xref: /dragonfly/sys/netinet/tcp_input.c (revision 59a92d18)
1 /*
2  * Copyright (c) 2002, 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2002, 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
67  * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.38 2003/05/21 04:46:41 cjc Exp $
68  * $DragonFly: src/sys/netinet/tcp_input.c,v 1.68 2008/08/22 09:14:17 sephe Exp $
69  */
70 
71 #include "opt_ipfw.h"		/* for ipfw_fwd		*/
72 #include "opt_inet.h"
73 #include "opt_inet6.h"
74 #include "opt_ipsec.h"
75 #include "opt_tcpdebug.h"
76 #include "opt_tcp_input.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/sysctl.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/proc.h>		/* for proc0 declaration */
85 #include <sys/protosw.h>
86 #include <sys/socket.h>
87 #include <sys/socketvar.h>
88 #include <sys/syslog.h>
89 #include <sys/in_cksum.h>
90 
91 #include <sys/socketvar2.h>
92 
93 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
94 #include <machine/stdarg.h>
95 
96 #include <net/if.h>
97 #include <net/route.h>
98 
99 #include <netinet/in.h>
100 #include <netinet/in_systm.h>
101 #include <netinet/ip.h>
102 #include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM */
103 #include <netinet/in_var.h>
104 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
105 #include <netinet/in_pcb.h>
106 #include <netinet/ip_var.h>
107 #include <netinet/ip6.h>
108 #include <netinet/icmp6.h>
109 #include <netinet6/nd6.h>
110 #include <netinet6/ip6_var.h>
111 #include <netinet6/in6_pcb.h>
112 #include <netinet/tcp.h>
113 #include <netinet/tcp_fsm.h>
114 #include <netinet/tcp_seq.h>
115 #include <netinet/tcp_timer.h>
116 #include <netinet/tcp_timer2.h>
117 #include <netinet/tcp_var.h>
118 #include <netinet6/tcp6_var.h>
119 #include <netinet/tcpip.h>
120 
121 #ifdef TCPDEBUG
122 #include <netinet/tcp_debug.h>
123 
124 u_char tcp_saveipgen[40];    /* the size must be of max ip header, now IPv6 */
125 struct tcphdr tcp_savetcp;
126 #endif
127 
128 #ifdef FAST_IPSEC
129 #include <netproto/ipsec/ipsec.h>
130 #include <netproto/ipsec/ipsec6.h>
131 #endif
132 
133 #ifdef IPSEC
134 #include <netinet6/ipsec.h>
135 #include <netinet6/ipsec6.h>
136 #include <netproto/key/key.h>
137 #endif
138 
139 MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
140 
141 static int log_in_vain = 0;
142 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
143     &log_in_vain, 0, "Log all incoming TCP connections");
144 
145 static int blackhole = 0;
146 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
147     &blackhole, 0, "Do not send RST when dropping refused connections");
148 
149 int tcp_delack_enabled = 1;
150 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
151     &tcp_delack_enabled, 0,
152     "Delay ACK to try and piggyback it onto a data packet");
153 
154 #ifdef TCP_DROP_SYNFIN
155 static int drop_synfin = 0;
156 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
157     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
158 #endif
159 
160 static int tcp_do_limitedtransmit = 1;
161 SYSCTL_INT(_net_inet_tcp, OID_AUTO, limitedtransmit, CTLFLAG_RW,
162     &tcp_do_limitedtransmit, 0, "Enable RFC 3042 (Limited Transmit)");
163 
164 static int tcp_do_early_retransmit = 1;
165 SYSCTL_INT(_net_inet_tcp, OID_AUTO, earlyretransmit, CTLFLAG_RW,
166     &tcp_do_early_retransmit, 0, "Early retransmit");
167 
168 int tcp_aggregate_acks = 1;
169 SYSCTL_INT(_net_inet_tcp, OID_AUTO, aggregate_acks, CTLFLAG_RW,
170     &tcp_aggregate_acks, 0, "Aggregate built-up acks into one ack");
171 
172 int tcp_do_rfc3390 = 1;
173 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
174     &tcp_do_rfc3390, 0,
175     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
176 
177 static int tcp_do_eifel_detect = 1;
178 SYSCTL_INT(_net_inet_tcp, OID_AUTO, eifel, CTLFLAG_RW,
179     &tcp_do_eifel_detect, 0, "Eifel detection algorithm (RFC 3522)");
180 
181 static int tcp_do_abc = 1;
182 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc, CTLFLAG_RW,
183     &tcp_do_abc, 0,
184     "TCP Appropriate Byte Counting (RFC 3465)");
185 
186 /*
187  * Define as tunable for easy testing with SACK on and off.
188  * Warning:  do not change setting in the middle of an existing active TCP flow,
189  *   else strange things might happen to that flow.
190  */
191 int tcp_do_sack = 1;
192 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW,
193     &tcp_do_sack, 0, "Enable SACK Algorithms");
194 
195 int tcp_do_smartsack = 1;
196 SYSCTL_INT(_net_inet_tcp, OID_AUTO, smartsack, CTLFLAG_RW,
197     &tcp_do_smartsack, 0, "Enable Smart SACK Algorithms");
198 
199 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
200     "TCP Segment Reassembly Queue");
201 
202 int tcp_reass_maxseg = 0;
203 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RD,
204     &tcp_reass_maxseg, 0,
205     "Global maximum number of TCP Segments in Reassembly Queue");
206 
207 int tcp_reass_qsize = 0;
208 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
209     &tcp_reass_qsize, 0,
210     "Global number of TCP Segments currently in Reassembly Queue");
211 
212 static int tcp_reass_overflows = 0;
213 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
214     &tcp_reass_overflows, 0,
215     "Global number of TCP Segment Reassembly Queue Overflows");
216 
217 int tcp_do_autorcvbuf = 1;
218 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
219     &tcp_do_autorcvbuf, 0, "Enable automatic receive buffer sizing");
220 
221 int tcp_autorcvbuf_inc = 16*1024;
222 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
223     &tcp_autorcvbuf_inc, 0,
224     "Incrementor step size of automatic receive buffer");
225 
226 int tcp_autorcvbuf_max = 2*1024*1024;
227 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
228     &tcp_autorcvbuf_max, 0, "Max size of automatic receive buffer");
229 
230 
231 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, boolean_t);
232 static void	 tcp_pulloutofband(struct socket *,
233 		     struct tcphdr *, struct mbuf *, int);
234 static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
235 		     struct mbuf *);
236 static void	 tcp_xmit_timer(struct tcpcb *, int);
237 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *, int);
238 static void	 tcp_sack_rexmt(struct tcpcb *, struct tcphdr *);
239 
240 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
241 #ifdef INET6
242 #define ND6_HINT(tp) \
243 do { \
244 	if ((tp) && (tp)->t_inpcb && \
245 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) && \
246 	    (tp)->t_inpcb->in6p_route.ro_rt) \
247 		nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
248 } while (0)
249 #else
250 #define ND6_HINT(tp)
251 #endif
252 
253 /*
254  * Indicate whether this ack should be delayed.  We can delay the ack if
255  *	- delayed acks are enabled and
256  *	- there is no delayed ack timer in progress and
257  *	- our last ack wasn't a 0-sized window.  We never want to delay
258  *	  the ack that opens up a 0-sized window.
259  */
260 #define DELAY_ACK(tp) \
261 	(tcp_delack_enabled && !tcp_callout_pending(tp, tp->tt_delack) && \
262 	!(tp->t_flags & TF_RXWIN0SENT))
263 
264 #define acceptable_window_update(tp, th, tiwin)				\
265     (SEQ_LT(tp->snd_wl1, th->th_seq) ||					\
266      (tp->snd_wl1 == th->th_seq &&					\
267       (SEQ_LT(tp->snd_wl2, th->th_ack) ||				\
268        (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))
269 
270 static int
271 tcp_reass(struct tcpcb *tp, struct tcphdr *th, int *tlenp, struct mbuf *m)
272 {
273 	struct tseg_qent *q;
274 	struct tseg_qent *p = NULL;
275 	struct tseg_qent *te;
276 	struct socket *so = tp->t_inpcb->inp_socket;
277 	int flags;
278 
279 	/*
280 	 * Call with th == NULL after become established to
281 	 * force pre-ESTABLISHED data up to user socket.
282 	 */
283 	if (th == NULL)
284 		goto present;
285 
286 	/*
287 	 * Limit the number of segments in the reassembly queue to prevent
288 	 * holding on to too many segments (and thus running out of mbufs).
289 	 * Make sure to let the missing segment through which caused this
290 	 * queue.  Always keep one global queue entry spare to be able to
291 	 * process the missing segment.
292 	 */
293 	if (th->th_seq != tp->rcv_nxt &&
294 	    tcp_reass_qsize + 1 >= tcp_reass_maxseg) {
295 		tcp_reass_overflows++;
296 		tcpstat.tcps_rcvmemdrop++;
297 		m_freem(m);
298 		/* no SACK block to report */
299 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
300 		return (0);
301 	}
302 
303 	/* Allocate a new queue entry. */
304 	MALLOC(te, struct tseg_qent *, sizeof(struct tseg_qent), M_TSEGQ,
305 	       M_INTWAIT | M_NULLOK);
306 	if (te == NULL) {
307 		tcpstat.tcps_rcvmemdrop++;
308 		m_freem(m);
309 		/* no SACK block to report */
310 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
311 		return (0);
312 	}
313 	atomic_add_int(&tcp_reass_qsize, 1);
314 
315 	/*
316 	 * Find a segment which begins after this one does.
317 	 */
318 	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
319 		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
320 			break;
321 		p = q;
322 	}
323 
324 	/*
325 	 * If there is a preceding segment, it may provide some of
326 	 * our data already.  If so, drop the data from the incoming
327 	 * segment.  If it provides all of our data, drop us.
328 	 */
329 	if (p != NULL) {
330 		tcp_seq_diff_t i;
331 
332 		/* conversion to int (in i) handles seq wraparound */
333 		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
334 		if (i > 0) {		/* overlaps preceding segment */
335 			tp->t_flags |= (TF_DUPSEG | TF_ENCLOSESEG);
336 			/* enclosing block starts w/ preceding segment */
337 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
338 			if (i >= *tlenp) {
339 				/* preceding encloses incoming segment */
340 				tp->encloseblk.rblk_end = p->tqe_th->th_seq +
341 				    p->tqe_len;
342 				tcpstat.tcps_rcvduppack++;
343 				tcpstat.tcps_rcvdupbyte += *tlenp;
344 				m_freem(m);
345 				kfree(te, M_TSEGQ);
346 				atomic_add_int(&tcp_reass_qsize, -1);
347 				/*
348 				 * Try to present any queued data
349 				 * at the left window edge to the user.
350 				 * This is needed after the 3-WHS
351 				 * completes.
352 				 */
353 				goto present;	/* ??? */
354 			}
355 			m_adj(m, i);
356 			*tlenp -= i;
357 			th->th_seq += i;
358 			/* incoming segment end is enclosing block end */
359 			tp->encloseblk.rblk_end = th->th_seq + *tlenp +
360 			    ((th->th_flags & TH_FIN) != 0);
361 			/* trim end of reported D-SACK block */
362 			tp->reportblk.rblk_end = th->th_seq;
363 		}
364 	}
365 	tcpstat.tcps_rcvoopack++;
366 	tcpstat.tcps_rcvoobyte += *tlenp;
367 
368 	/*
369 	 * While we overlap succeeding segments trim them or,
370 	 * if they are completely covered, dequeue them.
371 	 */
372 	while (q) {
373 		tcp_seq_diff_t i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
374 		tcp_seq qend = q->tqe_th->th_seq + q->tqe_len;
375 		struct tseg_qent *nq;
376 
377 		if (i <= 0)
378 			break;
379 		if (!(tp->t_flags & TF_DUPSEG)) {    /* first time through */
380 			tp->t_flags |= (TF_DUPSEG | TF_ENCLOSESEG);
381 			tp->encloseblk = tp->reportblk;
382 			/* report trailing duplicate D-SACK segment */
383 			tp->reportblk.rblk_start = q->tqe_th->th_seq;
384 		}
385 		if ((tp->t_flags & TF_ENCLOSESEG) &&
386 		    SEQ_GT(qend, tp->encloseblk.rblk_end)) {
387 			/* extend enclosing block if one exists */
388 			tp->encloseblk.rblk_end = qend;
389 		}
390 		if (i < q->tqe_len) {
391 			q->tqe_th->th_seq += i;
392 			q->tqe_len -= i;
393 			m_adj(q->tqe_m, i);
394 			break;
395 		}
396 
397 		nq = LIST_NEXT(q, tqe_q);
398 		LIST_REMOVE(q, tqe_q);
399 		m_freem(q->tqe_m);
400 		kfree(q, M_TSEGQ);
401 		atomic_add_int(&tcp_reass_qsize, -1);
402 		q = nq;
403 	}
404 
405 	/* Insert the new segment queue entry into place. */
406 	te->tqe_m = m;
407 	te->tqe_th = th;
408 	te->tqe_len = *tlenp;
409 
410 	/* check if can coalesce with following segment */
411 	if (q != NULL && (th->th_seq + *tlenp == q->tqe_th->th_seq)) {
412 		tcp_seq tend = te->tqe_th->th_seq + te->tqe_len;
413 
414 		te->tqe_len += q->tqe_len;
415 		if (q->tqe_th->th_flags & TH_FIN)
416 			te->tqe_th->th_flags |= TH_FIN;
417 		m_cat(te->tqe_m, q->tqe_m);
418 		tp->encloseblk.rblk_end = tend;
419 		/*
420 		 * When not reporting a duplicate segment, use
421 		 * the larger enclosing block as the SACK block.
422 		 */
423 		if (!(tp->t_flags & TF_DUPSEG))
424 			tp->reportblk.rblk_end = tend;
425 		LIST_REMOVE(q, tqe_q);
426 		kfree(q, M_TSEGQ);
427 		atomic_add_int(&tcp_reass_qsize, -1);
428 	}
429 
430 	if (p == NULL) {
431 		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
432 	} else {
433 		/* check if can coalesce with preceding segment */
434 		if (p->tqe_th->th_seq + p->tqe_len == th->th_seq) {
435 			p->tqe_len += te->tqe_len;
436 			m_cat(p->tqe_m, te->tqe_m);
437 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
438 			/*
439 			 * When not reporting a duplicate segment, use
440 			 * the larger enclosing block as the SACK block.
441 			 */
442 			if (!(tp->t_flags & TF_DUPSEG))
443 				tp->reportblk.rblk_start = p->tqe_th->th_seq;
444 			kfree(te, M_TSEGQ);
445 			atomic_add_int(&tcp_reass_qsize, -1);
446 		} else {
447 			LIST_INSERT_AFTER(p, te, tqe_q);
448 		}
449 	}
450 
451 present:
452 	/*
453 	 * Present data to user, advancing rcv_nxt through
454 	 * completed sequence space.
455 	 */
456 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
457 		return (0);
458 	q = LIST_FIRST(&tp->t_segq);
459 	if (q == NULL || q->tqe_th->th_seq != tp->rcv_nxt)
460 		return (0);
461 	tp->rcv_nxt += q->tqe_len;
462 	if (!(tp->t_flags & TF_DUPSEG))	{
463 		/* no SACK block to report since ACK advanced */
464 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
465 	}
466 	/* no enclosing block to report since ACK advanced */
467 	tp->t_flags &= ~TF_ENCLOSESEG;
468 	flags = q->tqe_th->th_flags & TH_FIN;
469 	LIST_REMOVE(q, tqe_q);
470 	KASSERT(LIST_EMPTY(&tp->t_segq) ||
471 		LIST_FIRST(&tp->t_segq)->tqe_th->th_seq != tp->rcv_nxt,
472 		("segment not coalesced"));
473 	if (so->so_state & SS_CANTRCVMORE) {
474 		m_freem(q->tqe_m);
475 	} else {
476 		lwkt_gettoken(&so->so_rcv.ssb_token);
477 		ssb_appendstream(&so->so_rcv, q->tqe_m);
478 		lwkt_reltoken(&so->so_rcv.ssb_token);
479 	}
480 	kfree(q, M_TSEGQ);
481 	atomic_add_int(&tcp_reass_qsize, -1);
482 	ND6_HINT(tp);
483 	sorwakeup(so);
484 	return (flags);
485 }
486 
487 /*
488  * TCP input routine, follows pages 65-76 of the
489  * protocol specification dated September, 1981 very closely.
490  */
491 #ifdef INET6
492 int
493 tcp6_input(struct mbuf **mp, int *offp, int proto)
494 {
495 	struct mbuf *m = *mp;
496 	struct in6_ifaddr *ia6;
497 
498 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
499 
500 	/*
501 	 * draft-itojun-ipv6-tcp-to-anycast
502 	 * better place to put this in?
503 	 */
504 	ia6 = ip6_getdstifaddr(m);
505 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
506 		struct ip6_hdr *ip6;
507 
508 		ip6 = mtod(m, struct ip6_hdr *);
509 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
510 			    offsetof(struct ip6_hdr, ip6_dst));
511 		return (IPPROTO_DONE);
512 	}
513 
514 	tcp_input(mp, offp, proto);
515 	return (IPPROTO_DONE);
516 }
517 #endif
518 
519 int
520 tcp_input(struct mbuf **mp, int *offp, int proto)
521 {
522 	int off0;
523 	struct tcphdr *th;
524 	struct ip *ip = NULL;
525 	struct ipovly *ipov;
526 	struct inpcb *inp = NULL;
527 	u_char *optp = NULL;
528 	int optlen = 0;
529 	int tlen, off;
530 	int len = 0;
531 	int drop_hdrlen;
532 	struct tcpcb *tp = NULL;
533 	int thflags;
534 	struct socket *so = 0;
535 	int todrop, acked;
536 	boolean_t ourfinisacked, needoutput = FALSE;
537 	u_long tiwin;
538 	int recvwin;
539 	struct tcpopt to;		/* options in this segment */
540 	struct sockaddr_in *next_hop = NULL;
541 	int rstreason; /* For badport_bandlim accounting purposes */
542 	int cpu;
543 	struct ip6_hdr *ip6 = NULL;
544 	struct mbuf *m;
545 #ifdef INET6
546 	boolean_t isipv6;
547 #else
548 	const boolean_t isipv6 = FALSE;
549 #endif
550 #ifdef TCPDEBUG
551 	short ostate = 0;
552 #endif
553 
554 	off0 = *offp;
555 	m = *mp;
556 	*mp = NULL;
557 
558 	tcpstat.tcps_rcvtotal++;
559 
560 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
561 		struct m_tag *mtag;
562 
563 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
564 		KKASSERT(mtag != NULL);
565 		next_hop = m_tag_data(mtag);
566 	}
567 
568 #ifdef INET6
569 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? TRUE : FALSE;
570 #endif
571 
572 	if (isipv6) {
573 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
574 		ip6 = mtod(m, struct ip6_hdr *);
575 		tlen = (sizeof *ip6) + ntohs(ip6->ip6_plen) - off0;
576 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
577 			tcpstat.tcps_rcvbadsum++;
578 			goto drop;
579 		}
580 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
581 
582 		/*
583 		 * Be proactive about unspecified IPv6 address in source.
584 		 * As we use all-zero to indicate unbounded/unconnected pcb,
585 		 * unspecified IPv6 address can be used to confuse us.
586 		 *
587 		 * Note that packets with unspecified IPv6 destination is
588 		 * already dropped in ip6_input.
589 		 */
590 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
591 			/* XXX stat */
592 			goto drop;
593 		}
594 	} else {
595 		/*
596 		 * Get IP and TCP header together in first mbuf.
597 		 * Note: IP leaves IP header in first mbuf.
598 		 */
599 		if (off0 > sizeof(struct ip)) {
600 			ip_stripoptions(m);
601 			off0 = sizeof(struct ip);
602 		}
603 		/* already checked and pulled up in ip_demux() */
604 		KASSERT(m->m_len >= sizeof(struct tcpiphdr),
605 		    ("TCP header not in one mbuf: m->m_len %d", m->m_len));
606 		ip = mtod(m, struct ip *);
607 		ipov = (struct ipovly *)ip;
608 		th = (struct tcphdr *)((caddr_t)ip + off0);
609 		tlen = ip->ip_len;
610 
611 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
612 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
613 				th->th_sum = m->m_pkthdr.csum_data;
614 			else
615 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
616 						ip->ip_dst.s_addr,
617 						htonl(m->m_pkthdr.csum_data +
618 							ip->ip_len +
619 							IPPROTO_TCP));
620 			th->th_sum ^= 0xffff;
621 		} else {
622 			/*
623 			 * Checksum extended TCP header and data.
624 			 */
625 			len = sizeof(struct ip) + tlen;
626 			bzero(ipov->ih_x1, sizeof ipov->ih_x1);
627 			ipov->ih_len = (u_short)tlen;
628 			ipov->ih_len = htons(ipov->ih_len);
629 			th->th_sum = in_cksum(m, len);
630 		}
631 		if (th->th_sum) {
632 			tcpstat.tcps_rcvbadsum++;
633 			goto drop;
634 		}
635 #ifdef INET6
636 		/* Re-initialization for later version check */
637 		ip->ip_v = IPVERSION;
638 #endif
639 	}
640 
641 	/*
642 	 * Check that TCP offset makes sense,
643 	 * pull out TCP options and adjust length.		XXX
644 	 */
645 	off = th->th_off << 2;
646 	/* already checked and pulled up in ip_demux() */
647 	KASSERT(off >= sizeof(struct tcphdr) && off <= tlen,
648 	    ("bad TCP data offset %d (tlen %d)", off, tlen));
649 	tlen -= off;	/* tlen is used instead of ti->ti_len */
650 	if (off > sizeof(struct tcphdr)) {
651 		if (isipv6) {
652 			IP6_EXTHDR_CHECK(m, off0, off, IPPROTO_DONE);
653 			ip6 = mtod(m, struct ip6_hdr *);
654 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
655 		} else {
656 			/* already pulled up in ip_demux() */
657 			KASSERT(m->m_len >= sizeof(struct ip) + off,
658 			    ("TCP header and options not in one mbuf: "
659 			     "m_len %d, off %d", m->m_len, off));
660 		}
661 		optlen = off - sizeof(struct tcphdr);
662 		optp = (u_char *)(th + 1);
663 	}
664 	thflags = th->th_flags;
665 
666 #ifdef TCP_DROP_SYNFIN
667 	/*
668 	 * If the drop_synfin option is enabled, drop all packets with
669 	 * both the SYN and FIN bits set. This prevents e.g. nmap from
670 	 * identifying the TCP/IP stack.
671 	 *
672 	 * This is a violation of the TCP specification.
673 	 */
674 	if (drop_synfin && (thflags & (TH_SYN | TH_FIN)) == (TH_SYN | TH_FIN))
675 		goto drop;
676 #endif
677 
678 	/*
679 	 * Convert TCP protocol specific fields to host format.
680 	 */
681 	th->th_seq = ntohl(th->th_seq);
682 	th->th_ack = ntohl(th->th_ack);
683 	th->th_win = ntohs(th->th_win);
684 	th->th_urp = ntohs(th->th_urp);
685 
686 	/*
687 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
688 	 * until after ip6_savecontrol() is called and before other functions
689 	 * which don't want those proto headers.
690 	 * Because ip6_savecontrol() is going to parse the mbuf to
691 	 * search for data to be passed up to user-land, it wants mbuf
692 	 * parameters to be unchanged.
693 	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
694 	 * latest version of the advanced API (20020110).
695 	 */
696 	drop_hdrlen = off0 + off;
697 
698 	/*
699 	 * Locate pcb for segment.
700 	 */
701 findpcb:
702 	/* IPFIREWALL_FORWARD section */
703 	if (next_hop != NULL && !isipv6) {  /* IPv6 support is not there yet */
704 		/*
705 		 * Transparently forwarded. Pretend to be the destination.
706 		 * already got one like this?
707 		 */
708 		cpu = mycpu->gd_cpuid;
709 		inp = in_pcblookup_hash(&tcbinfo[cpu],
710 					ip->ip_src, th->th_sport,
711 					ip->ip_dst, th->th_dport,
712 					0, m->m_pkthdr.rcvif);
713 		if (!inp) {
714 			/*
715 			 * It's new.  Try to find the ambushing socket.
716 			 */
717 
718 			/*
719 			 * The rest of the ipfw code stores the port in
720 			 * host order.  XXX
721 			 * (The IP address is still in network order.)
722 			 */
723 			in_port_t dport = next_hop->sin_port ?
724 						htons(next_hop->sin_port) :
725 						th->th_dport;
726 
727 			cpu = tcp_addrcpu(ip->ip_src.s_addr, th->th_sport,
728 					  next_hop->sin_addr.s_addr, dport);
729 			inp = in_pcblookup_hash(&tcbinfo[cpu],
730 						ip->ip_src, th->th_sport,
731 						next_hop->sin_addr, dport,
732 						1, m->m_pkthdr.rcvif);
733 		}
734 	} else {
735 		if (isipv6) {
736 			inp = in6_pcblookup_hash(&tcbinfo[0],
737 						 &ip6->ip6_src, th->th_sport,
738 						 &ip6->ip6_dst, th->th_dport,
739 						 1, m->m_pkthdr.rcvif);
740 		} else {
741 			cpu = mycpu->gd_cpuid;
742 			inp = in_pcblookup_hash(&tcbinfo[cpu],
743 						ip->ip_src, th->th_sport,
744 						ip->ip_dst, th->th_dport,
745 						1, m->m_pkthdr.rcvif);
746 		}
747 	}
748 
749 	/*
750 	 * If the state is CLOSED (i.e., TCB does not exist) then
751 	 * all data in the incoming segment is discarded.
752 	 * If the TCB exists but is in CLOSED state, it is embryonic,
753 	 * but should either do a listen or a connect soon.
754 	 */
755 	if (inp == NULL) {
756 		if (log_in_vain) {
757 #ifdef INET6
758 			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
759 #else
760 			char dbuf[sizeof "aaa.bbb.ccc.ddd"];
761 			char sbuf[sizeof "aaa.bbb.ccc.ddd"];
762 #endif
763 			if (isipv6) {
764 				strcpy(dbuf, "[");
765 				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
766 				strcat(dbuf, "]");
767 				strcpy(sbuf, "[");
768 				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
769 				strcat(sbuf, "]");
770 			} else {
771 				strcpy(dbuf, inet_ntoa(ip->ip_dst));
772 				strcpy(sbuf, inet_ntoa(ip->ip_src));
773 			}
774 			switch (log_in_vain) {
775 			case 1:
776 				if (!(thflags & TH_SYN))
777 					break;
778 			case 2:
779 				log(LOG_INFO,
780 				    "Connection attempt to TCP %s:%d "
781 				    "from %s:%d flags:0x%02x\n",
782 				    dbuf, ntohs(th->th_dport), sbuf,
783 				    ntohs(th->th_sport), thflags);
784 				break;
785 			default:
786 				break;
787 			}
788 		}
789 		if (blackhole) {
790 			switch (blackhole) {
791 			case 1:
792 				if (thflags & TH_SYN)
793 					goto drop;
794 				break;
795 			case 2:
796 				goto drop;
797 			default:
798 				goto drop;
799 			}
800 		}
801 		rstreason = BANDLIM_RST_CLOSEDPORT;
802 		goto dropwithreset;
803 	}
804 
805 #ifdef IPSEC
806 	if (isipv6) {
807 		if (ipsec6_in_reject_so(m, inp->inp_socket)) {
808 			ipsec6stat.in_polvio++;
809 			goto drop;
810 		}
811 	} else {
812 		if (ipsec4_in_reject_so(m, inp->inp_socket)) {
813 			ipsecstat.in_polvio++;
814 			goto drop;
815 		}
816 	}
817 #endif
818 #ifdef FAST_IPSEC
819 	if (isipv6) {
820 		if (ipsec6_in_reject(m, inp))
821 			goto drop;
822 	} else {
823 		if (ipsec4_in_reject(m, inp))
824 			goto drop;
825 	}
826 #endif
827 	/* Check the minimum TTL for socket. */
828 #ifdef INET6
829 	if ((isipv6 ? ip6->ip6_hlim : ip->ip_ttl) < inp->inp_ip_minttl)
830 		goto drop;
831 #endif
832 
833 	tp = intotcpcb(inp);
834 	if (tp == NULL) {
835 		rstreason = BANDLIM_RST_CLOSEDPORT;
836 		goto dropwithreset;
837 	}
838 	if (tp->t_state <= TCPS_CLOSED)
839 		goto drop;
840 
841 	/* Unscale the window into a 32-bit value. */
842 	if (!(thflags & TH_SYN))
843 		tiwin = th->th_win << tp->snd_scale;
844 	else
845 		tiwin = th->th_win;
846 
847 	so = inp->inp_socket;
848 
849 #ifdef TCPDEBUG
850 	if (so->so_options & SO_DEBUG) {
851 		ostate = tp->t_state;
852 		if (isipv6)
853 			bcopy(ip6, tcp_saveipgen, sizeof(*ip6));
854 		else
855 			bcopy(ip, tcp_saveipgen, sizeof(*ip));
856 		tcp_savetcp = *th;
857 	}
858 #endif
859 
860 	bzero(&to, sizeof to);
861 
862 	if (so->so_options & SO_ACCEPTCONN) {
863 		struct in_conninfo inc;
864 
865 #ifdef INET6
866 		inc.inc_isipv6 = (isipv6 == TRUE);
867 #endif
868 		if (isipv6) {
869 			inc.inc6_faddr = ip6->ip6_src;
870 			inc.inc6_laddr = ip6->ip6_dst;
871 			inc.inc6_route.ro_rt = NULL;		/* XXX */
872 		} else {
873 			inc.inc_faddr = ip->ip_src;
874 			inc.inc_laddr = ip->ip_dst;
875 			inc.inc_route.ro_rt = NULL;		/* XXX */
876 		}
877 		inc.inc_fport = th->th_sport;
878 		inc.inc_lport = th->th_dport;
879 
880 		/*
881 		 * If the state is LISTEN then ignore segment if it contains
882 		 * a RST.  If the segment contains an ACK then it is bad and
883 		 * send a RST.  If it does not contain a SYN then it is not
884 		 * interesting; drop it.
885 		 *
886 		 * If the state is SYN_RECEIVED (syncache) and seg contains
887 		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
888 		 * contains a RST, check the sequence number to see if it
889 		 * is a valid reset segment.
890 		 */
891 		if ((thflags & (TH_RST | TH_ACK | TH_SYN)) != TH_SYN) {
892 			if ((thflags & (TH_RST | TH_ACK | TH_SYN)) == TH_ACK) {
893 				if (!syncache_expand(&inc, th, &so, m)) {
894 					/*
895 					 * No syncache entry, or ACK was not
896 					 * for our SYN/ACK.  Send a RST.
897 					 */
898 					tcpstat.tcps_badsyn++;
899 					rstreason = BANDLIM_RST_OPENPORT;
900 					goto dropwithreset;
901 				}
902 
903 				/*
904 				 * Could not complete 3-way handshake,
905 				 * connection is being closed down, and
906 				 * syncache will free mbuf.
907 				 */
908 				if (so == NULL)
909 					return(IPPROTO_DONE);
910 
911 				/*
912 				 * We must be in the correct protocol thread
913 				 * for this connection.
914 				 */
915 				KKASSERT(so->so_port == &curthread->td_msgport);
916 
917 				/*
918 				 * Socket is created in state SYN_RECEIVED.
919 				 * Continue processing segment.
920 				 */
921 				inp = so->so_pcb;
922 				tp = intotcpcb(inp);
923 				/*
924 				 * This is what would have happened in
925 				 * tcp_output() when the SYN,ACK was sent.
926 				 */
927 				tp->snd_up = tp->snd_una;
928 				tp->snd_max = tp->snd_nxt = tp->iss + 1;
929 				tp->last_ack_sent = tp->rcv_nxt;
930 /*
931  * XXX possible bug - it doesn't appear that tp->snd_wnd is unscaled
932  * until the _second_ ACK is received:
933  *    rcv SYN (set wscale opts)	 --> send SYN/ACK, set snd_wnd = window.
934  *    rcv ACK, calculate tiwin --> process SYN_RECEIVED, determine wscale,
935  *	  move to ESTAB, set snd_wnd to tiwin.
936  */
937 				tp->snd_wnd = tiwin;	/* unscaled */
938 				goto after_listen;
939 			}
940 			if (thflags & TH_RST) {
941 				syncache_chkrst(&inc, th);
942 				goto drop;
943 			}
944 			if (thflags & TH_ACK) {
945 				syncache_badack(&inc);
946 				tcpstat.tcps_badsyn++;
947 				rstreason = BANDLIM_RST_OPENPORT;
948 				goto dropwithreset;
949 			}
950 			goto drop;
951 		}
952 
953 		/*
954 		 * Segment's flags are (SYN) or (SYN | FIN).
955 		 */
956 #ifdef INET6
957 		/*
958 		 * If deprecated address is forbidden,
959 		 * we do not accept SYN to deprecated interface
960 		 * address to prevent any new inbound connection from
961 		 * getting established.
962 		 * When we do not accept SYN, we send a TCP RST,
963 		 * with deprecated source address (instead of dropping
964 		 * it).  We compromise it as it is much better for peer
965 		 * to send a RST, and RST will be the final packet
966 		 * for the exchange.
967 		 *
968 		 * If we do not forbid deprecated addresses, we accept
969 		 * the SYN packet.  RFC2462 does not suggest dropping
970 		 * SYN in this case.
971 		 * If we decipher RFC2462 5.5.4, it says like this:
972 		 * 1. use of deprecated addr with existing
973 		 *    communication is okay - "SHOULD continue to be
974 		 *    used"
975 		 * 2. use of it with new communication:
976 		 *   (2a) "SHOULD NOT be used if alternate address
977 		 *	  with sufficient scope is available"
978 		 *   (2b) nothing mentioned otherwise.
979 		 * Here we fall into (2b) case as we have no choice in
980 		 * our source address selection - we must obey the peer.
981 		 *
982 		 * The wording in RFC2462 is confusing, and there are
983 		 * multiple description text for deprecated address
984 		 * handling - worse, they are not exactly the same.
985 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
986 		 */
987 		if (isipv6 && !ip6_use_deprecated) {
988 			struct in6_ifaddr *ia6;
989 
990 			if ((ia6 = ip6_getdstifaddr(m)) &&
991 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
992 				tp = NULL;
993 				rstreason = BANDLIM_RST_OPENPORT;
994 				goto dropwithreset;
995 			}
996 		}
997 #endif
998 		/*
999 		 * If it is from this socket, drop it, it must be forged.
1000 		 * Don't bother responding if the destination was a broadcast.
1001 		 */
1002 		if (th->th_dport == th->th_sport) {
1003 			if (isipv6) {
1004 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
1005 						       &ip6->ip6_src))
1006 					goto drop;
1007 			} else {
1008 				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
1009 					goto drop;
1010 			}
1011 		}
1012 		/*
1013 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1014 		 *
1015 		 * Note that it is quite possible to receive unicast
1016 		 * link-layer packets with a broadcast IP address. Use
1017 		 * in_broadcast() to find them.
1018 		 */
1019 		if (m->m_flags & (M_BCAST | M_MCAST))
1020 			goto drop;
1021 		if (isipv6) {
1022 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1023 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
1024 				goto drop;
1025 		} else {
1026 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1027 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1028 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1029 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1030 				goto drop;
1031 		}
1032 		/*
1033 		 * SYN appears to be valid; create compressed TCP state
1034 		 * for syncache, or perform t/tcp connection.
1035 		 */
1036 		if (so->so_qlen <= so->so_qlimit) {
1037 			tcp_dooptions(&to, optp, optlen, TRUE);
1038 			if (!syncache_add(&inc, &to, th, &so, m))
1039 				goto drop;
1040 
1041 			/*
1042 			 * Entry added to syncache, mbuf used to
1043 			 * send SYN,ACK packet.
1044 			 */
1045 			if (so == NULL)
1046 				return(IPPROTO_DONE);
1047 
1048 			/*
1049 			 * We must be in the correct protocol thread for
1050 			 * this connection.
1051 			 */
1052 			KKASSERT(so->so_port == &curthread->td_msgport);
1053 
1054 			inp = so->so_pcb;
1055 			tp = intotcpcb(inp);
1056 			tp->snd_wnd = tiwin;
1057 			tp->t_starttime = ticks;
1058 			tp->t_state = TCPS_ESTABLISHED;
1059 
1060 			/*
1061 			 * If there is a FIN, or if there is data and the
1062 			 * connection is local, then delay SYN,ACK(SYN) in
1063 			 * the hope of piggy-backing it on a response
1064 			 * segment.  Otherwise must send ACK now in case
1065 			 * the other side is slow starting.
1066 			 */
1067 			if (DELAY_ACK(tp) &&
1068 			    ((thflags & TH_FIN) ||
1069 			     (tlen != 0 &&
1070 			      ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
1071 			       (!isipv6 && in_localaddr(inp->inp_faddr)))))) {
1072 				tcp_callout_reset(tp, tp->tt_delack,
1073 				    tcp_delacktime, tcp_timer_delack);
1074 				tp->t_flags |= TF_NEEDSYN;
1075 			} else {
1076 				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1077 			}
1078 
1079 			tcpstat.tcps_connects++;
1080 			soisconnected(so);
1081 			goto trimthenstep6;
1082 		}
1083 		goto drop;
1084 	}
1085 
1086 after_listen:
1087 	/*
1088 	 * Should not happen - syncache should pick up these connections.
1089 	 *
1090 	 * Once we are past handling listen sockets we must be in the
1091 	 * correct protocol processing thread.
1092 	 */
1093 	KASSERT(tp->t_state != TCPS_LISTEN, ("tcp_input: TCPS_LISTEN state"));
1094 	KKASSERT(so->so_port == &curthread->td_msgport);
1095 
1096 	/*
1097 	 * This is the second part of the MSS DoS prevention code (after
1098 	 * minmss on the sending side) and it deals with too many too small
1099 	 * tcp packets in a too short timeframe (1 second).
1100 	 *
1101 	 * XXX Removed.  This code was crap.  It does not scale to network
1102 	 *     speed, and default values break NFS.  Gone.
1103 	 */
1104 	/* REMOVED */
1105 
1106 	/*
1107 	 * Segment received on connection.
1108 	 *
1109 	 * Reset idle time and keep-alive timer.  Don't waste time if less
1110 	 * then a second has elapsed.
1111 	 */
1112 	if ((int)(ticks - tp->t_rcvtime) > hz)
1113 		tcp_timer_keep_activity(tp, thflags);
1114 
1115 	/*
1116 	 * Process options.
1117 	 * XXX this is tradtitional behavior, may need to be cleaned up.
1118 	 */
1119 	tcp_dooptions(&to, optp, optlen, (thflags & TH_SYN) != 0);
1120 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1121 		if (to.to_flags & TOF_SCALE) {
1122 			tp->t_flags |= TF_RCVD_SCALE;
1123 			tp->requested_s_scale = to.to_requested_s_scale;
1124 		}
1125 		if (to.to_flags & TOF_TS) {
1126 			tp->t_flags |= TF_RCVD_TSTMP;
1127 			tp->ts_recent = to.to_tsval;
1128 			tp->ts_recent_age = ticks;
1129 		}
1130 		if (to.to_flags & TOF_MSS)
1131 			tcp_mss(tp, to.to_mss);
1132 		/*
1133 		 * Only set the TF_SACK_PERMITTED per-connection flag
1134 		 * if we got a SACK_PERMITTED option from the other side
1135 		 * and the global tcp_do_sack variable is true.
1136 		 */
1137 		if (tcp_do_sack && (to.to_flags & TOF_SACK_PERMITTED))
1138 			tp->t_flags |= TF_SACK_PERMITTED;
1139 	}
1140 
1141 	/*
1142 	 * Header prediction: check for the two common cases
1143 	 * of a uni-directional data xfer.  If the packet has
1144 	 * no control flags, is in-sequence, the window didn't
1145 	 * change and we're not retransmitting, it's a
1146 	 * candidate.  If the length is zero and the ack moved
1147 	 * forward, we're the sender side of the xfer.  Just
1148 	 * free the data acked & wake any higher level process
1149 	 * that was blocked waiting for space.  If the length
1150 	 * is non-zero and the ack didn't move, we're the
1151 	 * receiver side.  If we're getting packets in-order
1152 	 * (the reassembly queue is empty), add the data to
1153 	 * the socket buffer and note that we need a delayed ack.
1154 	 * Make sure that the hidden state-flags are also off.
1155 	 * Since we check for TCPS_ESTABLISHED above, it can only
1156 	 * be TH_NEEDSYN.
1157 	 */
1158 	if (tp->t_state == TCPS_ESTABLISHED &&
1159 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1160 	    !(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)) &&
1161 	    (!(to.to_flags & TOF_TS) ||
1162 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1163 	    th->th_seq == tp->rcv_nxt &&
1164 	    tp->snd_nxt == tp->snd_max) {
1165 
1166 		/*
1167 		 * If last ACK falls within this segment's sequence numbers,
1168 		 * record the timestamp.
1169 		 * NOTE that the test is modified according to the latest
1170 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1171 		 */
1172 		if ((to.to_flags & TOF_TS) &&
1173 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1174 			tp->ts_recent_age = ticks;
1175 			tp->ts_recent = to.to_tsval;
1176 		}
1177 
1178 		if (tlen == 0) {
1179 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1180 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1181 			    tp->snd_cwnd >= tp->snd_wnd &&
1182 			    !IN_FASTRECOVERY(tp)) {
1183 				/*
1184 				 * This is a pure ack for outstanding data.
1185 				 */
1186 				++tcpstat.tcps_predack;
1187 				/*
1188 				 * "bad retransmit" recovery
1189 				 *
1190 				 * If Eifel detection applies, then
1191 				 * it is deterministic, so use it
1192 				 * unconditionally over the old heuristic.
1193 				 * Otherwise, fall back to the old heuristic.
1194 				 */
1195 				if (tcp_do_eifel_detect &&
1196 				    (to.to_flags & TOF_TS) && to.to_tsecr &&
1197 				    (tp->t_flags & TF_FIRSTACCACK)) {
1198 					/* Eifel detection applicable. */
1199 					if (to.to_tsecr < tp->t_rexmtTS) {
1200 						tcp_revert_congestion_state(tp);
1201 						++tcpstat.tcps_eifeldetected;
1202 					}
1203 				} else if (tp->t_rxtshift == 1 &&
1204 					   ticks < tp->t_badrxtwin) {
1205 					tcp_revert_congestion_state(tp);
1206 					++tcpstat.tcps_rttdetected;
1207 				}
1208 				tp->t_flags &= ~(TF_FIRSTACCACK |
1209 						 TF_FASTREXMT | TF_EARLYREXMT);
1210 				/*
1211 				 * Recalculate the retransmit timer / rtt.
1212 				 *
1213 				 * Some machines (certain windows boxes)
1214 				 * send broken timestamp replies during the
1215 				 * SYN+ACK phase, ignore timestamps of 0.
1216 				 */
1217 				if ((to.to_flags & TOF_TS) && to.to_tsecr) {
1218 					tcp_xmit_timer(tp,
1219 						       ticks - to.to_tsecr + 1);
1220 				} else if (tp->t_rtttime &&
1221 					   SEQ_GT(th->th_ack, tp->t_rtseq)) {
1222 					tcp_xmit_timer(tp,
1223 						       ticks - tp->t_rtttime);
1224 				}
1225 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1226 				acked = th->th_ack - tp->snd_una;
1227 				tcpstat.tcps_rcvackpack++;
1228 				tcpstat.tcps_rcvackbyte += acked;
1229 				sbdrop(&so->so_snd.sb, acked);
1230 				tp->snd_recover = th->th_ack - 1;
1231 				tp->snd_una = th->th_ack;
1232 				tp->t_dupacks = 0;
1233 				/*
1234 				 * Update window information.
1235 				 */
1236 				if (tiwin != tp->snd_wnd &&
1237 				    acceptable_window_update(tp, th, tiwin)) {
1238 					/* keep track of pure window updates */
1239 					if (tp->snd_wl2 == th->th_ack &&
1240 					    tiwin > tp->snd_wnd)
1241 						tcpstat.tcps_rcvwinupd++;
1242 					tp->snd_wnd = tiwin;
1243 					tp->snd_wl1 = th->th_seq;
1244 					tp->snd_wl2 = th->th_ack;
1245 					if (tp->snd_wnd > tp->max_sndwnd)
1246 						tp->max_sndwnd = tp->snd_wnd;
1247 				}
1248 				m_freem(m);
1249 				ND6_HINT(tp); /* some progress has been done */
1250 				/*
1251 				 * If all outstanding data are acked, stop
1252 				 * retransmit timer, otherwise restart timer
1253 				 * using current (possibly backed-off) value.
1254 				 * If process is waiting for space,
1255 				 * wakeup/selwakeup/signal.  If data
1256 				 * are ready to send, let tcp_output
1257 				 * decide between more output or persist.
1258 				 */
1259 				if (tp->snd_una == tp->snd_max) {
1260 					tcp_callout_stop(tp, tp->tt_rexmt);
1261 				} else if (!tcp_callout_active(tp,
1262 					    tp->tt_persist)) {
1263 					tcp_callout_reset(tp, tp->tt_rexmt,
1264 					    tp->t_rxtcur, tcp_timer_rexmt);
1265 				}
1266 				sowwakeup(so);
1267 				if (so->so_snd.ssb_cc > 0)
1268 					tcp_output(tp);
1269 				return(IPPROTO_DONE);
1270 			}
1271 		} else if (tiwin == tp->snd_wnd &&
1272 		    th->th_ack == tp->snd_una &&
1273 		    LIST_EMPTY(&tp->t_segq) &&
1274 		    tlen <= ssb_space(&so->so_rcv)) {
1275 			u_long newsize = 0;	/* automatic sockbuf scaling */
1276 			/*
1277 			 * This is a pure, in-sequence data packet
1278 			 * with nothing on the reassembly queue and
1279 			 * we have enough buffer space to take it.
1280 			 */
1281 			++tcpstat.tcps_preddat;
1282 			tp->rcv_nxt += tlen;
1283 			tcpstat.tcps_rcvpack++;
1284 			tcpstat.tcps_rcvbyte += tlen;
1285 			ND6_HINT(tp);	/* some progress has been done */
1286 		/*
1287 		 * Automatic sizing of receive socket buffer.  Often the send
1288 		 * buffer size is not optimally adjusted to the actual network
1289 		 * conditions at hand (delay bandwidth product).  Setting the
1290 		 * buffer size too small limits throughput on links with high
1291 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1292 		 *
1293 		 * On the receive side the socket buffer memory is only rarely
1294 		 * used to any significant extent.  This allows us to be much
1295 		 * more aggressive in scaling the receive socket buffer.  For
1296 		 * the case that the buffer space is actually used to a large
1297 		 * extent and we run out of kernel memory we can simply drop
1298 		 * the new segments; TCP on the sender will just retransmit it
1299 		 * later.  Setting the buffer size too big may only consume too
1300 		 * much kernel memory if the application doesn't read() from
1301 		 * the socket or packet loss or reordering makes use of the
1302 		 * reassembly queue.
1303 		 *
1304 		 * The criteria to step up the receive buffer one notch are:
1305 		 *  1. the number of bytes received during the time it takes
1306 		 *     one timestamp to be reflected back to us (the RTT);
1307 		 *  2. received bytes per RTT is within seven eighth of the
1308 		 *     current socket buffer size;
1309 		 *  3. receive buffer size has not hit maximal automatic size;
1310 		 *
1311 		 * This algorithm does one step per RTT at most and only if
1312 		 * we receive a bulk stream w/o packet losses or reorderings.
1313 		 * Shrinking the buffer during idle times is not necessary as
1314 		 * it doesn't consume any memory when idle.
1315 		 *
1316 		 * TODO: Only step up if the application is actually serving
1317 		 * the buffer to better manage the socket buffer resources.
1318 		 */
1319 			if (tcp_do_autorcvbuf &&
1320 			    to.to_tsecr &&
1321 			    (so->so_rcv.ssb_flags & SSB_AUTOSIZE)) {
1322 				if (to.to_tsecr > tp->rfbuf_ts &&
1323 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1324 					if (tp->rfbuf_cnt >
1325 					    (so->so_rcv.ssb_hiwat / 8 * 7) &&
1326 					    so->so_rcv.ssb_hiwat <
1327 					    tcp_autorcvbuf_max) {
1328 						newsize =
1329 						    ulmin(so->so_rcv.ssb_hiwat +
1330 							  tcp_autorcvbuf_inc,
1331 							  tcp_autorcvbuf_max);
1332 					}
1333 					/* Start over with next RTT. */
1334 					tp->rfbuf_ts = 0;
1335 					tp->rfbuf_cnt = 0;
1336 				} else
1337 					tp->rfbuf_cnt += tlen;	/* add up */
1338 			}
1339 			/*
1340 			 * Add data to socket buffer.
1341 			 */
1342 			if (so->so_state & SS_CANTRCVMORE) {
1343 				m_freem(m);
1344 			} else {
1345 				/*
1346 				 * Set new socket buffer size, give up when
1347 				 * limit is reached.
1348 				 *
1349 				 * Adjusting the size can mess up ACK
1350 				 * sequencing when pure window updates are
1351 				 * being avoided (which is the default),
1352 				 * so force an ack.
1353 				 */
1354 				lwkt_gettoken(&so->so_rcv.ssb_token);
1355 				if (newsize) {
1356 					tp->t_flags |= TF_RXRESIZED;
1357 					if (!ssb_reserve(&so->so_rcv, newsize,
1358 							 so, NULL)) {
1359 						atomic_clear_int(&so->so_rcv.ssb_flags, SSB_AUTOSIZE);
1360 					}
1361 					if (newsize >=
1362 					    (TCP_MAXWIN << tp->rcv_scale)) {
1363 						atomic_clear_int(&so->so_rcv.ssb_flags, SSB_AUTOSIZE);
1364 					}
1365 				}
1366 				m_adj(m, drop_hdrlen); /* delayed header drop */
1367 				ssb_appendstream(&so->so_rcv, m);
1368 				lwkt_reltoken(&so->so_rcv.ssb_token);
1369 			}
1370 			sorwakeup(so);
1371 			/*
1372 			 * This code is responsible for most of the ACKs
1373 			 * the TCP stack sends back after receiving a data
1374 			 * packet.  Note that the DELAY_ACK check fails if
1375 			 * the delack timer is already running, which results
1376 			 * in an ack being sent every other packet (which is
1377 			 * what we want).
1378 			 *
1379 			 * We then further aggregate acks by not actually
1380 			 * sending one until the protocol thread has completed
1381 			 * processing the current backlog of packets.  This
1382 			 * does not delay the ack any further, but allows us
1383 			 * to take advantage of the packet aggregation that
1384 			 * high speed NICs do (usually blocks of 8-10 packets)
1385 			 * to send a single ack rather then four or five acks,
1386 			 * greatly reducing the ack rate, the return channel
1387 			 * bandwidth, and the protocol overhead on both ends.
1388 			 *
1389 			 * Since this also has the effect of slowing down
1390 			 * the exponential slow-start ramp-up, systems with
1391 			 * very large bandwidth-delay products might want
1392 			 * to turn the feature off.
1393 			 */
1394 			if (DELAY_ACK(tp)) {
1395 				tcp_callout_reset(tp, tp->tt_delack,
1396 				    tcp_delacktime, tcp_timer_delack);
1397 			} else if (tcp_aggregate_acks) {
1398 				tp->t_flags |= TF_ACKNOW;
1399 				if (!(tp->t_flags & TF_ONOUTPUTQ)) {
1400 					tp->t_flags |= TF_ONOUTPUTQ;
1401 					tp->tt_cpu = mycpu->gd_cpuid;
1402 					TAILQ_INSERT_TAIL(
1403 					    &tcpcbackq[tp->tt_cpu],
1404 					    tp, t_outputq);
1405 				}
1406 			} else {
1407 				tp->t_flags |= TF_ACKNOW;
1408 				tcp_output(tp);
1409 			}
1410 			return(IPPROTO_DONE);
1411 		}
1412 	}
1413 
1414 	/*
1415 	 * Calculate amount of space in receive window,
1416 	 * and then do TCP input processing.
1417 	 * Receive window is amount of space in rcv queue,
1418 	 * but not less than advertised window.
1419 	 */
1420 	recvwin = ssb_space(&so->so_rcv);
1421 	if (recvwin < 0)
1422 		recvwin = 0;
1423 	tp->rcv_wnd = imax(recvwin, (int)(tp->rcv_adv - tp->rcv_nxt));
1424 
1425 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1426 	tp->rfbuf_ts = 0;
1427 	tp->rfbuf_cnt = 0;
1428 
1429 	switch (tp->t_state) {
1430 	/*
1431 	 * If the state is SYN_RECEIVED:
1432 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1433 	 */
1434 	case TCPS_SYN_RECEIVED:
1435 		if ((thflags & TH_ACK) &&
1436 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1437 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1438 				rstreason = BANDLIM_RST_OPENPORT;
1439 				goto dropwithreset;
1440 		}
1441 		break;
1442 
1443 	/*
1444 	 * If the state is SYN_SENT:
1445 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1446 	 *	if seg contains a RST, then drop the connection.
1447 	 *	if seg does not contain SYN, then drop it.
1448 	 * Otherwise this is an acceptable SYN segment
1449 	 *	initialize tp->rcv_nxt and tp->irs
1450 	 *	if seg contains ack then advance tp->snd_una
1451 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1452 	 *	arrange for segment to be acked (eventually)
1453 	 *	continue processing rest of data/controls, beginning with URG
1454 	 */
1455 	case TCPS_SYN_SENT:
1456 		if ((thflags & TH_ACK) &&
1457 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1458 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1459 			rstreason = BANDLIM_UNLIMITED;
1460 			goto dropwithreset;
1461 		}
1462 		if (thflags & TH_RST) {
1463 			if (thflags & TH_ACK)
1464 				tp = tcp_drop(tp, ECONNREFUSED);
1465 			goto drop;
1466 		}
1467 		if (!(thflags & TH_SYN))
1468 			goto drop;
1469 		tp->snd_wnd = th->th_win;	/* initial send window */
1470 
1471 		tp->irs = th->th_seq;
1472 		tcp_rcvseqinit(tp);
1473 		if (thflags & TH_ACK) {
1474 			/* Our SYN was acked. */
1475 			tcpstat.tcps_connects++;
1476 			soisconnected(so);
1477 			/* Do window scaling on this connection? */
1478 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1479 			    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
1480 				tp->snd_scale = tp->requested_s_scale;
1481 				tp->rcv_scale = tp->request_r_scale;
1482 			}
1483 			tp->rcv_adv += tp->rcv_wnd;
1484 			tp->snd_una++;		/* SYN is acked */
1485 			tcp_callout_stop(tp, tp->tt_rexmt);
1486 			/*
1487 			 * If there's data, delay ACK; if there's also a FIN
1488 			 * ACKNOW will be turned on later.
1489 			 */
1490 			if (DELAY_ACK(tp) && tlen != 0) {
1491 				tcp_callout_reset(tp, tp->tt_delack,
1492 				    tcp_delacktime, tcp_timer_delack);
1493 			} else {
1494 				tp->t_flags |= TF_ACKNOW;
1495 			}
1496 			/*
1497 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1498 			 * Transitions:
1499 			 *	SYN_SENT  --> ESTABLISHED
1500 			 *	SYN_SENT* --> FIN_WAIT_1
1501 			 */
1502 			tp->t_starttime = ticks;
1503 			if (tp->t_flags & TF_NEEDFIN) {
1504 				tp->t_state = TCPS_FIN_WAIT_1;
1505 				tp->t_flags &= ~TF_NEEDFIN;
1506 				thflags &= ~TH_SYN;
1507 			} else {
1508 				tp->t_state = TCPS_ESTABLISHED;
1509 				tcp_callout_reset(tp, tp->tt_keep,
1510 						  tcp_getkeepidle(tp),
1511 						  tcp_timer_keep);
1512 			}
1513 		} else {
1514 			/*
1515 			 * Received initial SYN in SYN-SENT[*] state =>
1516 			 * simultaneous open.
1517 			 * Do 3-way handshake:
1518 			 *	  SYN-SENT -> SYN-RECEIVED
1519 			 *	  SYN-SENT* -> SYN-RECEIVED*
1520 			 */
1521 			tp->t_flags |= TF_ACKNOW;
1522 			tcp_callout_stop(tp, tp->tt_rexmt);
1523 			tp->t_state = TCPS_SYN_RECEIVED;
1524 		}
1525 
1526 trimthenstep6:
1527 		/*
1528 		 * Advance th->th_seq to correspond to first data byte.
1529 		 * If data, trim to stay within window,
1530 		 * dropping FIN if necessary.
1531 		 */
1532 		th->th_seq++;
1533 		if (tlen > tp->rcv_wnd) {
1534 			todrop = tlen - tp->rcv_wnd;
1535 			m_adj(m, -todrop);
1536 			tlen = tp->rcv_wnd;
1537 			thflags &= ~TH_FIN;
1538 			tcpstat.tcps_rcvpackafterwin++;
1539 			tcpstat.tcps_rcvbyteafterwin += todrop;
1540 		}
1541 		tp->snd_wl1 = th->th_seq - 1;
1542 		tp->rcv_up = th->th_seq;
1543 		/*
1544 		 * Client side of transaction: already sent SYN and data.
1545 		 * If the remote host used T/TCP to validate the SYN,
1546 		 * our data will be ACK'd; if so, enter normal data segment
1547 		 * processing in the middle of step 5, ack processing.
1548 		 * Otherwise, goto step 6.
1549 		 */
1550 		if (thflags & TH_ACK)
1551 			goto process_ACK;
1552 
1553 		goto step6;
1554 
1555 	/*
1556 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1557 	 *	do normal processing (we no longer bother with T/TCP).
1558 	 */
1559 	case TCPS_LAST_ACK:
1560 	case TCPS_CLOSING:
1561 	case TCPS_TIME_WAIT:
1562 		break;  /* continue normal processing */
1563 	}
1564 
1565 	/*
1566 	 * States other than LISTEN or SYN_SENT.
1567 	 * First check the RST flag and sequence number since reset segments
1568 	 * are exempt from the timestamp and connection count tests.  This
1569 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1570 	 * below which allowed reset segments in half the sequence space
1571 	 * to fall though and be processed (which gives forged reset
1572 	 * segments with a random sequence number a 50 percent chance of
1573 	 * killing a connection).
1574 	 * Then check timestamp, if present.
1575 	 * Then check the connection count, if present.
1576 	 * Then check that at least some bytes of segment are within
1577 	 * receive window.  If segment begins before rcv_nxt,
1578 	 * drop leading data (and SYN); if nothing left, just ack.
1579 	 *
1580 	 *
1581 	 * If the RST bit is set, check the sequence number to see
1582 	 * if this is a valid reset segment.
1583 	 * RFC 793 page 37:
1584 	 *   In all states except SYN-SENT, all reset (RST) segments
1585 	 *   are validated by checking their SEQ-fields.  A reset is
1586 	 *   valid if its sequence number is in the window.
1587 	 * Note: this does not take into account delayed ACKs, so
1588 	 *   we should test against last_ack_sent instead of rcv_nxt.
1589 	 *   The sequence number in the reset segment is normally an
1590 	 *   echo of our outgoing acknowledgement numbers, but some hosts
1591 	 *   send a reset with the sequence number at the rightmost edge
1592 	 *   of our receive window, and we have to handle this case.
1593 	 * If we have multiple segments in flight, the intial reset
1594 	 * segment sequence numbers will be to the left of last_ack_sent,
1595 	 * but they will eventually catch up.
1596 	 * In any case, it never made sense to trim reset segments to
1597 	 * fit the receive window since RFC 1122 says:
1598 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1599 	 *
1600 	 *    A TCP SHOULD allow a received RST segment to include data.
1601 	 *
1602 	 *    DISCUSSION
1603 	 *	   It has been suggested that a RST segment could contain
1604 	 *	   ASCII text that encoded and explained the cause of the
1605 	 *	   RST.  No standard has yet been established for such
1606 	 *	   data.
1607 	 *
1608 	 * If the reset segment passes the sequence number test examine
1609 	 * the state:
1610 	 *    SYN_RECEIVED STATE:
1611 	 *	If passive open, return to LISTEN state.
1612 	 *	If active open, inform user that connection was refused.
1613 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1614 	 *	Inform user that connection was reset, and close tcb.
1615 	 *    CLOSING, LAST_ACK STATES:
1616 	 *	Close the tcb.
1617 	 *    TIME_WAIT STATE:
1618 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1619 	 *	RFC 1337.
1620 	 */
1621 	if (thflags & TH_RST) {
1622 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1623 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1624 			switch (tp->t_state) {
1625 
1626 			case TCPS_SYN_RECEIVED:
1627 				so->so_error = ECONNREFUSED;
1628 				goto close;
1629 
1630 			case TCPS_ESTABLISHED:
1631 			case TCPS_FIN_WAIT_1:
1632 			case TCPS_FIN_WAIT_2:
1633 			case TCPS_CLOSE_WAIT:
1634 				so->so_error = ECONNRESET;
1635 			close:
1636 				tp->t_state = TCPS_CLOSED;
1637 				tcpstat.tcps_drops++;
1638 				tp = tcp_close(tp);
1639 				break;
1640 
1641 			case TCPS_CLOSING:
1642 			case TCPS_LAST_ACK:
1643 				tp = tcp_close(tp);
1644 				break;
1645 
1646 			case TCPS_TIME_WAIT:
1647 				break;
1648 			}
1649 		}
1650 		goto drop;
1651 	}
1652 
1653 	/*
1654 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1655 	 * and it's less than ts_recent, drop it.
1656 	 */
1657 	if ((to.to_flags & TOF_TS) && tp->ts_recent != 0 &&
1658 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1659 
1660 		/* Check to see if ts_recent is over 24 days old.  */
1661 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1662 			/*
1663 			 * Invalidate ts_recent.  If this segment updates
1664 			 * ts_recent, the age will be reset later and ts_recent
1665 			 * will get a valid value.  If it does not, setting
1666 			 * ts_recent to zero will at least satisfy the
1667 			 * requirement that zero be placed in the timestamp
1668 			 * echo reply when ts_recent isn't valid.  The
1669 			 * age isn't reset until we get a valid ts_recent
1670 			 * because we don't want out-of-order segments to be
1671 			 * dropped when ts_recent is old.
1672 			 */
1673 			tp->ts_recent = 0;
1674 		} else {
1675 			tcpstat.tcps_rcvduppack++;
1676 			tcpstat.tcps_rcvdupbyte += tlen;
1677 			tcpstat.tcps_pawsdrop++;
1678 			if (tlen)
1679 				goto dropafterack;
1680 			goto drop;
1681 		}
1682 	}
1683 
1684 	/*
1685 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1686 	 * this connection before trimming the data to fit the receive
1687 	 * window.  Check the sequence number versus IRS since we know
1688 	 * the sequence numbers haven't wrapped.  This is a partial fix
1689 	 * for the "LAND" DoS attack.
1690 	 */
1691 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1692 		rstreason = BANDLIM_RST_OPENPORT;
1693 		goto dropwithreset;
1694 	}
1695 
1696 	todrop = tp->rcv_nxt - th->th_seq;
1697 	if (todrop > 0) {
1698 		if (TCP_DO_SACK(tp)) {
1699 			/* Report duplicate segment at head of packet. */
1700 			tp->reportblk.rblk_start = th->th_seq;
1701 			tp->reportblk.rblk_end = th->th_seq + tlen;
1702 			if (thflags & TH_FIN)
1703 				++tp->reportblk.rblk_end;
1704 			if (SEQ_GT(tp->reportblk.rblk_end, tp->rcv_nxt))
1705 				tp->reportblk.rblk_end = tp->rcv_nxt;
1706 			tp->t_flags |= (TF_DUPSEG | TF_SACKLEFT | TF_ACKNOW);
1707 		}
1708 		if (thflags & TH_SYN) {
1709 			thflags &= ~TH_SYN;
1710 			th->th_seq++;
1711 			if (th->th_urp > 1)
1712 				th->th_urp--;
1713 			else
1714 				thflags &= ~TH_URG;
1715 			todrop--;
1716 		}
1717 		/*
1718 		 * Following if statement from Stevens, vol. 2, p. 960.
1719 		 */
1720 		if (todrop > tlen ||
1721 		    (todrop == tlen && !(thflags & TH_FIN))) {
1722 			/*
1723 			 * Any valid FIN must be to the left of the window.
1724 			 * At this point the FIN must be a duplicate or out
1725 			 * of sequence; drop it.
1726 			 */
1727 			thflags &= ~TH_FIN;
1728 
1729 			/*
1730 			 * Send an ACK to resynchronize and drop any data.
1731 			 * But keep on processing for RST or ACK.
1732 			 */
1733 			tp->t_flags |= TF_ACKNOW;
1734 			todrop = tlen;
1735 			tcpstat.tcps_rcvduppack++;
1736 			tcpstat.tcps_rcvdupbyte += todrop;
1737 		} else {
1738 			tcpstat.tcps_rcvpartduppack++;
1739 			tcpstat.tcps_rcvpartdupbyte += todrop;
1740 		}
1741 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1742 		th->th_seq += todrop;
1743 		tlen -= todrop;
1744 		if (th->th_urp > todrop)
1745 			th->th_urp -= todrop;
1746 		else {
1747 			thflags &= ~TH_URG;
1748 			th->th_urp = 0;
1749 		}
1750 	}
1751 
1752 	/*
1753 	 * If new data are received on a connection after the
1754 	 * user processes are gone, then RST the other end.
1755 	 */
1756 	if ((so->so_state & SS_NOFDREF) &&
1757 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1758 		tp = tcp_close(tp);
1759 		tcpstat.tcps_rcvafterclose++;
1760 		rstreason = BANDLIM_UNLIMITED;
1761 		goto dropwithreset;
1762 	}
1763 
1764 	/*
1765 	 * If segment ends after window, drop trailing data
1766 	 * (and PUSH and FIN); if nothing left, just ACK.
1767 	 */
1768 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1769 	if (todrop > 0) {
1770 		tcpstat.tcps_rcvpackafterwin++;
1771 		if (todrop >= tlen) {
1772 			tcpstat.tcps_rcvbyteafterwin += tlen;
1773 			/*
1774 			 * If a new connection request is received
1775 			 * while in TIME_WAIT, drop the old connection
1776 			 * and start over if the sequence numbers
1777 			 * are above the previous ones.
1778 			 */
1779 			if (thflags & TH_SYN &&
1780 			    tp->t_state == TCPS_TIME_WAIT &&
1781 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1782 				tp = tcp_close(tp);
1783 				goto findpcb;
1784 			}
1785 			/*
1786 			 * If window is closed can only take segments at
1787 			 * window edge, and have to drop data and PUSH from
1788 			 * incoming segments.  Continue processing, but
1789 			 * remember to ack.  Otherwise, drop segment
1790 			 * and ack.
1791 			 */
1792 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1793 				tp->t_flags |= TF_ACKNOW;
1794 				tcpstat.tcps_rcvwinprobe++;
1795 			} else
1796 				goto dropafterack;
1797 		} else
1798 			tcpstat.tcps_rcvbyteafterwin += todrop;
1799 		m_adj(m, -todrop);
1800 		tlen -= todrop;
1801 		thflags &= ~(TH_PUSH | TH_FIN);
1802 	}
1803 
1804 	/*
1805 	 * If last ACK falls within this segment's sequence numbers,
1806 	 * record its timestamp.
1807 	 * NOTE:
1808 	 * 1) That the test incorporates suggestions from the latest
1809 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1810 	 * 2) That updating only on newer timestamps interferes with
1811 	 *    our earlier PAWS tests, so this check should be solely
1812 	 *    predicated on the sequence space of this segment.
1813 	 * 3) That we modify the segment boundary check to be
1814 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.LEN
1815 	 *    instead of RFC1323's
1816 	 *        Last.ACK.Sent < SEG.SEQ + SEG.LEN,
1817 	 *    This modified check allows us to overcome RFC1323's
1818 	 *    limitations as described in Stevens TCP/IP Illustrated
1819 	 *    Vol. 2 p.869. In such cases, we can still calculate the
1820 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1821 	 */
1822 	if ((to.to_flags & TOF_TS) && SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1823 	    SEQ_LEQ(tp->last_ack_sent, (th->th_seq + tlen
1824 					+ ((thflags & TH_SYN) != 0)
1825 					+ ((thflags & TH_FIN) != 0)))) {
1826 		tp->ts_recent_age = ticks;
1827 		tp->ts_recent = to.to_tsval;
1828 	}
1829 
1830 	/*
1831 	 * If a SYN is in the window, then this is an
1832 	 * error and we send an RST and drop the connection.
1833 	 */
1834 	if (thflags & TH_SYN) {
1835 		tp = tcp_drop(tp, ECONNRESET);
1836 		rstreason = BANDLIM_UNLIMITED;
1837 		goto dropwithreset;
1838 	}
1839 
1840 	/*
1841 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1842 	 * flag is on (half-synchronized state), then queue data for
1843 	 * later processing; else drop segment and return.
1844 	 */
1845 	if (!(thflags & TH_ACK)) {
1846 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1847 		    (tp->t_flags & TF_NEEDSYN))
1848 			goto step6;
1849 		else
1850 			goto drop;
1851 	}
1852 
1853 	/*
1854 	 * Ack processing.
1855 	 */
1856 	switch (tp->t_state) {
1857 	/*
1858 	 * In SYN_RECEIVED state, the ACK acknowledges our SYN, so enter
1859 	 * ESTABLISHED state and continue processing.
1860 	 * The ACK was checked above.
1861 	 */
1862 	case TCPS_SYN_RECEIVED:
1863 
1864 		tcpstat.tcps_connects++;
1865 		soisconnected(so);
1866 		/* Do window scaling? */
1867 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1868 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
1869 			tp->snd_scale = tp->requested_s_scale;
1870 			tp->rcv_scale = tp->request_r_scale;
1871 		}
1872 		/*
1873 		 * Make transitions:
1874 		 *      SYN-RECEIVED  -> ESTABLISHED
1875 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1876 		 */
1877 		tp->t_starttime = ticks;
1878 		if (tp->t_flags & TF_NEEDFIN) {
1879 			tp->t_state = TCPS_FIN_WAIT_1;
1880 			tp->t_flags &= ~TF_NEEDFIN;
1881 		} else {
1882 			tp->t_state = TCPS_ESTABLISHED;
1883 			tcp_callout_reset(tp, tp->tt_keep,
1884 					  tcp_getkeepidle(tp),
1885 					  tcp_timer_keep);
1886 		}
1887 		/*
1888 		 * If segment contains data or ACK, will call tcp_reass()
1889 		 * later; if not, do so now to pass queued data to user.
1890 		 */
1891 		if (tlen == 0 && !(thflags & TH_FIN))
1892 			tcp_reass(tp, NULL, NULL, NULL);
1893 		/* fall into ... */
1894 
1895 	/*
1896 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1897 	 * ACKs.  If the ack is in the range
1898 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1899 	 * then advance tp->snd_una to th->th_ack and drop
1900 	 * data from the retransmission queue.  If this ACK reflects
1901 	 * more up to date window information we update our window information.
1902 	 */
1903 	case TCPS_ESTABLISHED:
1904 	case TCPS_FIN_WAIT_1:
1905 	case TCPS_FIN_WAIT_2:
1906 	case TCPS_CLOSE_WAIT:
1907 	case TCPS_CLOSING:
1908 	case TCPS_LAST_ACK:
1909 	case TCPS_TIME_WAIT:
1910 
1911 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1912 			if (TCP_DO_SACK(tp))
1913 				tcp_sack_update_scoreboard(tp, &to);
1914 			if (tlen != 0 || tiwin != tp->snd_wnd) {
1915 				tp->t_dupacks = 0;
1916 				break;
1917 			}
1918 			tcpstat.tcps_rcvdupack++;
1919 			if (!tcp_callout_active(tp, tp->tt_rexmt) ||
1920 			    th->th_ack != tp->snd_una) {
1921 				tp->t_dupacks = 0;
1922 				break;
1923 			}
1924 			/*
1925 			 * We have outstanding data (other than
1926 			 * a window probe), this is a completely
1927 			 * duplicate ack (ie, window info didn't
1928 			 * change), the ack is the biggest we've
1929 			 * seen and we've seen exactly our rexmt
1930 			 * threshhold of them, so assume a packet
1931 			 * has been dropped and retransmit it.
1932 			 * Kludge snd_nxt & the congestion
1933 			 * window so we send only this one
1934 			 * packet.
1935 			 */
1936 			if (IN_FASTRECOVERY(tp)) {
1937 				if (TCP_DO_SACK(tp)) {
1938 					/* No artifical cwnd inflation. */
1939 					tcp_sack_rexmt(tp, th);
1940 				} else {
1941 					/*
1942 					 * Dup acks mean that packets
1943 					 * have left the network
1944 					 * (they're now cached at the
1945 					 * receiver) so bump cwnd by
1946 					 * the amount in the receiver
1947 					 * to keep a constant cwnd
1948 					 * packets in the network.
1949 					 */
1950 					tp->snd_cwnd += tp->t_maxseg;
1951 					tcp_output(tp);
1952 				}
1953 			} else if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1954 				tp->t_dupacks = 0;
1955 				break;
1956 			} else if (++tp->t_dupacks == tcprexmtthresh) {
1957 				tcp_seq old_snd_nxt;
1958 				u_int win;
1959 
1960 fastretransmit:
1961 				if (tcp_do_eifel_detect &&
1962 				    (tp->t_flags & TF_RCVD_TSTMP)) {
1963 					tcp_save_congestion_state(tp);
1964 					tp->t_flags |= TF_FASTREXMT;
1965 				}
1966 				/*
1967 				 * We know we're losing at the current
1968 				 * window size, so do congestion avoidance:
1969 				 * set ssthresh to half the current window
1970 				 * and pull our congestion window back to the
1971 				 * new ssthresh.
1972 				 */
1973 				win = min(tp->snd_wnd, tp->snd_cwnd) / 2 /
1974 				    tp->t_maxseg;
1975 				if (win < 2)
1976 					win = 2;
1977 				tp->snd_ssthresh = win * tp->t_maxseg;
1978 				ENTER_FASTRECOVERY(tp);
1979 				tp->snd_recover = tp->snd_max;
1980 				tcp_callout_stop(tp, tp->tt_rexmt);
1981 				tp->t_rtttime = 0;
1982 				old_snd_nxt = tp->snd_nxt;
1983 				tp->snd_nxt = th->th_ack;
1984 				tp->snd_cwnd = tp->t_maxseg;
1985 				tcp_output(tp);
1986 				++tcpstat.tcps_sndfastrexmit;
1987 				tp->snd_cwnd = tp->snd_ssthresh;
1988 				tp->rexmt_high = tp->snd_nxt;
1989 				if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
1990 					tp->snd_nxt = old_snd_nxt;
1991 				KASSERT(tp->snd_limited <= 2,
1992 				    ("tp->snd_limited too big"));
1993 				if (TCP_DO_SACK(tp))
1994 					tcp_sack_rexmt(tp, th);
1995 				else
1996 					tp->snd_cwnd += tp->t_maxseg *
1997 					    (tp->t_dupacks - tp->snd_limited);
1998 			} else if (tcp_do_limitedtransmit) {
1999 				u_long oldcwnd = tp->snd_cwnd;
2000 				tcp_seq oldsndmax = tp->snd_max;
2001 				tcp_seq oldsndnxt = tp->snd_nxt;
2002 				/* outstanding data */
2003 				uint32_t ownd = tp->snd_max - tp->snd_una;
2004 				u_int sent;
2005 
2006 #define	iceildiv(n, d)		(((n)+(d)-1) / (d))
2007 
2008 				KASSERT(tp->t_dupacks == 1 ||
2009 					tp->t_dupacks == 2,
2010 				    ("dupacks not 1 or 2"));
2011 				if (tp->t_dupacks == 1)
2012 					tp->snd_limited = 0;
2013 				tp->snd_nxt = tp->snd_max;
2014 				tp->snd_cwnd = ownd +
2015 				    (tp->t_dupacks - tp->snd_limited) *
2016 				    tp->t_maxseg;
2017 				tcp_output(tp);
2018 
2019 				/*
2020 				 * Other acks may have been processed,
2021 				 * snd_nxt cannot be reset to a value less
2022 				 * then snd_una.
2023 				 */
2024 				if (SEQ_LT(oldsndnxt, oldsndmax)) {
2025 				    if (SEQ_GT(oldsndnxt, tp->snd_una))
2026 					tp->snd_nxt = oldsndnxt;
2027 				    else
2028 					tp->snd_nxt = tp->snd_una;
2029 				}
2030 				tp->snd_cwnd = oldcwnd;
2031 				sent = tp->snd_max - oldsndmax;
2032 				if (sent > tp->t_maxseg) {
2033 					KASSERT((tp->t_dupacks == 2 &&
2034 						 tp->snd_limited == 0) ||
2035 						(sent == tp->t_maxseg + 1 &&
2036 						 tp->t_flags & TF_SENTFIN),
2037 					    ("sent too much"));
2038 					KASSERT(sent <= tp->t_maxseg * 2,
2039 					    ("sent too many segments"));
2040 					tp->snd_limited = 2;
2041 					tcpstat.tcps_sndlimited += 2;
2042 				} else if (sent > 0) {
2043 					++tp->snd_limited;
2044 					++tcpstat.tcps_sndlimited;
2045 				} else if (tcp_do_early_retransmit &&
2046 				    (tcp_do_eifel_detect &&
2047 				     (tp->t_flags & TF_RCVD_TSTMP)) &&
2048 				    ownd < 4 * tp->t_maxseg &&
2049 				    tp->t_dupacks + 1 >=
2050 				      iceildiv(ownd, tp->t_maxseg) &&
2051 				    (!TCP_DO_SACK(tp) ||
2052 				     ownd <= tp->t_maxseg ||
2053 				     tcp_sack_has_sacked(&tp->scb,
2054 							ownd - tp->t_maxseg))) {
2055 					++tcpstat.tcps_sndearlyrexmit;
2056 					tp->t_flags |= TF_EARLYREXMT;
2057 					goto fastretransmit;
2058 				}
2059 			}
2060 			goto drop;
2061 		}
2062 
2063 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
2064 		tp->t_dupacks = 0;
2065 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2066 			/*
2067 			 * Detected optimistic ACK attack.
2068 			 * Force slow-start to de-synchronize attack.
2069 			 */
2070 			tp->snd_cwnd = tp->t_maxseg;
2071 			tp->snd_wacked = 0;
2072 
2073 			tcpstat.tcps_rcvacktoomuch++;
2074 			goto dropafterack;
2075 		}
2076 		/*
2077 		 * If we reach this point, ACK is not a duplicate,
2078 		 *     i.e., it ACKs something we sent.
2079 		 */
2080 		if (tp->t_flags & TF_NEEDSYN) {
2081 			/*
2082 			 * T/TCP: Connection was half-synchronized, and our
2083 			 * SYN has been ACK'd (so connection is now fully
2084 			 * synchronized).  Go to non-starred state,
2085 			 * increment snd_una for ACK of SYN, and check if
2086 			 * we can do window scaling.
2087 			 */
2088 			tp->t_flags &= ~TF_NEEDSYN;
2089 			tp->snd_una++;
2090 			/* Do window scaling? */
2091 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
2092 			    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
2093 				tp->snd_scale = tp->requested_s_scale;
2094 				tp->rcv_scale = tp->request_r_scale;
2095 			}
2096 		}
2097 
2098 process_ACK:
2099 		acked = th->th_ack - tp->snd_una;
2100 		tcpstat.tcps_rcvackpack++;
2101 		tcpstat.tcps_rcvackbyte += acked;
2102 
2103 		if (tcp_do_eifel_detect && acked > 0 &&
2104 		    (to.to_flags & TOF_TS) && (to.to_tsecr != 0) &&
2105 		    (tp->t_flags & TF_FIRSTACCACK)) {
2106 			/* Eifel detection applicable. */
2107 			if (to.to_tsecr < tp->t_rexmtTS) {
2108 				++tcpstat.tcps_eifeldetected;
2109 				tcp_revert_congestion_state(tp);
2110 				if (tp->t_rxtshift == 1 &&
2111 				    ticks >= tp->t_badrxtwin)
2112 					++tcpstat.tcps_rttcantdetect;
2113 			}
2114 		} else if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
2115 			/*
2116 			 * If we just performed our first retransmit,
2117 			 * and the ACK arrives within our recovery window,
2118 			 * then it was a mistake to do the retransmit
2119 			 * in the first place.  Recover our original cwnd
2120 			 * and ssthresh, and proceed to transmit where we
2121 			 * left off.
2122 			 */
2123 			tcp_revert_congestion_state(tp);
2124 			++tcpstat.tcps_rttdetected;
2125 		}
2126 
2127 		/*
2128 		 * If we have a timestamp reply, update smoothed
2129 		 * round trip time.  If no timestamp is present but
2130 		 * transmit timer is running and timed sequence
2131 		 * number was acked, update smoothed round trip time.
2132 		 * Since we now have an rtt measurement, cancel the
2133 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2134 		 * Recompute the initial retransmit timer.
2135 		 *
2136 		 * Some machines (certain windows boxes) send broken
2137 		 * timestamp replies during the SYN+ACK phase, ignore
2138 		 * timestamps of 0.
2139 		 */
2140 		if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0))
2141 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2142 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2143 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2144 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2145 
2146 		/*
2147 		 * If no data (only SYN) was ACK'd,
2148 		 *    skip rest of ACK processing.
2149 		 */
2150 		if (acked == 0)
2151 			goto step6;
2152 
2153 		/* Stop looking for an acceptable ACK since one was received. */
2154 		tp->t_flags &= ~(TF_FIRSTACCACK | TF_FASTREXMT | TF_EARLYREXMT);
2155 
2156 		if (acked > so->so_snd.ssb_cc) {
2157 			tp->snd_wnd -= so->so_snd.ssb_cc;
2158 			sbdrop(&so->so_snd.sb, (int)so->so_snd.ssb_cc);
2159 			ourfinisacked = TRUE;
2160 		} else {
2161 			sbdrop(&so->so_snd.sb, acked);
2162 			tp->snd_wnd -= acked;
2163 			ourfinisacked = FALSE;
2164 		}
2165 		sowwakeup(so);
2166 
2167 		/*
2168 		 * Update window information.
2169 		 * Don't look at window if no ACK:
2170 		 * TAC's send garbage on first SYN.
2171 		 */
2172 		if (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2173 		    (tp->snd_wl1 == th->th_seq &&
2174 		     (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2175 		      (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)))) {
2176 			/* keep track of pure window updates */
2177 			if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2178 			    tiwin > tp->snd_wnd)
2179 				tcpstat.tcps_rcvwinupd++;
2180 			tp->snd_wnd = tiwin;
2181 			tp->snd_wl1 = th->th_seq;
2182 			tp->snd_wl2 = th->th_ack;
2183 			if (tp->snd_wnd > tp->max_sndwnd)
2184 				tp->max_sndwnd = tp->snd_wnd;
2185 			needoutput = TRUE;
2186 		}
2187 
2188 		tp->snd_una = th->th_ack;
2189 		if (TCP_DO_SACK(tp))
2190 			tcp_sack_update_scoreboard(tp, &to);
2191 		if (IN_FASTRECOVERY(tp)) {
2192 			if (SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2193 				EXIT_FASTRECOVERY(tp);
2194 				needoutput = TRUE;
2195 				/*
2196 				 * If the congestion window was inflated
2197 				 * to account for the other side's
2198 				 * cached packets, retract it.
2199 				 */
2200 				if (!TCP_DO_SACK(tp))
2201 					tp->snd_cwnd = tp->snd_ssthresh;
2202 
2203 				/*
2204 				 * Window inflation should have left us
2205 				 * with approximately snd_ssthresh outstanding
2206 				 * data.  But, in case we would be inclined
2207 				 * to send a burst, better do it using
2208 				 * slow start.
2209 				 */
2210 				if (SEQ_GT(th->th_ack + tp->snd_cwnd,
2211 					   tp->snd_max + 2 * tp->t_maxseg))
2212 					tp->snd_cwnd =
2213 					    (tp->snd_max - tp->snd_una) +
2214 					    2 * tp->t_maxseg;
2215 
2216 				tp->snd_wacked = 0;
2217 			} else {
2218 				if (TCP_DO_SACK(tp)) {
2219 					tp->snd_max_rexmt = tp->snd_max;
2220 					tcp_sack_rexmt(tp, th);
2221 				} else {
2222 					tcp_newreno_partial_ack(tp, th, acked);
2223 				}
2224 				needoutput = FALSE;
2225 			}
2226 		} else {
2227 			/*
2228 			 * Open the congestion window.  When in slow-start,
2229 			 * open exponentially: maxseg per packet.  Otherwise,
2230 			 * open linearly: maxseg per window.
2231 			 */
2232 			if (tp->snd_cwnd <= tp->snd_ssthresh) {
2233 				u_int abc_sslimit =
2234 				    (SEQ_LT(tp->snd_nxt, tp->snd_max) ?
2235 				     tp->t_maxseg : 2 * tp->t_maxseg);
2236 
2237 				/* slow-start */
2238 				tp->snd_cwnd += tcp_do_abc ?
2239 				    min(acked, abc_sslimit) : tp->t_maxseg;
2240 			} else {
2241 				/* linear increase */
2242 				tp->snd_wacked += tcp_do_abc ? acked :
2243 				    tp->t_maxseg;
2244 				if (tp->snd_wacked >= tp->snd_cwnd) {
2245 					tp->snd_wacked -= tp->snd_cwnd;
2246 					tp->snd_cwnd += tp->t_maxseg;
2247 				}
2248 			}
2249 			tp->snd_cwnd = min(tp->snd_cwnd,
2250 					   TCP_MAXWIN << tp->snd_scale);
2251 			tp->snd_recover = th->th_ack - 1;
2252 		}
2253 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2254 			tp->snd_nxt = tp->snd_una;
2255 
2256 		/*
2257 		 * If all outstanding data is acked, stop retransmit
2258 		 * timer and remember to restart (more output or persist).
2259 		 * If there is more data to be acked, restart retransmit
2260 		 * timer, using current (possibly backed-off) value.
2261 		 */
2262 		if (th->th_ack == tp->snd_max) {
2263 			tcp_callout_stop(tp, tp->tt_rexmt);
2264 			needoutput = TRUE;
2265 		} else if (!tcp_callout_active(tp, tp->tt_persist)) {
2266 			tcp_callout_reset(tp, tp->tt_rexmt, tp->t_rxtcur,
2267 			    tcp_timer_rexmt);
2268 		}
2269 
2270 		switch (tp->t_state) {
2271 		/*
2272 		 * In FIN_WAIT_1 STATE in addition to the processing
2273 		 * for the ESTABLISHED state if our FIN is now acknowledged
2274 		 * then enter FIN_WAIT_2.
2275 		 */
2276 		case TCPS_FIN_WAIT_1:
2277 			if (ourfinisacked) {
2278 				/*
2279 				 * If we can't receive any more
2280 				 * data, then closing user can proceed.
2281 				 * Starting the timer is contrary to the
2282 				 * specification, but if we don't get a FIN
2283 				 * we'll hang forever.
2284 				 */
2285 				if (so->so_state & SS_CANTRCVMORE) {
2286 					soisdisconnected(so);
2287 					tcp_callout_reset(tp, tp->tt_2msl,
2288 					    tcp_maxidle, tcp_timer_2msl);
2289 				}
2290 				tp->t_state = TCPS_FIN_WAIT_2;
2291 			}
2292 			break;
2293 
2294 		/*
2295 		 * In CLOSING STATE in addition to the processing for
2296 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2297 		 * then enter the TIME-WAIT state, otherwise ignore
2298 		 * the segment.
2299 		 */
2300 		case TCPS_CLOSING:
2301 			if (ourfinisacked) {
2302 				tp->t_state = TCPS_TIME_WAIT;
2303 				tcp_canceltimers(tp);
2304 				tcp_callout_reset(tp, tp->tt_2msl,
2305 					    2 * tcp_msl, tcp_timer_2msl);
2306 				soisdisconnected(so);
2307 			}
2308 			break;
2309 
2310 		/*
2311 		 * In LAST_ACK, we may still be waiting for data to drain
2312 		 * and/or to be acked, as well as for the ack of our FIN.
2313 		 * If our FIN is now acknowledged, delete the TCB,
2314 		 * enter the closed state and return.
2315 		 */
2316 		case TCPS_LAST_ACK:
2317 			if (ourfinisacked) {
2318 				tp = tcp_close(tp);
2319 				goto drop;
2320 			}
2321 			break;
2322 
2323 		/*
2324 		 * In TIME_WAIT state the only thing that should arrive
2325 		 * is a retransmission of the remote FIN.  Acknowledge
2326 		 * it and restart the finack timer.
2327 		 */
2328 		case TCPS_TIME_WAIT:
2329 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_msl,
2330 			    tcp_timer_2msl);
2331 			goto dropafterack;
2332 		}
2333 	}
2334 
2335 step6:
2336 	/*
2337 	 * Update window information.
2338 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2339 	 */
2340 	if ((thflags & TH_ACK) &&
2341 	    acceptable_window_update(tp, th, tiwin)) {
2342 		/* keep track of pure window updates */
2343 		if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2344 		    tiwin > tp->snd_wnd)
2345 			tcpstat.tcps_rcvwinupd++;
2346 		tp->snd_wnd = tiwin;
2347 		tp->snd_wl1 = th->th_seq;
2348 		tp->snd_wl2 = th->th_ack;
2349 		if (tp->snd_wnd > tp->max_sndwnd)
2350 			tp->max_sndwnd = tp->snd_wnd;
2351 		needoutput = TRUE;
2352 	}
2353 
2354 	/*
2355 	 * Process segments with URG.
2356 	 */
2357 	if ((thflags & TH_URG) && th->th_urp &&
2358 	    !TCPS_HAVERCVDFIN(tp->t_state)) {
2359 		/*
2360 		 * This is a kludge, but if we receive and accept
2361 		 * random urgent pointers, we'll crash in
2362 		 * soreceive.  It's hard to imagine someone
2363 		 * actually wanting to send this much urgent data.
2364 		 */
2365 		if (th->th_urp + so->so_rcv.ssb_cc > sb_max) {
2366 			th->th_urp = 0;			/* XXX */
2367 			thflags &= ~TH_URG;		/* XXX */
2368 			goto dodata;			/* XXX */
2369 		}
2370 		/*
2371 		 * If this segment advances the known urgent pointer,
2372 		 * then mark the data stream.  This should not happen
2373 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2374 		 * a FIN has been received from the remote side.
2375 		 * In these states we ignore the URG.
2376 		 *
2377 		 * According to RFC961 (Assigned Protocols),
2378 		 * the urgent pointer points to the last octet
2379 		 * of urgent data.  We continue, however,
2380 		 * to consider it to indicate the first octet
2381 		 * of data past the urgent section as the original
2382 		 * spec states (in one of two places).
2383 		 */
2384 		if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) {
2385 			tp->rcv_up = th->th_seq + th->th_urp;
2386 			so->so_oobmark = so->so_rcv.ssb_cc +
2387 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2388 			if (so->so_oobmark == 0)
2389 				sosetstate(so, SS_RCVATMARK);
2390 			sohasoutofband(so);
2391 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2392 		}
2393 		/*
2394 		 * Remove out of band data so doesn't get presented to user.
2395 		 * This can happen independent of advancing the URG pointer,
2396 		 * but if two URG's are pending at once, some out-of-band
2397 		 * data may creep in... ick.
2398 		 */
2399 		if (th->th_urp <= (u_long)tlen &&
2400 		    !(so->so_options & SO_OOBINLINE)) {
2401 			/* hdr drop is delayed */
2402 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2403 		}
2404 	} else {
2405 		/*
2406 		 * If no out of band data is expected,
2407 		 * pull receive urgent pointer along
2408 		 * with the receive window.
2409 		 */
2410 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2411 			tp->rcv_up = tp->rcv_nxt;
2412 	}
2413 
2414 dodata:							/* XXX */
2415 	/*
2416 	 * Process the segment text, merging it into the TCP sequencing queue,
2417 	 * and arranging for acknowledgment of receipt if necessary.
2418 	 * This process logically involves adjusting tp->rcv_wnd as data
2419 	 * is presented to the user (this happens in tcp_usrreq.c,
2420 	 * case PRU_RCVD).  If a FIN has already been received on this
2421 	 * connection then we just ignore the text.
2422 	 */
2423 	if ((tlen || (thflags & TH_FIN)) && !TCPS_HAVERCVDFIN(tp->t_state)) {
2424 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2425 		/*
2426 		 * Insert segment which includes th into TCP reassembly queue
2427 		 * with control block tp.  Set thflags to whether reassembly now
2428 		 * includes a segment with FIN.  This handles the common case
2429 		 * inline (segment is the next to be received on an established
2430 		 * connection, and the queue is empty), avoiding linkage into
2431 		 * and removal from the queue and repetition of various
2432 		 * conversions.
2433 		 * Set DELACK for segments received in order, but ack
2434 		 * immediately when segments are out of order (so
2435 		 * fast retransmit can work).
2436 		 */
2437 		if (th->th_seq == tp->rcv_nxt &&
2438 		    LIST_EMPTY(&tp->t_segq) &&
2439 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2440 			if (DELAY_ACK(tp)) {
2441 				tcp_callout_reset(tp, tp->tt_delack,
2442 				    tcp_delacktime, tcp_timer_delack);
2443 			} else {
2444 				tp->t_flags |= TF_ACKNOW;
2445 			}
2446 			tp->rcv_nxt += tlen;
2447 			thflags = th->th_flags & TH_FIN;
2448 			tcpstat.tcps_rcvpack++;
2449 			tcpstat.tcps_rcvbyte += tlen;
2450 			ND6_HINT(tp);
2451 			if (so->so_state & SS_CANTRCVMORE) {
2452 				m_freem(m);
2453 			} else {
2454 				lwkt_gettoken(&so->so_rcv.ssb_token);
2455 				ssb_appendstream(&so->so_rcv, m);
2456 				lwkt_reltoken(&so->so_rcv.ssb_token);
2457 			}
2458 			sorwakeup(so);
2459 		} else {
2460 			if (!(tp->t_flags & TF_DUPSEG)) {
2461 				/* Initialize SACK report block. */
2462 				tp->reportblk.rblk_start = th->th_seq;
2463 				tp->reportblk.rblk_end = th->th_seq + tlen +
2464 				    ((thflags & TH_FIN) != 0);
2465 			}
2466 			thflags = tcp_reass(tp, th, &tlen, m);
2467 			tp->t_flags |= TF_ACKNOW;
2468 		}
2469 
2470 		/*
2471 		 * Note the amount of data that peer has sent into
2472 		 * our window, in order to estimate the sender's
2473 		 * buffer size.
2474 		 */
2475 		len = so->so_rcv.ssb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2476 	} else {
2477 		m_freem(m);
2478 		thflags &= ~TH_FIN;
2479 	}
2480 
2481 	/*
2482 	 * If FIN is received ACK the FIN and let the user know
2483 	 * that the connection is closing.
2484 	 */
2485 	if (thflags & TH_FIN) {
2486 		if (!TCPS_HAVERCVDFIN(tp->t_state)) {
2487 			socantrcvmore(so);
2488 			/*
2489 			 * If connection is half-synchronized
2490 			 * (ie NEEDSYN flag on) then delay ACK,
2491 			 * so it may be piggybacked when SYN is sent.
2492 			 * Otherwise, since we received a FIN then no
2493 			 * more input can be expected, send ACK now.
2494 			 */
2495 			if (DELAY_ACK(tp) && (tp->t_flags & TF_NEEDSYN)) {
2496 				tcp_callout_reset(tp, tp->tt_delack,
2497 				    tcp_delacktime, tcp_timer_delack);
2498 			} else {
2499 				tp->t_flags |= TF_ACKNOW;
2500 			}
2501 			tp->rcv_nxt++;
2502 		}
2503 
2504 		switch (tp->t_state) {
2505 		/*
2506 		 * In SYN_RECEIVED and ESTABLISHED STATES
2507 		 * enter the CLOSE_WAIT state.
2508 		 */
2509 		case TCPS_SYN_RECEIVED:
2510 			tp->t_starttime = ticks;
2511 			/*FALLTHROUGH*/
2512 		case TCPS_ESTABLISHED:
2513 			tp->t_state = TCPS_CLOSE_WAIT;
2514 			break;
2515 
2516 		/*
2517 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2518 		 * enter the CLOSING state.
2519 		 */
2520 		case TCPS_FIN_WAIT_1:
2521 			tp->t_state = TCPS_CLOSING;
2522 			break;
2523 
2524 		/*
2525 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2526 		 * starting the time-wait timer, turning off the other
2527 		 * standard timers.
2528 		 */
2529 		case TCPS_FIN_WAIT_2:
2530 			tp->t_state = TCPS_TIME_WAIT;
2531 			tcp_canceltimers(tp);
2532 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_msl,
2533 				    tcp_timer_2msl);
2534 			soisdisconnected(so);
2535 			break;
2536 
2537 		/*
2538 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2539 		 */
2540 		case TCPS_TIME_WAIT:
2541 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_msl,
2542 			    tcp_timer_2msl);
2543 			break;
2544 		}
2545 	}
2546 
2547 #ifdef TCPDEBUG
2548 	if (so->so_options & SO_DEBUG)
2549 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2550 #endif
2551 
2552 	/*
2553 	 * Return any desired output.
2554 	 */
2555 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2556 		tcp_output(tp);
2557 	return(IPPROTO_DONE);
2558 
2559 dropafterack:
2560 	/*
2561 	 * Generate an ACK dropping incoming segment if it occupies
2562 	 * sequence space, where the ACK reflects our state.
2563 	 *
2564 	 * We can now skip the test for the RST flag since all
2565 	 * paths to this code happen after packets containing
2566 	 * RST have been dropped.
2567 	 *
2568 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2569 	 * segment we received passes the SYN-RECEIVED ACK test.
2570 	 * If it fails send a RST.  This breaks the loop in the
2571 	 * "LAND" DoS attack, and also prevents an ACK storm
2572 	 * between two listening ports that have been sent forged
2573 	 * SYN segments, each with the source address of the other.
2574 	 */
2575 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2576 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2577 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2578 		rstreason = BANDLIM_RST_OPENPORT;
2579 		goto dropwithreset;
2580 	}
2581 #ifdef TCPDEBUG
2582 	if (so->so_options & SO_DEBUG)
2583 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2584 #endif
2585 	m_freem(m);
2586 	tp->t_flags |= TF_ACKNOW;
2587 	tcp_output(tp);
2588 	return(IPPROTO_DONE);
2589 
2590 dropwithreset:
2591 	/*
2592 	 * Generate a RST, dropping incoming segment.
2593 	 * Make ACK acceptable to originator of segment.
2594 	 * Don't bother to respond if destination was broadcast/multicast.
2595 	 */
2596 	if ((thflags & TH_RST) || m->m_flags & (M_BCAST | M_MCAST))
2597 		goto drop;
2598 	if (isipv6) {
2599 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2600 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2601 			goto drop;
2602 	} else {
2603 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2604 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2605 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2606 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2607 			goto drop;
2608 	}
2609 	/* IPv6 anycast check is done at tcp6_input() */
2610 
2611 	/*
2612 	 * Perform bandwidth limiting.
2613 	 */
2614 #ifdef ICMP_BANDLIM
2615 	if (badport_bandlim(rstreason) < 0)
2616 		goto drop;
2617 #endif
2618 
2619 #ifdef TCPDEBUG
2620 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2621 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2622 #endif
2623 	if (thflags & TH_ACK)
2624 		/* mtod() below is safe as long as hdr dropping is delayed */
2625 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2626 			    TH_RST);
2627 	else {
2628 		if (thflags & TH_SYN)
2629 			tlen++;
2630 		/* mtod() below is safe as long as hdr dropping is delayed */
2631 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq + tlen,
2632 			    (tcp_seq)0, TH_RST | TH_ACK);
2633 	}
2634 	return(IPPROTO_DONE);
2635 
2636 drop:
2637 	/*
2638 	 * Drop space held by incoming segment and return.
2639 	 */
2640 #ifdef TCPDEBUG
2641 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2642 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2643 #endif
2644 	m_freem(m);
2645 	return(IPPROTO_DONE);
2646 }
2647 
2648 /*
2649  * Parse TCP options and place in tcpopt.
2650  */
2651 static void
2652 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, boolean_t is_syn)
2653 {
2654 	int opt, optlen, i;
2655 
2656 	to->to_flags = 0;
2657 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2658 		opt = cp[0];
2659 		if (opt == TCPOPT_EOL)
2660 			break;
2661 		if (opt == TCPOPT_NOP)
2662 			optlen = 1;
2663 		else {
2664 			if (cnt < 2)
2665 				break;
2666 			optlen = cp[1];
2667 			if (optlen < 2 || optlen > cnt)
2668 				break;
2669 		}
2670 		switch (opt) {
2671 		case TCPOPT_MAXSEG:
2672 			if (optlen != TCPOLEN_MAXSEG)
2673 				continue;
2674 			if (!is_syn)
2675 				continue;
2676 			to->to_flags |= TOF_MSS;
2677 			bcopy(cp + 2, &to->to_mss, sizeof to->to_mss);
2678 			to->to_mss = ntohs(to->to_mss);
2679 			break;
2680 		case TCPOPT_WINDOW:
2681 			if (optlen != TCPOLEN_WINDOW)
2682 				continue;
2683 			if (!is_syn)
2684 				continue;
2685 			to->to_flags |= TOF_SCALE;
2686 			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2687 			break;
2688 		case TCPOPT_TIMESTAMP:
2689 			if (optlen != TCPOLEN_TIMESTAMP)
2690 				continue;
2691 			to->to_flags |= TOF_TS;
2692 			bcopy(cp + 2, &to->to_tsval, sizeof to->to_tsval);
2693 			to->to_tsval = ntohl(to->to_tsval);
2694 			bcopy(cp + 6, &to->to_tsecr, sizeof to->to_tsecr);
2695 			to->to_tsecr = ntohl(to->to_tsecr);
2696 			/*
2697 			 * If echoed timestamp is later than the current time,
2698 			 * fall back to non RFC1323 RTT calculation.
2699 			 */
2700 			if (to->to_tsecr != 0 && TSTMP_GT(to->to_tsecr, ticks))
2701 				to->to_tsecr = 0;
2702 			break;
2703 		case TCPOPT_SACK_PERMITTED:
2704 			if (optlen != TCPOLEN_SACK_PERMITTED)
2705 				continue;
2706 			if (!is_syn)
2707 				continue;
2708 			to->to_flags |= TOF_SACK_PERMITTED;
2709 			break;
2710 		case TCPOPT_SACK:
2711 			if ((optlen - 2) & 0x07)	/* not multiple of 8 */
2712 				continue;
2713 			to->to_nsackblocks = (optlen - 2) / 8;
2714 			to->to_sackblocks = (struct raw_sackblock *) (cp + 2);
2715 			to->to_flags |= TOF_SACK;
2716 			for (i = 0; i < to->to_nsackblocks; i++) {
2717 				struct raw_sackblock *r = &to->to_sackblocks[i];
2718 
2719 				r->rblk_start = ntohl(r->rblk_start);
2720 				r->rblk_end = ntohl(r->rblk_end);
2721 			}
2722 			break;
2723 #ifdef TCP_SIGNATURE
2724 		/*
2725 		 * XXX In order to reply to a host which has set the
2726 		 * TCP_SIGNATURE option in its initial SYN, we have to
2727 		 * record the fact that the option was observed here
2728 		 * for the syncache code to perform the correct response.
2729 		 */
2730 		case TCPOPT_SIGNATURE:
2731 			if (optlen != TCPOLEN_SIGNATURE)
2732 				continue;
2733 			to->to_flags |= (TOF_SIGNATURE | TOF_SIGLEN);
2734 			break;
2735 #endif /* TCP_SIGNATURE */
2736 		default:
2737 			continue;
2738 		}
2739 	}
2740 }
2741 
2742 /*
2743  * Pull out of band byte out of a segment so
2744  * it doesn't appear in the user's data queue.
2745  * It is still reflected in the segment length for
2746  * sequencing purposes.
2747  * "off" is the delayed to be dropped hdrlen.
2748  */
2749 static void
2750 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m, int off)
2751 {
2752 	int cnt = off + th->th_urp - 1;
2753 
2754 	while (cnt >= 0) {
2755 		if (m->m_len > cnt) {
2756 			char *cp = mtod(m, caddr_t) + cnt;
2757 			struct tcpcb *tp = sototcpcb(so);
2758 
2759 			tp->t_iobc = *cp;
2760 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2761 			bcopy(cp + 1, cp, m->m_len - cnt - 1);
2762 			m->m_len--;
2763 			if (m->m_flags & M_PKTHDR)
2764 				m->m_pkthdr.len--;
2765 			return;
2766 		}
2767 		cnt -= m->m_len;
2768 		m = m->m_next;
2769 		if (m == 0)
2770 			break;
2771 	}
2772 	panic("tcp_pulloutofband");
2773 }
2774 
2775 /*
2776  * Collect new round-trip time estimate
2777  * and update averages and current timeout.
2778  */
2779 static void
2780 tcp_xmit_timer(struct tcpcb *tp, int rtt)
2781 {
2782 	int delta;
2783 
2784 	tcpstat.tcps_rttupdated++;
2785 	tp->t_rttupdated++;
2786 	if (tp->t_srtt != 0) {
2787 		/*
2788 		 * srtt is stored as fixed point with 5 bits after the
2789 		 * binary point (i.e., scaled by 8).  The following magic
2790 		 * is equivalent to the smoothing algorithm in rfc793 with
2791 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2792 		 * point).  Adjust rtt to origin 0.
2793 		 */
2794 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2795 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2796 
2797 		if ((tp->t_srtt += delta) <= 0)
2798 			tp->t_srtt = 1;
2799 
2800 		/*
2801 		 * We accumulate a smoothed rtt variance (actually, a
2802 		 * smoothed mean difference), then set the retransmit
2803 		 * timer to smoothed rtt + 4 times the smoothed variance.
2804 		 * rttvar is stored as fixed point with 4 bits after the
2805 		 * binary point (scaled by 16).  The following is
2806 		 * equivalent to rfc793 smoothing with an alpha of .75
2807 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2808 		 * rfc793's wired-in beta.
2809 		 */
2810 		if (delta < 0)
2811 			delta = -delta;
2812 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2813 		if ((tp->t_rttvar += delta) <= 0)
2814 			tp->t_rttvar = 1;
2815 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2816 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2817 	} else {
2818 		/*
2819 		 * No rtt measurement yet - use the unsmoothed rtt.
2820 		 * Set the variance to half the rtt (so our first
2821 		 * retransmit happens at 3*rtt).
2822 		 */
2823 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2824 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2825 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2826 	}
2827 	tp->t_rtttime = 0;
2828 	tp->t_rxtshift = 0;
2829 
2830 	/*
2831 	 * the retransmit should happen at rtt + 4 * rttvar.
2832 	 * Because of the way we do the smoothing, srtt and rttvar
2833 	 * will each average +1/2 tick of bias.  When we compute
2834 	 * the retransmit timer, we want 1/2 tick of rounding and
2835 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2836 	 * firing of the timer.  The bias will give us exactly the
2837 	 * 1.5 tick we need.  But, because the bias is
2838 	 * statistical, we have to test that we don't drop below
2839 	 * the minimum feasible timer (which is 2 ticks).
2840 	 */
2841 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2842 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2843 
2844 	/*
2845 	 * We received an ack for a packet that wasn't retransmitted;
2846 	 * it is probably safe to discard any error indications we've
2847 	 * received recently.  This isn't quite right, but close enough
2848 	 * for now (a route might have failed after we sent a segment,
2849 	 * and the return path might not be symmetrical).
2850 	 */
2851 	tp->t_softerror = 0;
2852 }
2853 
2854 /*
2855  * Determine a reasonable value for maxseg size.
2856  * If the route is known, check route for mtu.
2857  * If none, use an mss that can be handled on the outgoing
2858  * interface without forcing IP to fragment; if bigger than
2859  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2860  * to utilize large mbufs.  If no route is found, route has no mtu,
2861  * or the destination isn't local, use a default, hopefully conservative
2862  * size (usually 512 or the default IP max size, but no more than the mtu
2863  * of the interface), as we can't discover anything about intervening
2864  * gateways or networks.  We also initialize the congestion/slow start
2865  * window to be a single segment if the destination isn't local.
2866  * While looking at the routing entry, we also initialize other path-dependent
2867  * parameters from pre-set or cached values in the routing entry.
2868  *
2869  * Also take into account the space needed for options that we
2870  * send regularly.  Make maxseg shorter by that amount to assure
2871  * that we can send maxseg amount of data even when the options
2872  * are present.  Store the upper limit of the length of options plus
2873  * data in maxopd.
2874  *
2875  * NOTE that this routine is only called when we process an incoming
2876  * segment, for outgoing segments only tcp_mssopt is called.
2877  */
2878 void
2879 tcp_mss(struct tcpcb *tp, int offer)
2880 {
2881 	struct rtentry *rt;
2882 	struct ifnet *ifp;
2883 	int rtt, mss;
2884 	u_long bufsize;
2885 	struct inpcb *inp = tp->t_inpcb;
2886 	struct socket *so;
2887 #ifdef INET6
2888 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
2889 	size_t min_protoh = isipv6 ?
2890 			    sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
2891 			    sizeof(struct tcpiphdr);
2892 #else
2893 	const boolean_t isipv6 = FALSE;
2894 	const size_t min_protoh = sizeof(struct tcpiphdr);
2895 #endif
2896 
2897 	if (isipv6)
2898 		rt = tcp_rtlookup6(&inp->inp_inc);
2899 	else
2900 		rt = tcp_rtlookup(&inp->inp_inc);
2901 	if (rt == NULL) {
2902 		tp->t_maxopd = tp->t_maxseg =
2903 		    (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2904 		return;
2905 	}
2906 	ifp = rt->rt_ifp;
2907 	so = inp->inp_socket;
2908 
2909 	/*
2910 	 * Offer == 0 means that there was no MSS on the SYN segment,
2911 	 * in this case we use either the interface mtu or tcp_mssdflt.
2912 	 *
2913 	 * An offer which is too large will be cut down later.
2914 	 */
2915 	if (offer == 0) {
2916 		if (isipv6) {
2917 			if (in6_localaddr(&inp->in6p_faddr)) {
2918 				offer = ND_IFINFO(rt->rt_ifp)->linkmtu -
2919 					min_protoh;
2920 			} else {
2921 				offer = tcp_v6mssdflt;
2922 			}
2923 		} else {
2924 			if (in_localaddr(inp->inp_faddr))
2925 				offer = ifp->if_mtu - min_protoh;
2926 			else
2927 				offer = tcp_mssdflt;
2928 		}
2929 	}
2930 
2931 	/*
2932 	 * Prevent DoS attack with too small MSS. Round up
2933 	 * to at least minmss.
2934 	 *
2935 	 * Sanity check: make sure that maxopd will be large
2936 	 * enough to allow some data on segments even is the
2937 	 * all the option space is used (40bytes).  Otherwise
2938 	 * funny things may happen in tcp_output.
2939 	 */
2940 	offer = max(offer, tcp_minmss);
2941 	offer = max(offer, 64);
2942 
2943 	rt->rt_rmx.rmx_mssopt = offer;
2944 
2945 	/*
2946 	 * While we're here, check if there's an initial rtt
2947 	 * or rttvar.  Convert from the route-table units
2948 	 * to scaled multiples of the slow timeout timer.
2949 	 */
2950 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2951 		/*
2952 		 * XXX the lock bit for RTT indicates that the value
2953 		 * is also a minimum value; this is subject to time.
2954 		 */
2955 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2956 			tp->t_rttmin = rtt / (RTM_RTTUNIT / hz);
2957 		tp->t_srtt = rtt / (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
2958 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
2959 		tcpstat.tcps_usedrtt++;
2960 		if (rt->rt_rmx.rmx_rttvar) {
2961 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2962 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
2963 			tcpstat.tcps_usedrttvar++;
2964 		} else {
2965 			/* default variation is +- 1 rtt */
2966 			tp->t_rttvar =
2967 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2968 		}
2969 		TCPT_RANGESET(tp->t_rxtcur,
2970 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2971 			      tp->t_rttmin, TCPTV_REXMTMAX);
2972 	}
2973 
2974 	/*
2975 	 * if there's an mtu associated with the route, use it
2976 	 * else, use the link mtu.  Take the smaller of mss or offer
2977 	 * as our final mss.
2978 	 */
2979 	if (rt->rt_rmx.rmx_mtu) {
2980 		mss = rt->rt_rmx.rmx_mtu - min_protoh;
2981 	} else {
2982 		if (isipv6)
2983 			mss = ND_IFINFO(rt->rt_ifp)->linkmtu - min_protoh;
2984 		else
2985 			mss = ifp->if_mtu - min_protoh;
2986 	}
2987 	mss = min(mss, offer);
2988 
2989 	/*
2990 	 * maxopd stores the maximum length of data AND options
2991 	 * in a segment; maxseg is the amount of data in a normal
2992 	 * segment.  We need to store this value (maxopd) apart
2993 	 * from maxseg, because now every segment carries options
2994 	 * and thus we normally have somewhat less data in segments.
2995 	 */
2996 	tp->t_maxopd = mss;
2997 
2998 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP &&
2999 	    ((tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3000 		mss -= TCPOLEN_TSTAMP_APPA;
3001 
3002 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
3003 		if (mss > MCLBYTES)
3004 			mss &= ~(MCLBYTES-1);
3005 #else
3006 		if (mss > MCLBYTES)
3007 			mss = mss / MCLBYTES * MCLBYTES;
3008 #endif
3009 	/*
3010 	 * If there's a pipesize, change the socket buffer
3011 	 * to that size.  Make the socket buffers an integral
3012 	 * number of mss units; if the mss is larger than
3013 	 * the socket buffer, decrease the mss.
3014 	 */
3015 #ifdef RTV_SPIPE
3016 	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
3017 #endif
3018 		bufsize = so->so_snd.ssb_hiwat;
3019 	if (bufsize < mss)
3020 		mss = bufsize;
3021 	else {
3022 		bufsize = roundup(bufsize, mss);
3023 		if (bufsize > sb_max)
3024 			bufsize = sb_max;
3025 		if (bufsize > so->so_snd.ssb_hiwat)
3026 			ssb_reserve(&so->so_snd, bufsize, so, NULL);
3027 	}
3028 	tp->t_maxseg = mss;
3029 
3030 #ifdef RTV_RPIPE
3031 	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
3032 #endif
3033 		bufsize = so->so_rcv.ssb_hiwat;
3034 	if (bufsize > mss) {
3035 		bufsize = roundup(bufsize, mss);
3036 		if (bufsize > sb_max)
3037 			bufsize = sb_max;
3038 		if (bufsize > so->so_rcv.ssb_hiwat) {
3039 			lwkt_gettoken(&so->so_rcv.ssb_token);
3040 			ssb_reserve(&so->so_rcv, bufsize, so, NULL);
3041 			lwkt_reltoken(&so->so_rcv.ssb_token);
3042 		}
3043 	}
3044 
3045 	/*
3046 	 * Set the slow-start flight size depending on whether this
3047 	 * is a local network or not.
3048 	 */
3049 	if (tcp_do_rfc3390)
3050 		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
3051 	else
3052 		tp->snd_cwnd = mss;
3053 
3054 	if (rt->rt_rmx.rmx_ssthresh) {
3055 		/*
3056 		 * There's some sort of gateway or interface
3057 		 * buffer limit on the path.  Use this to set
3058 		 * the slow start threshhold, but set the
3059 		 * threshold to no less than 2*mss.
3060 		 */
3061 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
3062 		tcpstat.tcps_usedssthresh++;
3063 	}
3064 }
3065 
3066 /*
3067  * Determine the MSS option to send on an outgoing SYN.
3068  */
3069 int
3070 tcp_mssopt(struct tcpcb *tp)
3071 {
3072 	struct rtentry *rt;
3073 #ifdef INET6
3074 	boolean_t isipv6 =
3075 	    ((tp->t_inpcb->inp_vflag & INP_IPV6) ? TRUE : FALSE);
3076 	int min_protoh = isipv6 ?
3077 			     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
3078 			     sizeof(struct tcpiphdr);
3079 #else
3080 	const boolean_t isipv6 = FALSE;
3081 	const size_t min_protoh = sizeof(struct tcpiphdr);
3082 #endif
3083 
3084 	if (isipv6)
3085 		rt = tcp_rtlookup6(&tp->t_inpcb->inp_inc);
3086 	else
3087 		rt = tcp_rtlookup(&tp->t_inpcb->inp_inc);
3088 	if (rt == NULL)
3089 		return (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
3090 
3091 	return (rt->rt_ifp->if_mtu - min_protoh);
3092 }
3093 
3094 /*
3095  * When a partial ack arrives, force the retransmission of the
3096  * next unacknowledged segment.  Do not exit Fast Recovery.
3097  *
3098  * Implement the Slow-but-Steady variant of NewReno by restarting the
3099  * the retransmission timer.  Turn it off here so it can be restarted
3100  * later in tcp_output().
3101  */
3102 static void
3103 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th, int acked)
3104 {
3105 	tcp_seq old_snd_nxt = tp->snd_nxt;
3106 	u_long ocwnd = tp->snd_cwnd;
3107 
3108 	tcp_callout_stop(tp, tp->tt_rexmt);
3109 	tp->t_rtttime = 0;
3110 	tp->snd_nxt = th->th_ack;
3111 	/* Set snd_cwnd to one segment beyond acknowledged offset. */
3112 	tp->snd_cwnd = tp->t_maxseg;
3113 	tp->t_flags |= TF_ACKNOW;
3114 	tcp_output(tp);
3115 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3116 		tp->snd_nxt = old_snd_nxt;
3117 	/* partial window deflation */
3118 	if (ocwnd > acked)
3119 		tp->snd_cwnd = ocwnd - acked + tp->t_maxseg;
3120 	else
3121 		tp->snd_cwnd = tp->t_maxseg;
3122 }
3123 
3124 /*
3125  * In contrast to the Slow-but-Steady NewReno variant,
3126  * we do not reset the retransmission timer for SACK retransmissions,
3127  * except when retransmitting snd_una.
3128  */
3129 static void
3130 tcp_sack_rexmt(struct tcpcb *tp, struct tcphdr *th)
3131 {
3132 	uint32_t pipe, seglen;
3133 	tcp_seq nextrexmt;
3134 	boolean_t lostdup;
3135 	tcp_seq old_snd_nxt = tp->snd_nxt;
3136 	u_long ocwnd = tp->snd_cwnd;
3137 	int nseg = 0;		/* consecutive new segments */
3138 #define MAXBURST 4		/* limit burst of new packets on partial ack */
3139 
3140 	tp->t_rtttime = 0;
3141 	pipe = tcp_sack_compute_pipe(tp);
3142 	while ((tcp_seq_diff_t)(ocwnd - pipe) >= (tcp_seq_diff_t)tp->t_maxseg &&
3143 	    (!tcp_do_smartsack || nseg < MAXBURST) &&
3144 	    tcp_sack_nextseg(tp, &nextrexmt, &seglen, &lostdup)) {
3145 		uint32_t sent;
3146 		tcp_seq old_snd_max;
3147 		int error;
3148 
3149 		if (nextrexmt == tp->snd_max)
3150 			++nseg;
3151 		tp->snd_nxt = nextrexmt;
3152 		tp->snd_cwnd = nextrexmt - tp->snd_una + seglen;
3153 		old_snd_max = tp->snd_max;
3154 		if (nextrexmt == tp->snd_una)
3155 			tcp_callout_stop(tp, tp->tt_rexmt);
3156 		error = tcp_output(tp);
3157 		if (error != 0)
3158 			break;
3159 		sent = tp->snd_nxt - nextrexmt;
3160 		if (sent <= 0)
3161 			break;
3162 		if (!lostdup)
3163 			pipe += sent;
3164 		tcpstat.tcps_sndsackpack++;
3165 		tcpstat.tcps_sndsackbyte += sent;
3166 		if (SEQ_LT(nextrexmt, old_snd_max) &&
3167 		    SEQ_LT(tp->rexmt_high, tp->snd_nxt))
3168 			tp->rexmt_high = seq_min(tp->snd_nxt, old_snd_max);
3169 	}
3170 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3171 		tp->snd_nxt = old_snd_nxt;
3172 	tp->snd_cwnd = ocwnd;
3173 }
3174 
3175 /*
3176  * Reset idle time and keep-alive timer, typically called when a valid
3177  * tcp packet is received but may also be called when FASTKEEP is set
3178  * to prevent the previous long-timeout from calculating to a drop.
3179  *
3180  * Only update t_rcvtime for non-SYN packets.
3181  *
3182  * Handle the case where one side thinks the connection is established
3183  * but the other side has, say, rebooted without cleaning out the
3184  * connection.   The SYNs could be construed as an attack and wind
3185  * up ignored, but in case it isn't an attack we can validate the
3186  * connection by forcing a keepalive.
3187  */
3188 void
3189 tcp_timer_keep_activity(struct tcpcb *tp, int thflags)
3190 {
3191 	if (TCPS_HAVEESTABLISHED(tp->t_state)) {
3192 		if ((thflags & (TH_SYN | TH_ACK)) == TH_SYN) {
3193 			tp->t_flags |= TF_KEEPALIVE;
3194 			tcp_callout_reset(tp, tp->tt_keep, hz / 2,
3195 					  tcp_timer_keep);
3196 		} else {
3197 			tp->t_rcvtime = ticks;
3198 			tp->t_flags &= ~TF_KEEPALIVE;
3199 			tcp_callout_reset(tp, tp->tt_keep,
3200 					  tcp_getkeepidle(tp),
3201 					  tcp_timer_keep);
3202 		}
3203 	}
3204 }
3205