IP_RECVTTL:
1431 				OPTSET(INP_RECVTTL);
1432 				break;
1433 
1434 			case IP_FAITH:
1435 				OPTSET(INP_FAITH);
1436 				break;
1437 			}
1438 			break;
1439 #undef OPTSET
1440 
1441 		case IP_MULTICAST_IF:
1442 		case IP_MULTICAST_VIF:
1443 		case IP_MULTICAST_TTL:
1444 		case IP_MULTICAST_LOOP:
1445 		case IP_ADD_MEMBERSHIP:
1446 		case IP_DROP_MEMBERSHIP:
1447 			error = ip_setmoptions(sopt, &inp->inp_moptions);
1448 			break;
1449 
1450 		case IP_PORTRANGE:
1451 			error = soopt_to_kbuf(sopt, &optval, sizeof optval,
1452 					    sizeof optval);
1453 			if (error)
1454 				break;
1455 
1456 			switch (optval) {
1457 			case IP_PORTRANGE_DEFAULT:
1458 				inp->inp_flags &= ~(INP_LOWPORT);
1459 				inp->inp_flags &= ~(INP_HIGHPORT);
1460 				break;
1461 
1462 			case IP_PORTRANGE_HIGH:
1463 				inp->inp_flags &= ~(INP_LOWPORT);
1464 				inp->inp_flags |= INP_HIGHPORT;
1465 				break;
1466 
1467 			case IP_PORTRANGE_LOW:
1468 				inp->inp_flags &= ~(INP_HIGHPORT);
1469 				inp->inp_flags |= INP_LOWPORT;
1470 				break;
1471 
1472 			default:
1473 				error = EINVAL;
1474 				break;
1475 			}
1476 			break;
1477 
1478 #if defined(IPSEC) || defined(FAST_IPSEC)
1479 		case IP_IPSEC_POLICY:
1480 		{
1481 			caddr_t req;
1482 			size_t len = 0;
1483 			int priv;
1484 			struct mbuf *m;
1485 			int optname;
1486 
1487 			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1488 				break;
1489 			soopt_to_mbuf(sopt, m);
1490 			priv = (sopt->sopt_td != NULL &&
1491 				priv_check(sopt->sopt_td, PRIV_ROOT) != 0) ? 0 : 1;
1492 			req = mtod(m, caddr_t);
1493 			len = m->m_len;
1494 			optname = sopt->sopt_name;
1495 			error = ipsec4_set_policy(inp, optname, req, len, priv);
1496 			m_freem(m);
1497 			break;
1498 		}
1499 #endif /*IPSEC*/
1500 
1501 		default:
1502 			error = ENOPROTOOPT;
1503 			break;
1504 		}
1505 		break;
1506 
1507 	case SOPT_GET:
1508 		switch (sopt->sopt_name) {
1509 		case IP_OPTIONS:
1510 		case IP_RETOPTS:
1511 			if (inp->inp_options)
1512 				soopt_from_kbuf(sopt, mtod(inp->inp_options,
1513 							   char *),
1514 						inp->inp_options->m_len);
1515 			else
1516 				sopt->sopt_valsize = 0;
1517 			break;
1518 
1519 		case IP_TOS:
1520 		case IP_TTL:
1521 		case IP_MINTTL:
1522 		case IP_RECVOPTS:
1523 		case IP_RECVRETOPTS:
1524 		case IP_RECVDSTADDR:
1525 		case IP_RECVTTL:
1526 		case IP_RECVIF:
1527 		case IP_PORTRANGE:
1528 		case IP_FAITH:
1529 			switch (sopt->sopt_name) {
1530 
1531 			case IP_TOS:
1532 				optval = inp->inp_ip_tos;
1533 				break;
1534 
1535 			case IP_TTL:
1536 				optval = inp->inp_ip_ttl;
1537 				break;
1538 			case IP_MINTTL:
1539 				optval = inp->inp_ip_minttl;
1540 				break;
1541 
1542 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1543 
1544 			case IP_RECVOPTS:
1545 				optval = OPTBIT(INP_RECVOPTS);
1546 				break;
1547 
1548 			case IP_RECVRETOPTS:
1549 				optval = OPTBIT(INP_RECVRETOPTS);
1550 				break;
1551 
1552 			case IP_RECVDSTADDR:
1553 				optval = OPTBIT(INP_RECVDSTADDR);
1554 				break;
1555 
1556 			case IP_RECVTTL:
1557 				optval = OPTBIT(INP_RECVTTL);
1558 				break;
1559 
1560 			case IP_RECVIF:
1561 				optval = OPTBIT(INP_RECVIF);
1562 				break;
1563 
1564 			case IP_PORTRANGE:
1565 				if (inp->inp_flags & INP_HIGHPORT)
1566 					optval = IP_PORTRANGE_HIGH;
1567 				else if (inp->inp_flags & INP_LOWPORT)
1568 					optval = IP_PORTRANGE_LOW;
1569 				else
1570 					optval = 0;
1571 				break;
1572 
1573 			case IP_FAITH:
1574 				optval = OPTBIT(INP_FAITH);
1575 				break;
1576 			}
1577 			soopt_from_kbuf(sopt, &optval, sizeof optval);
1578 			break;
1579 
1580 		case IP_MULTICAST_IF:
1581 		case IP_MULTICAST_VIF:
1582 		case IP_MULTICAST_TTL:
1583 		case IP_MULTICAST_LOOP:
1584 		case IP_ADD_MEMBERSHIP:
1585 		case IP_DROP_MEMBERSHIP:
1586 			error = ip_getmoptions(sopt, inp->inp_moptions);
1587 			break;
1588 
1589 #if defined(IPSEC) || defined(FAST_IPSEC)
1590 		case IP_IPSEC_POLICY:
1591 		{
1592 			struct mbuf *m = NULL;
1593 			caddr_t req = NULL;
1594 			size_t len = 0;
1595 
1596 			if (m != NULL) {
1597 				req = mtod(m, caddr_t);
1598 				len = m->m_len;
1599 			}
1600 			error = ipsec4_get_policy(so->so_pcb, req, len, &m);
1601 			if (error == 0)
1602 				error = soopt_from_mbuf(sopt, m); /* XXX */
1603 			if (error == 0)
1604 				m_freem(m);
1605 			break;
1606 		}
1607 #endif /*IPSEC*/
1608 
1609 		default:
1610 			error = ENOPROTOOPT;
1611 			break;
1612 		}
1613 		break;
1614 	}
1615 done:
1616 	lwkt_replymsg(&msg->lmsg, error);
1617 }
1618 
1619 /*
1620  * Set up IP options in pcb for insertion in output packets.
1621  * Store in mbuf with pointer in pcbopt, adding pseudo-option
1622  * with destination address if source routed.
1623  */
1624 static int
1625 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1626 {
1627 	int cnt, optlen;
1628 	u_char *cp;
1629 	u_char opt;
1630 
1631 	/* turn off any old options */
1632 	if (*pcbopt)
1633 		m_free(*pcbopt);
1634 	*pcbopt = 0;
1635 	if (m == NULL || m->m_len == 0) {
1636 		/*
1637 		 * Only turning off any previous options.
1638 		 */
1639 		if (m != NULL)
1640 			m_free(m);
1641 		return (0);
1642 	}
1643 
1644 	if (m->m_len % sizeof(int32_t))
1645 		goto bad;
1646 	/*
1647 	 * IP first-hop destination address will be stored before
1648 	 * actual options; move other options back
1649 	 * and clear it when none present.
1650 	 */
1651 	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1652 		goto bad;
1653 	cnt = m->m_len;
1654 	m->m_len += sizeof(struct in_addr);
1655 	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1656 	ovbcopy(mtod(m, caddr_t), cp, cnt);
1657 	bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1658 
1659 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1660 		opt = cp[IPOPT_OPTVAL];
1661 		if (opt == IPOPT_EOL)
1662 			break;
1663 		if (opt == IPOPT_NOP)
1664 			optlen = 1;
1665 		else {
1666 			if (cnt < IPOPT_OLEN + sizeof *cp)
1667 				goto bad;
1668 			optlen = cp[IPOPT_OLEN];
1669 			if (optlen < IPOPT_OLEN + sizeof *cp || optlen > cnt)
1670 				goto bad;
1671 		}
1672 		switch (opt) {
1673 
1674 		default:
1675 			break;
1676 
1677 		case IPOPT_LSRR:
1678 		case IPOPT_SSRR:
1679 			/*
1680 			 * user process specifies route as:
1681 			 *	->A->B->C->D
1682 			 * D must be our final destination (but we can't
1683 			 * check that since we may not have connected yet).
1684 			 * A is first hop destination, which doesn't appear in
1685 			 * actual IP option, but is stored before the options.
1686 			 */
1687 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1688 				goto bad;
1689 			m->m_len -= sizeof(struct in_addr);
1690 			cnt -= sizeof(struct in_addr);
1691 			optlen -= sizeof(struct in_addr);
1692 			cp[IPOPT_OLEN] = optlen;
1693 			/*
1694 			 * Move first hop before start of options.
1695 			 */
1696 			bcopy(&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1697 			      sizeof(struct in_addr));
1698 			/*
1699 			 * Then copy rest of options back
1700 			 * to close up the deleted entry.
1701 			 */
1702 			ovbcopy(&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1703 				&cp[IPOPT_OFFSET+1],
1704 				cnt - (IPOPT_MINOFF - 1));
1705 			break;
1706 		}
1707 	}
1708 	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1709 		goto bad;
1710 	*pcbopt = m;
1711 	return (0);
1712 
1713 bad:
1714 	m_free(m);
1715 	return (EINVAL);
1716 }
1717 
1718 /*
1719  * XXX
1720  * The whole multicast option thing needs to be re-thought.
1721  * Several of these options are equally applicable to non-multicast
1722  * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1723  * standard option (IP_TTL).
1724  */
1725 
1726 /*
1727  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1728  */
1729 static struct ifnet *
1730 ip_multicast_if(struct in_addr *a, int *ifindexp)
1731 {
1732 	int ifindex;
1733 	struct ifnet *ifp;
1734 
1735 	if (ifindexp)
1736 		*ifindexp = 0;
1737 	if (ntohl(a->s_addr) >> 24 == 0) {
1738 		ifindex = ntohl(a->s_addr) & 0xffffff;
1739 		if (ifindex < 0 || if_index < ifindex)
1740 			return NULL;
1741 		ifp = ifindex2ifnet[ifindex];
1742 		if (ifindexp)
1743 			*ifindexp = ifindex;
1744 	} else {
1745 		ifp = INADDR_TO_IFP(a);
1746 	}
1747 	return ifp;
1748 }
1749 
1750 /*
1751  * Set the IP multicast options in response to user setsockopt().
1752  */
1753 static int
1754 ip_setmoptions(struct sockopt *sopt, struct ip_moptions **imop)
1755 {
1756 	int error = 0;
1757 	int i;
1758 	struct in_addr addr;
1759 	struct ip_mreq mreq;
1760 	struct ifnet *ifp;
1761 	struct ip_moptions *imo = *imop;
1762 	int ifindex;
1763 
1764 	if (imo == NULL) {
1765 		/*
1766 		 * No multicast option buffer attached to the pcb;
1767 		 * allocate one and initialize to default values.
1768 		 */
1769 		imo = kmalloc(sizeof *imo, M_IPMOPTS, M_WAITOK);
1770 
1771 		*imop = imo;
1772 		imo->imo_multicast_ifp = NULL;
1773 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
1774 		imo->imo_multicast_vif = -1;
1775 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1776 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1777 		imo->imo_num_memberships = 0;
1778 	}
1779 	switch (sopt->sopt_name) {
1780 	/* store an index number for the vif you wanna use in the send */
1781 	case IP_MULTICAST_VIF:
1782 		if (legal_vif_num == 0) {
1783 			error = EOPNOTSUPP;
1784 			break;
1785 		}
1786 		error = soopt_to_kbuf(sopt, &i, sizeof i, sizeof i);
1787 		if (error)
1788 			break;
1789 		if (!legal_vif_num(i) && (i != -1)) {
1790 			error = EINVAL;
1791 			break;
1792 		}
1793 		imo->imo_multicast_vif = i;
1794 		break;
1795 
1796 	case IP_MULTICAST_IF:
1797 		/*
1798 		 * Select the interface for outgoing multicast packets.
1799 		 */
1800 		error = soopt_to_kbuf(sopt, &addr, sizeof addr, sizeof addr);
1801 		if (error)
1802 			break;
1803 
1804 		/*
1805 		 * INADDR_ANY is used to remove a previous selection.
1806 		 * When no interface is selected, a default one is
1807 		 * chosen every time a multicast packet is sent.
1808 		 */
1809 		if (addr.s_addr == INADDR_ANY) {
1810 			imo->imo_multicast_ifp = NULL;
1811 			break;
1812 		}
1813 		/*
1814 		 * The selected interface is identified by its local
1815 		 * IP address.  Find the interface and confirm that
1816 		 * it supports multicasting.
1817 		 */
1818 		crit_enter();
1819 		ifp = ip_multicast_if(&addr, &ifindex);
1820 		if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
1821 			crit_exit();
1822 			error = EADDRNOTAVAIL;
1823 			break;
1824 		}
1825 		imo->imo_multicast_ifp = ifp;
1826 		if (ifindex)
1827 			imo->imo_multicast_addr = addr;
1828 		else
1829 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1830 		crit_exit();
1831 		break;
1832 
1833 	case IP_MULTICAST_TTL:
1834 		/*
1835 		 * Set the IP time-to-live for outgoing multicast packets.
1836 		 * The original multicast API required a char argument,
1837 		 * which is inconsistent with the rest of the socket API.
1838 		 * We allow either a char or an int.
1839 		 */
1840 		if (sopt->sopt_valsize == 1) {
1841 			u_char ttl;
1842 			error = soopt_to_kbuf(sopt, &ttl, 1, 1);
1843 			if (error)
1844 				break;
1845 			imo->imo_multicast_ttl = ttl;
1846 		} else {
1847 			u_int ttl;
1848 			error = soopt_to_kbuf(sopt, &ttl, sizeof ttl, sizeof ttl);
1849 			if (error)
1850 				break;
1851 			if (ttl > 255)
1852 				error = EINVAL;
1853 			else
1854 				imo->imo_multicast_ttl = ttl;
1855 		}
1856 		break;
1857 
1858 	case IP_MULTICAST_LOOP:
1859 		/*
1860 		 * Set the loopback flag for outgoing multicast packets.
1861 		 * Must be zero or one.  The original multicast API required a
1862 		 * char argument, which is inconsistent with the rest
1863 		 * of the socket API.  We allow either a char or an int.
1864 		 */
1865 		if (sopt->sopt_valsize == 1) {
1866 			u_char loop;
1867 
1868 			error = soopt_to_kbuf(sopt, &loop, 1, 1);
1869 			if (error)
1870 				break;
1871 			imo->imo_multicast_loop = !!loop;
1872 		} else {
1873 			u_int loop;
1874 
1875 			error = soopt_to_kbuf(sopt, &loop, sizeof loop,
1876 					    sizeof loop);
1877 			if (error)
1878 				break;
1879 			imo->imo_multicast_loop = !!loop;
1880 		}
1881 		break;
1882 
1883 	case IP_ADD_MEMBERSHIP:
1884 		/*
1885 		 * Add a multicast group membership.
1886 		 * Group must be a valid IP multicast address.
1887 		 */
1888 		error = soopt_to_kbuf(sopt, &mreq, sizeof mreq, sizeof mreq);
1889 		if (error)
1890 			break;
1891 
1892 		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1893 			error = EINVAL;
1894 			break;
1895 		}
1896 		crit_enter();
1897 		/*
1898 		 * If no interface address was provided, use the interface of
1899 		 * the route to the given multicast address.
1900 		 */
1901 		if (mreq.imr_interface.s_addr == INADDR_ANY) {
1902 			struct sockaddr_in dst;
1903 			struct rtentry *rt;
1904 
1905 			bzero(&dst, sizeof(struct sockaddr_in));
1906 			dst.sin_len = sizeof(struct sockaddr_in);
1907 			dst.sin_family = AF_INET;
1908 			dst.sin_addr = mreq.imr_multiaddr;
1909 			rt = rtlookup((struct sockaddr *)&dst);
1910 			if (rt == NULL) {
1911 				error = EADDRNOTAVAIL;
1912 				crit_exit();
1913 				break;
1914 			}
1915 			--rt->rt_refcnt;
1916 			ifp = rt->rt_ifp;
1917 		} else {
1918 			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1919 		}
1920 
1921 		/*
1922 		 * See if we found an interface, and confirm that it
1923 		 * supports multicast.
1924 		 */
1925 		if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
1926 			error = EADDRNOTAVAIL;
1927 			crit_exit();
1928 			break;
1929 		}
1930 		/*
1931 		 * See if the membership already exists or if all the
1932 		 * membership slots are full.
1933 		 */
1934 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1935 			if (imo->imo_membership[i]->inm_ifp == ifp &&
1936 			    imo->imo_membership[i]->inm_addr.s_addr
1937 						== mreq.imr_multiaddr.s_addr)
1938 				break;
1939 		}
1940 		if (i < imo->imo_num_memberships) {
1941 			error = EADDRINUSE;
1942 			crit_exit();
1943 			break;
1944 		}
1945 		if (i == IP_MAX_MEMBERSHIPS) {
1946 			error = ETOOMANYREFS;
1947 			crit_exit();
1948 			break;
1949 		}
1950 		/*
1951 		 * Everything looks good; add a new record to the multicast
1952 		 * address list for the given interface.
1953 		 */
1954 		if ((imo->imo_membership[i] =
1955 		     in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
1956 			error = ENOBUFS;
1957 			crit_exit();
1958 			break;
1959 		}
1960 		++imo->imo_num_memberships;
1961 		crit_exit();
1962 		break;
1963 
1964 	case IP_DROP_MEMBERSHIP:
1965 		/*
1966 		 * Drop a multicast group membership.
1967 		 * Group must be a valid IP multicast address.
1968 		 */
1969 		error = soopt_to_kbuf(sopt, &mreq, sizeof mreq, sizeof mreq);
1970 		if (error)
1971 			break;
1972 
1973 		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1974 			error = EINVAL;
1975 			break;
1976 		}
1977 
1978 		crit_enter();
1979 		/*
1980 		 * If an interface address was specified, get a pointer
1981 		 * to its ifnet structure.
1982 		 */
1983 		if (mreq.imr_interface.s_addr == INADDR_ANY)
1984 			ifp = NULL;
1985 		else {
1986 			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1987 			if (ifp == NULL) {
1988 				error = EADDRNOTAVAIL;
1989 				crit_exit();
1990 				break;
1991 			}
1992 		}
1993 		/*
1994 		 * Find the membership in the membership array.
1995 		 */
1996 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1997 			if ((ifp == NULL ||
1998 			     imo->imo_membership[i]->inm_ifp == ifp) &&
1999 			    imo->imo_membership[i]->inm_addr.s_addr ==
2000 			    mreq.imr_multiaddr.s_addr)
2001 				break;
2002 		}
2003 		if (i == imo->imo_num_memberships) {
2004 			error = EADDRNOTAVAIL;
2005 			crit_exit();
2006 			break;
2007 		}
2008 		/*
2009 		 * Give up the multicast address record to which the
2010 		 * membership points.
2011 		 */
2012 		in_delmulti(imo->imo_membership[i]);
2013 		/*
2014 		 * Remove the gap in the membership array.
2015 		 */
2016 		for (++i; i < imo->imo_num_memberships; ++i)
2017 			imo->imo_membership[i-1] = imo->imo_membership[i];
2018 		--imo->imo_num_memberships;
2019 		crit_exit();
2020 		break;
2021 
2022 	default:
2023 		error = EOPNOTSUPP;
2024 		break;
2025 	}
2026 
2027 	/*
2028 	 * If all options have default values, no need to keep the mbuf.
2029 	 */
2030 	if (imo->imo_multicast_ifp == NULL &&
2031 	    imo->imo_multicast_vif == -1 &&
2032 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
2033 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
2034 	    imo->imo_num_memberships == 0) {
2035 		kfree(*imop, M_IPMOPTS);
2036 		*imop = NULL;
2037 	}
2038 
2039 	return (error);
2040 }
2041 
2042 /*
2043  * Return the IP multicast options in response to user getsockopt().
2044  */
2045 static int
2046 ip_getmoptions(struct sockopt *sopt, struct ip_moptions *imo)
2047 {
2048 	struct in_addr addr;
2049 	struct in_ifaddr *ia;
2050 	int error, optval;
2051 	u_char coptval;
2052 
2053 	error = 0;
2054 	switch (sopt->sopt_name) {
2055 	case IP_MULTICAST_VIF:
2056 		if (imo != NULL)
2057 			optval = imo->imo_multicast_vif;
2058 		else
2059 			optval = -1;
2060 		soopt_from_kbuf(sopt, &optval, sizeof optval);
2061 		break;
2062 
2063 	case IP_MULTICAST_IF:
2064 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
2065 			addr.s_addr = INADDR_ANY;
2066 		else if (imo->imo_multicast_addr.s_addr) {
2067 			/* return the value user has set */
2068 			addr = imo->imo_multicast_addr;
2069 		} else {
2070 			ia = IFP_TO_IA(imo->imo_multicast_ifp);
2071 			addr.s_addr = (ia == NULL) ? INADDR_ANY
2072 				: IA_SIN(ia)->sin_addr.s_addr;
2073 		}
2074 		soopt_from_kbuf(sopt, &addr, sizeof addr);
2075 		break;
2076 
2077 	case IP_MULTICAST_TTL:
2078 		if (imo == NULL)
2079 			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
2080 		else
2081 			optval = coptval = imo->imo_multicast_ttl;
2082 		if (sopt->sopt_valsize == 1)
2083 			soopt_from_kbuf(sopt, &coptval, 1);
2084 		else
2085 			soopt_from_kbuf(sopt, &optval, sizeof optval);
2086 		break;
2087 
2088 	case IP_MULTICAST_LOOP:
2089 		if (imo == NULL)
2090 			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
2091 		else
2092 			optval = coptval = imo->imo_multicast_loop;
2093 		if (sopt->sopt_valsize == 1)
2094 			soopt_from_kbuf(sopt, &coptval, 1);
2095 		else
2096 			soopt_from_kbuf(sopt, &optval, sizeof optval);
2097 		break;
2098 
2099 	default:
2100 		error = ENOPROTOOPT;
2101 		break;
2102 	}
2103 	return (error);
2104 }
2105 
2106 /*
2107  * Discard the IP multicast options.
2108  */
2109 void
2110 ip_freemoptions(struct ip_moptions *imo)
2111 {
2112 	int i;
2113 
2114 	if (imo != NULL) {
2115 		for (i = 0; i < imo->imo_num_memberships; ++i)
2116 			in_delmulti(imo->imo_membership[i]);
2117 		kfree(imo, M_IPMOPTS);
2118 	}
2119 }
2120 
2121 /*
2122  * Routine called from ip_output() to loop back a copy of an IP multicast
2123  * packet to the input queue of a specified interface.  Note that this
2124  * calls the output routine of the loopback "driver", but with an interface
2125  * pointer that might NOT be a loopback interface -- evil, but easier than
2126  * replicating that code here.
2127  */
2128 static void
2129 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst,
2130 	     int hlen)
2131 {
2132 	struct ip *ip;
2133 	struct mbuf *copym;
2134 
2135 	copym = m_copypacket(m, MB_DONTWAIT);
2136 	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
2137 		copym = m_pullup(copym, hlen);
2138 	if (copym != NULL) {
2139 		/*
2140 		 * if the checksum hasn't been computed, mark it as valid
2141 		 */
2142 		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2143 			in_delayed_cksum(copym);
2144 			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2145 			copym->m_pkthdr.csum_flags |=
2146 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2147 			copym->m_pkthdr.csum_data = 0xffff;
2148 		}
2149 		/*
2150 		 * We don't bother to fragment if the IP length is greater
2151 		 * than the interface's MTU.  Can this possibly matter?
2152 		 */
2153 		ip = mtod(copym, struct ip *);
2154 		ip->ip_len = htons(ip->ip_len);
2155 		ip->ip_off = htons(ip->ip_off);
2156 		ip->ip_sum = 0;
2157 		if (ip->ip_vhl == IP_VHL_BORING) {
2158 			ip->ip_sum = in_cksum_hdr(ip);
2159 		} else {
2160 			ip->ip_sum = in_cksum(copym, hlen);
2161 		}
2162 		/*
2163 		 * NB:
2164 		 * It's not clear whether there are any lingering
2165 		 * reentrancy problems in other areas which might
2166 		 * be exposed by using ip_input directly (in
2167 		 * particular, everything which modifies the packet
2168 		 * in-place).  Yet another option is using the
2169 		 * protosw directly to deliver the looped back
2170 		 * packet.  For the moment, we'll err on the side
2171 		 * of safety by using if_simloop().
2172 		 */
2173 #if 1 /* XXX */
2174 		if (dst->sin_family != AF_INET) {
2175 			kprintf("ip_mloopback: bad address family %d\n",
2176 						dst->sin_family);
2177 			dst->sin_family = AF_INET;
2178 		}
2179 #endif
2180 		get_mplock();	/* is if_simloop() mpsafe yet? */
2181 		if_simloop(ifp, copym, dst->sin_family, 0);
2182 		rel_mplock();
2183 	}
2184 }
2185