xref: /dragonfly/sys/netinet/ip_output.c (revision dadd6466)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30  * $FreeBSD: src/sys/netinet/ip_output.c,v 1.99.2.37 2003/04/15 06:44:45 silby Exp $
31  */
32 
33 #define _IP_VHL
34 
35 #include "opt_ipdn.h"
36 #include "opt_ipdivert.h"
37 #include "opt_ipsec.h"
38 #include "opt_mbuf_stress_test.h"
39 #include "opt_mpls.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/protosw.h>
47 #include <sys/socket.h>
48 #include <sys/socketvar.h>
49 #include <sys/proc.h>
50 #include <sys/priv.h>
51 #include <sys/sysctl.h>
52 #include <sys/in_cksum.h>
53 #include <sys/lock.h>
54 
55 #include <sys/thread2.h>
56 #include <sys/mplock2.h>
57 #include <sys/msgport2.h>
58 
59 #include <net/if.h>
60 #include <net/netisr.h>
61 #include <net/pfil.h>
62 #include <net/route.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/ip.h>
67 #include <netinet/in_pcb.h>
68 #include <netinet/in_var.h>
69 #include <netinet/ip_var.h>
70 
71 #include <netproto/mpls/mpls_var.h>
72 
73 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
74 
75 #ifdef IPSEC
76 #include <netinet6/ipsec.h>
77 #include <netproto/key/key.h>
78 #ifdef IPSEC_DEBUG
79 #include <netproto/key/key_debug.h>
80 #else
81 #define	KEYDEBUG(lev,arg)
82 #endif
83 #endif /*IPSEC*/
84 
85 #ifdef FAST_IPSEC
86 #include <netproto/ipsec/ipsec.h>
87 #include <netproto/ipsec/xform.h>
88 #include <netproto/ipsec/key.h>
89 #endif /*FAST_IPSEC*/
90 
91 #include <net/ipfw/ip_fw.h>
92 #include <net/dummynet/ip_dummynet.h>
93 
94 #define print_ip(x, a, y)	 kprintf("%s %d.%d.%d.%d%s",\
95 				x, (ntohl(a.s_addr)>>24)&0xFF,\
96 				  (ntohl(a.s_addr)>>16)&0xFF,\
97 				  (ntohl(a.s_addr)>>8)&0xFF,\
98 				  (ntohl(a.s_addr))&0xFF, y);
99 
100 u_short ip_id;
101 
102 #ifdef MBUF_STRESS_TEST
103 int mbuf_frag_size = 0;
104 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
105 	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
106 #endif
107 
108 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
109 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
110 static void	ip_mloopback
111 	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
112 static int	ip_getmoptions
113 	(struct sockopt *, struct ip_moptions *);
114 static int	ip_pcbopts(int, struct mbuf **, struct mbuf *);
115 static int	ip_setmoptions
116 	(struct sockopt *, struct ip_moptions **);
117 
118 int	ip_optcopy(struct ip *, struct ip *);
119 
120 extern	struct protosw inetsw[];
121 
122 static int
123 ip_localforward(struct mbuf *m, const struct sockaddr_in *dst, int hlen)
124 {
125 	struct in_ifaddr_container *iac;
126 
127 	/*
128 	 * We need to figure out if we have been forwarded to a local
129 	 * socket.  If so, then we should somehow "loop back" to
130 	 * ip_input(), and get directed to the PCB as if we had received
131 	 * this packet.  This is because it may be difficult to identify
132 	 * the packets you want to forward until they are being output
133 	 * and have selected an interface (e.g. locally initiated
134 	 * packets).  If we used the loopback inteface, we would not be
135 	 * able to control what happens as the packet runs through
136 	 * ip_input() as it is done through a ISR.
137 	 */
138 	LIST_FOREACH(iac, INADDR_HASH(dst->sin_addr.s_addr), ia_hash) {
139 		/*
140 		 * If the addr to forward to is one of ours, we pretend
141 		 * to be the destination for this packet.
142 		 */
143 		if (IA_SIN(iac->ia)->sin_addr.s_addr == dst->sin_addr.s_addr)
144 			break;
145 	}
146 	if (iac != NULL) {
147 		struct ip *ip;
148 
149 		if (m->m_pkthdr.rcvif == NULL)
150 			m->m_pkthdr.rcvif = ifunit("lo0");
151 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
152 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
153 						  CSUM_PSEUDO_HDR;
154 			m->m_pkthdr.csum_data = 0xffff;
155 		}
156 		m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
157 
158 		/*
159 		 * Make sure that the IP header is in one mbuf,
160 		 * required by ip_input
161 		 */
162 		if (m->m_len < hlen) {
163 			m = m_pullup(m, hlen);
164 			if (m == NULL) {
165 				/* The packet was freed; we are done */
166 				return 1;
167 			}
168 		}
169 		ip = mtod(m, struct ip *);
170 
171 		ip->ip_len = htons(ip->ip_len);
172 		ip->ip_off = htons(ip->ip_off);
173 		ip_input(m);
174 
175 		return 1; /* The packet gets forwarded locally */
176 	}
177 	return 0;
178 }
179 
180 /*
181  * IP output.  The packet in mbuf chain m contains a skeletal IP
182  * header (with len, off, ttl, proto, tos, src, dst).
183  * The mbuf chain containing the packet will be freed.
184  * The mbuf opt, if present, will not be freed.
185  */
186 int
187 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro,
188 	  int flags, struct ip_moptions *imo, struct inpcb *inp)
189 {
190 	struct ip *ip;
191 	struct ifnet *ifp = NULL;	/* keep compiler happy */
192 	struct mbuf *m;
193 	int hlen = sizeof(struct ip);
194 	int len, error = 0;
195 	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
196 	struct in_ifaddr *ia = NULL;
197 	int isbroadcast, sw_csum;
198 	struct in_addr pkt_dst;
199 	struct route iproute;
200 	struct m_tag *mtag;
201 #ifdef IPSEC
202 	struct secpolicy *sp = NULL;
203 	struct socket *so = inp ? inp->inp_socket : NULL;
204 #endif
205 #ifdef FAST_IPSEC
206 	struct secpolicy *sp = NULL;
207 	struct tdb_ident *tdbi;
208 #endif /* FAST_IPSEC */
209 	struct sockaddr_in *next_hop = NULL;
210 	int src_was_INADDR_ANY = 0;	/* as the name says... */
211 
212 	m = m0;
213 	M_ASSERTPKTHDR(m);
214 
215 	if (ro == NULL) {
216 		ro = &iproute;
217 		bzero(ro, sizeof *ro);
218 	} else if (ro->ro_rt != NULL && ro->ro_rt->rt_cpuid != mycpuid) {
219 		if (flags & IP_DEBUGROUTE) {
220 			panic("ip_output: rt rt_cpuid %d accessed on cpu %d\n",
221 			    ro->ro_rt->rt_cpuid, mycpuid);
222 		}
223 
224 		/*
225 		 * XXX
226 		 * If the cached rtentry's owner CPU is not the current CPU,
227 		 * then don't touch the cached rtentry (remote free is too
228 		 * expensive in this context); just relocate the route.
229 		 */
230 		ro = &iproute;
231 		bzero(ro, sizeof *ro);
232 	}
233 
234 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
235 		/* Next hop */
236 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
237 		KKASSERT(mtag != NULL);
238 		next_hop = m_tag_data(mtag);
239 	}
240 
241 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
242 		struct dn_pkt *dn_pkt;
243 
244 		/* Extract info from dummynet tag */
245 		mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
246 		KKASSERT(mtag != NULL);
247 		dn_pkt = m_tag_data(mtag);
248 
249 		/*
250 		 * The packet was already tagged, so part of the
251 		 * processing was already done, and we need to go down.
252 		 * Get the calculated parameters from the tag.
253 		 */
254 		ifp = dn_pkt->ifp;
255 
256 		KKASSERT(ro == &iproute);
257 		*ro = dn_pkt->ro; /* structure copy */
258 		KKASSERT(ro->ro_rt == NULL || ro->ro_rt->rt_cpuid == mycpuid);
259 
260 		dst = dn_pkt->dn_dst;
261 		if (dst == (struct sockaddr_in *)&(dn_pkt->ro.ro_dst)) {
262 			/* If 'dst' points into dummynet tag, adjust it */
263 			dst = (struct sockaddr_in *)&(ro->ro_dst);
264 		}
265 
266 		ip = mtod(m, struct ip *);
267 		hlen = IP_VHL_HL(ip->ip_vhl) << 2 ;
268 		if (ro->ro_rt)
269 			ia = ifatoia(ro->ro_rt->rt_ifa);
270 		goto sendit;
271 	}
272 
273 	if (opt) {
274 		len = 0;
275 		m = ip_insertoptions(m, opt, &len);
276 		if (len != 0)
277 			hlen = len;
278 	}
279 	ip = mtod(m, struct ip *);
280 
281 	/*
282 	 * Fill in IP header.
283 	 */
284 	if (!(flags & (IP_FORWARDING|IP_RAWOUTPUT))) {
285 		ip->ip_vhl = IP_MAKE_VHL(IPVERSION, hlen >> 2);
286 		ip->ip_off &= IP_DF;
287 		ip->ip_id = ip_newid();
288 		ipstat.ips_localout++;
289 	} else {
290 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
291 	}
292 
293 reroute:
294 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
295 
296 	dst = (struct sockaddr_in *)&ro->ro_dst;
297 	/*
298 	 * If there is a cached route,
299 	 * check that it is to the same destination
300 	 * and is still up.  If not, free it and try again.
301 	 * The address family should also be checked in case of sharing the
302 	 * cache with IPv6.
303 	 */
304 	if (ro->ro_rt &&
305 	    (!(ro->ro_rt->rt_flags & RTF_UP) ||
306 	     dst->sin_family != AF_INET ||
307 	     dst->sin_addr.s_addr != pkt_dst.s_addr)) {
308 		rtfree(ro->ro_rt);
309 		ro->ro_rt = NULL;
310 	}
311 	if (ro->ro_rt == NULL) {
312 		bzero(dst, sizeof *dst);
313 		dst->sin_family = AF_INET;
314 		dst->sin_len = sizeof *dst;
315 		dst->sin_addr = pkt_dst;
316 	}
317 	/*
318 	 * If routing to interface only,
319 	 * short circuit routing lookup.
320 	 */
321 	if (flags & IP_ROUTETOIF) {
322 		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
323 		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == NULL) {
324 			ipstat.ips_noroute++;
325 			error = ENETUNREACH;
326 			goto bad;
327 		}
328 		ifp = ia->ia_ifp;
329 		ip->ip_ttl = 1;
330 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
331 	} else if (IN_MULTICAST(ntohl(pkt_dst.s_addr)) &&
332 		   imo != NULL && imo->imo_multicast_ifp != NULL) {
333 		/*
334 		 * Bypass the normal routing lookup for multicast
335 		 * packets if the interface is specified.
336 		 */
337 		ifp = imo->imo_multicast_ifp;
338 		ia = IFP_TO_IA(ifp);
339 		isbroadcast = 0;	/* fool gcc */
340 	} else {
341 		/*
342 		 * If this is the case, we probably don't want to allocate
343 		 * a protocol-cloned route since we didn't get one from the
344 		 * ULP.  This lets TCP do its thing, while not burdening
345 		 * forwarding or ICMP with the overhead of cloning a route.
346 		 * Of course, we still want to do any cloning requested by
347 		 * the link layer, as this is probably required in all cases
348 		 * for correct operation (as it is for ARP).
349 		 */
350 		if (ro->ro_rt == NULL)
351 			rtalloc_ign(ro, RTF_PRCLONING);
352 		if (ro->ro_rt == NULL) {
353 			ipstat.ips_noroute++;
354 			error = EHOSTUNREACH;
355 			goto bad;
356 		}
357 		ia = ifatoia(ro->ro_rt->rt_ifa);
358 		ifp = ro->ro_rt->rt_ifp;
359 		ro->ro_rt->rt_use++;
360 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
361 			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
362 		if (ro->ro_rt->rt_flags & RTF_HOST)
363 			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
364 		else
365 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
366 	}
367 	if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
368 		m->m_flags |= M_MCAST;
369 		/*
370 		 * IP destination address is multicast.  Make sure "dst"
371 		 * still points to the address in "ro".  (It may have been
372 		 * changed to point to a gateway address, above.)
373 		 */
374 		dst = (struct sockaddr_in *)&ro->ro_dst;
375 		/*
376 		 * See if the caller provided any multicast options
377 		 */
378 		if (imo != NULL) {
379 			ip->ip_ttl = imo->imo_multicast_ttl;
380 			if (imo->imo_multicast_vif != -1) {
381 				ip->ip_src.s_addr =
382 				    ip_mcast_src ?
383 				    ip_mcast_src(imo->imo_multicast_vif) :
384 				    INADDR_ANY;
385 			}
386 		} else {
387 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
388 		}
389 		/*
390 		 * Confirm that the outgoing interface supports multicast.
391 		 */
392 		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
393 			if (!(ifp->if_flags & IFF_MULTICAST)) {
394 				ipstat.ips_noroute++;
395 				error = ENETUNREACH;
396 				goto bad;
397 			}
398 		}
399 		/*
400 		 * If source address not specified yet, use address of the
401 		 * outgoing interface.  In case, keep note we did that, so
402 		 * if the the firewall changes the next-hop causing the
403 		 * output interface to change, we can fix that.
404 		 */
405 		if (ip->ip_src.s_addr == INADDR_ANY || src_was_INADDR_ANY) {
406 			/* Interface may have no addresses. */
407 			if (ia != NULL) {
408 				ip->ip_src = IA_SIN(ia)->sin_addr;
409 				src_was_INADDR_ANY = 1;
410 			}
411 		}
412 
413 		if (ip->ip_src.s_addr != INADDR_ANY) {
414 			struct in_multi *inm;
415 
416 			IN_LOOKUP_MULTI(pkt_dst, ifp, inm);
417 			if (inm != NULL &&
418 			    (imo == NULL || imo->imo_multicast_loop)) {
419 				/*
420 				 * If we belong to the destination multicast
421 				 * group on the outgoing interface, and the
422 				 * caller did not forbid loopback, loop back
423 				 * a copy.
424 				 */
425 				ip_mloopback(ifp, m, dst, hlen);
426 			} else {
427 				/*
428 				 * If we are acting as a multicast router,
429 				 * perform multicast forwarding as if the
430 				 * packet had just arrived on the interface
431 				 * to which we are about to send.  The
432 				 * multicast forwarding function recursively
433 				 * calls this function, using the IP_FORWARDING
434 				 * flag to prevent infinite recursion.
435 				 *
436 				 * Multicasts that are looped back by
437 				 * ip_mloopback(), above, will be forwarded by
438 				 * the ip_input() routine, if necessary.
439 				 */
440 				if (ip_mrouter && !(flags & IP_FORWARDING)) {
441 					/*
442 					 * If rsvp daemon is not running, do
443 					 * not set ip_moptions. This ensures
444 					 * that the packet is multicast and
445 					 * not just sent down one link as
446 					 * prescribed by rsvpd.
447 					 */
448 					if (!rsvp_on)
449 						imo = NULL;
450 					if (ip_mforward) {
451 						get_mplock();
452 						if (ip_mforward(ip, ifp,
453 						    m, imo) != 0) {
454 							m_freem(m);
455 							rel_mplock();
456 							goto done;
457 						}
458 						rel_mplock();
459 					}
460 				}
461 			}
462 		}
463 
464 		/*
465 		 * Multicasts with a time-to-live of zero may be looped-
466 		 * back, above, but must not be transmitted on a network.
467 		 * Also, multicasts addressed to the loopback interface
468 		 * are not sent -- the above call to ip_mloopback() will
469 		 * loop back a copy if this host actually belongs to the
470 		 * destination group on the loopback interface.
471 		 */
472 		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
473 			m_freem(m);
474 			goto done;
475 		}
476 
477 		goto sendit;
478 	} else {
479 		m->m_flags &= ~M_MCAST;
480 	}
481 
482 	/*
483 	 * If the source address is not specified yet, use the address
484 	 * of the outgoing interface.  In case, keep note we did that,
485 	 * so if the the firewall changes the next-hop causing the output
486 	 * interface to change, we can fix that.
487 	 */
488 	if (ip->ip_src.s_addr == INADDR_ANY || src_was_INADDR_ANY) {
489 		/* Interface may have no addresses. */
490 		if (ia != NULL) {
491 			ip->ip_src = IA_SIN(ia)->sin_addr;
492 			src_was_INADDR_ANY = 1;
493 		}
494 	}
495 
496 	/*
497 	 * Look for broadcast address and
498 	 * verify user is allowed to send
499 	 * such a packet.
500 	 */
501 	if (isbroadcast) {
502 		if (!(ifp->if_flags & IFF_BROADCAST)) {
503 			error = EADDRNOTAVAIL;
504 			goto bad;
505 		}
506 		if (!(flags & IP_ALLOWBROADCAST)) {
507 			error = EACCES;
508 			goto bad;
509 		}
510 		/* don't allow broadcast messages to be fragmented */
511 		if (ip->ip_len > ifp->if_mtu) {
512 			error = EMSGSIZE;
513 			goto bad;
514 		}
515 		m->m_flags |= M_BCAST;
516 	} else {
517 		m->m_flags &= ~M_BCAST;
518 	}
519 
520 sendit:
521 #ifdef IPSEC
522 	/* get SP for this packet */
523 	if (so == NULL)
524 		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, flags, &error);
525 	else
526 		sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
527 
528 	if (sp == NULL) {
529 		ipsecstat.out_inval++;
530 		goto bad;
531 	}
532 
533 	error = 0;
534 
535 	/* check policy */
536 	switch (sp->policy) {
537 	case IPSEC_POLICY_DISCARD:
538 		/*
539 		 * This packet is just discarded.
540 		 */
541 		ipsecstat.out_polvio++;
542 		goto bad;
543 
544 	case IPSEC_POLICY_BYPASS:
545 	case IPSEC_POLICY_NONE:
546 	case IPSEC_POLICY_TCP:
547 		/* no need to do IPsec. */
548 		goto skip_ipsec;
549 
550 	case IPSEC_POLICY_IPSEC:
551 		if (sp->req == NULL) {
552 			/* acquire a policy */
553 			error = key_spdacquire(sp);
554 			goto bad;
555 		}
556 		break;
557 
558 	case IPSEC_POLICY_ENTRUST:
559 	default:
560 		kprintf("ip_output: Invalid policy found. %d\n", sp->policy);
561 	}
562     {
563 	struct ipsec_output_state state;
564 	bzero(&state, sizeof state);
565 	state.m = m;
566 	if (flags & IP_ROUTETOIF) {
567 		state.ro = &iproute;
568 		bzero(&iproute, sizeof iproute);
569 	} else
570 		state.ro = ro;
571 	state.dst = (struct sockaddr *)dst;
572 
573 	ip->ip_sum = 0;
574 
575 	/*
576 	 * XXX
577 	 * delayed checksums are not currently compatible with IPsec
578 	 */
579 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
580 		in_delayed_cksum(m);
581 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
582 	}
583 
584 	ip->ip_len = htons(ip->ip_len);
585 	ip->ip_off = htons(ip->ip_off);
586 
587 	error = ipsec4_output(&state, sp, flags);
588 
589 	m = state.m;
590 	if (flags & IP_ROUTETOIF) {
591 		/*
592 		 * if we have tunnel mode SA, we may need to ignore
593 		 * IP_ROUTETOIF.
594 		 */
595 		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
596 			flags &= ~IP_ROUTETOIF;
597 			ro = state.ro;
598 		}
599 	} else
600 		ro = state.ro;
601 	dst = (struct sockaddr_in *)state.dst;
602 	if (error) {
603 		/* mbuf is already reclaimed in ipsec4_output. */
604 		m0 = NULL;
605 		switch (error) {
606 		case EHOSTUNREACH:
607 		case ENETUNREACH:
608 		case EMSGSIZE:
609 		case ENOBUFS:
610 		case ENOMEM:
611 			break;
612 		default:
613 			kprintf("ip4_output (ipsec): error code %d\n", error);
614 			/*fall through*/
615 		case ENOENT:
616 			/* don't show these error codes to the user */
617 			error = 0;
618 			break;
619 		}
620 		goto bad;
621 	}
622     }
623 
624 	/* be sure to update variables that are affected by ipsec4_output() */
625 	ip = mtod(m, struct ip *);
626 #ifdef _IP_VHL
627 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
628 #else
629 	hlen = ip->ip_hl << 2;
630 #endif
631 	if (ro->ro_rt == NULL) {
632 		if (!(flags & IP_ROUTETOIF)) {
633 			kprintf("ip_output: "
634 				"can't update route after IPsec processing\n");
635 			error = EHOSTUNREACH;	/*XXX*/
636 			goto bad;
637 		}
638 	} else {
639 		ia = ifatoia(ro->ro_rt->rt_ifa);
640 		ifp = ro->ro_rt->rt_ifp;
641 	}
642 
643 	/* make it flipped, again. */
644 	ip->ip_len = ntohs(ip->ip_len);
645 	ip->ip_off = ntohs(ip->ip_off);
646 skip_ipsec:
647 #endif /*IPSEC*/
648 #ifdef FAST_IPSEC
649 	/*
650 	 * Check the security policy (SP) for the packet and, if
651 	 * required, do IPsec-related processing.  There are two
652 	 * cases here; the first time a packet is sent through
653 	 * it will be untagged and handled by ipsec4_checkpolicy.
654 	 * If the packet is resubmitted to ip_output (e.g. after
655 	 * AH, ESP, etc. processing), there will be a tag to bypass
656 	 * the lookup and related policy checking.
657 	 */
658 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
659 	crit_enter();
660 	if (mtag != NULL) {
661 		tdbi = (struct tdb_ident *)m_tag_data(mtag);
662 		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
663 		if (sp == NULL)
664 			error = -EINVAL;	/* force silent drop */
665 		m_tag_delete(m, mtag);
666 	} else {
667 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
668 					&error, inp);
669 	}
670 	/*
671 	 * There are four return cases:
672 	 *    sp != NULL		    apply IPsec policy
673 	 *    sp == NULL, error == 0	    no IPsec handling needed
674 	 *    sp == NULL, error == -EINVAL  discard packet w/o error
675 	 *    sp == NULL, error != 0	    discard packet, report error
676 	 */
677 	if (sp != NULL) {
678 		/* Loop detection, check if ipsec processing already done */
679 		KASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
680 		for (mtag = m_tag_first(m); mtag != NULL;
681 		     mtag = m_tag_next(m, mtag)) {
682 			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
683 				continue;
684 			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
685 			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
686 				continue;
687 			/*
688 			 * Check if policy has an SA associated with it.
689 			 * This can happen when an SP has yet to acquire
690 			 * an SA; e.g. on first reference.  If it occurs,
691 			 * then we let ipsec4_process_packet do its thing.
692 			 */
693 			if (sp->req->sav == NULL)
694 				break;
695 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
696 			if (tdbi->spi == sp->req->sav->spi &&
697 			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
698 			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
699 				 sizeof(union sockaddr_union)) == 0) {
700 				/*
701 				 * No IPsec processing is needed, free
702 				 * reference to SP.
703 				 *
704 				 * NB: null pointer to avoid free at
705 				 *     done: below.
706 				 */
707 				KEY_FREESP(&sp), sp = NULL;
708 				crit_exit();
709 				goto spd_done;
710 			}
711 		}
712 
713 		/*
714 		 * Do delayed checksums now because we send before
715 		 * this is done in the normal processing path.
716 		 */
717 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
718 			in_delayed_cksum(m);
719 			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
720 		}
721 
722 		ip->ip_len = htons(ip->ip_len);
723 		ip->ip_off = htons(ip->ip_off);
724 
725 		/* NB: callee frees mbuf */
726 		error = ipsec4_process_packet(m, sp->req, flags, 0);
727 		/*
728 		 * Preserve KAME behaviour: ENOENT can be returned
729 		 * when an SA acquire is in progress.  Don't propagate
730 		 * this to user-level; it confuses applications.
731 		 *
732 		 * XXX this will go away when the SADB is redone.
733 		 */
734 		if (error == ENOENT)
735 			error = 0;
736 		crit_exit();
737 		goto done;
738 	} else {
739 		crit_exit();
740 
741 		if (error != 0) {
742 			/*
743 			 * Hack: -EINVAL is used to signal that a packet
744 			 * should be silently discarded.  This is typically
745 			 * because we asked key management for an SA and
746 			 * it was delayed (e.g. kicked up to IKE).
747 			 */
748 			if (error == -EINVAL)
749 				error = 0;
750 			goto bad;
751 		} else {
752 			/* No IPsec processing for this packet. */
753 		}
754 #ifdef notyet
755 		/*
756 		 * If deferred crypto processing is needed, check that
757 		 * the interface supports it.
758 		 */
759 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
760 		if (mtag != NULL && !(ifp->if_capenable & IFCAP_IPSEC)) {
761 			/* notify IPsec to do its own crypto */
762 			ipsp_skipcrypto_unmark((struct tdb_ident *)m_tag_data(mtag));
763 			error = EHOSTUNREACH;
764 			goto bad;
765 		}
766 #endif
767 	}
768 spd_done:
769 #endif /* FAST_IPSEC */
770 
771 	/* We are already being fwd'd from a firewall. */
772 	if (next_hop != NULL)
773 		goto pass;
774 
775 	/* No pfil hooks */
776 	if (!pfil_has_hooks(&inet_pfil_hook)) {
777 		if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
778 			/*
779 			 * Strip dummynet tags from stranded packets
780 			 */
781 			mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
782 			KKASSERT(mtag != NULL);
783 			m_tag_delete(m, mtag);
784 			m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
785 		}
786 		goto pass;
787 	}
788 
789 	/*
790 	 * IpHack's section.
791 	 * - Xlate: translate packet's addr/port (NAT).
792 	 * - Firewall: deny/allow/etc.
793 	 * - Wrap: fake packet's addr/port <unimpl.>
794 	 * - Encapsulate: put it in another IP and send out. <unimp.>
795 	 */
796 
797 	/*
798 	 * Run through list of hooks for output packets.
799 	 */
800 	error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT);
801 	if (error != 0 || m == NULL)
802 		goto done;
803 	ip = mtod(m, struct ip *);
804 
805 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
806 		/*
807 		 * Check dst to make sure it is directly reachable on the
808 		 * interface we previously thought it was.
809 		 * If it isn't (which may be likely in some situations) we have
810 		 * to re-route it (ie, find a route for the next-hop and the
811 		 * associated interface) and set them here. This is nested
812 		 * forwarding which in most cases is undesirable, except where
813 		 * such control is nigh impossible. So we do it here.
814 		 * And I'm babbling.
815 		 */
816 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
817 		KKASSERT(mtag != NULL);
818 		next_hop = m_tag_data(mtag);
819 
820 		/*
821 		 * Try local forwarding first
822 		 */
823 		if (ip_localforward(m, next_hop, hlen))
824 			goto done;
825 
826 		/*
827 		 * Relocate the route based on next_hop.
828 		 * If the current route is inp's cache, keep it untouched.
829 		 */
830 		if (ro == &iproute && ro->ro_rt != NULL) {
831 			RTFREE(ro->ro_rt);
832 			ro->ro_rt = NULL;
833 		}
834 		ro = &iproute;
835 		bzero(ro, sizeof *ro);
836 
837 		/*
838 		 * Forwarding to broadcast address is not allowed.
839 		 * XXX Should we follow IP_ROUTETOIF?
840 		 */
841 		flags &= ~(IP_ALLOWBROADCAST | IP_ROUTETOIF);
842 
843 		/* We are doing forwarding now */
844 		flags |= IP_FORWARDING;
845 
846 		goto reroute;
847 	}
848 
849 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
850 		struct dn_pkt *dn_pkt;
851 
852 		mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
853 		KKASSERT(mtag != NULL);
854 		dn_pkt = m_tag_data(mtag);
855 
856 		/*
857 		 * Under certain cases it is not possible to recalculate
858 		 * 'ro' and 'dst', let alone 'flags', so just save them in
859 		 * dummynet tag and avoid the possible wrong reculcalation
860 		 * when we come back to ip_output() again.
861 		 *
862 		 * All other parameters have been already used and so they
863 		 * are not needed anymore.
864 		 * XXX if the ifp is deleted while a pkt is in dummynet,
865 		 * we are in trouble! (TODO use ifnet_detach_event)
866 		 *
867 		 * We need to copy *ro because for ICMP pkts (and maybe
868 		 * others) the caller passed a pointer into the stack;
869 		 * dst might also be a pointer into *ro so it needs to
870 		 * be updated.
871 		 */
872 		dn_pkt->ro = *ro;
873 		if (ro->ro_rt)
874 			ro->ro_rt->rt_refcnt++;
875 		if (dst == (struct sockaddr_in *)&ro->ro_dst) {
876 			/* 'dst' points into 'ro' */
877 			dst = (struct sockaddr_in *)&(dn_pkt->ro.ro_dst);
878 		}
879 		dn_pkt->dn_dst = dst;
880 		dn_pkt->flags = flags;
881 
882 		ip_dn_queue(m);
883 		goto done;
884 	}
885 pass:
886 	/* 127/8 must not appear on wire - RFC1122. */
887 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
888 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
889 		if (!(ifp->if_flags & IFF_LOOPBACK)) {
890 			ipstat.ips_badaddr++;
891 			error = EADDRNOTAVAIL;
892 			goto bad;
893 		}
894 	}
895 	if (ip->ip_src.s_addr == INADDR_ANY ||
896 	    IN_MULTICAST(ntohl(ip->ip_src.s_addr))) {
897 		ipstat.ips_badaddr++;
898 		error = EADDRNOTAVAIL;
899 		goto bad;
900 	}
901 
902 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
903 		m->m_pkthdr.csum_flags |= CSUM_IP;
904 		sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
905 		if (sw_csum & CSUM_DELAY_DATA) {
906 			in_delayed_cksum(m);
907 			sw_csum &= ~CSUM_DELAY_DATA;
908 		}
909 		m->m_pkthdr.csum_flags &= ifp->if_hwassist;
910 	} else {
911 		sw_csum = 0;
912 	}
913 	m->m_pkthdr.csum_iphlen = hlen;
914 
915 	/*
916 	 * If small enough for interface, or the interface will take
917 	 * care of the fragmentation or segmentation for us, can just
918 	 * send directly.
919 	 */
920 	if (ip->ip_len <= ifp->if_mtu ||
921 	    ((ifp->if_hwassist & CSUM_FRAGMENT) && !(ip->ip_off & IP_DF)) ||
922 	    (m->m_pkthdr.csum_flags & CSUM_TSO)) {
923 		ip->ip_len = htons(ip->ip_len);
924 		ip->ip_off = htons(ip->ip_off);
925 		ip->ip_sum = 0;
926 		if (sw_csum & CSUM_DELAY_IP) {
927 			if (ip->ip_vhl == IP_VHL_BORING)
928 				ip->ip_sum = in_cksum_hdr(ip);
929 			else
930 				ip->ip_sum = in_cksum(m, hlen);
931 		}
932 
933 		/* Record statistics for this interface address. */
934 		if (!(flags & IP_FORWARDING) && ia) {
935 			IFA_STAT_INC(&ia->ia_ifa, opackets, 1);
936 			IFA_STAT_INC(&ia->ia_ifa, obytes, m->m_pkthdr.len);
937 		}
938 
939 #ifdef IPSEC
940 		/* clean ipsec history once it goes out of the node */
941 		ipsec_delaux(m);
942 #endif
943 
944 #ifdef MBUF_STRESS_TEST
945 		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) {
946 			struct mbuf *m1, *m2;
947 			int length, tmp;
948 
949 			tmp = length = m->m_pkthdr.len;
950 
951 			while ((length -= mbuf_frag_size) >= 1) {
952 				m1 = m_split(m, length, MB_DONTWAIT);
953 				if (m1 == NULL)
954 					break;
955 				m2 = m;
956 				while (m2->m_next != NULL)
957 					m2 = m2->m_next;
958 				m2->m_next = m1;
959 			}
960 			m->m_pkthdr.len = tmp;
961 		}
962 #endif
963 
964 #ifdef MPLS
965 		if (!mpls_output_process(m, ro->ro_rt))
966 			goto done;
967 #endif
968 		error = ifp->if_output(ifp, m, (struct sockaddr *)dst,
969 				       ro->ro_rt);
970 		goto done;
971 	}
972 
973 	if (ip->ip_off & IP_DF) {
974 		error = EMSGSIZE;
975 		/*
976 		 * This case can happen if the user changed the MTU
977 		 * of an interface after enabling IP on it.  Because
978 		 * most netifs don't keep track of routes pointing to
979 		 * them, there is no way for one to update all its
980 		 * routes when the MTU is changed.
981 		 */
982 		if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
983 		    !(ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) &&
984 		    (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
985 			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
986 		}
987 		ipstat.ips_cantfrag++;
988 		goto bad;
989 	}
990 
991 	/*
992 	 * Too large for interface; fragment if possible. If successful,
993 	 * on return, m will point to a list of packets to be sent.
994 	 */
995 	error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum);
996 	if (error)
997 		goto bad;
998 	for (; m; m = m0) {
999 		m0 = m->m_nextpkt;
1000 		m->m_nextpkt = NULL;
1001 #ifdef IPSEC
1002 		/* clean ipsec history once it goes out of the node */
1003 		ipsec_delaux(m);
1004 #endif
1005 		if (error == 0) {
1006 			/* Record statistics for this interface address. */
1007 			if (ia != NULL) {
1008 				IFA_STAT_INC(&ia->ia_ifa, opackets, 1);
1009 				IFA_STAT_INC(&ia->ia_ifa, obytes,
1010 				    m->m_pkthdr.len);
1011 			}
1012 #ifdef MPLS
1013 			if (!mpls_output_process(m, ro->ro_rt))
1014 				continue;
1015 #endif
1016 			error = ifp->if_output(ifp, m, (struct sockaddr *)dst,
1017 					       ro->ro_rt);
1018 		} else {
1019 			m_freem(m);
1020 		}
1021 	}
1022 
1023 	if (error == 0)
1024 		ipstat.ips_fragmented++;
1025 
1026 done:
1027 	if (ro == &iproute && ro->ro_rt != NULL) {
1028 		RTFREE(ro->ro_rt);
1029 		ro->ro_rt = NULL;
1030 	}
1031 #ifdef IPSEC
1032 	if (sp != NULL) {
1033 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1034 			kprintf("DP ip_output call free SP:%p\n", sp));
1035 		key_freesp(sp);
1036 	}
1037 #endif
1038 #ifdef FAST_IPSEC
1039 	if (sp != NULL)
1040 		KEY_FREESP(&sp);
1041 #endif
1042 	return (error);
1043 bad:
1044 	m_freem(m);
1045 	goto done;
1046 }
1047 
1048 /*
1049  * Create a chain of fragments which fit the given mtu. m_frag points to the
1050  * mbuf to be fragmented; on return it points to the chain with the fragments.
1051  * Return 0 if no error. If error, m_frag may contain a partially built
1052  * chain of fragments that should be freed by the caller.
1053  *
1054  * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
1055  * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
1056  */
1057 int
1058 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
1059 	    u_long if_hwassist_flags, int sw_csum)
1060 {
1061 	int error = 0;
1062 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1063 	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
1064 	int off;
1065 	struct mbuf *m0 = *m_frag;	/* the original packet		*/
1066 	int firstlen;
1067 	struct mbuf **mnext;
1068 	int nfrags;
1069 
1070 	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
1071 		ipstat.ips_cantfrag++;
1072 		return EMSGSIZE;
1073 	}
1074 
1075 	/*
1076 	 * Must be able to put at least 8 bytes per fragment.
1077 	 */
1078 	if (len < 8)
1079 		return EMSGSIZE;
1080 
1081 	/*
1082 	 * If the interface will not calculate checksums on
1083 	 * fragmented packets, then do it here.
1084 	 */
1085 	if ((m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) &&
1086 	    !(if_hwassist_flags & CSUM_IP_FRAGS)) {
1087 		in_delayed_cksum(m0);
1088 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1089 	}
1090 
1091 	if (len > PAGE_SIZE) {
1092 		/*
1093 		 * Fragment large datagrams such that each segment
1094 		 * contains a multiple of PAGE_SIZE amount of data,
1095 		 * plus headers. This enables a receiver to perform
1096 		 * page-flipping zero-copy optimizations.
1097 		 *
1098 		 * XXX When does this help given that sender and receiver
1099 		 * could have different page sizes, and also mtu could
1100 		 * be less than the receiver's page size ?
1101 		 */
1102 		int newlen;
1103 		struct mbuf *m;
1104 
1105 		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
1106 			off += m->m_len;
1107 
1108 		/*
1109 		 * firstlen (off - hlen) must be aligned on an
1110 		 * 8-byte boundary
1111 		 */
1112 		if (off < hlen)
1113 			goto smart_frag_failure;
1114 		off = ((off - hlen) & ~7) + hlen;
1115 		newlen = (~PAGE_MASK) & mtu;
1116 		if ((newlen + sizeof(struct ip)) > mtu) {
1117 			/* we failed, go back the default */
1118 smart_frag_failure:
1119 			newlen = len;
1120 			off = hlen + len;
1121 		}
1122 		len = newlen;
1123 
1124 	} else {
1125 		off = hlen + len;
1126 	}
1127 
1128 	firstlen = off - hlen;
1129 	mnext = &m0->m_nextpkt;		/* pointer to next packet */
1130 
1131 	/*
1132 	 * Loop through length of segment after first fragment,
1133 	 * make new header and copy data of each part and link onto chain.
1134 	 * Here, m0 is the original packet, m is the fragment being created.
1135 	 * The fragments are linked off the m_nextpkt of the original
1136 	 * packet, which after processing serves as the first fragment.
1137 	 */
1138 	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
1139 		struct ip *mhip;	/* ip header on the fragment */
1140 		struct mbuf *m;
1141 		int mhlen = sizeof(struct ip);
1142 
1143 		MGETHDR(m, MB_DONTWAIT, MT_HEADER);
1144 		if (m == NULL) {
1145 			error = ENOBUFS;
1146 			ipstat.ips_odropped++;
1147 			goto done;
1148 		}
1149 		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
1150 		/*
1151 		 * In the first mbuf, leave room for the link header, then
1152 		 * copy the original IP header including options. The payload
1153 		 * goes into an additional mbuf chain returned by m_copy().
1154 		 */
1155 		m->m_data += max_linkhdr;
1156 		mhip = mtod(m, struct ip *);
1157 		*mhip = *ip;
1158 		if (hlen > sizeof(struct ip)) {
1159 			mhlen = ip_optcopy(ip, mhip) + sizeof(struct ip);
1160 			mhip->ip_vhl = IP_MAKE_VHL(IPVERSION, mhlen >> 2);
1161 		}
1162 		m->m_len = mhlen;
1163 		/* XXX do we need to add ip->ip_off below ? */
1164 		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
1165 		if (off + len >= ip->ip_len) {	/* last fragment */
1166 			len = ip->ip_len - off;
1167 			m->m_flags |= M_LASTFRAG;
1168 		} else
1169 			mhip->ip_off |= IP_MF;
1170 		mhip->ip_len = htons((u_short)(len + mhlen));
1171 		m->m_next = m_copy(m0, off, len);
1172 		if (m->m_next == NULL) {		/* copy failed */
1173 			m_free(m);
1174 			error = ENOBUFS;	/* ??? */
1175 			ipstat.ips_odropped++;
1176 			goto done;
1177 		}
1178 		m->m_pkthdr.len = mhlen + len;
1179 		m->m_pkthdr.rcvif = NULL;
1180 		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
1181 		m->m_pkthdr.csum_iphlen = mhlen;
1182 		mhip->ip_off = htons(mhip->ip_off);
1183 		mhip->ip_sum = 0;
1184 		if (sw_csum & CSUM_DELAY_IP)
1185 			mhip->ip_sum = in_cksum(m, mhlen);
1186 		*mnext = m;
1187 		mnext = &m->m_nextpkt;
1188 	}
1189 	ipstat.ips_ofragments += nfrags;
1190 
1191 	/* set first marker for fragment chain */
1192 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1193 	m0->m_pkthdr.csum_data = nfrags;
1194 
1195 	/*
1196 	 * Update first fragment by trimming what's been copied out
1197 	 * and updating header.
1198 	 */
1199 	m_adj(m0, hlen + firstlen - ip->ip_len);
1200 	m0->m_pkthdr.len = hlen + firstlen;
1201 	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1202 	ip->ip_off |= IP_MF;
1203 	ip->ip_off = htons(ip->ip_off);
1204 	ip->ip_sum = 0;
1205 	if (sw_csum & CSUM_DELAY_IP)
1206 		ip->ip_sum = in_cksum(m0, hlen);
1207 
1208 done:
1209 	*m_frag = m0;
1210 	return error;
1211 }
1212 
1213 void
1214 in_delayed_cksum(struct mbuf *m)
1215 {
1216 	struct ip *ip;
1217 	u_short csum, offset;
1218 
1219 	ip = mtod(m, struct ip *);
1220 	offset = IP_VHL_HL(ip->ip_vhl) << 2 ;
1221 	csum = in_cksum_skip(m, ip->ip_len, offset);
1222 	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
1223 		csum = 0xffff;
1224 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
1225 
1226 	if (offset + sizeof(u_short) > m->m_len) {
1227 		kprintf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
1228 		    m->m_len, offset, ip->ip_p);
1229 		/*
1230 		 * XXX
1231 		 * this shouldn't happen, but if it does, the
1232 		 * correct behavior may be to insert the checksum
1233 		 * in the existing chain instead of rearranging it.
1234 		 */
1235 		m = m_pullup(m, offset + sizeof(u_short));
1236 	}
1237 	*(u_short *)(m->m_data + offset) = csum;
1238 }
1239 
1240 /*
1241  * Insert IP options into preformed packet.
1242  * Adjust IP destination as required for IP source routing,
1243  * as indicated by a non-zero in_addr at the start of the options.
1244  *
1245  * XXX This routine assumes that the packet has no options in place.
1246  */
1247 static struct mbuf *
1248 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1249 {
1250 	struct ipoption *p = mtod(opt, struct ipoption *);
1251 	struct mbuf *n;
1252 	struct ip *ip = mtod(m, struct ip *);
1253 	unsigned optlen;
1254 
1255 	optlen = opt->m_len - sizeof p->ipopt_dst;
1256 	if (optlen + (u_short)ip->ip_len > IP_MAXPACKET) {
1257 		*phlen = 0;
1258 		return (m);		/* XXX should fail */
1259 	}
1260 	if (p->ipopt_dst.s_addr)
1261 		ip->ip_dst = p->ipopt_dst;
1262 	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
1263 		MGETHDR(n, MB_DONTWAIT, MT_HEADER);
1264 		if (n == NULL) {
1265 			*phlen = 0;
1266 			return (m);
1267 		}
1268 		n->m_pkthdr.rcvif = NULL;
1269 		n->m_pkthdr.len = m->m_pkthdr.len + optlen;
1270 		m->m_len -= sizeof(struct ip);
1271 		m->m_data += sizeof(struct ip);
1272 		n->m_next = m;
1273 		m = n;
1274 		m->m_len = optlen + sizeof(struct ip);
1275 		m->m_data += max_linkhdr;
1276 		memcpy(mtod(m, void *), ip, sizeof(struct ip));
1277 	} else {
1278 		m->m_data -= optlen;
1279 		m->m_len += optlen;
1280 		m->m_pkthdr.len += optlen;
1281 		ovbcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
1282 	}
1283 	ip = mtod(m, struct ip *);
1284 	bcopy(p->ipopt_list, ip + 1, optlen);
1285 	*phlen = sizeof(struct ip) + optlen;
1286 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, *phlen >> 2);
1287 	ip->ip_len += optlen;
1288 	return (m);
1289 }
1290 
1291 /*
1292  * Copy options from ip to jp,
1293  * omitting those not copied during fragmentation.
1294  */
1295 int
1296 ip_optcopy(struct ip *ip, struct ip *jp)
1297 {
1298 	u_char *cp, *dp;
1299 	int opt, optlen, cnt;
1300 
1301 	cp = (u_char *)(ip + 1);
1302 	dp = (u_char *)(jp + 1);
1303 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1304 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1305 		opt = cp[0];
1306 		if (opt == IPOPT_EOL)
1307 			break;
1308 		if (opt == IPOPT_NOP) {
1309 			/* Preserve for IP mcast tunnel's LSRR alignment. */
1310 			*dp++ = IPOPT_NOP;
1311 			optlen = 1;
1312 			continue;
1313 		}
1314 
1315 		KASSERT(cnt >= IPOPT_OLEN + sizeof *cp,
1316 		    ("ip_optcopy: malformed ipv4 option"));
1317 		optlen = cp[IPOPT_OLEN];
1318 		KASSERT(optlen >= IPOPT_OLEN + sizeof *cp && optlen <= cnt,
1319 		    ("ip_optcopy: malformed ipv4 option"));
1320 
1321 		/* bogus lengths should have been caught by ip_dooptions */
1322 		if (optlen > cnt)
1323 			optlen = cnt;
1324 		if (IPOPT_COPIED(opt)) {
1325 			bcopy(cp, dp, optlen);
1326 			dp += optlen;
1327 		}
1328 	}
1329 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1330 		*dp++ = IPOPT_EOL;
1331 	return (optlen);
1332 }
1333 
1334 /*
1335  * IP socket option processing.
1336  */
1337 void
1338 ip_ctloutput(netmsg_t msg)
1339 {
1340 	struct socket *so = msg->base.nm_so;
1341 	struct sockopt *sopt = msg->ctloutput.nm_sopt;
1342 	struct	inpcb *inp = so->so_pcb;
1343 	int	error, optval;
1344 
1345 	error = optval = 0;
1346 	if (sopt->sopt_level != IPPROTO_IP) {
1347 		error = EINVAL;
1348 		goto done;
1349 	}
1350 
1351 	switch (sopt->sopt_dir) {
1352 	case SOPT_SET:
1353 		switch (sopt->sopt_name) {
1354 		case IP_OPTIONS:
1355 #ifdef notyet
1356 		case IP_RETOPTS:
1357 #endif
1358 		{
1359 			struct mbuf *m;
1360 			if (sopt->sopt_valsize > MLEN) {
1361 				error = EMSGSIZE;
1362 				break;
1363 			}
1364 			MGET(m, sopt->sopt_td ? MB_WAIT : MB_DONTWAIT, MT_HEADER);
1365 			if (m == NULL) {
1366 				error = ENOBUFS;
1367 				break;
1368 			}
1369 			m->m_len = sopt->sopt_valsize;
1370 			error = soopt_to_kbuf(sopt, mtod(m, void *), m->m_len,
1371 					      m->m_len);
1372 			error = ip_pcbopts(sopt->sopt_name,
1373 					   &inp->inp_options, m);
1374 			goto done;
1375 		}
1376 
1377 		case IP_TOS:
1378 		case IP_TTL:
1379 		case IP_MINTTL:
1380 		case IP_RECVOPTS:
1381 		case IP_RECVRETOPTS:
1382 		case IP_RECVDSTADDR:
1383 		case IP_RECVIF:
1384 		case IP_RECVTTL:
1385 		case IP_FAITH:
1386 			error = soopt_to_kbuf(sopt, &optval, sizeof optval,
1387 					     sizeof optval);
1388 			if (error)
1389 				break;
1390 			switch (sopt->sopt_name) {
1391 			case IP_TOS:
1392 				inp->inp_ip_tos = optval;
1393 				break;
1394 
1395 			case IP_TTL:
1396 				inp->inp_ip_ttl = optval;
1397 				break;
1398 			case IP_MINTTL:
1399 				if (optval >= 0 && optval <= MAXTTL)
1400 					inp->inp_ip_minttl = optval;
1401 				else
1402 					error = EINVAL;
1403 				break;
1404 #define	OPTSET(bit) \
1405 	if (optval) \
1406 		inp->inp_flags |= bit; \
1407 	else \
1408 		inp->inp_flags &= ~bit;
1409 
1410 			case IP_RECVOPTS:
1411 				OPTSET(INP_RECVOPTS);
1412 				break;
1413 
1414 			case IP_RECVRETOPTS:
1415 				OPTSET(INP_RECVRETOPTS);
1416 				break;
1417 
1418 			case IP_RECVDSTADDR:
1419 				OPTSET(INP_RECVDSTADDR);
1420 				break;
1421 
1422 			case IP_RECVIF:
1423 				OPTSET(INP_RECVIF);
1424 				break;
1425 
1426 			case IP_RECVTTL:
1427 				OPTSET(INP_RECVTTL);
1428 				break;
1429 
1430 			case IP_FAITH:
1431 				OPTSET(INP_FAITH);
1432 				break;
1433 			}
1434 			break;
1435 #undef OPTSET
1436 
1437 		case IP_MULTICAST_IF:
1438 		case IP_MULTICAST_VIF:
1439 		case IP_MULTICAST_TTL:
1440 		case IP_MULTICAST_LOOP:
1441 		case IP_ADD_MEMBERSHIP:
1442 		case IP_DROP_MEMBERSHIP:
1443 			error = ip_setmoptions(sopt, &inp->inp_moptions);
1444 			break;
1445 
1446 		case IP_PORTRANGE:
1447 			error = soopt_to_kbuf(sopt, &optval, sizeof optval,
1448 					    sizeof optval);
1449 			if (error)
1450 				break;
1451 
1452 			switch (optval) {
1453 			case IP_PORTRANGE_DEFAULT:
1454 				inp->inp_flags &= ~(INP_LOWPORT);
1455 				inp->inp_flags &= ~(INP_HIGHPORT);
1456 				break;
1457 
1458 			case IP_PORTRANGE_HIGH:
1459 				inp->inp_flags &= ~(INP_LOWPORT);
1460 				inp->inp_flags |= INP_HIGHPORT;
1461 				break;
1462 
1463 			case IP_PORTRANGE_LOW:
1464 				inp->inp_flags &= ~(INP_HIGHPORT);
1465 				inp->inp_flags |= INP_LOWPORT;
1466 				break;
1467 
1468 			default:
1469 				error = EINVAL;
1470 				break;
1471 			}
1472 			break;
1473 
1474 #if defined(IPSEC) || defined(FAST_IPSEC)
1475 		case IP_IPSEC_POLICY:
1476 		{
1477 			caddr_t req;
1478 			size_t len = 0;
1479 			int priv;
1480 			struct mbuf *m;
1481 			int optname;
1482 
1483 			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1484 				break;
1485 			soopt_to_mbuf(sopt, m);
1486 			priv = (sopt->sopt_td != NULL &&
1487 				priv_check(sopt->sopt_td, PRIV_ROOT) != 0) ? 0 : 1;
1488 			req = mtod(m, caddr_t);
1489 			len = m->m_len;
1490 			optname = sopt->sopt_name;
1491 			error = ipsec4_set_policy(inp, optname, req, len, priv);
1492 			m_freem(m);
1493 			break;
1494 		}
1495 #endif /*IPSEC*/
1496 
1497 		default:
1498 			error = ENOPROTOOPT;
1499 			break;
1500 		}
1501 		break;
1502 
1503 	case SOPT_GET:
1504 		switch (sopt->sopt_name) {
1505 		case IP_OPTIONS:
1506 		case IP_RETOPTS:
1507 			if (inp->inp_options)
1508 				soopt_from_kbuf(sopt, mtod(inp->inp_options,
1509 							   char *),
1510 						inp->inp_options->m_len);
1511 			else
1512 				sopt->sopt_valsize = 0;
1513 			break;
1514 
1515 		case IP_TOS:
1516 		case IP_TTL:
1517 		case IP_MINTTL:
1518 		case IP_RECVOPTS:
1519 		case IP_RECVRETOPTS:
1520 		case IP_RECVDSTADDR:
1521 		case IP_RECVTTL:
1522 		case IP_RECVIF:
1523 		case IP_PORTRANGE:
1524 		case IP_FAITH:
1525 			switch (sopt->sopt_name) {
1526 
1527 			case IP_TOS:
1528 				optval = inp->inp_ip_tos;
1529 				break;
1530 
1531 			case IP_TTL:
1532 				optval = inp->inp_ip_ttl;
1533 				break;
1534 			case IP_MINTTL:
1535 				optval = inp->inp_ip_minttl;
1536 				break;
1537 
1538 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1539 
1540 			case IP_RECVOPTS:
1541 				optval = OPTBIT(INP_RECVOPTS);
1542 				break;
1543 
1544 			case IP_RECVRETOPTS:
1545 				optval = OPTBIT(INP_RECVRETOPTS);
1546 				break;
1547 
1548 			case IP_RECVDSTADDR:
1549 				optval = OPTBIT(INP_RECVDSTADDR);
1550 				break;
1551 
1552 			case IP_RECVTTL:
1553 				optval = OPTBIT(INP_RECVTTL);
1554 				break;
1555 
1556 			case IP_RECVIF:
1557 				optval = OPTBIT(INP_RECVIF);
1558 				break;
1559 
1560 			case IP_PORTRANGE:
1561 				if (inp->inp_flags & INP_HIGHPORT)
1562 					optval = IP_PORTRANGE_HIGH;
1563 				else if (inp->inp_flags & INP_LOWPORT)
1564 					optval = IP_PORTRANGE_LOW;
1565 				else
1566 					optval = 0;
1567 				break;
1568 
1569 			case IP_FAITH:
1570 				optval = OPTBIT(INP_FAITH);
1571 				break;
1572 			}
1573 			soopt_from_kbuf(sopt, &optval, sizeof optval);
1574 			break;
1575 
1576 		case IP_MULTICAST_IF:
1577 		case IP_MULTICAST_VIF:
1578 		case IP_MULTICAST_TTL:
1579 		case IP_MULTICAST_LOOP:
1580 		case IP_ADD_MEMBERSHIP:
1581 		case IP_DROP_MEMBERSHIP:
1582 			error = ip_getmoptions(sopt, inp->inp_moptions);
1583 			break;
1584 
1585 #if defined(IPSEC) || defined(FAST_IPSEC)
1586 		case IP_IPSEC_POLICY:
1587 		{
1588 			struct mbuf *m = NULL;
1589 			caddr_t req = NULL;
1590 			size_t len = 0;
1591 
1592 			if (m != NULL) {
1593 				req = mtod(m, caddr_t);
1594 				len = m->m_len;
1595 			}
1596 			error = ipsec4_get_policy(so->so_pcb, req, len, &m);
1597 			if (error == 0)
1598 				error = soopt_from_mbuf(sopt, m); /* XXX */
1599 			if (error == 0)
1600 				m_freem(m);
1601 			break;
1602 		}
1603 #endif /*IPSEC*/
1604 
1605 		default:
1606 			error = ENOPROTOOPT;
1607 			break;
1608 		}
1609 		break;
1610 	}
1611 done:
1612 	lwkt_replymsg(&msg->lmsg, error);
1613 }
1614 
1615 /*
1616  * Set up IP options in pcb for insertion in output packets.
1617  * Store in mbuf with pointer in pcbopt, adding pseudo-option
1618  * with destination address if source routed.
1619  */
1620 static int
1621 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1622 {
1623 	int cnt, optlen;
1624 	u_char *cp;
1625 	u_char opt;
1626 
1627 	/* turn off any old options */
1628 	if (*pcbopt)
1629 		m_free(*pcbopt);
1630 	*pcbopt = NULL;
1631 	if (m == NULL || m->m_len == 0) {
1632 		/*
1633 		 * Only turning off any previous options.
1634 		 */
1635 		if (m != NULL)
1636 			m_free(m);
1637 		return (0);
1638 	}
1639 
1640 	if (m->m_len % sizeof(int32_t))
1641 		goto bad;
1642 	/*
1643 	 * IP first-hop destination address will be stored before
1644 	 * actual options; move other options back
1645 	 * and clear it when none present.
1646 	 */
1647 	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1648 		goto bad;
1649 	cnt = m->m_len;
1650 	m->m_len += sizeof(struct in_addr);
1651 	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1652 	ovbcopy(mtod(m, caddr_t), cp, cnt);
1653 	bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1654 
1655 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1656 		opt = cp[IPOPT_OPTVAL];
1657 		if (opt == IPOPT_EOL)
1658 			break;
1659 		if (opt == IPOPT_NOP)
1660 			optlen = 1;
1661 		else {
1662 			if (cnt < IPOPT_OLEN + sizeof *cp)
1663 				goto bad;
1664 			optlen = cp[IPOPT_OLEN];
1665 			if (optlen < IPOPT_OLEN + sizeof *cp || optlen > cnt)
1666 				goto bad;
1667 		}
1668 		switch (opt) {
1669 
1670 		default:
1671 			break;
1672 
1673 		case IPOPT_LSRR:
1674 		case IPOPT_SSRR:
1675 			/*
1676 			 * user process specifies route as:
1677 			 *	->A->B->C->D
1678 			 * D must be our final destination (but we can't
1679 			 * check that since we may not have connected yet).
1680 			 * A is first hop destination, which doesn't appear in
1681 			 * actual IP option, but is stored before the options.
1682 			 */
1683 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1684 				goto bad;
1685 			m->m_len -= sizeof(struct in_addr);
1686 			cnt -= sizeof(struct in_addr);
1687 			optlen -= sizeof(struct in_addr);
1688 			cp[IPOPT_OLEN] = optlen;
1689 			/*
1690 			 * Move first hop before start of options.
1691 			 */
1692 			bcopy(&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1693 			      sizeof(struct in_addr));
1694 			/*
1695 			 * Then copy rest of options back
1696 			 * to close up the deleted entry.
1697 			 */
1698 			ovbcopy(&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1699 				&cp[IPOPT_OFFSET+1],
1700 				cnt - (IPOPT_MINOFF - 1));
1701 			break;
1702 		}
1703 	}
1704 	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1705 		goto bad;
1706 	*pcbopt = m;
1707 	return (0);
1708 
1709 bad:
1710 	m_free(m);
1711 	return (EINVAL);
1712 }
1713 
1714 /*
1715  * XXX
1716  * The whole multicast option thing needs to be re-thought.
1717  * Several of these options are equally applicable to non-multicast
1718  * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1719  * standard option (IP_TTL).
1720  */
1721 
1722 /*
1723  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1724  */
1725 static struct ifnet *
1726 ip_multicast_if(struct in_addr *a, int *ifindexp)
1727 {
1728 	int ifindex;
1729 	struct ifnet *ifp;
1730 
1731 	if (ifindexp)
1732 		*ifindexp = 0;
1733 	if (ntohl(a->s_addr) >> 24 == 0) {
1734 		ifindex = ntohl(a->s_addr) & 0xffffff;
1735 		if (ifindex < 0 || if_index < ifindex)
1736 			return NULL;
1737 		ifp = ifindex2ifnet[ifindex];
1738 		if (ifindexp)
1739 			*ifindexp = ifindex;
1740 	} else {
1741 		ifp = INADDR_TO_IFP(a);
1742 	}
1743 	return ifp;
1744 }
1745 
1746 /*
1747  * Set the IP multicast options in response to user setsockopt().
1748  */
1749 static int
1750 ip_setmoptions(struct sockopt *sopt, struct ip_moptions **imop)
1751 {
1752 	int error = 0;
1753 	int i;
1754 	struct in_addr addr;
1755 	struct ip_mreq mreq;
1756 	struct ifnet *ifp;
1757 	struct ip_moptions *imo = *imop;
1758 	int ifindex;
1759 
1760 	if (imo == NULL) {
1761 		/*
1762 		 * No multicast option buffer attached to the pcb;
1763 		 * allocate one and initialize to default values.
1764 		 */
1765 		imo = kmalloc(sizeof *imo, M_IPMOPTS, M_WAITOK);
1766 
1767 		*imop = imo;
1768 		imo->imo_multicast_ifp = NULL;
1769 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
1770 		imo->imo_multicast_vif = -1;
1771 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1772 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1773 		imo->imo_num_memberships = 0;
1774 	}
1775 	switch (sopt->sopt_name) {
1776 	/* store an index number for the vif you wanna use in the send */
1777 	case IP_MULTICAST_VIF:
1778 		if (legal_vif_num == 0) {
1779 			error = EOPNOTSUPP;
1780 			break;
1781 		}
1782 		error = soopt_to_kbuf(sopt, &i, sizeof i, sizeof i);
1783 		if (error)
1784 			break;
1785 		if (!legal_vif_num(i) && (i != -1)) {
1786 			error = EINVAL;
1787 			break;
1788 		}
1789 		imo->imo_multicast_vif = i;
1790 		break;
1791 
1792 	case IP_MULTICAST_IF:
1793 		/*
1794 		 * Select the interface for outgoing multicast packets.
1795 		 */
1796 		error = soopt_to_kbuf(sopt, &addr, sizeof addr, sizeof addr);
1797 		if (error)
1798 			break;
1799 
1800 		/*
1801 		 * INADDR_ANY is used to remove a previous selection.
1802 		 * When no interface is selected, a default one is
1803 		 * chosen every time a multicast packet is sent.
1804 		 */
1805 		if (addr.s_addr == INADDR_ANY) {
1806 			imo->imo_multicast_ifp = NULL;
1807 			break;
1808 		}
1809 		/*
1810 		 * The selected interface is identified by its local
1811 		 * IP address.  Find the interface and confirm that
1812 		 * it supports multicasting.
1813 		 */
1814 		crit_enter();
1815 		ifp = ip_multicast_if(&addr, &ifindex);
1816 		if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
1817 			crit_exit();
1818 			error = EADDRNOTAVAIL;
1819 			break;
1820 		}
1821 		imo->imo_multicast_ifp = ifp;
1822 		if (ifindex)
1823 			imo->imo_multicast_addr = addr;
1824 		else
1825 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1826 		crit_exit();
1827 		break;
1828 
1829 	case IP_MULTICAST_TTL:
1830 		/*
1831 		 * Set the IP time-to-live for outgoing multicast packets.
1832 		 * The original multicast API required a char argument,
1833 		 * which is inconsistent with the rest of the socket API.
1834 		 * We allow either a char or an int.
1835 		 */
1836 		if (sopt->sopt_valsize == 1) {
1837 			u_char ttl;
1838 			error = soopt_to_kbuf(sopt, &ttl, 1, 1);
1839 			if (error)
1840 				break;
1841 			imo->imo_multicast_ttl = ttl;
1842 		} else {
1843 			u_int ttl;
1844 			error = soopt_to_kbuf(sopt, &ttl, sizeof ttl, sizeof ttl);
1845 			if (error)
1846 				break;
1847 			if (ttl > 255)
1848 				error = EINVAL;
1849 			else
1850 				imo->imo_multicast_ttl = ttl;
1851 		}
1852 		break;
1853 
1854 	case IP_MULTICAST_LOOP:
1855 		/*
1856 		 * Set the loopback flag for outgoing multicast packets.
1857 		 * Must be zero or one.  The original multicast API required a
1858 		 * char argument, which is inconsistent with the rest
1859 		 * of the socket API.  We allow either a char or an int.
1860 		 */
1861 		if (sopt->sopt_valsize == 1) {
1862 			u_char loop;
1863 
1864 			error = soopt_to_kbuf(sopt, &loop, 1, 1);
1865 			if (error)
1866 				break;
1867 			imo->imo_multicast_loop = !!loop;
1868 		} else {
1869 			u_int loop;
1870 
1871 			error = soopt_to_kbuf(sopt, &loop, sizeof loop,
1872 					    sizeof loop);
1873 			if (error)
1874 				break;
1875 			imo->imo_multicast_loop = !!loop;
1876 		}
1877 		break;
1878 
1879 	case IP_ADD_MEMBERSHIP:
1880 		/*
1881 		 * Add a multicast group membership.
1882 		 * Group must be a valid IP multicast address.
1883 		 */
1884 		error = soopt_to_kbuf(sopt, &mreq, sizeof mreq, sizeof mreq);
1885 		if (error)
1886 			break;
1887 
1888 		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1889 			error = EINVAL;
1890 			break;
1891 		}
1892 		crit_enter();
1893 		/*
1894 		 * If no interface address was provided, use the interface of
1895 		 * the route to the given multicast address.
1896 		 */
1897 		if (mreq.imr_interface.s_addr == INADDR_ANY) {
1898 			struct sockaddr_in dst;
1899 			struct rtentry *rt;
1900 
1901 			bzero(&dst, sizeof(struct sockaddr_in));
1902 			dst.sin_len = sizeof(struct sockaddr_in);
1903 			dst.sin_family = AF_INET;
1904 			dst.sin_addr = mreq.imr_multiaddr;
1905 			rt = rtlookup((struct sockaddr *)&dst);
1906 			if (rt == NULL) {
1907 				error = EADDRNOTAVAIL;
1908 				crit_exit();
1909 				break;
1910 			}
1911 			--rt->rt_refcnt;
1912 			ifp = rt->rt_ifp;
1913 		} else {
1914 			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1915 		}
1916 
1917 		/*
1918 		 * See if we found an interface, and confirm that it
1919 		 * supports multicast.
1920 		 */
1921 		if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
1922 			error = EADDRNOTAVAIL;
1923 			crit_exit();
1924 			break;
1925 		}
1926 		/*
1927 		 * See if the membership already exists or if all the
1928 		 * membership slots are full.
1929 		 */
1930 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1931 			if (imo->imo_membership[i]->inm_ifp == ifp &&
1932 			    imo->imo_membership[i]->inm_addr.s_addr
1933 						== mreq.imr_multiaddr.s_addr)
1934 				break;
1935 		}
1936 		if (i < imo->imo_num_memberships) {
1937 			error = EADDRINUSE;
1938 			crit_exit();
1939 			break;
1940 		}
1941 		if (i == IP_MAX_MEMBERSHIPS) {
1942 			error = ETOOMANYREFS;
1943 			crit_exit();
1944 			break;
1945 		}
1946 		/*
1947 		 * Everything looks good; add a new record to the multicast
1948 		 * address list for the given interface.
1949 		 */
1950 		if ((imo->imo_membership[i] =
1951 		     in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
1952 			error = ENOBUFS;
1953 			crit_exit();
1954 			break;
1955 		}
1956 		++imo->imo_num_memberships;
1957 		crit_exit();
1958 		break;
1959 
1960 	case IP_DROP_MEMBERSHIP:
1961 		/*
1962 		 * Drop a multicast group membership.
1963 		 * Group must be a valid IP multicast address.
1964 		 */
1965 		error = soopt_to_kbuf(sopt, &mreq, sizeof mreq, sizeof mreq);
1966 		if (error)
1967 			break;
1968 
1969 		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1970 			error = EINVAL;
1971 			break;
1972 		}
1973 
1974 		crit_enter();
1975 		/*
1976 		 * If an interface address was specified, get a pointer
1977 		 * to its ifnet structure.
1978 		 */
1979 		if (mreq.imr_interface.s_addr == INADDR_ANY)
1980 			ifp = NULL;
1981 		else {
1982 			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1983 			if (ifp == NULL) {
1984 				error = EADDRNOTAVAIL;
1985 				crit_exit();
1986 				break;
1987 			}
1988 		}
1989 		/*
1990 		 * Find the membership in the membership array.
1991 		 */
1992 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1993 			if ((ifp == NULL ||
1994 			     imo->imo_membership[i]->inm_ifp == ifp) &&
1995 			    imo->imo_membership[i]->inm_addr.s_addr ==
1996 			    mreq.imr_multiaddr.s_addr)
1997 				break;
1998 		}
1999 		if (i == imo->imo_num_memberships) {
2000 			error = EADDRNOTAVAIL;
2001 			crit_exit();
2002 			break;
2003 		}
2004 		/*
2005 		 * Give up the multicast address record to which the
2006 		 * membership points.
2007 		 */
2008 		in_delmulti(imo->imo_membership[i]);
2009 		/*
2010 		 * Remove the gap in the membership array.
2011 		 */
2012 		for (++i; i < imo->imo_num_memberships; ++i)
2013 			imo->imo_membership[i-1] = imo->imo_membership[i];
2014 		--imo->imo_num_memberships;
2015 		crit_exit();
2016 		break;
2017 
2018 	default:
2019 		error = EOPNOTSUPP;
2020 		break;
2021 	}
2022 
2023 	/*
2024 	 * If all options have default values, no need to keep the mbuf.
2025 	 */
2026 	if (imo->imo_multicast_ifp == NULL &&
2027 	    imo->imo_multicast_vif == -1 &&
2028 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
2029 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
2030 	    imo->imo_num_memberships == 0) {
2031 		kfree(*imop, M_IPMOPTS);
2032 		*imop = NULL;
2033 	}
2034 
2035 	return (error);
2036 }
2037 
2038 /*
2039  * Return the IP multicast options in response to user getsockopt().
2040  */
2041 static int
2042 ip_getmoptions(struct sockopt *sopt, struct ip_moptions *imo)
2043 {
2044 	struct in_addr addr;
2045 	struct in_ifaddr *ia;
2046 	int error, optval;
2047 	u_char coptval;
2048 
2049 	error = 0;
2050 	switch (sopt->sopt_name) {
2051 	case IP_MULTICAST_VIF:
2052 		if (imo != NULL)
2053 			optval = imo->imo_multicast_vif;
2054 		else
2055 			optval = -1;
2056 		soopt_from_kbuf(sopt, &optval, sizeof optval);
2057 		break;
2058 
2059 	case IP_MULTICAST_IF:
2060 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
2061 			addr.s_addr = INADDR_ANY;
2062 		else if (imo->imo_multicast_addr.s_addr) {
2063 			/* return the value user has set */
2064 			addr = imo->imo_multicast_addr;
2065 		} else {
2066 			ia = IFP_TO_IA(imo->imo_multicast_ifp);
2067 			addr.s_addr = (ia == NULL) ? INADDR_ANY
2068 				: IA_SIN(ia)->sin_addr.s_addr;
2069 		}
2070 		soopt_from_kbuf(sopt, &addr, sizeof addr);
2071 		break;
2072 
2073 	case IP_MULTICAST_TTL:
2074 		if (imo == NULL)
2075 			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
2076 		else
2077 			optval = coptval = imo->imo_multicast_ttl;
2078 		if (sopt->sopt_valsize == 1)
2079 			soopt_from_kbuf(sopt, &coptval, 1);
2080 		else
2081 			soopt_from_kbuf(sopt, &optval, sizeof optval);
2082 		break;
2083 
2084 	case IP_MULTICAST_LOOP:
2085 		if (imo == NULL)
2086 			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
2087 		else
2088 			optval = coptval = imo->imo_multicast_loop;
2089 		if (sopt->sopt_valsize == 1)
2090 			soopt_from_kbuf(sopt, &coptval, 1);
2091 		else
2092 			soopt_from_kbuf(sopt, &optval, sizeof optval);
2093 		break;
2094 
2095 	default:
2096 		error = ENOPROTOOPT;
2097 		break;
2098 	}
2099 	return (error);
2100 }
2101 
2102 /*
2103  * Discard the IP multicast options.
2104  */
2105 void
2106 ip_freemoptions(struct ip_moptions *imo)
2107 {
2108 	int i;
2109 
2110 	if (imo != NULL) {
2111 		for (i = 0; i < imo->imo_num_memberships; ++i)
2112 			in_delmulti(imo->imo_membership[i]);
2113 		kfree(imo, M_IPMOPTS);
2114 	}
2115 }
2116 
2117 /*
2118  * Routine called from ip_output() to loop back a copy of an IP multicast
2119  * packet to the input queue of a specified interface.  Note that this
2120  * calls the output routine of the loopback "driver", but with an interface
2121  * pointer that might NOT be a loopback interface -- evil, but easier than
2122  * replicating that code here.
2123  */
2124 static void
2125 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst,
2126 	     int hlen)
2127 {
2128 	struct ip *ip;
2129 	struct mbuf *copym;
2130 
2131 	copym = m_copypacket(m, MB_DONTWAIT);
2132 	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
2133 		copym = m_pullup(copym, hlen);
2134 	if (copym != NULL) {
2135 		/*
2136 		 * if the checksum hasn't been computed, mark it as valid
2137 		 */
2138 		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2139 			in_delayed_cksum(copym);
2140 			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2141 			copym->m_pkthdr.csum_flags |=
2142 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2143 			copym->m_pkthdr.csum_data = 0xffff;
2144 		}
2145 		/*
2146 		 * We don't bother to fragment if the IP length is greater
2147 		 * than the interface's MTU.  Can this possibly matter?
2148 		 */
2149 		ip = mtod(copym, struct ip *);
2150 		ip->ip_len = htons(ip->ip_len);
2151 		ip->ip_off = htons(ip->ip_off);
2152 		ip->ip_sum = 0;
2153 		if (ip->ip_vhl == IP_VHL_BORING) {
2154 			ip->ip_sum = in_cksum_hdr(ip);
2155 		} else {
2156 			ip->ip_sum = in_cksum(copym, hlen);
2157 		}
2158 		/*
2159 		 * NB:
2160 		 * It's not clear whether there are any lingering
2161 		 * reentrancy problems in other areas which might
2162 		 * be exposed by using ip_input directly (in
2163 		 * particular, everything which modifies the packet
2164 		 * in-place).  Yet another option is using the
2165 		 * protosw directly to deliver the looped back
2166 		 * packet.  For the moment, we'll err on the side
2167 		 * of safety by using if_simloop().
2168 		 */
2169 #if 1 /* XXX */
2170 		if (dst->sin_family != AF_INET) {
2171 			kprintf("ip_mloopback: bad address family %d\n",
2172 						dst->sin_family);
2173 			dst->sin_family = AF_INET;
2174 		}
2175 #endif
2176 		get_mplock();	/* is if_simloop() mpsafe yet? */
2177 		if_simloop(ifp, copym, dst->sin_family, 0);
2178 		rel_mplock();
2179 	}
2180 }
2181