xref: /dragonfly/sys/netinet/ip_output.c (revision c9c5aa9e)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30  * $FreeBSD: src/sys/netinet/ip_output.c,v 1.99.2.37 2003/04/15 06:44:45 silby Exp $
31  */
32 
33 #define _IP_VHL
34 
35 #include "opt_ipdn.h"
36 #include "opt_ipdivert.h"
37 #include "opt_mbuf_stress_test.h"
38 #include "opt_mpls.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/protosw.h>
46 #include <sys/socket.h>
47 #include <sys/socketvar.h>
48 #include <sys/proc.h>
49 #include <sys/priv.h>
50 #include <sys/sysctl.h>
51 #include <sys/in_cksum.h>
52 #include <sys/lock.h>
53 
54 #include <sys/thread2.h>
55 #include <sys/mplock2.h>
56 #include <sys/msgport2.h>
57 
58 #include <net/if.h>
59 #include <net/netisr.h>
60 #include <net/pfil.h>
61 #include <net/route.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/ip.h>
66 #include <netinet/in_pcb.h>
67 #include <netinet/in_var.h>
68 #include <netinet/ip_var.h>
69 
70 #include <netproto/mpls/mpls_var.h>
71 
72 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
73 
74 #include <net/ipfw/ip_fw.h>
75 #include <net/dummynet/ip_dummynet.h>
76 
77 #define print_ip(x, a, y)	 kprintf("%s %d.%d.%d.%d%s",\
78 				x, (ntohl(a.s_addr)>>24)&0xFF,\
79 				  (ntohl(a.s_addr)>>16)&0xFF,\
80 				  (ntohl(a.s_addr)>>8)&0xFF,\
81 				  (ntohl(a.s_addr))&0xFF, y);
82 
83 u_short ip_id;
84 
85 #ifdef MBUF_STRESS_TEST
86 int mbuf_frag_size = 0;
87 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
88 	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
89 #endif
90 
91 static int ip_do_rfc6864 = 1;
92 SYSCTL_INT(_net_inet_ip, OID_AUTO, rfc6864, CTLFLAG_RW, &ip_do_rfc6864, 0,
93     "Don't generate IP ID for DF IP datagrams");
94 
95 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
96 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
97 static void	ip_mloopback
98 	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
99 static int	ip_getmoptions
100 	(struct sockopt *, struct ip_moptions *);
101 static int	ip_pcbopts(int, struct mbuf **, struct mbuf *);
102 static int	ip_setmoptions
103 	(struct sockopt *, struct ip_moptions **);
104 
105 int	ip_optcopy(struct ip *, struct ip *);
106 
107 extern	struct protosw inetsw[];
108 
109 static int
110 ip_localforward(struct mbuf *m, const struct sockaddr_in *dst, int hlen)
111 {
112 	struct in_ifaddr_container *iac;
113 
114 	/*
115 	 * We need to figure out if we have been forwarded to a local
116 	 * socket.  If so, then we should somehow "loop back" to
117 	 * ip_input(), and get directed to the PCB as if we had received
118 	 * this packet.  This is because it may be difficult to identify
119 	 * the packets you want to forward until they are being output
120 	 * and have selected an interface (e.g. locally initiated
121 	 * packets).  If we used the loopback inteface, we would not be
122 	 * able to control what happens as the packet runs through
123 	 * ip_input() as it is done through a ISR.
124 	 */
125 	LIST_FOREACH(iac, INADDR_HASH(dst->sin_addr.s_addr), ia_hash) {
126 		/*
127 		 * If the addr to forward to is one of ours, we pretend
128 		 * to be the destination for this packet.
129 		 */
130 		if (IA_SIN(iac->ia)->sin_addr.s_addr == dst->sin_addr.s_addr)
131 			break;
132 	}
133 	if (iac != NULL) {
134 		struct ip *ip;
135 
136 		if (m->m_pkthdr.rcvif == NULL)
137 			m->m_pkthdr.rcvif = loif;
138 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
139 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
140 						  CSUM_PSEUDO_HDR;
141 			m->m_pkthdr.csum_data = 0xffff;
142 		}
143 		m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
144 
145 		/*
146 		 * Make sure that the IP header is in one mbuf,
147 		 * required by ip_input
148 		 */
149 		if (m->m_len < hlen) {
150 			m = m_pullup(m, hlen);
151 			if (m == NULL) {
152 				/* The packet was freed; we are done */
153 				return 1;
154 			}
155 		}
156 		ip = mtod(m, struct ip *);
157 
158 		ip->ip_len = htons(ip->ip_len);
159 		ip->ip_off = htons(ip->ip_off);
160 		ip_input(m);
161 
162 		return 1; /* The packet gets forwarded locally */
163 	}
164 	return 0;
165 }
166 
167 /*
168  * IP output.  The packet in mbuf chain m contains a skeletal IP
169  * header (with len, off, ttl, proto, tos, src, dst).
170  * The mbuf chain containing the packet will be freed.
171  * The mbuf opt, if present, will not be freed.
172  */
173 int
174 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro,
175 	  int flags, struct ip_moptions *imo, struct inpcb *inp)
176 {
177 	struct ip *ip;
178 	struct ifnet *ifp = NULL;	/* keep compiler happy */
179 	struct mbuf *m;
180 	int hlen = sizeof(struct ip);
181 	int len, error = 0;
182 	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
183 	struct in_ifaddr *ia = NULL;
184 	int isbroadcast, sw_csum;
185 	struct in_addr pkt_dst;
186 	struct route iproute;
187 	struct m_tag *mtag;
188 	struct sockaddr_in *next_hop = NULL;
189 	int src_was_INADDR_ANY = 0;	/* as the name says... */
190 
191 	ASSERT_NETISR_NCPUS(mycpuid);
192 
193 	m = m0;
194 	M_ASSERTPKTHDR(m);
195 
196 	if (ro == NULL) {
197 		ro = &iproute;
198 		bzero(ro, sizeof *ro);
199 	} else if (ro->ro_rt != NULL && ro->ro_rt->rt_cpuid != mycpuid) {
200 		if (flags & IP_DEBUGROUTE) {
201 			panic("ip_output: rt rt_cpuid %d accessed on cpu %d\n",
202 			    ro->ro_rt->rt_cpuid, mycpuid);
203 		}
204 
205 		/*
206 		 * XXX
207 		 * If the cached rtentry's owner CPU is not the current CPU,
208 		 * then don't touch the cached rtentry (remote free is too
209 		 * expensive in this context); just relocate the route.
210 		 */
211 		ro = &iproute;
212 		bzero(ro, sizeof *ro);
213 	}
214 
215 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
216 		/* Next hop */
217 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
218 		KKASSERT(mtag != NULL);
219 		next_hop = m_tag_data(mtag);
220 	}
221 
222 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
223 		struct dn_pkt *dn_pkt;
224 
225 		/* Extract info from dummynet tag */
226 		mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
227 		KKASSERT(mtag != NULL);
228 		dn_pkt = m_tag_data(mtag);
229 
230 		/*
231 		 * The packet was already tagged, so part of the
232 		 * processing was already done, and we need to go down.
233 		 * Get the calculated parameters from the tag.
234 		 */
235 		ifp = dn_pkt->ifp;
236 
237 		KKASSERT(ro == &iproute);
238 		*ro = dn_pkt->ro; /* structure copy */
239 		KKASSERT(ro->ro_rt == NULL || ro->ro_rt->rt_cpuid == mycpuid);
240 
241 		dst = dn_pkt->dn_dst;
242 		if (dst == (struct sockaddr_in *)&(dn_pkt->ro.ro_dst)) {
243 			/* If 'dst' points into dummynet tag, adjust it */
244 			dst = (struct sockaddr_in *)&(ro->ro_dst);
245 		}
246 
247 		ip = mtod(m, struct ip *);
248 		hlen = IP_VHL_HL(ip->ip_vhl) << 2 ;
249 		if (ro->ro_rt)
250 			ia = ifatoia(ro->ro_rt->rt_ifa);
251 		goto sendit;
252 	}
253 
254 	if (opt) {
255 		len = 0;
256 		m = ip_insertoptions(m, opt, &len);
257 		if (len != 0)
258 			hlen = len;
259 	}
260 	ip = mtod(m, struct ip *);
261 
262 	/*
263 	 * Fill in IP header.
264 	 */
265 	if (!(flags & (IP_FORWARDING|IP_RAWOUTPUT))) {
266 		ip->ip_vhl = IP_MAKE_VHL(IPVERSION, hlen >> 2);
267 		ip->ip_off &= IP_DF;
268 		if (ip_do_rfc6864 && (ip->ip_off & IP_DF))
269 			ip->ip_id = 0;
270 		else
271 			ip->ip_id = ip_newid();
272 		ipstat.ips_localout++;
273 	} else {
274 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
275 	}
276 
277 reroute:
278 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
279 
280 	dst = (struct sockaddr_in *)&ro->ro_dst;
281 	/*
282 	 * If there is a cached route,
283 	 * check that it is to the same destination
284 	 * and is still up.  If not, free it and try again.
285 	 * The address family should also be checked in case of sharing the
286 	 * cache with IPv6.
287 	 */
288 	if (ro->ro_rt &&
289 	    (!(ro->ro_rt->rt_flags & RTF_UP) ||
290 	     dst->sin_family != AF_INET ||
291 	     dst->sin_addr.s_addr != pkt_dst.s_addr)) {
292 		rtfree(ro->ro_rt);
293 		ro->ro_rt = NULL;
294 	}
295 	if (ro->ro_rt == NULL) {
296 		bzero(dst, sizeof *dst);
297 		dst->sin_family = AF_INET;
298 		dst->sin_len = sizeof *dst;
299 		dst->sin_addr = pkt_dst;
300 	}
301 	/*
302 	 * If routing to interface only,
303 	 * short circuit routing lookup.
304 	 */
305 	if (flags & IP_ROUTETOIF) {
306 		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
307 		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == NULL) {
308 			ipstat.ips_noroute++;
309 			error = ENETUNREACH;
310 			goto bad;
311 		}
312 		ifp = ia->ia_ifp;
313 		ip->ip_ttl = 1;
314 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
315 	} else if (IN_MULTICAST(ntohl(pkt_dst.s_addr)) &&
316 		   imo != NULL && imo->imo_multicast_ifp != NULL) {
317 		/*
318 		 * Bypass the normal routing lookup for multicast
319 		 * packets if the interface is specified.
320 		 */
321 		ifp = imo->imo_multicast_ifp;
322 		ia = IFP_TO_IA(ifp);
323 		isbroadcast = 0;	/* fool gcc */
324 	} else {
325 		/*
326 		 * If this is the case, we probably don't want to allocate
327 		 * a protocol-cloned route since we didn't get one from the
328 		 * ULP.  This lets TCP do its thing, while not burdening
329 		 * forwarding or ICMP with the overhead of cloning a route.
330 		 * Of course, we still want to do any cloning requested by
331 		 * the link layer, as this is probably required in all cases
332 		 * for correct operation (as it is for ARP).
333 		 */
334 		if (ro->ro_rt == NULL)
335 			rtalloc_ign(ro, RTF_PRCLONING);
336 		if (ro->ro_rt == NULL) {
337 			ipstat.ips_noroute++;
338 			error = EHOSTUNREACH;
339 			goto bad;
340 		}
341 		ia = ifatoia(ro->ro_rt->rt_ifa);
342 		ifp = ro->ro_rt->rt_ifp;
343 		ro->ro_rt->rt_use++;
344 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
345 			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
346 		if (ro->ro_rt->rt_flags & RTF_HOST)
347 			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
348 		else
349 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
350 	}
351 	if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
352 		m->m_flags |= M_MCAST;
353 		/*
354 		 * IP destination address is multicast.  Make sure "dst"
355 		 * still points to the address in "ro".  (It may have been
356 		 * changed to point to a gateway address, above.)
357 		 */
358 		dst = (struct sockaddr_in *)&ro->ro_dst;
359 		/*
360 		 * See if the caller provided any multicast options
361 		 */
362 		if (imo != NULL) {
363 			ip->ip_ttl = imo->imo_multicast_ttl;
364 			if (imo->imo_multicast_vif != -1) {
365 				ip->ip_src.s_addr =
366 				    ip_mcast_src ?
367 				    ip_mcast_src(imo->imo_multicast_vif) :
368 				    INADDR_ANY;
369 			}
370 		} else {
371 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
372 		}
373 		/*
374 		 * Confirm that the outgoing interface supports multicast.
375 		 */
376 		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
377 			if (!(ifp->if_flags & IFF_MULTICAST)) {
378 				ipstat.ips_noroute++;
379 				error = ENETUNREACH;
380 				goto bad;
381 			}
382 		}
383 		/*
384 		 * If source address not specified yet, use address of the
385 		 * outgoing interface.  In case, keep note we did that, so
386 		 * if the the firewall changes the next-hop causing the
387 		 * output interface to change, we can fix that.
388 		 */
389 		if (ip->ip_src.s_addr == INADDR_ANY || src_was_INADDR_ANY) {
390 			/* Interface may have no addresses. */
391 			if (ia != NULL) {
392 				ip->ip_src = IA_SIN(ia)->sin_addr;
393 				src_was_INADDR_ANY = 1;
394 			}
395 		}
396 
397 		if (ip->ip_src.s_addr != INADDR_ANY) {
398 			struct in_multi *inm;
399 
400 			inm = IN_LOOKUP_MULTI(&pkt_dst, ifp);
401 			if (inm != NULL &&
402 			    (imo == NULL || imo->imo_multicast_loop)) {
403 				/*
404 				 * If we belong to the destination multicast
405 				 * group on the outgoing interface, and the
406 				 * caller did not forbid loopback, loop back
407 				 * a copy.
408 				 */
409 				ip_mloopback(ifp, m, dst, hlen);
410 			} else {
411 				/*
412 				 * If we are acting as a multicast router,
413 				 * perform multicast forwarding as if the
414 				 * packet had just arrived on the interface
415 				 * to which we are about to send.  The
416 				 * multicast forwarding function recursively
417 				 * calls this function, using the IP_FORWARDING
418 				 * flag to prevent infinite recursion.
419 				 *
420 				 * Multicasts that are looped back by
421 				 * ip_mloopback(), above, will be forwarded by
422 				 * the ip_input() routine, if necessary.
423 				 */
424 				if (ip_mrouter && !(flags & IP_FORWARDING)) {
425 					/*
426 					 * If rsvp daemon is not running, do
427 					 * not set ip_moptions. This ensures
428 					 * that the packet is multicast and
429 					 * not just sent down one link as
430 					 * prescribed by rsvpd.
431 					 */
432 					if (!rsvp_on)
433 						imo = NULL;
434 					if (ip_mforward) {
435 						get_mplock();
436 						if (ip_mforward(ip, ifp,
437 						    m, imo) != 0) {
438 							m_freem(m);
439 							rel_mplock();
440 							goto done;
441 						}
442 						rel_mplock();
443 					}
444 				}
445 			}
446 		}
447 
448 		/*
449 		 * Multicasts with a time-to-live of zero may be looped-
450 		 * back, above, but must not be transmitted on a network.
451 		 * Also, multicasts addressed to the loopback interface
452 		 * are not sent -- the above call to ip_mloopback() will
453 		 * loop back a copy if this host actually belongs to the
454 		 * destination group on the loopback interface.
455 		 */
456 		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
457 			m_freem(m);
458 			goto done;
459 		}
460 
461 		goto sendit;
462 	} else {
463 		m->m_flags &= ~M_MCAST;
464 	}
465 
466 	/*
467 	 * If the source address is not specified yet, use the address
468 	 * of the outgoing interface.  In case, keep note we did that,
469 	 * so if the the firewall changes the next-hop causing the output
470 	 * interface to change, we can fix that.
471 	 */
472 	if (ip->ip_src.s_addr == INADDR_ANY || src_was_INADDR_ANY) {
473 		/* Interface may have no addresses. */
474 		if (ia != NULL) {
475 			ip->ip_src = IA_SIN(ia)->sin_addr;
476 			src_was_INADDR_ANY = 1;
477 		}
478 	}
479 
480 	/*
481 	 * Look for broadcast address and
482 	 * verify user is allowed to send
483 	 * such a packet.
484 	 */
485 	if (isbroadcast) {
486 		if (!(ifp->if_flags & IFF_BROADCAST)) {
487 			error = EADDRNOTAVAIL;
488 			goto bad;
489 		}
490 		if (!(flags & IP_ALLOWBROADCAST)) {
491 			error = EACCES;
492 			goto bad;
493 		}
494 		/* don't allow broadcast messages to be fragmented */
495 		if (ip->ip_len > ifp->if_mtu) {
496 			error = EMSGSIZE;
497 			goto bad;
498 		}
499 		m->m_flags |= M_BCAST;
500 	} else {
501 		m->m_flags &= ~M_BCAST;
502 	}
503 
504 sendit:
505 
506 	/* We are already being fwd'd from a firewall. */
507 	if (next_hop != NULL)
508 		goto pass;
509 
510 	/* No pfil hooks */
511 	if (!pfil_has_hooks(&inet_pfil_hook)) {
512 		if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
513 			/*
514 			 * Strip dummynet tags from stranded packets
515 			 */
516 			mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
517 			KKASSERT(mtag != NULL);
518 			m_tag_delete(m, mtag);
519 			m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
520 		}
521 		goto pass;
522 	}
523 
524 	/*
525 	 * IpHack's section.
526 	 * - Xlate: translate packet's addr/port (NAT).
527 	 * - Firewall: deny/allow/etc.
528 	 * - Wrap: fake packet's addr/port <unimpl.>
529 	 * - Encapsulate: put it in another IP and send out. <unimp.>
530 	 */
531 
532 	/*
533 	 * Run through list of hooks for output packets.
534 	 */
535 	error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT);
536 	if (error != 0 || m == NULL)
537 		goto done;
538 	ip = mtod(m, struct ip *);
539 
540 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
541 		/*
542 		 * Check dst to make sure it is directly reachable on the
543 		 * interface we previously thought it was.
544 		 * If it isn't (which may be likely in some situations) we have
545 		 * to re-route it (ie, find a route for the next-hop and the
546 		 * associated interface) and set them here. This is nested
547 		 * forwarding which in most cases is undesirable, except where
548 		 * such control is nigh impossible. So we do it here.
549 		 * And I'm babbling.
550 		 */
551 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
552 		KKASSERT(mtag != NULL);
553 		next_hop = m_tag_data(mtag);
554 
555 		/*
556 		 * Try local forwarding first
557 		 */
558 		if (ip_localforward(m, next_hop, hlen))
559 			goto done;
560 
561 		/*
562 		 * Relocate the route based on next_hop.
563 		 * If the current route is inp's cache, keep it untouched.
564 		 */
565 		if (ro == &iproute && ro->ro_rt != NULL) {
566 			RTFREE(ro->ro_rt);
567 			ro->ro_rt = NULL;
568 		}
569 		ro = &iproute;
570 		bzero(ro, sizeof *ro);
571 
572 		/*
573 		 * Forwarding to broadcast address is not allowed.
574 		 * XXX Should we follow IP_ROUTETOIF?
575 		 */
576 		flags &= ~(IP_ALLOWBROADCAST | IP_ROUTETOIF);
577 
578 		/* We are doing forwarding now */
579 		flags |= IP_FORWARDING;
580 
581 		goto reroute;
582 	}
583 
584 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
585 		struct dn_pkt *dn_pkt;
586 
587 		mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
588 		KKASSERT(mtag != NULL);
589 		dn_pkt = m_tag_data(mtag);
590 
591 		/*
592 		 * Under certain cases it is not possible to recalculate
593 		 * 'ro' and 'dst', let alone 'flags', so just save them in
594 		 * dummynet tag and avoid the possible wrong reculcalation
595 		 * when we come back to ip_output() again.
596 		 *
597 		 * All other parameters have been already used and so they
598 		 * are not needed anymore.
599 		 * XXX if the ifp is deleted while a pkt is in dummynet,
600 		 * we are in trouble! (TODO use ifnet_detach_event)
601 		 *
602 		 * We need to copy *ro because for ICMP pkts (and maybe
603 		 * others) the caller passed a pointer into the stack;
604 		 * dst might also be a pointer into *ro so it needs to
605 		 * be updated.
606 		 */
607 		dn_pkt->ro = *ro;
608 		if (ro->ro_rt)
609 			ro->ro_rt->rt_refcnt++;
610 		if (dst == (struct sockaddr_in *)&ro->ro_dst) {
611 			/* 'dst' points into 'ro' */
612 			dst = (struct sockaddr_in *)&(dn_pkt->ro.ro_dst);
613 		}
614 		dn_pkt->dn_dst = dst;
615 		dn_pkt->flags = flags;
616 
617 		ip_dn_queue(m);
618 		goto done;
619 	}
620 
621 	if (m->m_pkthdr.fw_flags & IPFW_MBUF_CONTINUE) {
622 		/* ipfw was disabled/unloaded. */
623 		m_freem(m);
624 		goto done;
625 	}
626 pass:
627 	/* 127/8 must not appear on wire - RFC1122. */
628 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
629 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
630 		if (!(ifp->if_flags & IFF_LOOPBACK)) {
631 			ipstat.ips_badaddr++;
632 			error = EADDRNOTAVAIL;
633 			goto bad;
634 		}
635 	}
636 	if (ip->ip_src.s_addr == INADDR_ANY ||
637 	    IN_MULTICAST(ntohl(ip->ip_src.s_addr))) {
638 		ipstat.ips_badaddr++;
639 		error = EADDRNOTAVAIL;
640 		goto bad;
641 	}
642 
643 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
644 		m->m_pkthdr.csum_flags |= CSUM_IP;
645 		sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
646 		if (sw_csum & CSUM_DELAY_DATA) {
647 			in_delayed_cksum(m);
648 			sw_csum &= ~CSUM_DELAY_DATA;
649 		}
650 		m->m_pkthdr.csum_flags &= ifp->if_hwassist;
651 	} else {
652 		sw_csum = 0;
653 	}
654 	m->m_pkthdr.csum_iphlen = hlen;
655 
656 	/*
657 	 * If small enough for interface, or the interface will take
658 	 * care of the fragmentation or segmentation for us, can just
659 	 * send directly.
660 	 */
661 	if (ip->ip_len <= ifp->if_mtu ||
662 	    ((ifp->if_hwassist & CSUM_FRAGMENT) && !(ip->ip_off & IP_DF)) ||
663 	    (m->m_pkthdr.csum_flags & CSUM_TSO)) {
664 		ip->ip_len = htons(ip->ip_len);
665 		ip->ip_off = htons(ip->ip_off);
666 		ip->ip_sum = 0;
667 		if (sw_csum & CSUM_DELAY_IP) {
668 			if (ip->ip_vhl == IP_VHL_BORING)
669 				ip->ip_sum = in_cksum_hdr(ip);
670 			else
671 				ip->ip_sum = in_cksum(m, hlen);
672 		}
673 
674 		/* Record statistics for this interface address. */
675 		if (!(flags & IP_FORWARDING) && ia) {
676 			IFA_STAT_INC(&ia->ia_ifa, opackets, 1);
677 			IFA_STAT_INC(&ia->ia_ifa, obytes, m->m_pkthdr.len);
678 		}
679 
680 #ifdef MBUF_STRESS_TEST
681 		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) {
682 			struct mbuf *m1, *m2;
683 			int length, tmp;
684 
685 			tmp = length = m->m_pkthdr.len;
686 
687 			while ((length -= mbuf_frag_size) >= 1) {
688 				m1 = m_split(m, length, M_NOWAIT);
689 				if (m1 == NULL)
690 					break;
691 				m2 = m;
692 				while (m2->m_next != NULL)
693 					m2 = m2->m_next;
694 				m2->m_next = m1;
695 			}
696 			m->m_pkthdr.len = tmp;
697 		}
698 #endif
699 
700 #ifdef MPLS
701 		if (!mpls_output_process(m, ro->ro_rt))
702 			goto done;
703 #endif
704 		error = ifp->if_output(ifp, m, (struct sockaddr *)dst,
705 				       ro->ro_rt);
706 		goto done;
707 	}
708 
709 	if (ip->ip_off & IP_DF) {
710 		error = EMSGSIZE;
711 		/*
712 		 * This case can happen if the user changed the MTU
713 		 * of an interface after enabling IP on it.  Because
714 		 * most netifs don't keep track of routes pointing to
715 		 * them, there is no way for one to update all its
716 		 * routes when the MTU is changed.
717 		 */
718 		if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
719 		    !(ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) &&
720 		    (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
721 			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
722 		}
723 		ipstat.ips_cantfrag++;
724 		goto bad;
725 	}
726 
727 	/*
728 	 * Too large for interface; fragment if possible. If successful,
729 	 * on return, m will point to a list of packets to be sent.
730 	 */
731 	error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum);
732 	if (error)
733 		goto bad;
734 	for (; m; m = m0) {
735 		m0 = m->m_nextpkt;
736 		m->m_nextpkt = NULL;
737 		if (error == 0) {
738 			/* Record statistics for this interface address. */
739 			if (ia != NULL) {
740 				IFA_STAT_INC(&ia->ia_ifa, opackets, 1);
741 				IFA_STAT_INC(&ia->ia_ifa, obytes,
742 				    m->m_pkthdr.len);
743 			}
744 #ifdef MPLS
745 			if (!mpls_output_process(m, ro->ro_rt))
746 				continue;
747 #endif
748 			error = ifp->if_output(ifp, m, (struct sockaddr *)dst,
749 					       ro->ro_rt);
750 		} else {
751 			m_freem(m);
752 		}
753 	}
754 
755 	if (error == 0)
756 		ipstat.ips_fragmented++;
757 
758 done:
759 	if (ro == &iproute && ro->ro_rt != NULL) {
760 		RTFREE(ro->ro_rt);
761 		ro->ro_rt = NULL;
762 	}
763 	return (error);
764 bad:
765 	m_freem(m);
766 	goto done;
767 }
768 
769 /*
770  * Create a chain of fragments which fit the given mtu. m_frag points to the
771  * mbuf to be fragmented; on return it points to the chain with the fragments.
772  * Return 0 if no error. If error, m_frag may contain a partially built
773  * chain of fragments that should be freed by the caller.
774  *
775  * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
776  * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
777  */
778 int
779 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
780 	    u_long if_hwassist_flags, int sw_csum)
781 {
782 	int error = 0;
783 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
784 	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
785 	int off;
786 	struct mbuf *m0 = *m_frag;	/* the original packet		*/
787 	int firstlen;
788 	struct mbuf **mnext;
789 	int nfrags;
790 
791 	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
792 		ipstat.ips_cantfrag++;
793 		return EMSGSIZE;
794 	}
795 
796 	/*
797 	 * Must be able to put at least 8 bytes per fragment.
798 	 */
799 	if (len < 8)
800 		return EMSGSIZE;
801 
802 	/*
803 	 * If the interface will not calculate checksums on
804 	 * fragmented packets, then do it here.
805 	 */
806 	if ((m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) &&
807 	    !(if_hwassist_flags & CSUM_IP_FRAGS)) {
808 		in_delayed_cksum(m0);
809 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
810 	}
811 
812 	if (len > PAGE_SIZE) {
813 		/*
814 		 * Fragment large datagrams such that each segment
815 		 * contains a multiple of PAGE_SIZE amount of data,
816 		 * plus headers. This enables a receiver to perform
817 		 * page-flipping zero-copy optimizations.
818 		 *
819 		 * XXX When does this help given that sender and receiver
820 		 * could have different page sizes, and also mtu could
821 		 * be less than the receiver's page size ?
822 		 */
823 		int newlen;
824 		struct mbuf *m;
825 
826 		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
827 			off += m->m_len;
828 
829 		/*
830 		 * firstlen (off - hlen) must be aligned on an
831 		 * 8-byte boundary
832 		 */
833 		if (off < hlen)
834 			goto smart_frag_failure;
835 		off = ((off - hlen) & ~7) + hlen;
836 		newlen = (~PAGE_MASK) & mtu;
837 		if ((newlen + sizeof(struct ip)) > mtu) {
838 			/* we failed, go back the default */
839 smart_frag_failure:
840 			newlen = len;
841 			off = hlen + len;
842 		}
843 		len = newlen;
844 
845 	} else {
846 		off = hlen + len;
847 	}
848 
849 	firstlen = off - hlen;
850 	mnext = &m0->m_nextpkt;		/* pointer to next packet */
851 
852 	/*
853 	 * Loop through length of segment after first fragment,
854 	 * make new header and copy data of each part and link onto chain.
855 	 * Here, m0 is the original packet, m is the fragment being created.
856 	 * The fragments are linked off the m_nextpkt of the original
857 	 * packet, which after processing serves as the first fragment.
858 	 */
859 	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
860 		struct ip *mhip;	/* ip header on the fragment */
861 		struct mbuf *m;
862 		int mhlen = sizeof(struct ip);
863 
864 		MGETHDR(m, M_NOWAIT, MT_HEADER);
865 		if (m == NULL) {
866 			error = ENOBUFS;
867 			ipstat.ips_odropped++;
868 			goto done;
869 		}
870 		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
871 		/*
872 		 * In the first mbuf, leave room for the link header, then
873 		 * copy the original IP header including options. The payload
874 		 * goes into an additional mbuf chain returned by m_copy().
875 		 */
876 		m->m_data += max_linkhdr;
877 		mhip = mtod(m, struct ip *);
878 		*mhip = *ip;
879 		if (hlen > sizeof(struct ip)) {
880 			mhlen = ip_optcopy(ip, mhip) + sizeof(struct ip);
881 			mhip->ip_vhl = IP_MAKE_VHL(IPVERSION, mhlen >> 2);
882 		}
883 		m->m_len = mhlen;
884 		/* XXX do we need to add ip->ip_off below ? */
885 		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
886 		if (off + len >= ip->ip_len) {	/* last fragment */
887 			len = ip->ip_len - off;
888 			m->m_flags |= M_LASTFRAG;
889 		} else
890 			mhip->ip_off |= IP_MF;
891 		mhip->ip_len = htons((u_short)(len + mhlen));
892 		m->m_next = m_copy(m0, off, len);
893 		if (m->m_next == NULL) {		/* copy failed */
894 			m_free(m);
895 			error = ENOBUFS;	/* ??? */
896 			ipstat.ips_odropped++;
897 			goto done;
898 		}
899 		m->m_pkthdr.len = mhlen + len;
900 		m->m_pkthdr.rcvif = NULL;
901 		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
902 		m->m_pkthdr.csum_iphlen = mhlen;
903 		mhip->ip_off = htons(mhip->ip_off);
904 		mhip->ip_sum = 0;
905 		if (sw_csum & CSUM_DELAY_IP)
906 			mhip->ip_sum = in_cksum(m, mhlen);
907 		*mnext = m;
908 		mnext = &m->m_nextpkt;
909 	}
910 	ipstat.ips_ofragments += nfrags;
911 
912 	/* set first marker for fragment chain */
913 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
914 	m0->m_pkthdr.csum_data = nfrags;
915 
916 	/*
917 	 * Update first fragment by trimming what's been copied out
918 	 * and updating header.
919 	 */
920 	m_adj(m0, hlen + firstlen - ip->ip_len);
921 	m0->m_pkthdr.len = hlen + firstlen;
922 	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
923 	ip->ip_off |= IP_MF;
924 	ip->ip_off = htons(ip->ip_off);
925 	ip->ip_sum = 0;
926 	if (sw_csum & CSUM_DELAY_IP)
927 		ip->ip_sum = in_cksum(m0, hlen);
928 
929 done:
930 	*m_frag = m0;
931 	return error;
932 }
933 
934 void
935 in_delayed_cksum(struct mbuf *m)
936 {
937 	struct ip *ip;
938 	u_short csum, offset;
939 
940 	ip = mtod(m, struct ip *);
941 	offset = IP_VHL_HL(ip->ip_vhl) << 2 ;
942 	csum = in_cksum_skip(m, ip->ip_len, offset);
943 	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
944 		csum = 0xffff;
945 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
946 
947 	if (offset + sizeof(u_short) > m->m_len) {
948 		kprintf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
949 		    m->m_len, offset, ip->ip_p);
950 		/*
951 		 * XXX
952 		 * this shouldn't happen, but if it does, the
953 		 * correct behavior may be to insert the checksum
954 		 * in the existing chain instead of rearranging it.
955 		 */
956 		m = m_pullup(m, offset + sizeof(u_short));
957 	}
958 	*(u_short *)(m->m_data + offset) = csum;
959 }
960 
961 /*
962  * Insert IP options into preformed packet.
963  * Adjust IP destination as required for IP source routing,
964  * as indicated by a non-zero in_addr at the start of the options.
965  *
966  * XXX This routine assumes that the packet has no options in place.
967  */
968 static struct mbuf *
969 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
970 {
971 	struct ipoption *p = mtod(opt, struct ipoption *);
972 	struct mbuf *n;
973 	struct ip *ip = mtod(m, struct ip *);
974 	unsigned optlen;
975 
976 	optlen = opt->m_len - sizeof p->ipopt_dst;
977 	if (optlen + (u_short)ip->ip_len > IP_MAXPACKET) {
978 		*phlen = 0;
979 		return (m);		/* XXX should fail */
980 	}
981 	if (p->ipopt_dst.s_addr)
982 		ip->ip_dst = p->ipopt_dst;
983 	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
984 		MGETHDR(n, M_NOWAIT, MT_HEADER);
985 		if (n == NULL) {
986 			*phlen = 0;
987 			return (m);
988 		}
989 		n->m_pkthdr.rcvif = NULL;
990 		n->m_pkthdr.len = m->m_pkthdr.len + optlen;
991 		m->m_len -= sizeof(struct ip);
992 		m->m_data += sizeof(struct ip);
993 		n->m_next = m;
994 		m = n;
995 		m->m_len = optlen + sizeof(struct ip);
996 		m->m_data += max_linkhdr;
997 		memcpy(mtod(m, void *), ip, sizeof(struct ip));
998 	} else {
999 		m->m_data -= optlen;
1000 		m->m_len += optlen;
1001 		m->m_pkthdr.len += optlen;
1002 		bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
1003 	}
1004 	ip = mtod(m, struct ip *);
1005 	bcopy(p->ipopt_list, ip + 1, optlen);
1006 	*phlen = sizeof(struct ip) + optlen;
1007 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, *phlen >> 2);
1008 	ip->ip_len += optlen;
1009 	return (m);
1010 }
1011 
1012 /*
1013  * Copy options from ip to jp,
1014  * omitting those not copied during fragmentation.
1015  */
1016 int
1017 ip_optcopy(struct ip *ip, struct ip *jp)
1018 {
1019 	u_char *cp, *dp;
1020 	int opt, optlen, cnt;
1021 
1022 	cp = (u_char *)(ip + 1);
1023 	dp = (u_char *)(jp + 1);
1024 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1025 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1026 		opt = cp[0];
1027 		if (opt == IPOPT_EOL)
1028 			break;
1029 		if (opt == IPOPT_NOP) {
1030 			/* Preserve for IP mcast tunnel's LSRR alignment. */
1031 			*dp++ = IPOPT_NOP;
1032 			optlen = 1;
1033 			continue;
1034 		}
1035 
1036 		KASSERT(cnt >= IPOPT_OLEN + sizeof *cp,
1037 		    ("ip_optcopy: malformed ipv4 option"));
1038 		optlen = cp[IPOPT_OLEN];
1039 		KASSERT(optlen >= IPOPT_OLEN + sizeof *cp && optlen <= cnt,
1040 		    ("ip_optcopy: malformed ipv4 option"));
1041 
1042 		/* bogus lengths should have been caught by ip_dooptions */
1043 		if (optlen > cnt)
1044 			optlen = cnt;
1045 		if (IPOPT_COPIED(opt)) {
1046 			bcopy(cp, dp, optlen);
1047 			dp += optlen;
1048 		}
1049 	}
1050 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1051 		*dp++ = IPOPT_EOL;
1052 	return (optlen);
1053 }
1054 
1055 /*
1056  * IP socket option processing.
1057  */
1058 void
1059 ip_ctloutput(netmsg_t msg)
1060 {
1061 	struct socket *so = msg->base.nm_so;
1062 	struct sockopt *sopt = msg->ctloutput.nm_sopt;
1063 	struct	inpcb *inp = so->so_pcb;
1064 	int	error, optval;
1065 
1066 	error = optval = 0;
1067 
1068 	/* Get socket's owner cpuid hint */
1069 	if (sopt->sopt_level == SOL_SOCKET &&
1070 	    sopt->sopt_dir == SOPT_GET &&
1071 	    sopt->sopt_name == SO_CPUHINT) {
1072 		optval = mycpuid;
1073 		soopt_from_kbuf(sopt, &optval, sizeof(optval));
1074 		goto done;
1075 	}
1076 
1077 	if (sopt->sopt_level != IPPROTO_IP) {
1078 		error = EINVAL;
1079 		goto done;
1080 	}
1081 
1082 	switch (sopt->sopt_name) {
1083 	case IP_MULTICAST_IF:
1084 	case IP_MULTICAST_VIF:
1085 	case IP_MULTICAST_TTL:
1086 	case IP_MULTICAST_LOOP:
1087 	case IP_ADD_MEMBERSHIP:
1088 	case IP_DROP_MEMBERSHIP:
1089 		/*
1090 		 * Handle multicast options in netisr0
1091 		 */
1092 		if (&curthread->td_msgport != netisr_cpuport(0)) {
1093 			/* NOTE: so_port MUST NOT be checked in netisr0 */
1094 			msg->lmsg.ms_flags |= MSGF_IGNSOPORT;
1095 			lwkt_forwardmsg(netisr_cpuport(0), &msg->lmsg);
1096 			return;
1097 		}
1098 		break;
1099 	}
1100 
1101 	switch (sopt->sopt_dir) {
1102 	case SOPT_SET:
1103 		switch (sopt->sopt_name) {
1104 		case IP_OPTIONS:
1105 #ifdef notyet
1106 		case IP_RETOPTS:
1107 #endif
1108 		{
1109 			struct mbuf *m;
1110 			if (sopt->sopt_valsize > MLEN) {
1111 				error = EMSGSIZE;
1112 				break;
1113 			}
1114 			MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_HEADER);
1115 			if (m == NULL) {
1116 				error = ENOBUFS;
1117 				break;
1118 			}
1119 			m->m_len = sopt->sopt_valsize;
1120 			error = soopt_to_kbuf(sopt, mtod(m, void *), m->m_len,
1121 					      m->m_len);
1122 			error = ip_pcbopts(sopt->sopt_name,
1123 					   &inp->inp_options, m);
1124 			goto done;
1125 		}
1126 
1127 		case IP_TOS:
1128 		case IP_TTL:
1129 		case IP_MINTTL:
1130 		case IP_RECVOPTS:
1131 		case IP_RECVRETOPTS:
1132 		case IP_RECVDSTADDR:
1133 		case IP_RECVIF:
1134 		case IP_RECVTOS:
1135 		case IP_RECVTTL:
1136 			error = soopt_to_kbuf(sopt, &optval, sizeof optval,
1137 					     sizeof optval);
1138 			if (error)
1139 				break;
1140 			switch (sopt->sopt_name) {
1141 			case IP_TOS:
1142 				inp->inp_ip_tos = optval;
1143 				break;
1144 
1145 			case IP_TTL:
1146 				inp->inp_ip_ttl = optval;
1147 				break;
1148 			case IP_MINTTL:
1149 				if (optval >= 0 && optval <= MAXTTL)
1150 					inp->inp_ip_minttl = optval;
1151 				else
1152 					error = EINVAL;
1153 				break;
1154 #define	OPTSET(bit) \
1155 	if (optval) \
1156 		inp->inp_flags |= bit; \
1157 	else \
1158 		inp->inp_flags &= ~bit;
1159 
1160 			case IP_RECVOPTS:
1161 				OPTSET(INP_RECVOPTS);
1162 				break;
1163 
1164 			case IP_RECVRETOPTS:
1165 				OPTSET(INP_RECVRETOPTS);
1166 				break;
1167 
1168 			case IP_RECVDSTADDR:
1169 				OPTSET(INP_RECVDSTADDR);
1170 				break;
1171 
1172 			case IP_RECVIF:
1173 				OPTSET(INP_RECVIF);
1174 				break;
1175 
1176 			case IP_RECVTOS:
1177 				OPTSET(INP_RECVTOS);
1178 				break;
1179 
1180 			case IP_RECVTTL:
1181 				OPTSET(INP_RECVTTL);
1182 				break;
1183 			}
1184 			break;
1185 #undef OPTSET
1186 
1187 		case IP_MULTICAST_IF:
1188 		case IP_MULTICAST_VIF:
1189 		case IP_MULTICAST_TTL:
1190 		case IP_MULTICAST_LOOP:
1191 		case IP_ADD_MEMBERSHIP:
1192 		case IP_DROP_MEMBERSHIP:
1193 			error = ip_setmoptions(sopt, &inp->inp_moptions);
1194 			break;
1195 
1196 		case IP_PORTRANGE:
1197 			error = soopt_to_kbuf(sopt, &optval, sizeof optval,
1198 					    sizeof optval);
1199 			if (error)
1200 				break;
1201 
1202 			switch (optval) {
1203 			case IP_PORTRANGE_DEFAULT:
1204 				inp->inp_flags &= ~(INP_LOWPORT);
1205 				inp->inp_flags &= ~(INP_HIGHPORT);
1206 				break;
1207 
1208 			case IP_PORTRANGE_HIGH:
1209 				inp->inp_flags &= ~(INP_LOWPORT);
1210 				inp->inp_flags |= INP_HIGHPORT;
1211 				break;
1212 
1213 			case IP_PORTRANGE_LOW:
1214 				inp->inp_flags &= ~(INP_HIGHPORT);
1215 				inp->inp_flags |= INP_LOWPORT;
1216 				break;
1217 
1218 			default:
1219 				error = EINVAL;
1220 				break;
1221 			}
1222 			break;
1223 
1224 
1225 		default:
1226 			error = ENOPROTOOPT;
1227 			break;
1228 		}
1229 		break;
1230 
1231 	case SOPT_GET:
1232 		switch (sopt->sopt_name) {
1233 		case IP_OPTIONS:
1234 		case IP_RETOPTS:
1235 			if (inp->inp_options)
1236 				soopt_from_kbuf(sopt, mtod(inp->inp_options,
1237 							   char *),
1238 						inp->inp_options->m_len);
1239 			else
1240 				sopt->sopt_valsize = 0;
1241 			break;
1242 
1243 		case IP_TOS:
1244 		case IP_TTL:
1245 		case IP_MINTTL:
1246 		case IP_RECVOPTS:
1247 		case IP_RECVRETOPTS:
1248 		case IP_RECVDSTADDR:
1249 		case IP_RECVTOS:
1250 		case IP_RECVTTL:
1251 		case IP_RECVIF:
1252 		case IP_PORTRANGE:
1253 			switch (sopt->sopt_name) {
1254 
1255 			case IP_TOS:
1256 				optval = inp->inp_ip_tos;
1257 				break;
1258 
1259 			case IP_TTL:
1260 				optval = inp->inp_ip_ttl;
1261 				break;
1262 			case IP_MINTTL:
1263 				optval = inp->inp_ip_minttl;
1264 				break;
1265 
1266 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1267 
1268 			case IP_RECVOPTS:
1269 				optval = OPTBIT(INP_RECVOPTS);
1270 				break;
1271 
1272 			case IP_RECVRETOPTS:
1273 				optval = OPTBIT(INP_RECVRETOPTS);
1274 				break;
1275 
1276 			case IP_RECVDSTADDR:
1277 				optval = OPTBIT(INP_RECVDSTADDR);
1278 				break;
1279 
1280 			case IP_RECVTOS:
1281 				optval = OPTBIT(INP_RECVTOS);
1282 				break;
1283 
1284 			case IP_RECVTTL:
1285 				optval = OPTBIT(INP_RECVTTL);
1286 				break;
1287 
1288 			case IP_RECVIF:
1289 				optval = OPTBIT(INP_RECVIF);
1290 				break;
1291 
1292 			case IP_PORTRANGE:
1293 				if (inp->inp_flags & INP_HIGHPORT)
1294 					optval = IP_PORTRANGE_HIGH;
1295 				else if (inp->inp_flags & INP_LOWPORT)
1296 					optval = IP_PORTRANGE_LOW;
1297 				else
1298 					optval = 0;
1299 				break;
1300 			}
1301 			soopt_from_kbuf(sopt, &optval, sizeof optval);
1302 			break;
1303 
1304 		case IP_MULTICAST_IF:
1305 		case IP_MULTICAST_VIF:
1306 		case IP_MULTICAST_TTL:
1307 		case IP_MULTICAST_LOOP:
1308 		case IP_ADD_MEMBERSHIP:
1309 		case IP_DROP_MEMBERSHIP:
1310 			error = ip_getmoptions(sopt, inp->inp_moptions);
1311 			break;
1312 
1313 		default:
1314 			error = ENOPROTOOPT;
1315 			break;
1316 		}
1317 		break;
1318 	}
1319 done:
1320 	lwkt_replymsg(&msg->lmsg, error);
1321 }
1322 
1323 /*
1324  * Set up IP options in pcb for insertion in output packets.
1325  * Store in mbuf with pointer in pcbopt, adding pseudo-option
1326  * with destination address if source routed.
1327  */
1328 static int
1329 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1330 {
1331 	int cnt, optlen;
1332 	u_char *cp;
1333 	u_char opt;
1334 
1335 	/* turn off any old options */
1336 	if (*pcbopt)
1337 		m_free(*pcbopt);
1338 	*pcbopt = NULL;
1339 	if (m == NULL || m->m_len == 0) {
1340 		/*
1341 		 * Only turning off any previous options.
1342 		 */
1343 		if (m != NULL)
1344 			m_free(m);
1345 		return (0);
1346 	}
1347 
1348 	if (m->m_len % sizeof(int32_t))
1349 		goto bad;
1350 	/*
1351 	 * IP first-hop destination address will be stored before
1352 	 * actual options; move other options back
1353 	 * and clear it when none present.
1354 	 */
1355 	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1356 		goto bad;
1357 	cnt = m->m_len;
1358 	m->m_len += sizeof(struct in_addr);
1359 	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1360 	bcopy(mtod(m, caddr_t), cp, cnt);
1361 	bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1362 
1363 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1364 		opt = cp[IPOPT_OPTVAL];
1365 		if (opt == IPOPT_EOL)
1366 			break;
1367 		if (opt == IPOPT_NOP)
1368 			optlen = 1;
1369 		else {
1370 			if (cnt < IPOPT_OLEN + sizeof *cp)
1371 				goto bad;
1372 			optlen = cp[IPOPT_OLEN];
1373 			if (optlen < IPOPT_OLEN + sizeof *cp || optlen > cnt)
1374 				goto bad;
1375 		}
1376 		switch (opt) {
1377 
1378 		default:
1379 			break;
1380 
1381 		case IPOPT_LSRR:
1382 		case IPOPT_SSRR:
1383 			/*
1384 			 * user process specifies route as:
1385 			 *	->A->B->C->D
1386 			 * D must be our final destination (but we can't
1387 			 * check that since we may not have connected yet).
1388 			 * A is first hop destination, which doesn't appear in
1389 			 * actual IP option, but is stored before the options.
1390 			 */
1391 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1392 				goto bad;
1393 			m->m_len -= sizeof(struct in_addr);
1394 			cnt -= sizeof(struct in_addr);
1395 			optlen -= sizeof(struct in_addr);
1396 			cp[IPOPT_OLEN] = optlen;
1397 			/*
1398 			 * Move first hop before start of options.
1399 			 */
1400 			bcopy(&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1401 			      sizeof(struct in_addr));
1402 			/*
1403 			 * Then copy rest of options back
1404 			 * to close up the deleted entry.
1405 			 */
1406 			bcopy(&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1407 			      &cp[IPOPT_OFFSET+1],
1408 			      cnt - (IPOPT_MINOFF - 1));
1409 			break;
1410 		}
1411 	}
1412 	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1413 		goto bad;
1414 	*pcbopt = m;
1415 	return (0);
1416 
1417 bad:
1418 	m_free(m);
1419 	return (EINVAL);
1420 }
1421 
1422 /*
1423  * XXX
1424  * The whole multicast option thing needs to be re-thought.
1425  * Several of these options are equally applicable to non-multicast
1426  * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1427  * standard option (IP_TTL).
1428  */
1429 
1430 /*
1431  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1432  */
1433 static struct ifnet *
1434 ip_multicast_if(struct in_addr *a, int *ifindexp)
1435 {
1436 	int ifindex;
1437 	struct ifnet *ifp;
1438 
1439 	if (ifindexp)
1440 		*ifindexp = 0;
1441 	if (ntohl(a->s_addr) >> 24 == 0) {
1442 		ifindex = ntohl(a->s_addr) & 0xffffff;
1443 		if (ifindex < 0 || if_index < ifindex)
1444 			return NULL;
1445 		ifp = ifindex2ifnet[ifindex];
1446 		if (ifindexp)
1447 			*ifindexp = ifindex;
1448 	} else {
1449 		ifp = INADDR_TO_IFP(a);
1450 	}
1451 	return ifp;
1452 }
1453 
1454 /*
1455  * Set the IP multicast options in response to user setsockopt().
1456  */
1457 static int
1458 ip_setmoptions(struct sockopt *sopt, struct ip_moptions **imop)
1459 {
1460 	int error = 0;
1461 	int i;
1462 	struct ip_mreqn mreqn;
1463 	struct ifnet *ifp;
1464 	struct ip_moptions *imo = *imop;
1465 	int ifindex;
1466 
1467 	if (imo == NULL) {
1468 		/*
1469 		 * No multicast option buffer attached to the pcb;
1470 		 * allocate one and initialize to default values.
1471 		 */
1472 		imo = kmalloc(sizeof *imo, M_IPMOPTS, M_WAITOK);
1473 
1474 		imo->imo_multicast_ifp = NULL;
1475 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
1476 		imo->imo_multicast_vif = -1;
1477 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1478 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1479 		imo->imo_num_memberships = 0;
1480 		/* Assign imo to imop after all fields are setup */
1481 		cpu_sfence();
1482 		*imop = imo;
1483 	}
1484 	switch (sopt->sopt_name) {
1485 	/* store an index number for the vif you wanna use in the send */
1486 	case IP_MULTICAST_VIF:
1487 		if (legal_vif_num == 0) {
1488 			error = EOPNOTSUPP;
1489 			break;
1490 		}
1491 		error = soopt_to_kbuf(sopt, &i, sizeof i, sizeof i);
1492 		if (error)
1493 			break;
1494 		if (!legal_vif_num(i) && (i != -1)) {
1495 			error = EINVAL;
1496 			break;
1497 		}
1498 		imo->imo_multicast_vif = i;
1499 		break;
1500 
1501 	case IP_MULTICAST_IF:
1502 		/*
1503 		 * Select the interface for outgoing multicast packets.
1504 		 */
1505 		if (sopt->sopt_valsize >= sizeof(mreqn)) {
1506 			/*
1507 			 * Linux compat.
1508 			 */
1509 			error = soopt_to_kbuf(sopt, &mreqn,
1510 			    sizeof(mreqn), sizeof(mreqn));
1511 			if (error)
1512 				break;
1513 		} else if (sopt->sopt_valsize >= sizeof(struct ip_mreq)) {
1514 			/*
1515 			 * Linux compat.
1516 			 */
1517 			mreqn.imr_ifindex = 0;
1518 			error = soopt_to_kbuf(sopt, &mreqn,
1519 			    sizeof(struct ip_mreq), sizeof(struct ip_mreq));
1520 			if (error)
1521 				break;
1522 		} else {
1523 			mreqn.imr_ifindex = 0;
1524 			error = soopt_to_kbuf(sopt, &mreqn.imr_address,
1525 			    sizeof(struct in_addr), sizeof(struct in_addr));
1526 			if (error)
1527 				break;
1528 		}
1529 
1530 		ifindex = mreqn.imr_ifindex;
1531 		if (ifindex != 0) {
1532 			if (ifindex < 0 || if_index < ifindex) {
1533 				error = EINVAL;
1534 				break;
1535 			}
1536 			ifp = ifindex2ifnet[ifindex];
1537 			mreqn.imr_address.s_addr = htonl(ifindex & 0xffffff);
1538 		} else {
1539 			/*
1540 			 * INADDR_ANY is used to remove a previous selection.
1541 			 * When no interface is selected, a default one is
1542 			 * chosen every time a multicast packet is sent.
1543 			 */
1544 			if (mreqn.imr_address.s_addr == INADDR_ANY) {
1545 				imo->imo_multicast_ifp = NULL;
1546 				break;
1547 			}
1548 			/*
1549 			 * The selected interface is identified by its local
1550 			 * IP address.  Find the interface and confirm that
1551 			 * it supports multicasting.
1552 			 */
1553 			ifp = ip_multicast_if(&mreqn.imr_address, &ifindex);
1554 		}
1555 
1556 		if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
1557 			error = EADDRNOTAVAIL;
1558 			break;
1559 		}
1560 		imo->imo_multicast_ifp = ifp;
1561 		if (ifindex)
1562 			imo->imo_multicast_addr = mreqn.imr_address;
1563 		else
1564 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1565 		break;
1566 
1567 	case IP_MULTICAST_TTL:
1568 		/*
1569 		 * Set the IP time-to-live for outgoing multicast packets.
1570 		 * The original multicast API required a char argument,
1571 		 * which is inconsistent with the rest of the socket API.
1572 		 * We allow either a char or an int.
1573 		 */
1574 		if (sopt->sopt_valsize == 1) {
1575 			u_char ttl;
1576 			error = soopt_to_kbuf(sopt, &ttl, 1, 1);
1577 			if (error)
1578 				break;
1579 			imo->imo_multicast_ttl = ttl;
1580 		} else {
1581 			u_int ttl;
1582 			error = soopt_to_kbuf(sopt, &ttl, sizeof ttl, sizeof ttl);
1583 			if (error)
1584 				break;
1585 			if (ttl > 255)
1586 				error = EINVAL;
1587 			else
1588 				imo->imo_multicast_ttl = ttl;
1589 		}
1590 		break;
1591 
1592 	case IP_MULTICAST_LOOP:
1593 		/*
1594 		 * Set the loopback flag for outgoing multicast packets.
1595 		 * Must be zero or one.  The original multicast API required a
1596 		 * char argument, which is inconsistent with the rest
1597 		 * of the socket API.  We allow either a char or an int.
1598 		 */
1599 		if (sopt->sopt_valsize == 1) {
1600 			u_char loop;
1601 
1602 			error = soopt_to_kbuf(sopt, &loop, 1, 1);
1603 			if (error)
1604 				break;
1605 			imo->imo_multicast_loop = !!loop;
1606 		} else {
1607 			u_int loop;
1608 
1609 			error = soopt_to_kbuf(sopt, &loop, sizeof loop,
1610 					    sizeof loop);
1611 			if (error)
1612 				break;
1613 			imo->imo_multicast_loop = !!loop;
1614 		}
1615 		break;
1616 
1617 	case IP_ADD_MEMBERSHIP:
1618 		/*
1619 		 * Add a multicast group membership.
1620 		 * Group must be a valid IP multicast address.
1621 		 */
1622 		if (sopt->sopt_valsize >= sizeof(mreqn)) {
1623 			error = soopt_to_kbuf(sopt, &mreqn,
1624 			    sizeof(mreqn), sizeof(mreqn));
1625 			if (error)
1626 				break;
1627 		} else {
1628 			mreqn.imr_ifindex = 0;
1629 			error = soopt_to_kbuf(sopt, &mreqn,
1630 			    sizeof(struct ip_mreq), sizeof(struct ip_mreq));
1631 			if (error)
1632 				break;
1633 		}
1634 
1635 		if (!IN_MULTICAST(ntohl(mreqn.imr_multiaddr.s_addr))) {
1636 			error = EINVAL;
1637 			break;
1638 		}
1639 
1640 		ifindex = mreqn.imr_ifindex;
1641 		if (ifindex != 0) {
1642 			if (ifindex < 0 || if_index < ifindex) {
1643 				error = EINVAL;
1644 				break;
1645 			}
1646 			ifp = ifindex2ifnet[ifindex];
1647 		} else if (mreqn.imr_address.s_addr == INADDR_ANY) {
1648 			struct sockaddr_in dst;
1649 			struct rtentry *rt;
1650 
1651 			/*
1652 			 * If no interface address or index was provided,
1653 			 * use the interface of the route to the given
1654 			 * multicast address.
1655 			 */
1656 			bzero(&dst, sizeof(struct sockaddr_in));
1657 			dst.sin_len = sizeof(struct sockaddr_in);
1658 			dst.sin_family = AF_INET;
1659 			dst.sin_addr = mreqn.imr_multiaddr;
1660 			rt = rtlookup((struct sockaddr *)&dst);
1661 			if (rt == NULL) {
1662 				error = EADDRNOTAVAIL;
1663 				break;
1664 			}
1665 			--rt->rt_refcnt;
1666 			ifp = rt->rt_ifp;
1667 		} else {
1668 			ifp = ip_multicast_if(&mreqn.imr_address, NULL);
1669 		}
1670 
1671 		/*
1672 		 * See if we found an interface, and confirm that it
1673 		 * supports multicast.
1674 		 */
1675 		if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
1676 			error = EADDRNOTAVAIL;
1677 			break;
1678 		}
1679 		/*
1680 		 * See if the membership already exists or if all the
1681 		 * membership slots are full.
1682 		 */
1683 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1684 			if (imo->imo_membership[i]->inm_ifp == ifp &&
1685 			    imo->imo_membership[i]->inm_addr.s_addr
1686 						== mreqn.imr_multiaddr.s_addr)
1687 				break;
1688 		}
1689 		if (i < imo->imo_num_memberships) {
1690 			error = EADDRINUSE;
1691 			break;
1692 		}
1693 		if (i == IP_MAX_MEMBERSHIPS) {
1694 			error = ETOOMANYREFS;
1695 			break;
1696 		}
1697 		/*
1698 		 * Everything looks good; add a new record to the multicast
1699 		 * address list for the given interface.
1700 		 */
1701 		if ((imo->imo_membership[i] =
1702 		     in_addmulti(&mreqn.imr_multiaddr, ifp)) == NULL) {
1703 			error = ENOBUFS;
1704 			break;
1705 		}
1706 		++imo->imo_num_memberships;
1707 		break;
1708 
1709 	case IP_DROP_MEMBERSHIP:
1710 		/*
1711 		 * Drop a multicast group membership.
1712 		 * Group must be a valid IP multicast address.
1713 		 */
1714 		if (sopt->sopt_valsize >= sizeof(mreqn)) {
1715 			error = soopt_to_kbuf(sopt, &mreqn,
1716 			    sizeof(mreqn), sizeof(mreqn));
1717 			if (error)
1718 				break;
1719 		} else {
1720 			mreqn.imr_ifindex = 0;
1721 			error = soopt_to_kbuf(sopt, &mreqn,
1722 			    sizeof(struct ip_mreq), sizeof(struct ip_mreq));
1723 			if (error)
1724 				break;
1725 		}
1726 
1727 		if (!IN_MULTICAST(ntohl(mreqn.imr_multiaddr.s_addr))) {
1728 			error = EINVAL;
1729 			break;
1730 		}
1731 
1732 		/*
1733 		 * If an interface index or address was specified, get a
1734 		 * pointer to its ifnet structure.
1735 		 */
1736 		ifindex = mreqn.imr_ifindex;
1737 		if (ifindex != 0) {
1738 			if (ifindex < 0 || if_index < ifindex) {
1739 				error = EINVAL;
1740 				break;
1741 			}
1742 			ifp = ifindex2ifnet[ifindex];
1743 		} else if (mreqn.imr_address.s_addr == INADDR_ANY) {
1744 			ifp = NULL;
1745 		} else {
1746 			ifp = ip_multicast_if(&mreqn.imr_address, NULL);
1747 			if (ifp == NULL) {
1748 				error = EADDRNOTAVAIL;
1749 				break;
1750 			}
1751 		}
1752 		/*
1753 		 * Find the membership in the membership array.
1754 		 */
1755 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1756 			if ((ifp == NULL ||
1757 			     imo->imo_membership[i]->inm_ifp == ifp) &&
1758 			    imo->imo_membership[i]->inm_addr.s_addr ==
1759 			    mreqn.imr_multiaddr.s_addr)
1760 				break;
1761 		}
1762 		if (i == imo->imo_num_memberships) {
1763 			error = EADDRNOTAVAIL;
1764 			break;
1765 		}
1766 		/*
1767 		 * Give up the multicast address record to which the
1768 		 * membership points.
1769 		 */
1770 		in_delmulti(imo->imo_membership[i]);
1771 		/*
1772 		 * Remove the gap in the membership array.
1773 		 */
1774 		for (++i; i < imo->imo_num_memberships; ++i)
1775 			imo->imo_membership[i-1] = imo->imo_membership[i];
1776 		--imo->imo_num_memberships;
1777 		break;
1778 
1779 	default:
1780 		error = EOPNOTSUPP;
1781 		break;
1782 	}
1783 
1784 	return (error);
1785 }
1786 
1787 /*
1788  * Return the IP multicast options in response to user getsockopt().
1789  */
1790 static int
1791 ip_getmoptions(struct sockopt *sopt, struct ip_moptions *imo)
1792 {
1793 	struct in_addr addr;
1794 	struct in_ifaddr *ia;
1795 	int error, optval;
1796 	u_char coptval;
1797 
1798 	error = 0;
1799 	switch (sopt->sopt_name) {
1800 	case IP_MULTICAST_VIF:
1801 		if (imo != NULL)
1802 			optval = imo->imo_multicast_vif;
1803 		else
1804 			optval = -1;
1805 		soopt_from_kbuf(sopt, &optval, sizeof optval);
1806 		break;
1807 
1808 	case IP_MULTICAST_IF:
1809 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
1810 			addr.s_addr = INADDR_ANY;
1811 		else if (imo->imo_multicast_addr.s_addr) {
1812 			/* return the value user has set */
1813 			addr = imo->imo_multicast_addr;
1814 		} else {
1815 			ia = IFP_TO_IA(imo->imo_multicast_ifp);
1816 			addr.s_addr = (ia == NULL) ? INADDR_ANY
1817 				: IA_SIN(ia)->sin_addr.s_addr;
1818 		}
1819 		soopt_from_kbuf(sopt, &addr, sizeof addr);
1820 		break;
1821 
1822 	case IP_MULTICAST_TTL:
1823 		if (imo == NULL)
1824 			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1825 		else
1826 			optval = coptval = imo->imo_multicast_ttl;
1827 		if (sopt->sopt_valsize == 1)
1828 			soopt_from_kbuf(sopt, &coptval, 1);
1829 		else
1830 			soopt_from_kbuf(sopt, &optval, sizeof optval);
1831 		break;
1832 
1833 	case IP_MULTICAST_LOOP:
1834 		if (imo == NULL)
1835 			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1836 		else
1837 			optval = coptval = imo->imo_multicast_loop;
1838 		if (sopt->sopt_valsize == 1)
1839 			soopt_from_kbuf(sopt, &coptval, 1);
1840 		else
1841 			soopt_from_kbuf(sopt, &optval, sizeof optval);
1842 		break;
1843 
1844 	default:
1845 		error = ENOPROTOOPT;
1846 		break;
1847 	}
1848 	return (error);
1849 }
1850 
1851 /*
1852  * Discard the IP multicast options.
1853  */
1854 void
1855 ip_freemoptions(struct ip_moptions *imo)
1856 {
1857 	int i;
1858 
1859 	if (imo != NULL) {
1860 		for (i = 0; i < imo->imo_num_memberships; ++i)
1861 			in_delmulti(imo->imo_membership[i]);
1862 		kfree(imo, M_IPMOPTS);
1863 	}
1864 }
1865 
1866 /*
1867  * Routine called from ip_output() to loop back a copy of an IP multicast
1868  * packet to the input queue of a specified interface.  Note that this
1869  * calls the output routine of the loopback "driver", but with an interface
1870  * pointer that might NOT be a loopback interface -- evil, but easier than
1871  * replicating that code here.
1872  */
1873 static void
1874 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst,
1875 	     int hlen)
1876 {
1877 	struct ip *ip;
1878 	struct mbuf *copym;
1879 
1880 	copym = m_copypacket(m, M_NOWAIT);
1881 	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
1882 		copym = m_pullup(copym, hlen);
1883 	if (copym != NULL) {
1884 		/*
1885 		 * if the checksum hasn't been computed, mark it as valid
1886 		 */
1887 		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1888 			in_delayed_cksum(copym);
1889 			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1890 			copym->m_pkthdr.csum_flags |=
1891 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1892 			copym->m_pkthdr.csum_data = 0xffff;
1893 		}
1894 		/*
1895 		 * We don't bother to fragment if the IP length is greater
1896 		 * than the interface's MTU.  Can this possibly matter?
1897 		 */
1898 		ip = mtod(copym, struct ip *);
1899 		ip->ip_len = htons(ip->ip_len);
1900 		ip->ip_off = htons(ip->ip_off);
1901 		ip->ip_sum = 0;
1902 		if (ip->ip_vhl == IP_VHL_BORING) {
1903 			ip->ip_sum = in_cksum_hdr(ip);
1904 		} else {
1905 			ip->ip_sum = in_cksum(copym, hlen);
1906 		}
1907 		/*
1908 		 * NB:
1909 		 * It's not clear whether there are any lingering
1910 		 * reentrancy problems in other areas which might
1911 		 * be exposed by using ip_input directly (in
1912 		 * particular, everything which modifies the packet
1913 		 * in-place).  Yet another option is using the
1914 		 * protosw directly to deliver the looped back
1915 		 * packet.  For the moment, we'll err on the side
1916 		 * of safety by using if_simloop().
1917 		 */
1918 #if 1 /* XXX */
1919 		if (dst->sin_family != AF_INET) {
1920 			kprintf("ip_mloopback: bad address family %d\n",
1921 						dst->sin_family);
1922 			dst->sin_family = AF_INET;
1923 		}
1924 #endif
1925 		if_simloop(ifp, copym, dst->sin_family, 0);
1926 	}
1927 }
1928