xref: /dragonfly/sys/netinet/ip_output.c (revision af79c6e5)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
34  * $FreeBSD: src/sys/netinet/ip_output.c,v 1.99.2.37 2003/04/15 06:44:45 silby Exp $
35  * $DragonFly: src/sys/netinet/ip_output.c,v 1.9 2003/12/02 08:00:22 asmodai Exp $
36  */
37 
38 #define _IP_VHL
39 
40 #include "opt_ipfw.h"
41 #include "opt_ipdn.h"
42 #include "opt_ipdivert.h"
43 #include "opt_ipfilter.h"
44 #include "opt_ipsec.h"
45 #include "opt_pfil_hooks.h"
46 #include "opt_random_ip_id.h"
47 #include "opt_mbuf_stress_test.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/mbuf.h>
54 #include <sys/protosw.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/proc.h>
58 #include <sys/sysctl.h>
59 
60 #include <net/if.h>
61 #ifdef PFIL_HOOKS
62 #include <net/pfil.h>
63 #endif
64 #include <net/route.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/ip.h>
69 #include <netinet/in_pcb.h>
70 #include <netinet/in_var.h>
71 #include <netinet/ip_var.h>
72 
73 #include <machine/in_cksum.h>
74 
75 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
76 
77 #ifdef IPSEC
78 #include <netinet6/ipsec.h>
79 #include <netproto/key/key.h>
80 #ifdef IPSEC_DEBUG
81 #include <netproto/key/key_debug.h>
82 #else
83 #define	KEYDEBUG(lev,arg)
84 #endif
85 #endif /*IPSEC*/
86 
87 #ifdef FAST_IPSEC
88 #include <netipsec/ipsec.h>
89 #include <netipsec/xform.h>
90 #include <netipsec/key.h>
91 #endif /*FAST_IPSEC*/
92 
93 #include <net/ipfw/ip_fw.h>
94 #include <net/dummynet/ip_dummynet.h>
95 
96 #define print_ip(x, a, y)	 printf("%s %d.%d.%d.%d%s",\
97 				x, (ntohl(a.s_addr)>>24)&0xFF,\
98 				  (ntohl(a.s_addr)>>16)&0xFF,\
99 				  (ntohl(a.s_addr)>>8)&0xFF,\
100 				  (ntohl(a.s_addr))&0xFF, y);
101 
102 u_short ip_id;
103 
104 #ifdef MBUF_STRESS_TEST
105 int mbuf_frag_size = 0;
106 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
107 	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
108 #endif
109 
110 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
111 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
112 static void	ip_mloopback
113 	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
114 static int	ip_getmoptions
115 	(struct sockopt *, struct ip_moptions *);
116 static int	ip_pcbopts(int, struct mbuf **, struct mbuf *);
117 static int	ip_setmoptions
118 	(struct sockopt *, struct ip_moptions **);
119 
120 int	ip_optcopy(struct ip *, struct ip *);
121 extern int (*fr_checkp) (struct ip *, int, struct ifnet *, int, struct mbuf **);
122 
123 
124 extern	struct protosw inetsw[];
125 
126 /*
127  * IP output.  The packet in mbuf chain m contains a skeletal IP
128  * header (with len, off, ttl, proto, tos, src, dst).
129  * The mbuf chain containing the packet will be freed.
130  * The mbuf opt, if present, will not be freed.
131  */
132 int
133 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro,
134 	int flags, struct ip_moptions *imo, struct inpcb *inp)
135 {
136 	struct ip *ip;
137 	struct ifnet *ifp = NULL;	/* keep compiler happy */
138 	struct mbuf *m;
139 	int hlen = sizeof (struct ip);
140 	int len, off, error = 0;
141 	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
142 	struct in_ifaddr *ia = NULL;
143 	int isbroadcast, sw_csum;
144 	struct in_addr pkt_dst;
145 #ifdef IPSEC
146 	struct route iproute;
147 	struct secpolicy *sp = NULL;
148 	struct socket *so = inp ? inp->inp_socket : NULL;
149 #endif
150 #ifdef FAST_IPSEC
151 	struct route iproute;
152 	struct m_tag *mtag;
153 	struct secpolicy *sp = NULL;
154 	struct tdb_ident *tdbi;
155 	int s;
156 #endif /* FAST_IPSEC */
157 	struct ip_fw_args args;
158 	int src_was_INADDR_ANY = 0;	/* as the name says... */
159 
160 	args.eh = NULL;
161 	args.rule = NULL;
162 	args.next_hop = NULL;
163 	args.divert_rule = 0;			/* divert cookie */
164 
165 	/* Grab info from MT_TAG mbufs prepended to the chain. */
166 	for (; m0 && m0->m_type == MT_TAG; m0 = m0->m_next) {
167 		switch(m0->_m_tag_id) {
168 		default:
169 			printf("ip_output: unrecognised MT_TAG tag %d\n",
170 			    m0->_m_tag_id);
171 			break;
172 
173 		case PACKET_TAG_DUMMYNET:
174 			/*
175 			 * the packet was already tagged, so part of the
176 			 * processing was already done, and we need to go down.
177 			 * Get parameters from the header.
178 			 */
179 			args.rule = ((struct dn_pkt *)m0)->rule;
180 			opt = NULL ;
181 			ro = & ( ((struct dn_pkt *)m0)->ro ) ;
182 			imo = NULL ;
183 			dst = ((struct dn_pkt *)m0)->dn_dst ;
184 			ifp = ((struct dn_pkt *)m0)->ifp ;
185 			flags = ((struct dn_pkt *)m0)->flags ;
186 			break;
187 
188 		case PACKET_TAG_DIVERT:
189 			args.divert_rule = (int)m0->m_data & 0xffff;
190 			break;
191 
192 		case PACKET_TAG_IPFORWARD:
193 			args.next_hop = (struct sockaddr_in *)m0->m_data;
194 			break;
195 		}
196 	}
197 	m = m0;
198 
199 	KASSERT(!m || (m->m_flags & M_PKTHDR) != 0, ("ip_output: no HDR"));
200 #ifndef FAST_IPSEC
201 	KASSERT(ro != NULL, ("ip_output: no route, proto %d",
202 	    mtod(m, struct ip *)->ip_p));
203 #endif
204 
205 	if (args.rule != NULL) {	/* dummynet already saw us */
206 		ip = mtod(m, struct ip *);
207 		hlen = IP_VHL_HL(ip->ip_vhl) << 2 ;
208 		if (ro->ro_rt)
209 			ia = ifatoia(ro->ro_rt->rt_ifa);
210 		goto sendit;
211 	}
212 
213 	if (opt) {
214 		len = 0;
215 		m = ip_insertoptions(m, opt, &len);
216 		if (len != 0)
217 			hlen = len;
218 	}
219 	ip = mtod(m, struct ip *);
220 	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
221 
222 	/*
223 	 * Fill in IP header.
224 	 */
225 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
226 		ip->ip_vhl = IP_MAKE_VHL(IPVERSION, hlen >> 2);
227 		ip->ip_off &= IP_DF;
228 #ifdef RANDOM_IP_ID
229 		ip->ip_id = ip_randomid();
230 #else
231 		ip->ip_id = htons(ip_id++);
232 #endif
233 		ipstat.ips_localout++;
234 	} else {
235 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
236 	}
237 
238 #ifdef FAST_IPSEC
239 	if (ro == NULL) {
240 		ro = &iproute;
241 		bzero(ro, sizeof (*ro));
242 	}
243 #endif /* FAST_IPSEC */
244 	dst = (struct sockaddr_in *)&ro->ro_dst;
245 	/*
246 	 * If there is a cached route,
247 	 * check that it is to the same destination
248 	 * and is still up.  If not, free it and try again.
249 	 * The address family should also be checked in case of sharing the
250 	 * cache with IPv6.
251 	 */
252 	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
253 			  dst->sin_family != AF_INET ||
254 			  dst->sin_addr.s_addr != pkt_dst.s_addr)) {
255 		RTFREE(ro->ro_rt);
256 		ro->ro_rt = (struct rtentry *)0;
257 	}
258 	if (ro->ro_rt == 0) {
259 		bzero(dst, sizeof(*dst));
260 		dst->sin_family = AF_INET;
261 		dst->sin_len = sizeof(*dst);
262 		dst->sin_addr = pkt_dst;
263 	}
264 	/*
265 	 * If routing to interface only,
266 	 * short circuit routing lookup.
267 	 */
268 	if (flags & IP_ROUTETOIF) {
269 		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == 0 &&
270 		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == 0) {
271 			ipstat.ips_noroute++;
272 			error = ENETUNREACH;
273 			goto bad;
274 		}
275 		ifp = ia->ia_ifp;
276 		ip->ip_ttl = 1;
277 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
278 	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
279 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
280 		/*
281 		 * Bypass the normal routing lookup for multicast
282 		 * packets if the interface is specified.
283 		 */
284 		ifp = imo->imo_multicast_ifp;
285 		IFP_TO_IA(ifp, ia);
286 		isbroadcast = 0;	/* fool gcc */
287 	} else {
288 		/*
289 		 * If this is the case, we probably don't want to allocate
290 		 * a protocol-cloned route since we didn't get one from the
291 		 * ULP.  This lets TCP do its thing, while not burdening
292 		 * forwarding or ICMP with the overhead of cloning a route.
293 		 * Of course, we still want to do any cloning requested by
294 		 * the link layer, as this is probably required in all cases
295 		 * for correct operation (as it is for ARP).
296 		 */
297 		if (ro->ro_rt == 0)
298 			rtalloc_ign(ro, RTF_PRCLONING);
299 		if (ro->ro_rt == 0) {
300 			ipstat.ips_noroute++;
301 			error = EHOSTUNREACH;
302 			goto bad;
303 		}
304 		ia = ifatoia(ro->ro_rt->rt_ifa);
305 		ifp = ro->ro_rt->rt_ifp;
306 		ro->ro_rt->rt_use++;
307 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
308 			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
309 		if (ro->ro_rt->rt_flags & RTF_HOST)
310 			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
311 		else
312 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
313 	}
314 	if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
315 		struct in_multi *inm;
316 
317 		m->m_flags |= M_MCAST;
318 		/*
319 		 * IP destination address is multicast.  Make sure "dst"
320 		 * still points to the address in "ro".  (It may have been
321 		 * changed to point to a gateway address, above.)
322 		 */
323 		dst = (struct sockaddr_in *)&ro->ro_dst;
324 		/*
325 		 * See if the caller provided any multicast options
326 		 */
327 		if (imo != NULL) {
328 			ip->ip_ttl = imo->imo_multicast_ttl;
329 			if (imo->imo_multicast_vif != -1)
330 				ip->ip_src.s_addr =
331 				    ip_mcast_src ?
332 				    ip_mcast_src(imo->imo_multicast_vif) :
333 				    INADDR_ANY;
334 		} else
335 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
336 		/*
337 		 * Confirm that the outgoing interface supports multicast.
338 		 */
339 		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
340 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
341 				ipstat.ips_noroute++;
342 				error = ENETUNREACH;
343 				goto bad;
344 			}
345 		}
346 		/*
347 		 * If source address not specified yet, use address
348 		 * of outgoing interface.
349 		 */
350 		if (ip->ip_src.s_addr == INADDR_ANY) {
351 			/* Interface may have no addresses. */
352 			if (ia != NULL)
353 				ip->ip_src = IA_SIN(ia)->sin_addr;
354 		}
355 
356 		if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
357 			/*
358 			 * XXX
359 			 * delayed checksums are not currently
360 			 * compatible with IP multicast routing
361 			 */
362 			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
363 				in_delayed_cksum(m);
364 				m->m_pkthdr.csum_flags &=
365 					~CSUM_DELAY_DATA;
366 			}
367 		}
368 		IN_LOOKUP_MULTI(pkt_dst, ifp, inm);
369 		if (inm != NULL &&
370 		   (imo == NULL || imo->imo_multicast_loop)) {
371 			/*
372 			 * If we belong to the destination multicast group
373 			 * on the outgoing interface, and the caller did not
374 			 * forbid loopback, loop back a copy.
375 			 */
376 			ip_mloopback(ifp, m, dst, hlen);
377 		}
378 		else {
379 			/*
380 			 * If we are acting as a multicast router, perform
381 			 * multicast forwarding as if the packet had just
382 			 * arrived on the interface to which we are about
383 			 * to send.  The multicast forwarding function
384 			 * recursively calls this function, using the
385 			 * IP_FORWARDING flag to prevent infinite recursion.
386 			 *
387 			 * Multicasts that are looped back by ip_mloopback(),
388 			 * above, will be forwarded by the ip_input() routine,
389 			 * if necessary.
390 			 */
391 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
392 				/*
393 				 * If rsvp daemon is not running, do not
394 				 * set ip_moptions. This ensures that the packet
395 				 * is multicast and not just sent down one link
396 				 * as prescribed by rsvpd.
397 				 */
398 				if (!rsvp_on)
399 					imo = NULL;
400 				if (ip_mforward &&
401 				    ip_mforward(ip, ifp, m, imo) != 0) {
402 					m_freem(m);
403 					goto done;
404 				}
405 			}
406 		}
407 
408 		/*
409 		 * Multicasts with a time-to-live of zero may be looped-
410 		 * back, above, but must not be transmitted on a network.
411 		 * Also, multicasts addressed to the loopback interface
412 		 * are not sent -- the above call to ip_mloopback() will
413 		 * loop back a copy if this host actually belongs to the
414 		 * destination group on the loopback interface.
415 		 */
416 		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
417 			m_freem(m);
418 			goto done;
419 		}
420 
421 		goto sendit;
422 	}
423 #ifndef notdef
424 	/*
425 	 * If the source address is not specified yet, use the address
426 	 * of the outoing interface. In case, keep note we did that, so
427 	 * if the the firewall changes the next-hop causing the output
428 	 * interface to change, we can fix that.
429 	 */
430 	if (ip->ip_src.s_addr == INADDR_ANY) {
431 		/* Interface may have no addresses. */
432 		if (ia != NULL) {
433 			ip->ip_src = IA_SIN(ia)->sin_addr;
434 			src_was_INADDR_ANY = 1;
435 		}
436 	}
437 #endif /* notdef */
438 	/*
439 	 * Verify that we have any chance at all of being able to queue
440 	 *      the packet or packet fragments
441 	 */
442 	if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
443 		ifp->if_snd.ifq_maxlen) {
444 			error = ENOBUFS;
445 			ipstat.ips_odropped++;
446 			goto bad;
447 	}
448 
449 	/*
450 	 * Look for broadcast address and
451 	 * verify user is allowed to send
452 	 * such a packet.
453 	 */
454 	if (isbroadcast) {
455 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
456 			error = EADDRNOTAVAIL;
457 			goto bad;
458 		}
459 		if ((flags & IP_ALLOWBROADCAST) == 0) {
460 			error = EACCES;
461 			goto bad;
462 		}
463 		/* don't allow broadcast messages to be fragmented */
464 		if (ip->ip_len > ifp->if_mtu) {
465 			error = EMSGSIZE;
466 			goto bad;
467 		}
468 		m->m_flags |= M_BCAST;
469 	} else {
470 		m->m_flags &= ~M_BCAST;
471 	}
472 
473 sendit:
474 #ifdef IPSEC
475 	/* get SP for this packet */
476 	if (so == NULL)
477 		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, flags, &error);
478 	else
479 		sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
480 
481 	if (sp == NULL) {
482 		ipsecstat.out_inval++;
483 		goto bad;
484 	}
485 
486 	error = 0;
487 
488 	/* check policy */
489 	switch (sp->policy) {
490 	case IPSEC_POLICY_DISCARD:
491 		/*
492 		 * This packet is just discarded.
493 		 */
494 		ipsecstat.out_polvio++;
495 		goto bad;
496 
497 	case IPSEC_POLICY_BYPASS:
498 	case IPSEC_POLICY_NONE:
499 		/* no need to do IPsec. */
500 		goto skip_ipsec;
501 
502 	case IPSEC_POLICY_IPSEC:
503 		if (sp->req == NULL) {
504 			/* acquire a policy */
505 			error = key_spdacquire(sp);
506 			goto bad;
507 		}
508 		break;
509 
510 	case IPSEC_POLICY_ENTRUST:
511 	default:
512 		printf("ip_output: Invalid policy found. %d\n", sp->policy);
513 	}
514     {
515 	struct ipsec_output_state state;
516 	bzero(&state, sizeof(state));
517 	state.m = m;
518 	if (flags & IP_ROUTETOIF) {
519 		state.ro = &iproute;
520 		bzero(&iproute, sizeof(iproute));
521 	} else
522 		state.ro = ro;
523 	state.dst = (struct sockaddr *)dst;
524 
525 	ip->ip_sum = 0;
526 
527 	/*
528 	 * XXX
529 	 * delayed checksums are not currently compatible with IPsec
530 	 */
531 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
532 		in_delayed_cksum(m);
533 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
534 	}
535 
536 	ip->ip_len = htons(ip->ip_len);
537 	ip->ip_off = htons(ip->ip_off);
538 
539 	error = ipsec4_output(&state, sp, flags);
540 
541 	m = state.m;
542 	if (flags & IP_ROUTETOIF) {
543 		/*
544 		 * if we have tunnel mode SA, we may need to ignore
545 		 * IP_ROUTETOIF.
546 		 */
547 		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
548 			flags &= ~IP_ROUTETOIF;
549 			ro = state.ro;
550 		}
551 	} else
552 		ro = state.ro;
553 	dst = (struct sockaddr_in *)state.dst;
554 	if (error) {
555 		/* mbuf is already reclaimed in ipsec4_output. */
556 		m0 = NULL;
557 		switch (error) {
558 		case EHOSTUNREACH:
559 		case ENETUNREACH:
560 		case EMSGSIZE:
561 		case ENOBUFS:
562 		case ENOMEM:
563 			break;
564 		default:
565 			printf("ip4_output (ipsec): error code %d\n", error);
566 			/*fall through*/
567 		case ENOENT:
568 			/* don't show these error codes to the user */
569 			error = 0;
570 			break;
571 		}
572 		goto bad;
573 	}
574     }
575 
576 	/* be sure to update variables that are affected by ipsec4_output() */
577 	ip = mtod(m, struct ip *);
578 #ifdef _IP_VHL
579 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
580 #else
581 	hlen = ip->ip_hl << 2;
582 #endif
583 	if (ro->ro_rt == NULL) {
584 		if ((flags & IP_ROUTETOIF) == 0) {
585 			printf("ip_output: "
586 				"can't update route after IPsec processing\n");
587 			error = EHOSTUNREACH;	/*XXX*/
588 			goto bad;
589 		}
590 	} else {
591 		ia = ifatoia(ro->ro_rt->rt_ifa);
592 		ifp = ro->ro_rt->rt_ifp;
593 	}
594 
595 	/* make it flipped, again. */
596 	ip->ip_len = ntohs(ip->ip_len);
597 	ip->ip_off = ntohs(ip->ip_off);
598 skip_ipsec:
599 #endif /*IPSEC*/
600 #ifdef FAST_IPSEC
601 	/*
602 	 * Check the security policy (SP) for the packet and, if
603 	 * required, do IPsec-related processing.  There are two
604 	 * cases here; the first time a packet is sent through
605 	 * it will be untagged and handled by ipsec4_checkpolicy.
606 	 * If the packet is resubmitted to ip_output (e.g. after
607 	 * AH, ESP, etc. processing), there will be a tag to bypass
608 	 * the lookup and related policy checking.
609 	 */
610 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
611 	s = splnet();
612 	if (mtag != NULL) {
613 		tdbi = (struct tdb_ident *)(mtag + 1);
614 		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
615 		if (sp == NULL)
616 			error = -EINVAL;	/* force silent drop */
617 		m_tag_delete(m, mtag);
618 	} else {
619 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
620 					&error, inp);
621 	}
622 	/*
623 	 * There are four return cases:
624 	 *    sp != NULL	 	    apply IPsec policy
625 	 *    sp == NULL, error == 0	    no IPsec handling needed
626 	 *    sp == NULL, error == -EINVAL  discard packet w/o error
627 	 *    sp == NULL, error != 0	    discard packet, report error
628 	 */
629 	if (sp != NULL) {
630 		/* Loop detection, check if ipsec processing already done */
631 		KASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
632 		for (mtag = m_tag_first(m); mtag != NULL;
633 		     mtag = m_tag_next(m, mtag)) {
634 			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
635 				continue;
636 			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
637 			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
638 				continue;
639 			/*
640 			 * Check if policy has an SA associated with it.
641 			 * This can happen when an SP has yet to acquire
642 			 * an SA; e.g. on first reference.  If it occurs,
643 			 * then we let ipsec4_process_packet do its thing.
644 			 */
645 			if (sp->req->sav == NULL)
646 				break;
647 			tdbi = (struct tdb_ident *)(mtag + 1);
648 			if (tdbi->spi == sp->req->sav->spi &&
649 			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
650 			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
651 				 sizeof (union sockaddr_union)) == 0) {
652 				/*
653 				 * No IPsec processing is needed, free
654 				 * reference to SP.
655 				 *
656 				 * NB: null pointer to avoid free at
657 				 *     done: below.
658 				 */
659 				KEY_FREESP(&sp), sp = NULL;
660 				splx(s);
661 				goto spd_done;
662 			}
663 		}
664 
665 		/*
666 		 * Do delayed checksums now because we send before
667 		 * this is done in the normal processing path.
668 		 */
669 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
670 			in_delayed_cksum(m);
671 			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
672 		}
673 
674 		ip->ip_len = htons(ip->ip_len);
675 		ip->ip_off = htons(ip->ip_off);
676 
677 		/* NB: callee frees mbuf */
678 		error = ipsec4_process_packet(m, sp->req, flags, 0);
679 		/*
680 		 * Preserve KAME behaviour: ENOENT can be returned
681 		 * when an SA acquire is in progress.  Don't propagate
682 		 * this to user-level; it confuses applications.
683 		 *
684 		 * XXX this will go away when the SADB is redone.
685 		 */
686 		if (error == ENOENT)
687 			error = 0;
688 		splx(s);
689 		goto done;
690 	} else {
691 		splx(s);
692 
693 		if (error != 0) {
694 			/*
695 			 * Hack: -EINVAL is used to signal that a packet
696 			 * should be silently discarded.  This is typically
697 			 * because we asked key management for an SA and
698 			 * it was delayed (e.g. kicked up to IKE).
699 			 */
700 			if (error == -EINVAL)
701 				error = 0;
702 			goto bad;
703 		} else {
704 			/* No IPsec processing for this packet. */
705 		}
706 #ifdef notyet
707 		/*
708 		 * If deferred crypto processing is needed, check that
709 		 * the interface supports it.
710 		 */
711 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
712 		if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
713 			/* notify IPsec to do its own crypto */
714 			ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
715 			error = EHOSTUNREACH;
716 			goto bad;
717 		}
718 #endif
719 	}
720 spd_done:
721 #endif /* FAST_IPSEC */
722 	/*
723 	 * IpHack's section.
724 	 * - Xlate: translate packet's addr/port (NAT).
725 	 * - Firewall: deny/allow/etc.
726 	 * - Wrap: fake packet's addr/port <unimpl.>
727 	 * - Encapsulate: put it in another IP and send out. <unimp.>
728 	 */
729 #ifdef PFIL_HOOKS
730 	/*
731 	 * Run through list of hooks for output packets.
732 	 */
733 	error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT);
734 	if (error != 0 || m == NULL)
735 		goto done;
736 	ip = mtod(m, struct ip *);
737 #endif /* PFIL_HOOKS */
738 
739 	/*
740 	 * Check with the firewall...
741 	 * but not if we are already being fwd'd from a firewall.
742 	 */
743 	if (fw_enable && IPFW_LOADED && !args.next_hop) {
744 		struct sockaddr_in *old = dst;
745 
746 		args.m = m;
747 		args.next_hop = dst;
748 		args.oif = ifp;
749 		off = ip_fw_chk_ptr(&args);
750 		m = args.m;
751 		dst = args.next_hop;
752 
753                 /*
754 		 * On return we must do the following:
755 		 * m == NULL	-> drop the pkt (old interface, deprecated)
756 		 * (off & IP_FW_PORT_DENY_FLAG)	-> drop the pkt (new interface)
757 		 * 1<=off<= 0xffff		-> DIVERT
758 		 * (off & IP_FW_PORT_DYNT_FLAG)	-> send to a DUMMYNET pipe
759 		 * (off & IP_FW_PORT_TEE_FLAG)	-> TEE the packet
760 		 * dst != old			-> IPFIREWALL_FORWARD
761 		 * off==0, dst==old		-> accept
762 		 * If some of the above modules are not compiled in, then
763 		 * we should't have to check the corresponding condition
764 		 * (because the ipfw control socket should not accept
765 		 * unsupported rules), but better play safe and drop
766 		 * packets in case of doubt.
767 		 */
768 		if ( (off & IP_FW_PORT_DENY_FLAG) || m == NULL) {
769 			if (m)
770 				m_freem(m);
771 			error = EACCES;
772 			goto done;
773 		}
774 		ip = mtod(m, struct ip *);
775 		if (off == 0 && dst == old)		/* common case */
776 			goto pass;
777                 if (DUMMYNET_LOADED && (off & IP_FW_PORT_DYNT_FLAG) != 0) {
778 			/*
779 			 * pass the pkt to dummynet. Need to include
780 			 * pipe number, m, ifp, ro, dst because these are
781 			 * not recomputed in the next pass.
782 			 * All other parameters have been already used and
783 			 * so they are not needed anymore.
784 			 * XXX note: if the ifp or ro entry are deleted
785 			 * while a pkt is in dummynet, we are in trouble!
786 			 */
787 			args.ro = ro;
788 			args.dst = dst;
789 			args.flags = flags;
790 
791 			error = ip_dn_io_ptr(m, off & 0xffff, DN_TO_IP_OUT,
792 				&args);
793 			goto done;
794 		}
795 #ifdef IPDIVERT
796 		if (off != 0 && (off & IP_FW_PORT_DYNT_FLAG) == 0) {
797 			struct mbuf *clone = NULL;
798 
799 			/* Clone packet if we're doing a 'tee' */
800 			if ((off & IP_FW_PORT_TEE_FLAG) != 0)
801 				clone = m_dup(m, M_DONTWAIT);
802 
803 			/*
804 			 * XXX
805 			 * delayed checksums are not currently compatible
806 			 * with divert sockets.
807 			 */
808 			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
809 				in_delayed_cksum(m);
810 				m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
811 			}
812 
813 			/* Restore packet header fields to original values */
814 			ip->ip_len = htons(ip->ip_len);
815 			ip->ip_off = htons(ip->ip_off);
816 
817 			/* Deliver packet to divert input routine */
818 			divert_packet(m, 0, off & 0xffff, args.divert_rule);
819 
820 			/* If 'tee', continue with original packet */
821 			if (clone != NULL) {
822 				m = clone;
823 				ip = mtod(m, struct ip *);
824 				goto pass;
825 			}
826 			goto done;
827 		}
828 #endif
829 
830 		/* IPFIREWALL_FORWARD */
831 		/*
832 		 * Check dst to make sure it is directly reachable on the
833 		 * interface we previously thought it was.
834 		 * If it isn't (which may be likely in some situations) we have
835 		 * to re-route it (ie, find a route for the next-hop and the
836 		 * associated interface) and set them here. This is nested
837 		 * forwarding which in most cases is undesirable, except where
838 		 * such control is nigh impossible. So we do it here.
839 		 * And I'm babbling.
840 		 */
841 		if (off == 0 && old != dst) { /* FORWARD, dst has changed */
842 #if 0
843 			/*
844 			 * XXX To improve readability, this block should be
845 			 * changed into a function call as below:
846 			 */
847 			error = ip_ipforward(&m, &dst, &ifp);
848 			if (error)
849 				goto bad;
850 			if (m == NULL) /* ip_input consumed the mbuf */
851 				goto done;
852 #else
853 			struct in_ifaddr *ia;
854 
855 			/*
856 			 * XXX sro_fwd below is static, and a pointer
857 			 * to it gets passed to routines downstream.
858 			 * This could have surprisingly bad results in
859 			 * practice, because its content is overwritten
860 			 * by subsequent packets.
861 			 */
862 			/* There must be a better way to do this next line... */
863 			static struct route sro_fwd;
864 			struct route *ro_fwd = &sro_fwd;
865 
866 #if 0
867 			print_ip("IPFIREWALL_FORWARD: New dst ip: ",
868 			    dst->sin_addr, "\n");
869 #endif
870 
871 			/*
872 			 * We need to figure out if we have been forwarded
873 			 * to a local socket. If so, then we should somehow
874 			 * "loop back" to ip_input, and get directed to the
875 			 * PCB as if we had received this packet. This is
876 			 * because it may be dificult to identify the packets
877 			 * you want to forward until they are being output
878 			 * and have selected an interface. (e.g. locally
879 			 * initiated packets) If we used the loopback inteface,
880 			 * we would not be able to control what happens
881 			 * as the packet runs through ip_input() as
882 			 * it is done through a ISR.
883 			 */
884 			LIST_FOREACH(ia,
885 			    INADDR_HASH(dst->sin_addr.s_addr), ia_hash) {
886 				/*
887 				 * If the addr to forward to is one
888 				 * of ours, we pretend to
889 				 * be the destination for this packet.
890 				 */
891 				if (IA_SIN(ia)->sin_addr.s_addr ==
892 						 dst->sin_addr.s_addr)
893 					break;
894 			}
895 			if (ia) {	/* tell ip_input "dont filter" */
896 				struct m_hdr tag;
897 
898 				tag.mh_type = MT_TAG;
899 				tag.mh_flags = PACKET_TAG_IPFORWARD;
900 				tag.mh_data = (caddr_t)args.next_hop;
901 				tag.mh_next = m;
902 
903 				if (m->m_pkthdr.rcvif == NULL)
904 					m->m_pkthdr.rcvif = ifunit("lo0");
905 				if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
906 					m->m_pkthdr.csum_flags |=
907 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
908 					m0->m_pkthdr.csum_data = 0xffff;
909 				}
910 				m->m_pkthdr.csum_flags |=
911 				    CSUM_IP_CHECKED | CSUM_IP_VALID;
912 				ip->ip_len = htons(ip->ip_len);
913 				ip->ip_off = htons(ip->ip_off);
914 				ip_input((struct mbuf *)&tag);
915 				goto done;
916 			}
917 			/* Some of the logic for this was
918 			 * nicked from above.
919 			 *
920 			 * This rewrites the cached route in a local PCB.
921 			 * Is this what we want to do?
922 			 */
923 			bcopy(dst, &ro_fwd->ro_dst, sizeof(*dst));
924 
925 			ro_fwd->ro_rt = 0;
926 			rtalloc_ign(ro_fwd, RTF_PRCLONING);
927 
928 			if (ro_fwd->ro_rt == 0) {
929 				ipstat.ips_noroute++;
930 				error = EHOSTUNREACH;
931 				goto bad;
932 			}
933 
934 			ia = ifatoia(ro_fwd->ro_rt->rt_ifa);
935 			ifp = ro_fwd->ro_rt->rt_ifp;
936 			ro_fwd->ro_rt->rt_use++;
937 			if (ro_fwd->ro_rt->rt_flags & RTF_GATEWAY)
938 				dst = (struct sockaddr_in *)
939 					ro_fwd->ro_rt->rt_gateway;
940 			if (ro_fwd->ro_rt->rt_flags & RTF_HOST)
941 				isbroadcast =
942 				    (ro_fwd->ro_rt->rt_flags & RTF_BROADCAST);
943 			else
944 				isbroadcast = in_broadcast(dst->sin_addr, ifp);
945 			if (ro->ro_rt)
946 				RTFREE(ro->ro_rt);
947 			ro->ro_rt = ro_fwd->ro_rt;
948 			dst = (struct sockaddr_in *)&ro_fwd->ro_dst;
949 
950 #endif	/* ... block to be put into a function */
951 			/*
952 			 * If we added a default src ip earlier,
953 			 * which would have been gotten from the-then
954 			 * interface, do it again, from the new one.
955 			 */
956 			if (src_was_INADDR_ANY)
957 				ip->ip_src = IA_SIN(ia)->sin_addr;
958 			goto pass ;
959 		}
960 
961                 /*
962                  * if we get here, none of the above matches, and
963                  * we have to drop the pkt
964                  */
965 		m_freem(m);
966                 error = EACCES; /* not sure this is the right error msg */
967                 goto done;
968 	}
969 
970 pass:
971 	/* 127/8 must not appear on wire - RFC1122. */
972 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
973 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
974 		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
975 			ipstat.ips_badaddr++;
976 			error = EADDRNOTAVAIL;
977 			goto bad;
978 		}
979 	}
980 
981 	m->m_pkthdr.csum_flags |= CSUM_IP;
982 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
983 	if (sw_csum & CSUM_DELAY_DATA) {
984 		in_delayed_cksum(m);
985 		sw_csum &= ~CSUM_DELAY_DATA;
986 	}
987 	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
988 
989 	/*
990 	 * If small enough for interface, or the interface will take
991 	 * care of the fragmentation for us, can just send directly.
992 	 */
993 	if (ip->ip_len <= ifp->if_mtu || ifp->if_hwassist & CSUM_FRAGMENT) {
994 		ip->ip_len = htons(ip->ip_len);
995 		ip->ip_off = htons(ip->ip_off);
996 		ip->ip_sum = 0;
997 		if (sw_csum & CSUM_DELAY_IP) {
998 			if (ip->ip_vhl == IP_VHL_BORING) {
999 				ip->ip_sum = in_cksum_hdr(ip);
1000 			} else {
1001 				ip->ip_sum = in_cksum(m, hlen);
1002 			}
1003 		}
1004 
1005 		/* Record statistics for this interface address. */
1006 		if (!(flags & IP_FORWARDING) && ia) {
1007 			ia->ia_ifa.if_opackets++;
1008 			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1009 		}
1010 
1011 #ifdef IPSEC
1012 		/* clean ipsec history once it goes out of the node */
1013 		ipsec_delaux(m);
1014 #endif
1015 
1016 #ifdef MBUF_STRESS_TEST
1017 		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) {
1018 			struct mbuf *m1, *m2;
1019 			int length, tmp;
1020 
1021 			tmp = length = m->m_pkthdr.len;
1022 
1023 			while ((length -= mbuf_frag_size) >= 1) {
1024 				m1 = m_split(m, length, M_DONTWAIT);
1025 				if (m1 == NULL)
1026 					break;
1027 				m1->m_flags &= ~M_PKTHDR;
1028 				m2 = m;
1029 				while (m2->m_next != NULL)
1030 					m2 = m2->m_next;
1031 				m2->m_next = m1;
1032 			}
1033 			m->m_pkthdr.len = tmp;
1034 		}
1035 #endif
1036 		error = (*ifp->if_output)(ifp, m,
1037 				(struct sockaddr *)dst, ro->ro_rt);
1038 		goto done;
1039 	}
1040 
1041 	if (ip->ip_off & IP_DF) {
1042 		error = EMSGSIZE;
1043 		/*
1044 		 * This case can happen if the user changed the MTU
1045 		 * of an interface after enabling IP on it.  Because
1046 		 * most netifs don't keep track of routes pointing to
1047 		 * them, there is no way for one to update all its
1048 		 * routes when the MTU is changed.
1049 		 */
1050 		if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
1051 		    !(ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) &&
1052 		    (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
1053 			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
1054 		}
1055 		ipstat.ips_cantfrag++;
1056 		goto bad;
1057 	}
1058 
1059 	/*
1060 	 * Too large for interface; fragment if possible. If successful,
1061 	 * on return, m will point to a list of packets to be sent.
1062 	 */
1063 	error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum);
1064 	if (error)
1065 		goto bad;
1066 	for (; m; m = m0) {
1067 		m0 = m->m_nextpkt;
1068 		m->m_nextpkt = 0;
1069 #ifdef IPSEC
1070 		/* clean ipsec history once it goes out of the node */
1071 		ipsec_delaux(m);
1072 #endif
1073 		if (error == 0) {
1074 			/* Record statistics for this interface address. */
1075 			if (ia != NULL) {
1076 				ia->ia_ifa.if_opackets++;
1077 				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1078 			}
1079 
1080 			error = (*ifp->if_output)(ifp, m,
1081 			    (struct sockaddr *)dst, ro->ro_rt);
1082 		} else
1083 			m_freem(m);
1084 	}
1085 
1086 	if (error == 0)
1087 		ipstat.ips_fragmented++;
1088 
1089 done:
1090 #ifdef IPSEC
1091 	if (ro == &iproute && ro->ro_rt) {
1092 		RTFREE(ro->ro_rt);
1093 		ro->ro_rt = NULL;
1094 	}
1095 	if (sp != NULL) {
1096 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1097 			printf("DP ip_output call free SP:%p\n", sp));
1098 		key_freesp(sp);
1099 	}
1100 #endif
1101 #ifdef FAST_IPSEC
1102 	if (ro == &iproute && ro->ro_rt) {
1103 		RTFREE(ro->ro_rt);
1104 		ro->ro_rt = NULL;
1105 	}
1106 	if (sp != NULL)
1107 		KEY_FREESP(&sp);
1108 #endif
1109 	return (error);
1110 bad:
1111 	m_freem(m);
1112 	goto done;
1113 }
1114 
1115 /*
1116  * Create a chain of fragments which fit the given mtu. m_frag points to the
1117  * mbuf to be fragmented; on return it points to the chain with the fragments.
1118  * Return 0 if no error. If error, m_frag may contain a partially built
1119  * chain of fragments that should be freed by the caller.
1120  *
1121  * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
1122  * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
1123  */
1124 int
1125 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
1126 	    u_long if_hwassist_flags, int sw_csum)
1127 {
1128 	int error = 0;
1129 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1130 	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
1131 	int off;
1132 	struct mbuf *m0 = *m_frag;	/* the original packet		*/
1133 	int firstlen;
1134 	struct mbuf **mnext;
1135 	int nfrags;
1136 
1137 	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
1138 		ipstat.ips_cantfrag++;
1139 		return EMSGSIZE;
1140 	}
1141 
1142 	/*
1143 	 * Must be able to put at least 8 bytes per fragment.
1144 	 */
1145 	if (len < 8)
1146 		return EMSGSIZE;
1147 
1148 	/*
1149 	 * If the interface will not calculate checksums on
1150 	 * fragmented packets, then do it here.
1151 	 */
1152 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
1153 	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
1154 		in_delayed_cksum(m0);
1155 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1156 	}
1157 
1158 	if (len > PAGE_SIZE) {
1159 		/*
1160 		 * Fragment large datagrams such that each segment
1161 		 * contains a multiple of PAGE_SIZE amount of data,
1162 		 * plus headers. This enables a receiver to perform
1163 		 * page-flipping zero-copy optimizations.
1164 		 *
1165 		 * XXX When does this help given that sender and receiver
1166 		 * could have different page sizes, and also mtu could
1167 		 * be less than the receiver's page size ?
1168 		 */
1169 		int newlen;
1170 		struct mbuf *m;
1171 
1172 		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
1173 			off += m->m_len;
1174 
1175 		/*
1176 		 * firstlen (off - hlen) must be aligned on an
1177 		 * 8-byte boundary
1178 		 */
1179 		if (off < hlen)
1180 			goto smart_frag_failure;
1181 		off = ((off - hlen) & ~7) + hlen;
1182 		newlen = (~PAGE_MASK) & mtu;
1183 		if ((newlen + sizeof (struct ip)) > mtu) {
1184 			/* we failed, go back the default */
1185 smart_frag_failure:
1186 			newlen = len;
1187 			off = hlen + len;
1188 		}
1189 		len = newlen;
1190 
1191 	} else {
1192 		off = hlen + len;
1193 	}
1194 
1195 	firstlen = off - hlen;
1196 	mnext = &m0->m_nextpkt;		/* pointer to next packet */
1197 
1198 	/*
1199 	 * Loop through length of segment after first fragment,
1200 	 * make new header and copy data of each part and link onto chain.
1201 	 * Here, m0 is the original packet, m is the fragment being created.
1202 	 * The fragments are linked off the m_nextpkt of the original
1203 	 * packet, which after processing serves as the first fragment.
1204 	 */
1205 	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
1206 		struct ip *mhip;	/* ip header on the fragment */
1207 		struct mbuf *m;
1208 		int mhlen = sizeof (struct ip);
1209 
1210 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
1211 		if (m == 0) {
1212 			error = ENOBUFS;
1213 			ipstat.ips_odropped++;
1214 			goto done;
1215 		}
1216 		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
1217 		/*
1218 		 * In the first mbuf, leave room for the link header, then
1219 		 * copy the original IP header including options. The payload
1220 		 * goes into an additional mbuf chain returned by m_copy().
1221 		 */
1222 		m->m_data += max_linkhdr;
1223 		mhip = mtod(m, struct ip *);
1224 		*mhip = *ip;
1225 		if (hlen > sizeof (struct ip)) {
1226 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1227 			mhip->ip_vhl = IP_MAKE_VHL(IPVERSION, mhlen >> 2);
1228 		}
1229 		m->m_len = mhlen;
1230 		/* XXX do we need to add ip->ip_off below ? */
1231 		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
1232 		if (off + len >= ip->ip_len) {	/* last fragment */
1233 			len = ip->ip_len - off;
1234 			m->m_flags |= M_LASTFRAG;
1235 		} else
1236 			mhip->ip_off |= IP_MF;
1237 		mhip->ip_len = htons((u_short)(len + mhlen));
1238 		m->m_next = m_copy(m0, off, len);
1239 		if (m->m_next == 0) {		/* copy failed */
1240 			m_free(m);
1241 			error = ENOBUFS;	/* ??? */
1242 			ipstat.ips_odropped++;
1243 			goto done;
1244 		}
1245 		m->m_pkthdr.len = mhlen + len;
1246 		m->m_pkthdr.rcvif = (struct ifnet *)0;
1247 		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
1248 		mhip->ip_off = htons(mhip->ip_off);
1249 		mhip->ip_sum = 0;
1250 		if (sw_csum & CSUM_DELAY_IP)
1251 			mhip->ip_sum = in_cksum(m, mhlen);
1252 		*mnext = m;
1253 		mnext = &m->m_nextpkt;
1254 	}
1255 	ipstat.ips_ofragments += nfrags;
1256 
1257 	/* set first marker for fragment chain */
1258 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1259 	m0->m_pkthdr.csum_data = nfrags;
1260 
1261 	/*
1262 	 * Update first fragment by trimming what's been copied out
1263 	 * and updating header.
1264 	 */
1265 	m_adj(m0, hlen + firstlen - ip->ip_len);
1266 	m0->m_pkthdr.len = hlen + firstlen;
1267 	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1268 	ip->ip_off |= IP_MF;
1269 	ip->ip_off = htons(ip->ip_off);
1270 	ip->ip_sum = 0;
1271 	if (sw_csum & CSUM_DELAY_IP)
1272 		ip->ip_sum = in_cksum(m0, hlen);
1273 
1274 done:
1275 	*m_frag = m0;
1276 	return error;
1277 }
1278 
1279 void
1280 in_delayed_cksum(struct mbuf *m)
1281 {
1282 	struct ip *ip;
1283 	u_short csum, offset;
1284 
1285 	ip = mtod(m, struct ip *);
1286 	offset = IP_VHL_HL(ip->ip_vhl) << 2 ;
1287 	csum = in_cksum_skip(m, ip->ip_len, offset);
1288 	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
1289 		csum = 0xffff;
1290 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
1291 
1292 	if (offset + sizeof(u_short) > m->m_len) {
1293 		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
1294 		    m->m_len, offset, ip->ip_p);
1295 		/*
1296 		 * XXX
1297 		 * this shouldn't happen, but if it does, the
1298 		 * correct behavior may be to insert the checksum
1299 		 * in the existing chain instead of rearranging it.
1300 		 */
1301 		m = m_pullup(m, offset + sizeof(u_short));
1302 	}
1303 	*(u_short *)(m->m_data + offset) = csum;
1304 }
1305 
1306 /*
1307  * Insert IP options into preformed packet.
1308  * Adjust IP destination as required for IP source routing,
1309  * as indicated by a non-zero in_addr at the start of the options.
1310  *
1311  * XXX This routine assumes that the packet has no options in place.
1312  */
1313 static struct mbuf *
1314 ip_insertoptions(m, opt, phlen)
1315 	struct mbuf *m;
1316 	struct mbuf *opt;
1317 	int *phlen;
1318 {
1319 	struct ipoption *p = mtod(opt, struct ipoption *);
1320 	struct mbuf *n;
1321 	struct ip *ip = mtod(m, struct ip *);
1322 	unsigned optlen;
1323 
1324 	optlen = opt->m_len - sizeof(p->ipopt_dst);
1325 	if (optlen + (u_short)ip->ip_len > IP_MAXPACKET) {
1326 		*phlen = 0;
1327 		return (m);		/* XXX should fail */
1328 	}
1329 	if (p->ipopt_dst.s_addr)
1330 		ip->ip_dst = p->ipopt_dst;
1331 	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
1332 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
1333 		if (n == 0) {
1334 			*phlen = 0;
1335 			return (m);
1336 		}
1337 		n->m_pkthdr.rcvif = (struct ifnet *)0;
1338 		n->m_pkthdr.len = m->m_pkthdr.len + optlen;
1339 		m->m_len -= sizeof(struct ip);
1340 		m->m_data += sizeof(struct ip);
1341 		n->m_next = m;
1342 		m = n;
1343 		m->m_len = optlen + sizeof(struct ip);
1344 		m->m_data += max_linkhdr;
1345 		(void)memcpy(mtod(m, void *), ip, sizeof(struct ip));
1346 	} else {
1347 		m->m_data -= optlen;
1348 		m->m_len += optlen;
1349 		m->m_pkthdr.len += optlen;
1350 		ovbcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1351 	}
1352 	ip = mtod(m, struct ip *);
1353 	bcopy(p->ipopt_list, ip + 1, optlen);
1354 	*phlen = sizeof(struct ip) + optlen;
1355 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, *phlen >> 2);
1356 	ip->ip_len += optlen;
1357 	return (m);
1358 }
1359 
1360 /*
1361  * Copy options from ip to jp,
1362  * omitting those not copied during fragmentation.
1363  */
1364 int
1365 ip_optcopy(ip, jp)
1366 	struct ip *ip, *jp;
1367 {
1368 	u_char *cp, *dp;
1369 	int opt, optlen, cnt;
1370 
1371 	cp = (u_char *)(ip + 1);
1372 	dp = (u_char *)(jp + 1);
1373 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1374 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1375 		opt = cp[0];
1376 		if (opt == IPOPT_EOL)
1377 			break;
1378 		if (opt == IPOPT_NOP) {
1379 			/* Preserve for IP mcast tunnel's LSRR alignment. */
1380 			*dp++ = IPOPT_NOP;
1381 			optlen = 1;
1382 			continue;
1383 		}
1384 
1385 		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp),
1386 		    ("ip_optcopy: malformed ipv4 option"));
1387 		optlen = cp[IPOPT_OLEN];
1388 		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen <= cnt,
1389 		    ("ip_optcopy: malformed ipv4 option"));
1390 
1391 		/* bogus lengths should have been caught by ip_dooptions */
1392 		if (optlen > cnt)
1393 			optlen = cnt;
1394 		if (IPOPT_COPIED(opt)) {
1395 			bcopy(cp, dp, optlen);
1396 			dp += optlen;
1397 		}
1398 	}
1399 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1400 		*dp++ = IPOPT_EOL;
1401 	return (optlen);
1402 }
1403 
1404 /*
1405  * IP socket option processing.
1406  */
1407 int
1408 ip_ctloutput(so, sopt)
1409 	struct socket *so;
1410 	struct sockopt *sopt;
1411 {
1412 	struct	inpcb *inp = sotoinpcb(so);
1413 	int	error, optval;
1414 
1415 	error = optval = 0;
1416 	if (sopt->sopt_level != IPPROTO_IP) {
1417 		return (EINVAL);
1418 	}
1419 
1420 	switch (sopt->sopt_dir) {
1421 	case SOPT_SET:
1422 		switch (sopt->sopt_name) {
1423 		case IP_OPTIONS:
1424 #ifdef notyet
1425 		case IP_RETOPTS:
1426 #endif
1427 		{
1428 			struct mbuf *m;
1429 			if (sopt->sopt_valsize > MLEN) {
1430 				error = EMSGSIZE;
1431 				break;
1432 			}
1433 			MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_HEADER);
1434 			if (m == 0) {
1435 				error = ENOBUFS;
1436 				break;
1437 			}
1438 			m->m_len = sopt->sopt_valsize;
1439 			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1440 					    m->m_len);
1441 
1442 			return (ip_pcbopts(sopt->sopt_name, &inp->inp_options,
1443 					   m));
1444 		}
1445 
1446 		case IP_TOS:
1447 		case IP_TTL:
1448 		case IP_RECVOPTS:
1449 		case IP_RECVRETOPTS:
1450 		case IP_RECVDSTADDR:
1451 		case IP_RECVIF:
1452 		case IP_FAITH:
1453 			error = sooptcopyin(sopt, &optval, sizeof optval,
1454 					    sizeof optval);
1455 			if (error)
1456 				break;
1457 
1458 			switch (sopt->sopt_name) {
1459 			case IP_TOS:
1460 				inp->inp_ip_tos = optval;
1461 				break;
1462 
1463 			case IP_TTL:
1464 				inp->inp_ip_ttl = optval;
1465 				break;
1466 #define	OPTSET(bit) \
1467 	if (optval) \
1468 		inp->inp_flags |= bit; \
1469 	else \
1470 		inp->inp_flags &= ~bit;
1471 
1472 			case IP_RECVOPTS:
1473 				OPTSET(INP_RECVOPTS);
1474 				break;
1475 
1476 			case IP_RECVRETOPTS:
1477 				OPTSET(INP_RECVRETOPTS);
1478 				break;
1479 
1480 			case IP_RECVDSTADDR:
1481 				OPTSET(INP_RECVDSTADDR);
1482 				break;
1483 
1484 			case IP_RECVIF:
1485 				OPTSET(INP_RECVIF);
1486 				break;
1487 
1488 			case IP_FAITH:
1489 				OPTSET(INP_FAITH);
1490 				break;
1491 			}
1492 			break;
1493 #undef OPTSET
1494 
1495 		case IP_MULTICAST_IF:
1496 		case IP_MULTICAST_VIF:
1497 		case IP_MULTICAST_TTL:
1498 		case IP_MULTICAST_LOOP:
1499 		case IP_ADD_MEMBERSHIP:
1500 		case IP_DROP_MEMBERSHIP:
1501 			error = ip_setmoptions(sopt, &inp->inp_moptions);
1502 			break;
1503 
1504 		case IP_PORTRANGE:
1505 			error = sooptcopyin(sopt, &optval, sizeof optval,
1506 					    sizeof optval);
1507 			if (error)
1508 				break;
1509 
1510 			switch (optval) {
1511 			case IP_PORTRANGE_DEFAULT:
1512 				inp->inp_flags &= ~(INP_LOWPORT);
1513 				inp->inp_flags &= ~(INP_HIGHPORT);
1514 				break;
1515 
1516 			case IP_PORTRANGE_HIGH:
1517 				inp->inp_flags &= ~(INP_LOWPORT);
1518 				inp->inp_flags |= INP_HIGHPORT;
1519 				break;
1520 
1521 			case IP_PORTRANGE_LOW:
1522 				inp->inp_flags &= ~(INP_HIGHPORT);
1523 				inp->inp_flags |= INP_LOWPORT;
1524 				break;
1525 
1526 			default:
1527 				error = EINVAL;
1528 				break;
1529 			}
1530 			break;
1531 
1532 #if defined(IPSEC) || defined(FAST_IPSEC)
1533 		case IP_IPSEC_POLICY:
1534 		{
1535 			caddr_t req;
1536 			size_t len = 0;
1537 			int priv;
1538 			struct mbuf *m;
1539 			int optname;
1540 
1541 			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1542 				break;
1543 			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1544 				break;
1545 			priv = (sopt->sopt_td != NULL &&
1546 				suser(sopt->sopt_td) != 0) ? 0 : 1;
1547 			req = mtod(m, caddr_t);
1548 			len = m->m_len;
1549 			optname = sopt->sopt_name;
1550 			error = ipsec4_set_policy(inp, optname, req, len, priv);
1551 			m_freem(m);
1552 			break;
1553 		}
1554 #endif /*IPSEC*/
1555 
1556 		default:
1557 			error = ENOPROTOOPT;
1558 			break;
1559 		}
1560 		break;
1561 
1562 	case SOPT_GET:
1563 		switch (sopt->sopt_name) {
1564 		case IP_OPTIONS:
1565 		case IP_RETOPTS:
1566 			if (inp->inp_options)
1567 				error = sooptcopyout(sopt,
1568 						     mtod(inp->inp_options,
1569 							  char *),
1570 						     inp->inp_options->m_len);
1571 			else
1572 				sopt->sopt_valsize = 0;
1573 			break;
1574 
1575 		case IP_TOS:
1576 		case IP_TTL:
1577 		case IP_RECVOPTS:
1578 		case IP_RECVRETOPTS:
1579 		case IP_RECVDSTADDR:
1580 		case IP_RECVIF:
1581 		case IP_PORTRANGE:
1582 		case IP_FAITH:
1583 			switch (sopt->sopt_name) {
1584 
1585 			case IP_TOS:
1586 				optval = inp->inp_ip_tos;
1587 				break;
1588 
1589 			case IP_TTL:
1590 				optval = inp->inp_ip_ttl;
1591 				break;
1592 
1593 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1594 
1595 			case IP_RECVOPTS:
1596 				optval = OPTBIT(INP_RECVOPTS);
1597 				break;
1598 
1599 			case IP_RECVRETOPTS:
1600 				optval = OPTBIT(INP_RECVRETOPTS);
1601 				break;
1602 
1603 			case IP_RECVDSTADDR:
1604 				optval = OPTBIT(INP_RECVDSTADDR);
1605 				break;
1606 
1607 			case IP_RECVIF:
1608 				optval = OPTBIT(INP_RECVIF);
1609 				break;
1610 
1611 			case IP_PORTRANGE:
1612 				if (inp->inp_flags & INP_HIGHPORT)
1613 					optval = IP_PORTRANGE_HIGH;
1614 				else if (inp->inp_flags & INP_LOWPORT)
1615 					optval = IP_PORTRANGE_LOW;
1616 				else
1617 					optval = 0;
1618 				break;
1619 
1620 			case IP_FAITH:
1621 				optval = OPTBIT(INP_FAITH);
1622 				break;
1623 			}
1624 			error = sooptcopyout(sopt, &optval, sizeof optval);
1625 			break;
1626 
1627 		case IP_MULTICAST_IF:
1628 		case IP_MULTICAST_VIF:
1629 		case IP_MULTICAST_TTL:
1630 		case IP_MULTICAST_LOOP:
1631 		case IP_ADD_MEMBERSHIP:
1632 		case IP_DROP_MEMBERSHIP:
1633 			error = ip_getmoptions(sopt, inp->inp_moptions);
1634 			break;
1635 
1636 #if defined(IPSEC) || defined(FAST_IPSEC)
1637 		case IP_IPSEC_POLICY:
1638 		{
1639 			struct mbuf *m = NULL;
1640 			caddr_t req = NULL;
1641 			size_t len = 0;
1642 
1643 			if (m != 0) {
1644 				req = mtod(m, caddr_t);
1645 				len = m->m_len;
1646 			}
1647 			error = ipsec4_get_policy(sotoinpcb(so), req, len, &m);
1648 			if (error == 0)
1649 				error = soopt_mcopyout(sopt, m); /* XXX */
1650 			if (error == 0)
1651 				m_freem(m);
1652 			break;
1653 		}
1654 #endif /*IPSEC*/
1655 
1656 		default:
1657 			error = ENOPROTOOPT;
1658 			break;
1659 		}
1660 		break;
1661 	}
1662 	return (error);
1663 }
1664 
1665 /*
1666  * Set up IP options in pcb for insertion in output packets.
1667  * Store in mbuf with pointer in pcbopt, adding pseudo-option
1668  * with destination address if source routed.
1669  */
1670 static int
1671 ip_pcbopts(optname, pcbopt, m)
1672 	int optname;
1673 	struct mbuf **pcbopt;
1674 	struct mbuf *m;
1675 {
1676 	int cnt, optlen;
1677 	u_char *cp;
1678 	u_char opt;
1679 
1680 	/* turn off any old options */
1681 	if (*pcbopt)
1682 		(void)m_free(*pcbopt);
1683 	*pcbopt = 0;
1684 	if (m == (struct mbuf *)0 || m->m_len == 0) {
1685 		/*
1686 		 * Only turning off any previous options.
1687 		 */
1688 		if (m)
1689 			(void)m_free(m);
1690 		return (0);
1691 	}
1692 
1693 	if (m->m_len % sizeof(int32_t))
1694 		goto bad;
1695 	/*
1696 	 * IP first-hop destination address will be stored before
1697 	 * actual options; move other options back
1698 	 * and clear it when none present.
1699 	 */
1700 	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1701 		goto bad;
1702 	cnt = m->m_len;
1703 	m->m_len += sizeof(struct in_addr);
1704 	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1705 	ovbcopy(mtod(m, caddr_t), (caddr_t)cp, (unsigned)cnt);
1706 	bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1707 
1708 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1709 		opt = cp[IPOPT_OPTVAL];
1710 		if (opt == IPOPT_EOL)
1711 			break;
1712 		if (opt == IPOPT_NOP)
1713 			optlen = 1;
1714 		else {
1715 			if (cnt < IPOPT_OLEN + sizeof(*cp))
1716 				goto bad;
1717 			optlen = cp[IPOPT_OLEN];
1718 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1719 				goto bad;
1720 		}
1721 		switch (opt) {
1722 
1723 		default:
1724 			break;
1725 
1726 		case IPOPT_LSRR:
1727 		case IPOPT_SSRR:
1728 			/*
1729 			 * user process specifies route as:
1730 			 *	->A->B->C->D
1731 			 * D must be our final destination (but we can't
1732 			 * check that since we may not have connected yet).
1733 			 * A is first hop destination, which doesn't appear in
1734 			 * actual IP option, but is stored before the options.
1735 			 */
1736 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1737 				goto bad;
1738 			m->m_len -= sizeof(struct in_addr);
1739 			cnt -= sizeof(struct in_addr);
1740 			optlen -= sizeof(struct in_addr);
1741 			cp[IPOPT_OLEN] = optlen;
1742 			/*
1743 			 * Move first hop before start of options.
1744 			 */
1745 			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1746 			    sizeof(struct in_addr));
1747 			/*
1748 			 * Then copy rest of options back
1749 			 * to close up the deleted entry.
1750 			 */
1751 			ovbcopy((caddr_t)(&cp[IPOPT_OFFSET+1] +
1752 			    sizeof(struct in_addr)),
1753 			    (caddr_t)&cp[IPOPT_OFFSET+1],
1754 			    (unsigned)cnt + sizeof(struct in_addr));
1755 			break;
1756 		}
1757 	}
1758 	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1759 		goto bad;
1760 	*pcbopt = m;
1761 	return (0);
1762 
1763 bad:
1764 	(void)m_free(m);
1765 	return (EINVAL);
1766 }
1767 
1768 /*
1769  * XXX
1770  * The whole multicast option thing needs to be re-thought.
1771  * Several of these options are equally applicable to non-multicast
1772  * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1773  * standard option (IP_TTL).
1774  */
1775 
1776 /*
1777  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1778  */
1779 static struct ifnet *
1780 ip_multicast_if(a, ifindexp)
1781 	struct in_addr *a;
1782 	int *ifindexp;
1783 {
1784 	int ifindex;
1785 	struct ifnet *ifp;
1786 
1787 	if (ifindexp)
1788 		*ifindexp = 0;
1789 	if (ntohl(a->s_addr) >> 24 == 0) {
1790 		ifindex = ntohl(a->s_addr) & 0xffffff;
1791 		if (ifindex < 0 || if_index < ifindex)
1792 			return NULL;
1793 		ifp = ifindex2ifnet[ifindex];
1794 		if (ifindexp)
1795 			*ifindexp = ifindex;
1796 	} else {
1797 		INADDR_TO_IFP(*a, ifp);
1798 	}
1799 	return ifp;
1800 }
1801 
1802 /*
1803  * Set the IP multicast options in response to user setsockopt().
1804  */
1805 static int
1806 ip_setmoptions(sopt, imop)
1807 	struct sockopt *sopt;
1808 	struct ip_moptions **imop;
1809 {
1810 	int error = 0;
1811 	int i;
1812 	struct in_addr addr;
1813 	struct ip_mreq mreq;
1814 	struct ifnet *ifp;
1815 	struct ip_moptions *imo = *imop;
1816 	struct route ro;
1817 	struct sockaddr_in *dst;
1818 	int ifindex;
1819 	int s;
1820 
1821 	if (imo == NULL) {
1822 		/*
1823 		 * No multicast option buffer attached to the pcb;
1824 		 * allocate one and initialize to default values.
1825 		 */
1826 		imo = (struct ip_moptions*)malloc(sizeof(*imo), M_IPMOPTS,
1827 		    M_WAITOK);
1828 
1829 		if (imo == NULL)
1830 			return (ENOBUFS);
1831 		*imop = imo;
1832 		imo->imo_multicast_ifp = NULL;
1833 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
1834 		imo->imo_multicast_vif = -1;
1835 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1836 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1837 		imo->imo_num_memberships = 0;
1838 	}
1839 
1840 	switch (sopt->sopt_name) {
1841 	/* store an index number for the vif you wanna use in the send */
1842 	case IP_MULTICAST_VIF:
1843 		if (legal_vif_num == 0) {
1844 			error = EOPNOTSUPP;
1845 			break;
1846 		}
1847 		error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1848 		if (error)
1849 			break;
1850 		if (!legal_vif_num(i) && (i != -1)) {
1851 			error = EINVAL;
1852 			break;
1853 		}
1854 		imo->imo_multicast_vif = i;
1855 		break;
1856 
1857 	case IP_MULTICAST_IF:
1858 		/*
1859 		 * Select the interface for outgoing multicast packets.
1860 		 */
1861 		error = sooptcopyin(sopt, &addr, sizeof addr, sizeof addr);
1862 		if (error)
1863 			break;
1864 		/*
1865 		 * INADDR_ANY is used to remove a previous selection.
1866 		 * When no interface is selected, a default one is
1867 		 * chosen every time a multicast packet is sent.
1868 		 */
1869 		if (addr.s_addr == INADDR_ANY) {
1870 			imo->imo_multicast_ifp = NULL;
1871 			break;
1872 		}
1873 		/*
1874 		 * The selected interface is identified by its local
1875 		 * IP address.  Find the interface and confirm that
1876 		 * it supports multicasting.
1877 		 */
1878 		s = splimp();
1879 		ifp = ip_multicast_if(&addr, &ifindex);
1880 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1881 			splx(s);
1882 			error = EADDRNOTAVAIL;
1883 			break;
1884 		}
1885 		imo->imo_multicast_ifp = ifp;
1886 		if (ifindex)
1887 			imo->imo_multicast_addr = addr;
1888 		else
1889 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1890 		splx(s);
1891 		break;
1892 
1893 	case IP_MULTICAST_TTL:
1894 		/*
1895 		 * Set the IP time-to-live for outgoing multicast packets.
1896 		 * The original multicast API required a char argument,
1897 		 * which is inconsistent with the rest of the socket API.
1898 		 * We allow either a char or an int.
1899 		 */
1900 		if (sopt->sopt_valsize == 1) {
1901 			u_char ttl;
1902 			error = sooptcopyin(sopt, &ttl, 1, 1);
1903 			if (error)
1904 				break;
1905 			imo->imo_multicast_ttl = ttl;
1906 		} else {
1907 			u_int ttl;
1908 			error = sooptcopyin(sopt, &ttl, sizeof ttl,
1909 					    sizeof ttl);
1910 			if (error)
1911 				break;
1912 			if (ttl > 255)
1913 				error = EINVAL;
1914 			else
1915 				imo->imo_multicast_ttl = ttl;
1916 		}
1917 		break;
1918 
1919 	case IP_MULTICAST_LOOP:
1920 		/*
1921 		 * Set the loopback flag for outgoing multicast packets.
1922 		 * Must be zero or one.  The original multicast API required a
1923 		 * char argument, which is inconsistent with the rest
1924 		 * of the socket API.  We allow either a char or an int.
1925 		 */
1926 		if (sopt->sopt_valsize == 1) {
1927 			u_char loop;
1928 			error = sooptcopyin(sopt, &loop, 1, 1);
1929 			if (error)
1930 				break;
1931 			imo->imo_multicast_loop = !!loop;
1932 		} else {
1933 			u_int loop;
1934 			error = sooptcopyin(sopt, &loop, sizeof loop,
1935 					    sizeof loop);
1936 			if (error)
1937 				break;
1938 			imo->imo_multicast_loop = !!loop;
1939 		}
1940 		break;
1941 
1942 	case IP_ADD_MEMBERSHIP:
1943 		/*
1944 		 * Add a multicast group membership.
1945 		 * Group must be a valid IP multicast address.
1946 		 */
1947 		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1948 		if (error)
1949 			break;
1950 
1951 		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1952 			error = EINVAL;
1953 			break;
1954 		}
1955 		s = splimp();
1956 		/*
1957 		 * If no interface address was provided, use the interface of
1958 		 * the route to the given multicast address.
1959 		 */
1960 		if (mreq.imr_interface.s_addr == INADDR_ANY) {
1961 			bzero((caddr_t)&ro, sizeof(ro));
1962 			dst = (struct sockaddr_in *)&ro.ro_dst;
1963 			dst->sin_len = sizeof(*dst);
1964 			dst->sin_family = AF_INET;
1965 			dst->sin_addr = mreq.imr_multiaddr;
1966 			rtalloc(&ro);
1967 			if (ro.ro_rt == NULL) {
1968 				error = EADDRNOTAVAIL;
1969 				splx(s);
1970 				break;
1971 			}
1972 			ifp = ro.ro_rt->rt_ifp;
1973 			rtfree(ro.ro_rt);
1974 		}
1975 		else {
1976 			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1977 		}
1978 
1979 		/*
1980 		 * See if we found an interface, and confirm that it
1981 		 * supports multicast.
1982 		 */
1983 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1984 			error = EADDRNOTAVAIL;
1985 			splx(s);
1986 			break;
1987 		}
1988 		/*
1989 		 * See if the membership already exists or if all the
1990 		 * membership slots are full.
1991 		 */
1992 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1993 			if (imo->imo_membership[i]->inm_ifp == ifp &&
1994 			    imo->imo_membership[i]->inm_addr.s_addr
1995 						== mreq.imr_multiaddr.s_addr)
1996 				break;
1997 		}
1998 		if (i < imo->imo_num_memberships) {
1999 			error = EADDRINUSE;
2000 			splx(s);
2001 			break;
2002 		}
2003 		if (i == IP_MAX_MEMBERSHIPS) {
2004 			error = ETOOMANYREFS;
2005 			splx(s);
2006 			break;
2007 		}
2008 		/*
2009 		 * Everything looks good; add a new record to the multicast
2010 		 * address list for the given interface.
2011 		 */
2012 		if ((imo->imo_membership[i] =
2013 		    in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
2014 			error = ENOBUFS;
2015 			splx(s);
2016 			break;
2017 		}
2018 		++imo->imo_num_memberships;
2019 		splx(s);
2020 		break;
2021 
2022 	case IP_DROP_MEMBERSHIP:
2023 		/*
2024 		 * Drop a multicast group membership.
2025 		 * Group must be a valid IP multicast address.
2026 		 */
2027 		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
2028 		if (error)
2029 			break;
2030 
2031 		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
2032 			error = EINVAL;
2033 			break;
2034 		}
2035 
2036 		s = splimp();
2037 		/*
2038 		 * If an interface address was specified, get a pointer
2039 		 * to its ifnet structure.
2040 		 */
2041 		if (mreq.imr_interface.s_addr == INADDR_ANY)
2042 			ifp = NULL;
2043 		else {
2044 			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
2045 			if (ifp == NULL) {
2046 				error = EADDRNOTAVAIL;
2047 				splx(s);
2048 				break;
2049 			}
2050 		}
2051 		/*
2052 		 * Find the membership in the membership array.
2053 		 */
2054 		for (i = 0; i < imo->imo_num_memberships; ++i) {
2055 			if ((ifp == NULL ||
2056 			     imo->imo_membership[i]->inm_ifp == ifp) &&
2057 			     imo->imo_membership[i]->inm_addr.s_addr ==
2058 			     mreq.imr_multiaddr.s_addr)
2059 				break;
2060 		}
2061 		if (i == imo->imo_num_memberships) {
2062 			error = EADDRNOTAVAIL;
2063 			splx(s);
2064 			break;
2065 		}
2066 		/*
2067 		 * Give up the multicast address record to which the
2068 		 * membership points.
2069 		 */
2070 		in_delmulti(imo->imo_membership[i]);
2071 		/*
2072 		 * Remove the gap in the membership array.
2073 		 */
2074 		for (++i; i < imo->imo_num_memberships; ++i)
2075 			imo->imo_membership[i-1] = imo->imo_membership[i];
2076 		--imo->imo_num_memberships;
2077 		splx(s);
2078 		break;
2079 
2080 	default:
2081 		error = EOPNOTSUPP;
2082 		break;
2083 	}
2084 
2085 	/*
2086 	 * If all options have default values, no need to keep the mbuf.
2087 	 */
2088 	if (imo->imo_multicast_ifp == NULL &&
2089 	    imo->imo_multicast_vif == -1 &&
2090 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
2091 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
2092 	    imo->imo_num_memberships == 0) {
2093 		free(*imop, M_IPMOPTS);
2094 		*imop = NULL;
2095 	}
2096 
2097 	return (error);
2098 }
2099 
2100 /*
2101  * Return the IP multicast options in response to user getsockopt().
2102  */
2103 static int
2104 ip_getmoptions(sopt, imo)
2105 	struct sockopt *sopt;
2106 	struct ip_moptions *imo;
2107 {
2108 	struct in_addr addr;
2109 	struct in_ifaddr *ia;
2110 	int error, optval;
2111 	u_char coptval;
2112 
2113 	error = 0;
2114 	switch (sopt->sopt_name) {
2115 	case IP_MULTICAST_VIF:
2116 		if (imo != NULL)
2117 			optval = imo->imo_multicast_vif;
2118 		else
2119 			optval = -1;
2120 		error = sooptcopyout(sopt, &optval, sizeof optval);
2121 		break;
2122 
2123 	case IP_MULTICAST_IF:
2124 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
2125 			addr.s_addr = INADDR_ANY;
2126 		else if (imo->imo_multicast_addr.s_addr) {
2127 			/* return the value user has set */
2128 			addr = imo->imo_multicast_addr;
2129 		} else {
2130 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
2131 			addr.s_addr = (ia == NULL) ? INADDR_ANY
2132 				: IA_SIN(ia)->sin_addr.s_addr;
2133 		}
2134 		error = sooptcopyout(sopt, &addr, sizeof addr);
2135 		break;
2136 
2137 	case IP_MULTICAST_TTL:
2138 		if (imo == 0)
2139 			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
2140 		else
2141 			optval = coptval = imo->imo_multicast_ttl;
2142 		if (sopt->sopt_valsize == 1)
2143 			error = sooptcopyout(sopt, &coptval, 1);
2144 		else
2145 			error = sooptcopyout(sopt, &optval, sizeof optval);
2146 		break;
2147 
2148 	case IP_MULTICAST_LOOP:
2149 		if (imo == 0)
2150 			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
2151 		else
2152 			optval = coptval = imo->imo_multicast_loop;
2153 		if (sopt->sopt_valsize == 1)
2154 			error = sooptcopyout(sopt, &coptval, 1);
2155 		else
2156 			error = sooptcopyout(sopt, &optval, sizeof optval);
2157 		break;
2158 
2159 	default:
2160 		error = ENOPROTOOPT;
2161 		break;
2162 	}
2163 	return (error);
2164 }
2165 
2166 /*
2167  * Discard the IP multicast options.
2168  */
2169 void
2170 ip_freemoptions(imo)
2171 	struct ip_moptions *imo;
2172 {
2173 	int i;
2174 
2175 	if (imo != NULL) {
2176 		for (i = 0; i < imo->imo_num_memberships; ++i)
2177 			in_delmulti(imo->imo_membership[i]);
2178 		free(imo, M_IPMOPTS);
2179 	}
2180 }
2181 
2182 /*
2183  * Routine called from ip_output() to loop back a copy of an IP multicast
2184  * packet to the input queue of a specified interface.  Note that this
2185  * calls the output routine of the loopback "driver", but with an interface
2186  * pointer that might NOT be a loopback interface -- evil, but easier than
2187  * replicating that code here.
2188  */
2189 static void
2190 ip_mloopback(ifp, m, dst, hlen)
2191 	struct ifnet *ifp;
2192 	struct mbuf *m;
2193 	struct sockaddr_in *dst;
2194 	int hlen;
2195 {
2196 	struct ip *ip;
2197 	struct mbuf *copym;
2198 
2199 	copym = m_copy(m, 0, M_COPYALL);
2200 	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
2201 		copym = m_pullup(copym, hlen);
2202 	if (copym != NULL) {
2203 		/*
2204 		 * We don't bother to fragment if the IP length is greater
2205 		 * than the interface's MTU.  Can this possibly matter?
2206 		 */
2207 		ip = mtod(copym, struct ip *);
2208 		ip->ip_len = htons(ip->ip_len);
2209 		ip->ip_off = htons(ip->ip_off);
2210 		ip->ip_sum = 0;
2211 		if (ip->ip_vhl == IP_VHL_BORING) {
2212 			ip->ip_sum = in_cksum_hdr(ip);
2213 		} else {
2214 			ip->ip_sum = in_cksum(copym, hlen);
2215 		}
2216 		/*
2217 		 * NB:
2218 		 * It's not clear whether there are any lingering
2219 		 * reentrancy problems in other areas which might
2220 		 * be exposed by using ip_input directly (in
2221 		 * particular, everything which modifies the packet
2222 		 * in-place).  Yet another option is using the
2223 		 * protosw directly to deliver the looped back
2224 		 * packet.  For the moment, we'll err on the side
2225 		 * of safety by using if_simloop().
2226 		 */
2227 #if 1 /* XXX */
2228 		if (dst->sin_family != AF_INET) {
2229 			printf("ip_mloopback: bad address family %d\n",
2230 						dst->sin_family);
2231 			dst->sin_family = AF_INET;
2232 		}
2233 #endif
2234 
2235 #ifdef notdef
2236 		copym->m_pkthdr.rcvif = ifp;
2237 		ip_input(copym);
2238 #else
2239 		/* if the checksum hasn't been computed, mark it as valid */
2240 		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2241 			copym->m_pkthdr.csum_flags |=
2242 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2243 			copym->m_pkthdr.csum_data = 0xffff;
2244 		}
2245 		if_simloop(ifp, copym, dst->sin_family, 0);
2246 #endif
2247 	}
2248 }
2249