xref: /dragonfly/sys/netinet/tcp_input.c (revision 927da715)
1 /*
2  * Copyright (c) 2002, 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2002, 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
67  * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.38 2003/05/21 04:46:41 cjc Exp $
68  * $DragonFly: src/sys/netinet/tcp_input.c,v 1.68 2008/08/22 09:14:17 sephe Exp $
69  */
70 
71 #include "opt_ipfw.h"		/* for ipfw_fwd		*/
72 #include "opt_inet6.h"
73 #include "opt_ipsec.h"
74 #include "opt_tcpdebug.h"
75 #include "opt_tcp_input.h"
76 
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 #include <sys/malloc.h>
82 #include <sys/mbuf.h>
83 #include <sys/proc.h>		/* for proc0 declaration */
84 #include <sys/protosw.h>
85 #include <sys/socket.h>
86 #include <sys/socketvar.h>
87 #include <sys/syslog.h>
88 #include <sys/in_cksum.h>
89 
90 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
91 #include <machine/stdarg.h>
92 
93 #include <net/if.h>
94 #include <net/route.h>
95 
96 #include <netinet/in.h>
97 #include <netinet/in_systm.h>
98 #include <netinet/ip.h>
99 #include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM */
100 #include <netinet/in_var.h>
101 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
102 #include <netinet/in_pcb.h>
103 #include <netinet/ip_var.h>
104 #include <netinet/ip6.h>
105 #include <netinet/icmp6.h>
106 #include <netinet6/nd6.h>
107 #include <netinet6/ip6_var.h>
108 #include <netinet6/in6_pcb.h>
109 #include <netinet/tcp.h>
110 #include <netinet/tcp_fsm.h>
111 #include <netinet/tcp_seq.h>
112 #include <netinet/tcp_timer.h>
113 #include <netinet/tcp_var.h>
114 #include <netinet6/tcp6_var.h>
115 #include <netinet/tcpip.h>
116 
117 #ifdef TCPDEBUG
118 #include <netinet/tcp_debug.h>
119 
120 u_char tcp_saveipgen[40];    /* the size must be of max ip header, now IPv6 */
121 struct tcphdr tcp_savetcp;
122 #endif
123 
124 #ifdef FAST_IPSEC
125 #include <netproto/ipsec/ipsec.h>
126 #include <netproto/ipsec/ipsec6.h>
127 #endif
128 
129 #ifdef IPSEC
130 #include <netinet6/ipsec.h>
131 #include <netinet6/ipsec6.h>
132 #include <netproto/key/key.h>
133 #endif
134 
135 MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
136 
137 tcp_cc	tcp_ccgen;
138 static int log_in_vain = 0;
139 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
140     &log_in_vain, 0, "Log all incoming TCP connections");
141 
142 static int blackhole = 0;
143 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
144     &blackhole, 0, "Do not send RST when dropping refused connections");
145 
146 int tcp_delack_enabled = 1;
147 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
148     &tcp_delack_enabled, 0,
149     "Delay ACK to try and piggyback it onto a data packet");
150 
151 #ifdef TCP_DROP_SYNFIN
152 static int drop_synfin = 0;
153 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
154     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
155 #endif
156 
157 static int tcp_do_limitedtransmit = 1;
158 SYSCTL_INT(_net_inet_tcp, OID_AUTO, limitedtransmit, CTLFLAG_RW,
159     &tcp_do_limitedtransmit, 0, "Enable RFC 3042 (Limited Transmit)");
160 
161 static int tcp_do_early_retransmit = 1;
162 SYSCTL_INT(_net_inet_tcp, OID_AUTO, earlyretransmit, CTLFLAG_RW,
163     &tcp_do_early_retransmit, 0, "Early retransmit");
164 
165 int tcp_aggregate_acks = 1;
166 SYSCTL_INT(_net_inet_tcp, OID_AUTO, aggregate_acks, CTLFLAG_RW,
167     &tcp_aggregate_acks, 0, "Aggregate built-up acks into one ack");
168 
169 int tcp_do_rfc3390 = 1;
170 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
171     &tcp_do_rfc3390, 0,
172     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
173 
174 static int tcp_do_eifel_detect = 1;
175 SYSCTL_INT(_net_inet_tcp, OID_AUTO, eifel, CTLFLAG_RW,
176     &tcp_do_eifel_detect, 0, "Eifel detection algorithm (RFC 3522)");
177 
178 static int tcp_do_abc = 1;
179 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc, CTLFLAG_RW,
180     &tcp_do_abc, 0,
181     "TCP Appropriate Byte Counting (RFC 3465)");
182 
183 /*
184  * Define as tunable for easy testing with SACK on and off.
185  * Warning:  do not change setting in the middle of an existing active TCP flow,
186  *   else strange things might happen to that flow.
187  */
188 int tcp_do_sack = 1;
189 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW,
190     &tcp_do_sack, 0, "Enable SACK Algorithms");
191 
192 int tcp_do_smartsack = 1;
193 SYSCTL_INT(_net_inet_tcp, OID_AUTO, smartsack, CTLFLAG_RW,
194     &tcp_do_smartsack, 0, "Enable Smart SACK Algorithms");
195 
196 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
197     "TCP Segment Reassembly Queue");
198 
199 int tcp_reass_maxseg = 0;
200 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RD,
201     &tcp_reass_maxseg, 0,
202     "Global maximum number of TCP Segments in Reassembly Queue");
203 
204 int tcp_reass_qsize = 0;
205 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
206     &tcp_reass_qsize, 0,
207     "Global number of TCP Segments currently in Reassembly Queue");
208 
209 static int tcp_reass_overflows = 0;
210 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
211     &tcp_reass_overflows, 0,
212     "Global number of TCP Segment Reassembly Queue Overflows");
213 
214 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, boolean_t);
215 static void	 tcp_pulloutofband(struct socket *,
216 		     struct tcphdr *, struct mbuf *, int);
217 static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
218 		     struct mbuf *);
219 static void	 tcp_xmit_timer(struct tcpcb *, int);
220 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *, int);
221 static void	 tcp_sack_rexmt(struct tcpcb *, struct tcphdr *);
222 
223 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
224 #ifdef INET6
225 #define ND6_HINT(tp) \
226 do { \
227 	if ((tp) && (tp)->t_inpcb && \
228 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) && \
229 	    (tp)->t_inpcb->in6p_route.ro_rt) \
230 		nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
231 } while (0)
232 #else
233 #define ND6_HINT(tp)
234 #endif
235 
236 /*
237  * Indicate whether this ack should be delayed.  We can delay the ack if
238  *	- delayed acks are enabled and
239  *	- there is no delayed ack timer in progress and
240  *	- our last ack wasn't a 0-sized window.  We never want to delay
241  *	  the ack that opens up a 0-sized window.
242  */
243 #define DELAY_ACK(tp) \
244 	(tcp_delack_enabled && !callout_pending(tp->tt_delack) && \
245 	!(tp->t_flags & TF_RXWIN0SENT))
246 
247 #define acceptable_window_update(tp, th, tiwin)				\
248     (SEQ_LT(tp->snd_wl1, th->th_seq) ||					\
249      (tp->snd_wl1 == th->th_seq &&					\
250       (SEQ_LT(tp->snd_wl2, th->th_ack) ||				\
251        (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))
252 
253 static int
254 tcp_reass(struct tcpcb *tp, struct tcphdr *th, int *tlenp, struct mbuf *m)
255 {
256 	struct tseg_qent *q;
257 	struct tseg_qent *p = NULL;
258 	struct tseg_qent *te;
259 	struct socket *so = tp->t_inpcb->inp_socket;
260 	int flags;
261 
262 	/*
263 	 * Call with th == NULL after become established to
264 	 * force pre-ESTABLISHED data up to user socket.
265 	 */
266 	if (th == NULL)
267 		goto present;
268 
269 	/*
270 	 * Limit the number of segments in the reassembly queue to prevent
271 	 * holding on to too many segments (and thus running out of mbufs).
272 	 * Make sure to let the missing segment through which caused this
273 	 * queue.  Always keep one global queue entry spare to be able to
274 	 * process the missing segment.
275 	 */
276 	if (th->th_seq != tp->rcv_nxt &&
277 	    tcp_reass_qsize + 1 >= tcp_reass_maxseg) {
278 		tcp_reass_overflows++;
279 		tcpstat.tcps_rcvmemdrop++;
280 		m_freem(m);
281 		/* no SACK block to report */
282 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
283 		return (0);
284 	}
285 
286 	/* Allocate a new queue entry. */
287 	MALLOC(te, struct tseg_qent *, sizeof(struct tseg_qent), M_TSEGQ,
288 	       M_INTWAIT | M_NULLOK);
289 	if (te == NULL) {
290 		tcpstat.tcps_rcvmemdrop++;
291 		m_freem(m);
292 		/* no SACK block to report */
293 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
294 		return (0);
295 	}
296 	tcp_reass_qsize++;
297 
298 	/*
299 	 * Find a segment which begins after this one does.
300 	 */
301 	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
302 		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
303 			break;
304 		p = q;
305 	}
306 
307 	/*
308 	 * If there is a preceding segment, it may provide some of
309 	 * our data already.  If so, drop the data from the incoming
310 	 * segment.  If it provides all of our data, drop us.
311 	 */
312 	if (p != NULL) {
313 		tcp_seq_diff_t i;
314 
315 		/* conversion to int (in i) handles seq wraparound */
316 		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
317 		if (i > 0) {		/* overlaps preceding segment */
318 			tp->t_flags |= (TF_DUPSEG | TF_ENCLOSESEG);
319 			/* enclosing block starts w/ preceding segment */
320 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
321 			if (i >= *tlenp) {
322 				/* preceding encloses incoming segment */
323 				tp->encloseblk.rblk_end = p->tqe_th->th_seq +
324 				    p->tqe_len;
325 				tcpstat.tcps_rcvduppack++;
326 				tcpstat.tcps_rcvdupbyte += *tlenp;
327 				m_freem(m);
328 				kfree(te, M_TSEGQ);
329 				tcp_reass_qsize--;
330 				/*
331 				 * Try to present any queued data
332 				 * at the left window edge to the user.
333 				 * This is needed after the 3-WHS
334 				 * completes.
335 				 */
336 				goto present;	/* ??? */
337 			}
338 			m_adj(m, i);
339 			*tlenp -= i;
340 			th->th_seq += i;
341 			/* incoming segment end is enclosing block end */
342 			tp->encloseblk.rblk_end = th->th_seq + *tlenp +
343 			    ((th->th_flags & TH_FIN) != 0);
344 			/* trim end of reported D-SACK block */
345 			tp->reportblk.rblk_end = th->th_seq;
346 		}
347 	}
348 	tcpstat.tcps_rcvoopack++;
349 	tcpstat.tcps_rcvoobyte += *tlenp;
350 
351 	/*
352 	 * While we overlap succeeding segments trim them or,
353 	 * if they are completely covered, dequeue them.
354 	 */
355 	while (q) {
356 		tcp_seq_diff_t i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
357 		tcp_seq qend = q->tqe_th->th_seq + q->tqe_len;
358 		struct tseg_qent *nq;
359 
360 		if (i <= 0)
361 			break;
362 		if (!(tp->t_flags & TF_DUPSEG)) {    /* first time through */
363 			tp->t_flags |= (TF_DUPSEG | TF_ENCLOSESEG);
364 			tp->encloseblk = tp->reportblk;
365 			/* report trailing duplicate D-SACK segment */
366 			tp->reportblk.rblk_start = q->tqe_th->th_seq;
367 		}
368 		if ((tp->t_flags & TF_ENCLOSESEG) &&
369 		    SEQ_GT(qend, tp->encloseblk.rblk_end)) {
370 			/* extend enclosing block if one exists */
371 			tp->encloseblk.rblk_end = qend;
372 		}
373 		if (i < q->tqe_len) {
374 			q->tqe_th->th_seq += i;
375 			q->tqe_len -= i;
376 			m_adj(q->tqe_m, i);
377 			break;
378 		}
379 
380 		nq = LIST_NEXT(q, tqe_q);
381 		LIST_REMOVE(q, tqe_q);
382 		m_freem(q->tqe_m);
383 		kfree(q, M_TSEGQ);
384 		tcp_reass_qsize--;
385 		q = nq;
386 	}
387 
388 	/* Insert the new segment queue entry into place. */
389 	te->tqe_m = m;
390 	te->tqe_th = th;
391 	te->tqe_len = *tlenp;
392 
393 	/* check if can coalesce with following segment */
394 	if (q != NULL && (th->th_seq + *tlenp == q->tqe_th->th_seq)) {
395 		tcp_seq tend = te->tqe_th->th_seq + te->tqe_len;
396 
397 		te->tqe_len += q->tqe_len;
398 		if (q->tqe_th->th_flags & TH_FIN)
399 			te->tqe_th->th_flags |= TH_FIN;
400 		m_cat(te->tqe_m, q->tqe_m);
401 		tp->encloseblk.rblk_end = tend;
402 		/*
403 		 * When not reporting a duplicate segment, use
404 		 * the larger enclosing block as the SACK block.
405 		 */
406 		if (!(tp->t_flags & TF_DUPSEG))
407 			tp->reportblk.rblk_end = tend;
408 		LIST_REMOVE(q, tqe_q);
409 		kfree(q, M_TSEGQ);
410 		tcp_reass_qsize--;
411 	}
412 
413 	if (p == NULL) {
414 		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
415 	} else {
416 		/* check if can coalesce with preceding segment */
417 		if (p->tqe_th->th_seq + p->tqe_len == th->th_seq) {
418 			p->tqe_len += te->tqe_len;
419 			m_cat(p->tqe_m, te->tqe_m);
420 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
421 			/*
422 			 * When not reporting a duplicate segment, use
423 			 * the larger enclosing block as the SACK block.
424 			 */
425 			if (!(tp->t_flags & TF_DUPSEG))
426 				tp->reportblk.rblk_start = p->tqe_th->th_seq;
427 			kfree(te, M_TSEGQ);
428 			tcp_reass_qsize--;
429 		} else
430 			LIST_INSERT_AFTER(p, te, tqe_q);
431 	}
432 
433 present:
434 	/*
435 	 * Present data to user, advancing rcv_nxt through
436 	 * completed sequence space.
437 	 */
438 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
439 		return (0);
440 	q = LIST_FIRST(&tp->t_segq);
441 	if (q == NULL || q->tqe_th->th_seq != tp->rcv_nxt)
442 		return (0);
443 	tp->rcv_nxt += q->tqe_len;
444 	if (!(tp->t_flags & TF_DUPSEG))	{
445 		/* no SACK block to report since ACK advanced */
446 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
447 	}
448 	/* no enclosing block to report since ACK advanced */
449 	tp->t_flags &= ~TF_ENCLOSESEG;
450 	flags = q->tqe_th->th_flags & TH_FIN;
451 	LIST_REMOVE(q, tqe_q);
452 	KASSERT(LIST_EMPTY(&tp->t_segq) ||
453 		LIST_FIRST(&tp->t_segq)->tqe_th->th_seq != tp->rcv_nxt,
454 		("segment not coalesced"));
455 	if (so->so_state & SS_CANTRCVMORE)
456 		m_freem(q->tqe_m);
457 	else
458 		ssb_appendstream(&so->so_rcv, q->tqe_m);
459 	kfree(q, M_TSEGQ);
460 	tcp_reass_qsize--;
461 	ND6_HINT(tp);
462 	sorwakeup(so);
463 	return (flags);
464 }
465 
466 /*
467  * TCP input routine, follows pages 65-76 of the
468  * protocol specification dated September, 1981 very closely.
469  */
470 #ifdef INET6
471 int
472 tcp6_input(struct mbuf **mp, int *offp, int proto)
473 {
474 	struct mbuf *m = *mp;
475 	struct in6_ifaddr *ia6;
476 
477 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
478 
479 	/*
480 	 * draft-itojun-ipv6-tcp-to-anycast
481 	 * better place to put this in?
482 	 */
483 	ia6 = ip6_getdstifaddr(m);
484 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
485 		struct ip6_hdr *ip6;
486 
487 		ip6 = mtod(m, struct ip6_hdr *);
488 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
489 			    offsetof(struct ip6_hdr, ip6_dst));
490 		return (IPPROTO_DONE);
491 	}
492 
493 	tcp_input(m, *offp, proto);
494 	return (IPPROTO_DONE);
495 }
496 #endif
497 
498 void
499 tcp_input(struct mbuf *m, ...)
500 {
501 	__va_list ap;
502 	int off0, proto;
503 	struct tcphdr *th;
504 	struct ip *ip = NULL;
505 	struct ipovly *ipov;
506 	struct inpcb *inp = NULL;
507 	u_char *optp = NULL;
508 	int optlen = 0;
509 	int len, tlen, off;
510 	int drop_hdrlen;
511 	struct tcpcb *tp = NULL;
512 	int thflags;
513 	struct socket *so = 0;
514 	int todrop, acked;
515 	boolean_t ourfinisacked, needoutput = FALSE;
516 	u_long tiwin;
517 	int recvwin;
518 	struct tcpopt to;		/* options in this segment */
519 	struct rmxp_tao *taop;		/* pointer to our TAO cache entry */
520 	struct rmxp_tao	tao_noncached;	/* in case there's no cached entry */
521 	struct sockaddr_in *next_hop = NULL;
522 	int rstreason; /* For badport_bandlim accounting purposes */
523 	int cpu;
524 	struct ip6_hdr *ip6 = NULL;
525 #ifdef INET6
526 	boolean_t isipv6;
527 #else
528 	const boolean_t isipv6 = FALSE;
529 #endif
530 #ifdef TCPDEBUG
531 	short ostate = 0;
532 #endif
533 
534 	__va_start(ap, m);
535 	off0 = __va_arg(ap, int);
536 	proto = __va_arg(ap, int);
537 	__va_end(ap);
538 
539 	tcpstat.tcps_rcvtotal++;
540 
541 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
542 		struct m_tag *mtag;
543 
544 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
545 		KKASSERT(mtag != NULL);
546 		next_hop = m_tag_data(mtag);
547 	}
548 
549 #ifdef INET6
550 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? TRUE : FALSE;
551 #endif
552 
553 	if (isipv6) {
554 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
555 		ip6 = mtod(m, struct ip6_hdr *);
556 		tlen = (sizeof *ip6) + ntohs(ip6->ip6_plen) - off0;
557 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
558 			tcpstat.tcps_rcvbadsum++;
559 			goto drop;
560 		}
561 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
562 
563 		/*
564 		 * Be proactive about unspecified IPv6 address in source.
565 		 * As we use all-zero to indicate unbounded/unconnected pcb,
566 		 * unspecified IPv6 address can be used to confuse us.
567 		 *
568 		 * Note that packets with unspecified IPv6 destination is
569 		 * already dropped in ip6_input.
570 		 */
571 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
572 			/* XXX stat */
573 			goto drop;
574 		}
575 	} else {
576 		/*
577 		 * Get IP and TCP header together in first mbuf.
578 		 * Note: IP leaves IP header in first mbuf.
579 		 */
580 		if (off0 > sizeof(struct ip)) {
581 			ip_stripoptions(m);
582 			off0 = sizeof(struct ip);
583 		}
584 		/* already checked and pulled up in ip_demux() */
585 		KASSERT(m->m_len >= sizeof(struct tcpiphdr),
586 		    ("TCP header not in one mbuf: m->m_len %d", m->m_len));
587 		ip = mtod(m, struct ip *);
588 		ipov = (struct ipovly *)ip;
589 		th = (struct tcphdr *)((caddr_t)ip + off0);
590 		tlen = ip->ip_len;
591 
592 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
593 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
594 				th->th_sum = m->m_pkthdr.csum_data;
595 			else
596 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
597 						ip->ip_dst.s_addr,
598 						htonl(m->m_pkthdr.csum_data +
599 							ip->ip_len +
600 							IPPROTO_TCP));
601 			th->th_sum ^= 0xffff;
602 		} else {
603 			/*
604 			 * Checksum extended TCP header and data.
605 			 */
606 			len = sizeof(struct ip) + tlen;
607 			bzero(ipov->ih_x1, sizeof ipov->ih_x1);
608 			ipov->ih_len = (u_short)tlen;
609 			ipov->ih_len = htons(ipov->ih_len);
610 			th->th_sum = in_cksum(m, len);
611 		}
612 		if (th->th_sum) {
613 			tcpstat.tcps_rcvbadsum++;
614 			goto drop;
615 		}
616 #ifdef INET6
617 		/* Re-initialization for later version check */
618 		ip->ip_v = IPVERSION;
619 #endif
620 	}
621 
622 	/*
623 	 * Check that TCP offset makes sense,
624 	 * pull out TCP options and adjust length.		XXX
625 	 */
626 	off = th->th_off << 2;
627 	/* already checked and pulled up in ip_demux() */
628 	KASSERT(off >= sizeof(struct tcphdr) && off <= tlen,
629 	    ("bad TCP data offset %d (tlen %d)", off, tlen));
630 	tlen -= off;	/* tlen is used instead of ti->ti_len */
631 	if (off > sizeof(struct tcphdr)) {
632 		if (isipv6) {
633 			IP6_EXTHDR_CHECK(m, off0, off, );
634 			ip6 = mtod(m, struct ip6_hdr *);
635 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
636 		} else {
637 			/* already pulled up in ip_demux() */
638 			KASSERT(m->m_len >= sizeof(struct ip) + off,
639 			    ("TCP header and options not in one mbuf: "
640 			     "m_len %d, off %d", m->m_len, off));
641 		}
642 		optlen = off - sizeof(struct tcphdr);
643 		optp = (u_char *)(th + 1);
644 	}
645 	thflags = th->th_flags;
646 
647 #ifdef TCP_DROP_SYNFIN
648 	/*
649 	 * If the drop_synfin option is enabled, drop all packets with
650 	 * both the SYN and FIN bits set. This prevents e.g. nmap from
651 	 * identifying the TCP/IP stack.
652 	 *
653 	 * This is a violation of the TCP specification.
654 	 */
655 	if (drop_synfin && (thflags & (TH_SYN | TH_FIN)) == (TH_SYN | TH_FIN))
656 		goto drop;
657 #endif
658 
659 	/*
660 	 * Convert TCP protocol specific fields to host format.
661 	 */
662 	th->th_seq = ntohl(th->th_seq);
663 	th->th_ack = ntohl(th->th_ack);
664 	th->th_win = ntohs(th->th_win);
665 	th->th_urp = ntohs(th->th_urp);
666 
667 	/*
668 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
669 	 * until after ip6_savecontrol() is called and before other functions
670 	 * which don't want those proto headers.
671 	 * Because ip6_savecontrol() is going to parse the mbuf to
672 	 * search for data to be passed up to user-land, it wants mbuf
673 	 * parameters to be unchanged.
674 	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
675 	 * latest version of the advanced API (20020110).
676 	 */
677 	drop_hdrlen = off0 + off;
678 
679 	/*
680 	 * Locate pcb for segment.
681 	 */
682 findpcb:
683 	/* IPFIREWALL_FORWARD section */
684 	if (next_hop != NULL && !isipv6) {  /* IPv6 support is not there yet */
685 		/*
686 		 * Transparently forwarded. Pretend to be the destination.
687 		 * already got one like this?
688 		 */
689 		cpu = mycpu->gd_cpuid;
690 		inp = in_pcblookup_hash(&tcbinfo[cpu],
691 					ip->ip_src, th->th_sport,
692 					ip->ip_dst, th->th_dport,
693 					0, m->m_pkthdr.rcvif);
694 		if (!inp) {
695 			/*
696 			 * It's new.  Try to find the ambushing socket.
697 			 */
698 
699 			/*
700 			 * The rest of the ipfw code stores the port in
701 			 * host order.  XXX
702 			 * (The IP address is still in network order.)
703 			 */
704 			in_port_t dport = next_hop->sin_port ?
705 						htons(next_hop->sin_port) :
706 						th->th_dport;
707 
708 			cpu = tcp_addrcpu(ip->ip_src.s_addr, th->th_sport,
709 					  next_hop->sin_addr.s_addr, dport);
710 			inp = in_pcblookup_hash(&tcbinfo[cpu],
711 						ip->ip_src, th->th_sport,
712 						next_hop->sin_addr, dport,
713 						1, m->m_pkthdr.rcvif);
714 		}
715 	} else {
716 		if (isipv6) {
717 			inp = in6_pcblookup_hash(&tcbinfo[0],
718 						 &ip6->ip6_src, th->th_sport,
719 						 &ip6->ip6_dst, th->th_dport,
720 						 1, m->m_pkthdr.rcvif);
721 		} else {
722 			cpu = mycpu->gd_cpuid;
723 			inp = in_pcblookup_hash(&tcbinfo[cpu],
724 						ip->ip_src, th->th_sport,
725 						ip->ip_dst, th->th_dport,
726 						1, m->m_pkthdr.rcvif);
727 		}
728 	}
729 
730 	/*
731 	 * If the state is CLOSED (i.e., TCB does not exist) then
732 	 * all data in the incoming segment is discarded.
733 	 * If the TCB exists but is in CLOSED state, it is embryonic,
734 	 * but should either do a listen or a connect soon.
735 	 */
736 	if (inp == NULL) {
737 		if (log_in_vain) {
738 #ifdef INET6
739 			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
740 #else
741 			char dbuf[sizeof "aaa.bbb.ccc.ddd"];
742 			char sbuf[sizeof "aaa.bbb.ccc.ddd"];
743 #endif
744 			if (isipv6) {
745 				strcpy(dbuf, "[");
746 				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
747 				strcat(dbuf, "]");
748 				strcpy(sbuf, "[");
749 				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
750 				strcat(sbuf, "]");
751 			} else {
752 				strcpy(dbuf, inet_ntoa(ip->ip_dst));
753 				strcpy(sbuf, inet_ntoa(ip->ip_src));
754 			}
755 			switch (log_in_vain) {
756 			case 1:
757 				if (!(thflags & TH_SYN))
758 					break;
759 			case 2:
760 				log(LOG_INFO,
761 				    "Connection attempt to TCP %s:%d "
762 				    "from %s:%d flags:0x%02x\n",
763 				    dbuf, ntohs(th->th_dport), sbuf,
764 				    ntohs(th->th_sport), thflags);
765 				break;
766 			default:
767 				break;
768 			}
769 		}
770 		if (blackhole) {
771 			switch (blackhole) {
772 			case 1:
773 				if (thflags & TH_SYN)
774 					goto drop;
775 				break;
776 			case 2:
777 				goto drop;
778 			default:
779 				goto drop;
780 			}
781 		}
782 		rstreason = BANDLIM_RST_CLOSEDPORT;
783 		goto dropwithreset;
784 	}
785 
786 #ifdef IPSEC
787 	if (isipv6) {
788 		if (ipsec6_in_reject_so(m, inp->inp_socket)) {
789 			ipsec6stat.in_polvio++;
790 			goto drop;
791 		}
792 	} else {
793 		if (ipsec4_in_reject_so(m, inp->inp_socket)) {
794 			ipsecstat.in_polvio++;
795 			goto drop;
796 		}
797 	}
798 #endif
799 #ifdef FAST_IPSEC
800 	if (isipv6) {
801 		if (ipsec6_in_reject(m, inp))
802 			goto drop;
803 	} else {
804 		if (ipsec4_in_reject(m, inp))
805 			goto drop;
806 	}
807 #endif
808 	/* Check the minimum TTL for socket. */
809 #ifdef INET6
810 	if ((isipv6 ? ip6->ip6_hlim : ip->ip_ttl) < inp->inp_ip_minttl)
811 		goto drop;
812 #endif
813 
814 	tp = intotcpcb(inp);
815 	if (tp == NULL) {
816 		rstreason = BANDLIM_RST_CLOSEDPORT;
817 		goto dropwithreset;
818 	}
819 	if (tp->t_state <= TCPS_CLOSED)
820 		goto drop;
821 
822 	/* Unscale the window into a 32-bit value. */
823 	if (!(thflags & TH_SYN))
824 		tiwin = th->th_win << tp->snd_scale;
825 	else
826 		tiwin = th->th_win;
827 
828 	so = inp->inp_socket;
829 
830 #ifdef TCPDEBUG
831 	if (so->so_options & SO_DEBUG) {
832 		ostate = tp->t_state;
833 		if (isipv6)
834 			bcopy(ip6, tcp_saveipgen, sizeof(*ip6));
835 		else
836 			bcopy(ip, tcp_saveipgen, sizeof(*ip));
837 		tcp_savetcp = *th;
838 	}
839 #endif
840 
841 	bzero(&to, sizeof to);
842 
843 	if (so->so_options & SO_ACCEPTCONN) {
844 		struct in_conninfo inc;
845 
846 #ifdef INET6
847 		inc.inc_isipv6 = (isipv6 == TRUE);
848 #endif
849 		if (isipv6) {
850 			inc.inc6_faddr = ip6->ip6_src;
851 			inc.inc6_laddr = ip6->ip6_dst;
852 			inc.inc6_route.ro_rt = NULL;		/* XXX */
853 		} else {
854 			inc.inc_faddr = ip->ip_src;
855 			inc.inc_laddr = ip->ip_dst;
856 			inc.inc_route.ro_rt = NULL;		/* XXX */
857 		}
858 		inc.inc_fport = th->th_sport;
859 		inc.inc_lport = th->th_dport;
860 
861 		/*
862 		 * If the state is LISTEN then ignore segment if it contains
863 		 * a RST.  If the segment contains an ACK then it is bad and
864 		 * send a RST.  If it does not contain a SYN then it is not
865 		 * interesting; drop it.
866 		 *
867 		 * If the state is SYN_RECEIVED (syncache) and seg contains
868 		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
869 		 * contains a RST, check the sequence number to see if it
870 		 * is a valid reset segment.
871 		 */
872 		if ((thflags & (TH_RST | TH_ACK | TH_SYN)) != TH_SYN) {
873 			if ((thflags & (TH_RST | TH_ACK | TH_SYN)) == TH_ACK) {
874 				if (!syncache_expand(&inc, th, &so, m)) {
875 					/*
876 					 * No syncache entry, or ACK was not
877 					 * for our SYN/ACK.  Send a RST.
878 					 */
879 					tcpstat.tcps_badsyn++;
880 					rstreason = BANDLIM_RST_OPENPORT;
881 					goto dropwithreset;
882 				}
883 				if (so == NULL)
884 					/*
885 					 * Could not complete 3-way handshake,
886 					 * connection is being closed down, and
887 					 * syncache will free mbuf.
888 					 */
889 					return;
890 				/*
891 				 * Socket is created in state SYN_RECEIVED.
892 				 * Continue processing segment.
893 				 */
894 				inp = so->so_pcb;
895 				tp = intotcpcb(inp);
896 				/*
897 				 * This is what would have happened in
898 				 * tcp_output() when the SYN,ACK was sent.
899 				 */
900 				tp->snd_up = tp->snd_una;
901 				tp->snd_max = tp->snd_nxt = tp->iss + 1;
902 				tp->last_ack_sent = tp->rcv_nxt;
903 /*
904  * XXX possible bug - it doesn't appear that tp->snd_wnd is unscaled
905  * until the _second_ ACK is received:
906  *    rcv SYN (set wscale opts)	 --> send SYN/ACK, set snd_wnd = window.
907  *    rcv ACK, calculate tiwin --> process SYN_RECEIVED, determine wscale,
908  *	  move to ESTAB, set snd_wnd to tiwin.
909  */
910 				tp->snd_wnd = tiwin;	/* unscaled */
911 				goto after_listen;
912 			}
913 			if (thflags & TH_RST) {
914 				syncache_chkrst(&inc, th);
915 				goto drop;
916 			}
917 			if (thflags & TH_ACK) {
918 				syncache_badack(&inc);
919 				tcpstat.tcps_badsyn++;
920 				rstreason = BANDLIM_RST_OPENPORT;
921 				goto dropwithreset;
922 			}
923 			goto drop;
924 		}
925 
926 		/*
927 		 * Segment's flags are (SYN) or (SYN | FIN).
928 		 */
929 #ifdef INET6
930 		/*
931 		 * If deprecated address is forbidden,
932 		 * we do not accept SYN to deprecated interface
933 		 * address to prevent any new inbound connection from
934 		 * getting established.
935 		 * When we do not accept SYN, we send a TCP RST,
936 		 * with deprecated source address (instead of dropping
937 		 * it).  We compromise it as it is much better for peer
938 		 * to send a RST, and RST will be the final packet
939 		 * for the exchange.
940 		 *
941 		 * If we do not forbid deprecated addresses, we accept
942 		 * the SYN packet.  RFC2462 does not suggest dropping
943 		 * SYN in this case.
944 		 * If we decipher RFC2462 5.5.4, it says like this:
945 		 * 1. use of deprecated addr with existing
946 		 *    communication is okay - "SHOULD continue to be
947 		 *    used"
948 		 * 2. use of it with new communication:
949 		 *   (2a) "SHOULD NOT be used if alternate address
950 		 *	  with sufficient scope is available"
951 		 *   (2b) nothing mentioned otherwise.
952 		 * Here we fall into (2b) case as we have no choice in
953 		 * our source address selection - we must obey the peer.
954 		 *
955 		 * The wording in RFC2462 is confusing, and there are
956 		 * multiple description text for deprecated address
957 		 * handling - worse, they are not exactly the same.
958 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
959 		 */
960 		if (isipv6 && !ip6_use_deprecated) {
961 			struct in6_ifaddr *ia6;
962 
963 			if ((ia6 = ip6_getdstifaddr(m)) &&
964 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
965 				tp = NULL;
966 				rstreason = BANDLIM_RST_OPENPORT;
967 				goto dropwithreset;
968 			}
969 		}
970 #endif
971 		/*
972 		 * If it is from this socket, drop it, it must be forged.
973 		 * Don't bother responding if the destination was a broadcast.
974 		 */
975 		if (th->th_dport == th->th_sport) {
976 			if (isipv6) {
977 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
978 						       &ip6->ip6_src))
979 					goto drop;
980 			} else {
981 				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
982 					goto drop;
983 			}
984 		}
985 		/*
986 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
987 		 *
988 		 * Note that it is quite possible to receive unicast
989 		 * link-layer packets with a broadcast IP address. Use
990 		 * in_broadcast() to find them.
991 		 */
992 		if (m->m_flags & (M_BCAST | M_MCAST))
993 			goto drop;
994 		if (isipv6) {
995 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
996 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
997 				goto drop;
998 		} else {
999 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1000 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1001 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1002 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1003 				goto drop;
1004 		}
1005 		/*
1006 		 * SYN appears to be valid; create compressed TCP state
1007 		 * for syncache, or perform t/tcp connection.
1008 		 */
1009 		if (so->so_qlen <= so->so_qlimit) {
1010 			tcp_dooptions(&to, optp, optlen, TRUE);
1011 			if (!syncache_add(&inc, &to, th, &so, m))
1012 				goto drop;
1013 			if (so == NULL)
1014 				/*
1015 				 * Entry added to syncache, mbuf used to
1016 				 * send SYN,ACK packet.
1017 				 */
1018 				return;
1019 			/*
1020 			 * Segment passed TAO tests.
1021 			 */
1022 			inp = so->so_pcb;
1023 			tp = intotcpcb(inp);
1024 			tp->snd_wnd = tiwin;
1025 			tp->t_starttime = ticks;
1026 			tp->t_state = TCPS_ESTABLISHED;
1027 
1028 			/*
1029 			 * If there is a FIN, or if there is data and the
1030 			 * connection is local, then delay SYN,ACK(SYN) in
1031 			 * the hope of piggy-backing it on a response
1032 			 * segment.  Otherwise must send ACK now in case
1033 			 * the other side is slow starting.
1034 			 */
1035 			if (DELAY_ACK(tp) &&
1036 			    ((thflags & TH_FIN) ||
1037 			     (tlen != 0 &&
1038 			      ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
1039 			       (!isipv6 && in_localaddr(inp->inp_faddr)))))) {
1040 				callout_reset(tp->tt_delack, tcp_delacktime,
1041 						tcp_timer_delack, tp);
1042 				tp->t_flags |= TF_NEEDSYN;
1043 			} else
1044 				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1045 
1046 			tcpstat.tcps_connects++;
1047 			soisconnected(so);
1048 			goto trimthenstep6;
1049 		}
1050 		goto drop;
1051 	}
1052 after_listen:
1053 
1054 	/* should not happen - syncache should pick up these connections */
1055 	KASSERT(tp->t_state != TCPS_LISTEN, ("tcp_input: TCPS_LISTEN state"));
1056 
1057 	/*
1058 	 * Segment received on connection.
1059 	 * Reset idle time and keep-alive timer.
1060 	 */
1061 	tp->t_rcvtime = ticks;
1062 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1063 		callout_reset(tp->tt_keep, tcp_keepidle, tcp_timer_keep, tp);
1064 
1065 	/*
1066 	 * Process options.
1067 	 * XXX this is tradtitional behavior, may need to be cleaned up.
1068 	 */
1069 	tcp_dooptions(&to, optp, optlen, (thflags & TH_SYN) != 0);
1070 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1071 		if (to.to_flags & TOF_SCALE) {
1072 			tp->t_flags |= TF_RCVD_SCALE;
1073 			tp->requested_s_scale = to.to_requested_s_scale;
1074 		}
1075 		if (to.to_flags & TOF_TS) {
1076 			tp->t_flags |= TF_RCVD_TSTMP;
1077 			tp->ts_recent = to.to_tsval;
1078 			tp->ts_recent_age = ticks;
1079 		}
1080 		if (to.to_flags & (TOF_CC | TOF_CCNEW))
1081 			tp->t_flags |= TF_RCVD_CC;
1082 		if (to.to_flags & TOF_MSS)
1083 			tcp_mss(tp, to.to_mss);
1084 		/*
1085 		 * Only set the TF_SACK_PERMITTED per-connection flag
1086 		 * if we got a SACK_PERMITTED option from the other side
1087 		 * and the global tcp_do_sack variable is true.
1088 		 */
1089 		if (tcp_do_sack && (to.to_flags & TOF_SACK_PERMITTED))
1090 			tp->t_flags |= TF_SACK_PERMITTED;
1091 	}
1092 
1093 	/*
1094 	 * Header prediction: check for the two common cases
1095 	 * of a uni-directional data xfer.  If the packet has
1096 	 * no control flags, is in-sequence, the window didn't
1097 	 * change and we're not retransmitting, it's a
1098 	 * candidate.  If the length is zero and the ack moved
1099 	 * forward, we're the sender side of the xfer.  Just
1100 	 * free the data acked & wake any higher level process
1101 	 * that was blocked waiting for space.  If the length
1102 	 * is non-zero and the ack didn't move, we're the
1103 	 * receiver side.  If we're getting packets in-order
1104 	 * (the reassembly queue is empty), add the data to
1105 	 * the socket buffer and note that we need a delayed ack.
1106 	 * Make sure that the hidden state-flags are also off.
1107 	 * Since we check for TCPS_ESTABLISHED above, it can only
1108 	 * be TH_NEEDSYN.
1109 	 */
1110 	if (tp->t_state == TCPS_ESTABLISHED &&
1111 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1112 	    !(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)) &&
1113 	    (!(to.to_flags & TOF_TS) ||
1114 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1115 	    /*
1116 	     * Using the CC option is compulsory if once started:
1117 	     *   the segment is OK if no T/TCP was negotiated or
1118 	     *   if the segment has a CC option equal to CCrecv
1119 	     */
1120 	    ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) != (TF_REQ_CC|TF_RCVD_CC) ||
1121 	     ((to.to_flags & TOF_CC) && to.to_cc == tp->cc_recv)) &&
1122 	    th->th_seq == tp->rcv_nxt &&
1123 	    tp->snd_nxt == tp->snd_max) {
1124 
1125 		/*
1126 		 * If last ACK falls within this segment's sequence numbers,
1127 		 * record the timestamp.
1128 		 * NOTE that the test is modified according to the latest
1129 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1130 		 */
1131 		if ((to.to_flags & TOF_TS) &&
1132 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1133 			tp->ts_recent_age = ticks;
1134 			tp->ts_recent = to.to_tsval;
1135 		}
1136 
1137 		if (tlen == 0) {
1138 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1139 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1140 			    tp->snd_cwnd >= tp->snd_wnd &&
1141 			    !IN_FASTRECOVERY(tp)) {
1142 				/*
1143 				 * This is a pure ack for outstanding data.
1144 				 */
1145 				++tcpstat.tcps_predack;
1146 				/*
1147 				 * "bad retransmit" recovery
1148 				 *
1149 				 * If Eifel detection applies, then
1150 				 * it is deterministic, so use it
1151 				 * unconditionally over the old heuristic.
1152 				 * Otherwise, fall back to the old heuristic.
1153 				 */
1154 				if (tcp_do_eifel_detect &&
1155 				    (to.to_flags & TOF_TS) && to.to_tsecr &&
1156 				    (tp->t_flags & TF_FIRSTACCACK)) {
1157 					/* Eifel detection applicable. */
1158 					if (to.to_tsecr < tp->t_rexmtTS) {
1159 						tcp_revert_congestion_state(tp);
1160 						++tcpstat.tcps_eifeldetected;
1161 					}
1162 				} else if (tp->t_rxtshift == 1 &&
1163 					   ticks < tp->t_badrxtwin) {
1164 					tcp_revert_congestion_state(tp);
1165 					++tcpstat.tcps_rttdetected;
1166 				}
1167 				tp->t_flags &= ~(TF_FIRSTACCACK |
1168 						 TF_FASTREXMT | TF_EARLYREXMT);
1169 				/*
1170 				 * Recalculate the retransmit timer / rtt.
1171 				 *
1172 				 * Some machines (certain windows boxes)
1173 				 * send broken timestamp replies during the
1174 				 * SYN+ACK phase, ignore timestamps of 0.
1175 				 */
1176 				if ((to.to_flags & TOF_TS) && to.to_tsecr) {
1177 					tcp_xmit_timer(tp,
1178 						       ticks - to.to_tsecr + 1);
1179 				} else if (tp->t_rtttime &&
1180 					   SEQ_GT(th->th_ack, tp->t_rtseq)) {
1181 					tcp_xmit_timer(tp,
1182 						       ticks - tp->t_rtttime);
1183 				}
1184 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1185 				acked = th->th_ack - tp->snd_una;
1186 				tcpstat.tcps_rcvackpack++;
1187 				tcpstat.tcps_rcvackbyte += acked;
1188 				sbdrop(&so->so_snd.sb, acked);
1189 				tp->snd_recover = th->th_ack - 1;
1190 				tp->snd_una = th->th_ack;
1191 				tp->t_dupacks = 0;
1192 				/*
1193 				 * Update window information.
1194 				 */
1195 				if (tiwin != tp->snd_wnd &&
1196 				    acceptable_window_update(tp, th, tiwin)) {
1197 					/* keep track of pure window updates */
1198 					if (tp->snd_wl2 == th->th_ack &&
1199 					    tiwin > tp->snd_wnd)
1200 						tcpstat.tcps_rcvwinupd++;
1201 					tp->snd_wnd = tiwin;
1202 					tp->snd_wl1 = th->th_seq;
1203 					tp->snd_wl2 = th->th_ack;
1204 					if (tp->snd_wnd > tp->max_sndwnd)
1205 						tp->max_sndwnd = tp->snd_wnd;
1206 				}
1207 				m_freem(m);
1208 				ND6_HINT(tp); /* some progress has been done */
1209 				/*
1210 				 * If all outstanding data are acked, stop
1211 				 * retransmit timer, otherwise restart timer
1212 				 * using current (possibly backed-off) value.
1213 				 * If process is waiting for space,
1214 				 * wakeup/selwakeup/signal.  If data
1215 				 * are ready to send, let tcp_output
1216 				 * decide between more output or persist.
1217 				 */
1218 				if (tp->snd_una == tp->snd_max)
1219 					callout_stop(tp->tt_rexmt);
1220 				else if (!callout_active(tp->tt_persist))
1221 					callout_reset(tp->tt_rexmt,
1222 						      tp->t_rxtcur,
1223 						      tcp_timer_rexmt, tp);
1224 				sowwakeup(so);
1225 				if (so->so_snd.ssb_cc > 0)
1226 					tcp_output(tp);
1227 				return;
1228 			}
1229 		} else if (tiwin == tp->snd_wnd &&
1230 		    th->th_ack == tp->snd_una &&
1231 		    LIST_EMPTY(&tp->t_segq) &&
1232 		    tlen <= ssb_space(&so->so_rcv)) {
1233 			/*
1234 			 * This is a pure, in-sequence data packet
1235 			 * with nothing on the reassembly queue and
1236 			 * we have enough buffer space to take it.
1237 			 */
1238 			++tcpstat.tcps_preddat;
1239 			tp->rcv_nxt += tlen;
1240 			tcpstat.tcps_rcvpack++;
1241 			tcpstat.tcps_rcvbyte += tlen;
1242 			ND6_HINT(tp);	/* some progress has been done */
1243 			/*
1244 			 * Add data to socket buffer.
1245 			 */
1246 			if (so->so_state & SS_CANTRCVMORE) {
1247 				m_freem(m);
1248 			} else {
1249 				m_adj(m, drop_hdrlen); /* delayed header drop */
1250 				ssb_appendstream(&so->so_rcv, m);
1251 			}
1252 			sorwakeup(so);
1253 			/*
1254 			 * This code is responsible for most of the ACKs
1255 			 * the TCP stack sends back after receiving a data
1256 			 * packet.  Note that the DELAY_ACK check fails if
1257 			 * the delack timer is already running, which results
1258 			 * in an ack being sent every other packet (which is
1259 			 * what we want).
1260 			 *
1261 			 * We then further aggregate acks by not actually
1262 			 * sending one until the protocol thread has completed
1263 			 * processing the current backlog of packets.  This
1264 			 * does not delay the ack any further, but allows us
1265 			 * to take advantage of the packet aggregation that
1266 			 * high speed NICs do (usually blocks of 8-10 packets)
1267 			 * to send a single ack rather then four or five acks,
1268 			 * greatly reducing the ack rate, the return channel
1269 			 * bandwidth, and the protocol overhead on both ends.
1270 			 *
1271 			 * Since this also has the effect of slowing down
1272 			 * the exponential slow-start ramp-up, systems with
1273 			 * very large bandwidth-delay products might want
1274 			 * to turn the feature off.
1275 			 */
1276 			if (DELAY_ACK(tp)) {
1277 				callout_reset(tp->tt_delack, tcp_delacktime,
1278 				    tcp_timer_delack, tp);
1279 			} else if (tcp_aggregate_acks) {
1280 				tp->t_flags |= TF_ACKNOW;
1281 				if (!(tp->t_flags & TF_ONOUTPUTQ)) {
1282 					tp->t_flags |= TF_ONOUTPUTQ;
1283 					tp->tt_cpu = mycpu->gd_cpuid;
1284 					TAILQ_INSERT_TAIL(
1285 					    &tcpcbackq[tp->tt_cpu],
1286 					    tp, t_outputq);
1287 				}
1288 			} else {
1289 				tp->t_flags |= TF_ACKNOW;
1290 				tcp_output(tp);
1291 			}
1292 			return;
1293 		}
1294 	}
1295 
1296 	/*
1297 	 * Calculate amount of space in receive window,
1298 	 * and then do TCP input processing.
1299 	 * Receive window is amount of space in rcv queue,
1300 	 * but not less than advertised window.
1301 	 */
1302 	recvwin = ssb_space(&so->so_rcv);
1303 	if (recvwin < 0)
1304 		recvwin = 0;
1305 	tp->rcv_wnd = imax(recvwin, (int)(tp->rcv_adv - tp->rcv_nxt));
1306 
1307 	switch (tp->t_state) {
1308 	/*
1309 	 * If the state is SYN_RECEIVED:
1310 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1311 	 */
1312 	case TCPS_SYN_RECEIVED:
1313 		if ((thflags & TH_ACK) &&
1314 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1315 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1316 				rstreason = BANDLIM_RST_OPENPORT;
1317 				goto dropwithreset;
1318 		}
1319 		break;
1320 
1321 	/*
1322 	 * If the state is SYN_SENT:
1323 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1324 	 *	if seg contains a RST, then drop the connection.
1325 	 *	if seg does not contain SYN, then drop it.
1326 	 * Otherwise this is an acceptable SYN segment
1327 	 *	initialize tp->rcv_nxt and tp->irs
1328 	 *	if seg contains ack then advance tp->snd_una
1329 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1330 	 *	arrange for segment to be acked (eventually)
1331 	 *	continue processing rest of data/controls, beginning with URG
1332 	 */
1333 	case TCPS_SYN_SENT:
1334 		if ((taop = tcp_gettaocache(&inp->inp_inc)) == NULL) {
1335 			taop = &tao_noncached;
1336 			bzero(taop, sizeof *taop);
1337 		}
1338 
1339 		if ((thflags & TH_ACK) &&
1340 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1341 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1342 			/*
1343 			 * If we have a cached CCsent for the remote host,
1344 			 * hence we haven't just crashed and restarted,
1345 			 * do not send a RST.  This may be a retransmission
1346 			 * from the other side after our earlier ACK was lost.
1347 			 * Our new SYN, when it arrives, will serve as the
1348 			 * needed ACK.
1349 			 */
1350 			if (taop->tao_ccsent != 0)
1351 				goto drop;
1352 			else {
1353 				rstreason = BANDLIM_UNLIMITED;
1354 				goto dropwithreset;
1355 			}
1356 		}
1357 		if (thflags & TH_RST) {
1358 			if (thflags & TH_ACK)
1359 				tp = tcp_drop(tp, ECONNREFUSED);
1360 			goto drop;
1361 		}
1362 		if (!(thflags & TH_SYN))
1363 			goto drop;
1364 		tp->snd_wnd = th->th_win;	/* initial send window */
1365 		tp->cc_recv = to.to_cc;		/* foreign CC */
1366 
1367 		tp->irs = th->th_seq;
1368 		tcp_rcvseqinit(tp);
1369 		if (thflags & TH_ACK) {
1370 			/*
1371 			 * Our SYN was acked.  If segment contains CC.ECHO
1372 			 * option, check it to make sure this segment really
1373 			 * matches our SYN.  If not, just drop it as old
1374 			 * duplicate, but send an RST if we're still playing
1375 			 * by the old rules.  If no CC.ECHO option, make sure
1376 			 * we don't get fooled into using T/TCP.
1377 			 */
1378 			if (to.to_flags & TOF_CCECHO) {
1379 				if (tp->cc_send != to.to_ccecho) {
1380 					if (taop->tao_ccsent != 0)
1381 						goto drop;
1382 					else {
1383 						rstreason = BANDLIM_UNLIMITED;
1384 						goto dropwithreset;
1385 					}
1386 				}
1387 			} else
1388 				tp->t_flags &= ~TF_RCVD_CC;
1389 			tcpstat.tcps_connects++;
1390 			soisconnected(so);
1391 			/* Do window scaling on this connection? */
1392 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1393 			    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
1394 				tp->snd_scale = tp->requested_s_scale;
1395 				tp->rcv_scale = tp->request_r_scale;
1396 			}
1397 			/* Segment is acceptable, update cache if undefined. */
1398 			if (taop->tao_ccsent == 0)
1399 				taop->tao_ccsent = to.to_ccecho;
1400 
1401 			tp->rcv_adv += tp->rcv_wnd;
1402 			tp->snd_una++;		/* SYN is acked */
1403 			callout_stop(tp->tt_rexmt);
1404 			/*
1405 			 * If there's data, delay ACK; if there's also a FIN
1406 			 * ACKNOW will be turned on later.
1407 			 */
1408 			if (DELAY_ACK(tp) && tlen != 0)
1409 				callout_reset(tp->tt_delack, tcp_delacktime,
1410 				    tcp_timer_delack, tp);
1411 			else
1412 				tp->t_flags |= TF_ACKNOW;
1413 			/*
1414 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1415 			 * Transitions:
1416 			 *	SYN_SENT  --> ESTABLISHED
1417 			 *	SYN_SENT* --> FIN_WAIT_1
1418 			 */
1419 			tp->t_starttime = ticks;
1420 			if (tp->t_flags & TF_NEEDFIN) {
1421 				tp->t_state = TCPS_FIN_WAIT_1;
1422 				tp->t_flags &= ~TF_NEEDFIN;
1423 				thflags &= ~TH_SYN;
1424 			} else {
1425 				tp->t_state = TCPS_ESTABLISHED;
1426 				callout_reset(tp->tt_keep, tcp_keepidle,
1427 					      tcp_timer_keep, tp);
1428 			}
1429 		} else {
1430 			/*
1431 			 * Received initial SYN in SYN-SENT[*] state =>
1432 			 * simultaneous open.  If segment contains CC option
1433 			 * and there is a cached CC, apply TAO test.
1434 			 * If it succeeds, connection is * half-synchronized.
1435 			 * Otherwise, do 3-way handshake:
1436 			 *	  SYN-SENT -> SYN-RECEIVED
1437 			 *	  SYN-SENT* -> SYN-RECEIVED*
1438 			 * If there was no CC option, clear cached CC value.
1439 			 */
1440 			tp->t_flags |= TF_ACKNOW;
1441 			callout_stop(tp->tt_rexmt);
1442 			if (to.to_flags & TOF_CC) {
1443 				if (taop->tao_cc != 0 &&
1444 				    CC_GT(to.to_cc, taop->tao_cc)) {
1445 					/*
1446 					 * update cache and make transition:
1447 					 *	  SYN-SENT -> ESTABLISHED*
1448 					 *	  SYN-SENT* -> FIN-WAIT-1*
1449 					 */
1450 					taop->tao_cc = to.to_cc;
1451 					tp->t_starttime = ticks;
1452 					if (tp->t_flags & TF_NEEDFIN) {
1453 						tp->t_state = TCPS_FIN_WAIT_1;
1454 						tp->t_flags &= ~TF_NEEDFIN;
1455 					} else {
1456 						tp->t_state = TCPS_ESTABLISHED;
1457 						callout_reset(tp->tt_keep,
1458 							      tcp_keepidle,
1459 							      tcp_timer_keep,
1460 							      tp);
1461 					}
1462 					tp->t_flags |= TF_NEEDSYN;
1463 				} else
1464 					tp->t_state = TCPS_SYN_RECEIVED;
1465 			} else {
1466 				/* CC.NEW or no option => invalidate cache */
1467 				taop->tao_cc = 0;
1468 				tp->t_state = TCPS_SYN_RECEIVED;
1469 			}
1470 		}
1471 
1472 trimthenstep6:
1473 		/*
1474 		 * Advance th->th_seq to correspond to first data byte.
1475 		 * If data, trim to stay within window,
1476 		 * dropping FIN if necessary.
1477 		 */
1478 		th->th_seq++;
1479 		if (tlen > tp->rcv_wnd) {
1480 			todrop = tlen - tp->rcv_wnd;
1481 			m_adj(m, -todrop);
1482 			tlen = tp->rcv_wnd;
1483 			thflags &= ~TH_FIN;
1484 			tcpstat.tcps_rcvpackafterwin++;
1485 			tcpstat.tcps_rcvbyteafterwin += todrop;
1486 		}
1487 		tp->snd_wl1 = th->th_seq - 1;
1488 		tp->rcv_up = th->th_seq;
1489 		/*
1490 		 * Client side of transaction: already sent SYN and data.
1491 		 * If the remote host used T/TCP to validate the SYN,
1492 		 * our data will be ACK'd; if so, enter normal data segment
1493 		 * processing in the middle of step 5, ack processing.
1494 		 * Otherwise, goto step 6.
1495 		 */
1496 		if (thflags & TH_ACK)
1497 			goto process_ACK;
1498 
1499 		goto step6;
1500 
1501 	/*
1502 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1503 	 *	if segment contains a SYN and CC [not CC.NEW] option:
1504 	 *		if state == TIME_WAIT and connection duration > MSL,
1505 	 *		    drop packet and send RST;
1506 	 *
1507 	 *		if SEG.CC > CCrecv then is new SYN, and can implicitly
1508 	 *		    ack the FIN (and data) in retransmission queue.
1509 	 *		    Complete close and delete TCPCB.  Then reprocess
1510 	 *		    segment, hoping to find new TCPCB in LISTEN state;
1511 	 *
1512 	 *		else must be old SYN; drop it.
1513 	 *	else do normal processing.
1514 	 */
1515 	case TCPS_LAST_ACK:
1516 	case TCPS_CLOSING:
1517 	case TCPS_TIME_WAIT:
1518 		if ((thflags & TH_SYN) &&
1519 		    (to.to_flags & TOF_CC) && tp->cc_recv != 0) {
1520 			if (tp->t_state == TCPS_TIME_WAIT &&
1521 					(ticks - tp->t_starttime) > tcp_msl) {
1522 				rstreason = BANDLIM_UNLIMITED;
1523 				goto dropwithreset;
1524 			}
1525 			if (CC_GT(to.to_cc, tp->cc_recv)) {
1526 				tp = tcp_close(tp);
1527 				goto findpcb;
1528 			}
1529 			else
1530 				goto drop;
1531 		}
1532 		break;  /* continue normal processing */
1533 	}
1534 
1535 	/*
1536 	 * States other than LISTEN or SYN_SENT.
1537 	 * First check the RST flag and sequence number since reset segments
1538 	 * are exempt from the timestamp and connection count tests.  This
1539 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1540 	 * below which allowed reset segments in half the sequence space
1541 	 * to fall though and be processed (which gives forged reset
1542 	 * segments with a random sequence number a 50 percent chance of
1543 	 * killing a connection).
1544 	 * Then check timestamp, if present.
1545 	 * Then check the connection count, if present.
1546 	 * Then check that at least some bytes of segment are within
1547 	 * receive window.  If segment begins before rcv_nxt,
1548 	 * drop leading data (and SYN); if nothing left, just ack.
1549 	 *
1550 	 *
1551 	 * If the RST bit is set, check the sequence number to see
1552 	 * if this is a valid reset segment.
1553 	 * RFC 793 page 37:
1554 	 *   In all states except SYN-SENT, all reset (RST) segments
1555 	 *   are validated by checking their SEQ-fields.  A reset is
1556 	 *   valid if its sequence number is in the window.
1557 	 * Note: this does not take into account delayed ACKs, so
1558 	 *   we should test against last_ack_sent instead of rcv_nxt.
1559 	 *   The sequence number in the reset segment is normally an
1560 	 *   echo of our outgoing acknowledgement numbers, but some hosts
1561 	 *   send a reset with the sequence number at the rightmost edge
1562 	 *   of our receive window, and we have to handle this case.
1563 	 * If we have multiple segments in flight, the intial reset
1564 	 * segment sequence numbers will be to the left of last_ack_sent,
1565 	 * but they will eventually catch up.
1566 	 * In any case, it never made sense to trim reset segments to
1567 	 * fit the receive window since RFC 1122 says:
1568 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1569 	 *
1570 	 *    A TCP SHOULD allow a received RST segment to include data.
1571 	 *
1572 	 *    DISCUSSION
1573 	 *	   It has been suggested that a RST segment could contain
1574 	 *	   ASCII text that encoded and explained the cause of the
1575 	 *	   RST.  No standard has yet been established for such
1576 	 *	   data.
1577 	 *
1578 	 * If the reset segment passes the sequence number test examine
1579 	 * the state:
1580 	 *    SYN_RECEIVED STATE:
1581 	 *	If passive open, return to LISTEN state.
1582 	 *	If active open, inform user that connection was refused.
1583 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1584 	 *	Inform user that connection was reset, and close tcb.
1585 	 *    CLOSING, LAST_ACK STATES:
1586 	 *	Close the tcb.
1587 	 *    TIME_WAIT STATE:
1588 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1589 	 *	RFC 1337.
1590 	 */
1591 	if (thflags & TH_RST) {
1592 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1593 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1594 			switch (tp->t_state) {
1595 
1596 			case TCPS_SYN_RECEIVED:
1597 				so->so_error = ECONNREFUSED;
1598 				goto close;
1599 
1600 			case TCPS_ESTABLISHED:
1601 			case TCPS_FIN_WAIT_1:
1602 			case TCPS_FIN_WAIT_2:
1603 			case TCPS_CLOSE_WAIT:
1604 				so->so_error = ECONNRESET;
1605 			close:
1606 				tp->t_state = TCPS_CLOSED;
1607 				tcpstat.tcps_drops++;
1608 				tp = tcp_close(tp);
1609 				break;
1610 
1611 			case TCPS_CLOSING:
1612 			case TCPS_LAST_ACK:
1613 				tp = tcp_close(tp);
1614 				break;
1615 
1616 			case TCPS_TIME_WAIT:
1617 				break;
1618 			}
1619 		}
1620 		goto drop;
1621 	}
1622 
1623 	/*
1624 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1625 	 * and it's less than ts_recent, drop it.
1626 	 */
1627 	if ((to.to_flags & TOF_TS) && tp->ts_recent != 0 &&
1628 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1629 
1630 		/* Check to see if ts_recent is over 24 days old.  */
1631 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1632 			/*
1633 			 * Invalidate ts_recent.  If this segment updates
1634 			 * ts_recent, the age will be reset later and ts_recent
1635 			 * will get a valid value.  If it does not, setting
1636 			 * ts_recent to zero will at least satisfy the
1637 			 * requirement that zero be placed in the timestamp
1638 			 * echo reply when ts_recent isn't valid.  The
1639 			 * age isn't reset until we get a valid ts_recent
1640 			 * because we don't want out-of-order segments to be
1641 			 * dropped when ts_recent is old.
1642 			 */
1643 			tp->ts_recent = 0;
1644 		} else {
1645 			tcpstat.tcps_rcvduppack++;
1646 			tcpstat.tcps_rcvdupbyte += tlen;
1647 			tcpstat.tcps_pawsdrop++;
1648 			if (tlen)
1649 				goto dropafterack;
1650 			goto drop;
1651 		}
1652 	}
1653 
1654 	/*
1655 	 * T/TCP mechanism
1656 	 *   If T/TCP was negotiated and the segment doesn't have CC,
1657 	 *   or if its CC is wrong then drop the segment.
1658 	 *   RST segments do not have to comply with this.
1659 	 */
1660 	if ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) == (TF_REQ_CC|TF_RCVD_CC) &&
1661 	    (!(to.to_flags & TOF_CC) || tp->cc_recv != to.to_cc))
1662 		goto dropafterack;
1663 
1664 	/*
1665 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1666 	 * this connection before trimming the data to fit the receive
1667 	 * window.  Check the sequence number versus IRS since we know
1668 	 * the sequence numbers haven't wrapped.  This is a partial fix
1669 	 * for the "LAND" DoS attack.
1670 	 */
1671 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1672 		rstreason = BANDLIM_RST_OPENPORT;
1673 		goto dropwithreset;
1674 	}
1675 
1676 	todrop = tp->rcv_nxt - th->th_seq;
1677 	if (todrop > 0) {
1678 		if (TCP_DO_SACK(tp)) {
1679 			/* Report duplicate segment at head of packet. */
1680 			tp->reportblk.rblk_start = th->th_seq;
1681 			tp->reportblk.rblk_end = th->th_seq + tlen;
1682 			if (thflags & TH_FIN)
1683 				++tp->reportblk.rblk_end;
1684 			if (SEQ_GT(tp->reportblk.rblk_end, tp->rcv_nxt))
1685 				tp->reportblk.rblk_end = tp->rcv_nxt;
1686 			tp->t_flags |= (TF_DUPSEG | TF_SACKLEFT | TF_ACKNOW);
1687 		}
1688 		if (thflags & TH_SYN) {
1689 			thflags &= ~TH_SYN;
1690 			th->th_seq++;
1691 			if (th->th_urp > 1)
1692 				th->th_urp--;
1693 			else
1694 				thflags &= ~TH_URG;
1695 			todrop--;
1696 		}
1697 		/*
1698 		 * Following if statement from Stevens, vol. 2, p. 960.
1699 		 */
1700 		if (todrop > tlen ||
1701 		    (todrop == tlen && !(thflags & TH_FIN))) {
1702 			/*
1703 			 * Any valid FIN must be to the left of the window.
1704 			 * At this point the FIN must be a duplicate or out
1705 			 * of sequence; drop it.
1706 			 */
1707 			thflags &= ~TH_FIN;
1708 
1709 			/*
1710 			 * Send an ACK to resynchronize and drop any data.
1711 			 * But keep on processing for RST or ACK.
1712 			 */
1713 			tp->t_flags |= TF_ACKNOW;
1714 			todrop = tlen;
1715 			tcpstat.tcps_rcvduppack++;
1716 			tcpstat.tcps_rcvdupbyte += todrop;
1717 		} else {
1718 			tcpstat.tcps_rcvpartduppack++;
1719 			tcpstat.tcps_rcvpartdupbyte += todrop;
1720 		}
1721 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1722 		th->th_seq += todrop;
1723 		tlen -= todrop;
1724 		if (th->th_urp > todrop)
1725 			th->th_urp -= todrop;
1726 		else {
1727 			thflags &= ~TH_URG;
1728 			th->th_urp = 0;
1729 		}
1730 	}
1731 
1732 	/*
1733 	 * If new data are received on a connection after the
1734 	 * user processes are gone, then RST the other end.
1735 	 */
1736 	if ((so->so_state & SS_NOFDREF) &&
1737 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1738 		tp = tcp_close(tp);
1739 		tcpstat.tcps_rcvafterclose++;
1740 		rstreason = BANDLIM_UNLIMITED;
1741 		goto dropwithreset;
1742 	}
1743 
1744 	/*
1745 	 * If segment ends after window, drop trailing data
1746 	 * (and PUSH and FIN); if nothing left, just ACK.
1747 	 */
1748 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1749 	if (todrop > 0) {
1750 		tcpstat.tcps_rcvpackafterwin++;
1751 		if (todrop >= tlen) {
1752 			tcpstat.tcps_rcvbyteafterwin += tlen;
1753 			/*
1754 			 * If a new connection request is received
1755 			 * while in TIME_WAIT, drop the old connection
1756 			 * and start over if the sequence numbers
1757 			 * are above the previous ones.
1758 			 */
1759 			if (thflags & TH_SYN &&
1760 			    tp->t_state == TCPS_TIME_WAIT &&
1761 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1762 				tp = tcp_close(tp);
1763 				goto findpcb;
1764 			}
1765 			/*
1766 			 * If window is closed can only take segments at
1767 			 * window edge, and have to drop data and PUSH from
1768 			 * incoming segments.  Continue processing, but
1769 			 * remember to ack.  Otherwise, drop segment
1770 			 * and ack.
1771 			 */
1772 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1773 				tp->t_flags |= TF_ACKNOW;
1774 				tcpstat.tcps_rcvwinprobe++;
1775 			} else
1776 				goto dropafterack;
1777 		} else
1778 			tcpstat.tcps_rcvbyteafterwin += todrop;
1779 		m_adj(m, -todrop);
1780 		tlen -= todrop;
1781 		thflags &= ~(TH_PUSH | TH_FIN);
1782 	}
1783 
1784 	/*
1785 	 * If last ACK falls within this segment's sequence numbers,
1786 	 * record its timestamp.
1787 	 * NOTE:
1788 	 * 1) That the test incorporates suggestions from the latest
1789 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1790 	 * 2) That updating only on newer timestamps interferes with
1791 	 *    our earlier PAWS tests, so this check should be solely
1792 	 *    predicated on the sequence space of this segment.
1793 	 * 3) That we modify the segment boundary check to be
1794 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.LEN
1795 	 *    instead of RFC1323's
1796 	 *        Last.ACK.Sent < SEG.SEQ + SEG.LEN,
1797 	 *    This modified check allows us to overcome RFC1323's
1798 	 *    limitations as described in Stevens TCP/IP Illustrated
1799 	 *    Vol. 2 p.869. In such cases, we can still calculate the
1800 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1801 	 */
1802 	if ((to.to_flags & TOF_TS) && SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1803 	    SEQ_LEQ(tp->last_ack_sent, (th->th_seq + tlen
1804 					+ ((thflags & TH_SYN) != 0)
1805 					+ ((thflags & TH_FIN) != 0)))) {
1806 		tp->ts_recent_age = ticks;
1807 		tp->ts_recent = to.to_tsval;
1808 	}
1809 
1810 	/*
1811 	 * If a SYN is in the window, then this is an
1812 	 * error and we send an RST and drop the connection.
1813 	 */
1814 	if (thflags & TH_SYN) {
1815 		tp = tcp_drop(tp, ECONNRESET);
1816 		rstreason = BANDLIM_UNLIMITED;
1817 		goto dropwithreset;
1818 	}
1819 
1820 	/*
1821 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1822 	 * flag is on (half-synchronized state), then queue data for
1823 	 * later processing; else drop segment and return.
1824 	 */
1825 	if (!(thflags & TH_ACK)) {
1826 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1827 		    (tp->t_flags & TF_NEEDSYN))
1828 			goto step6;
1829 		else
1830 			goto drop;
1831 	}
1832 
1833 	/*
1834 	 * Ack processing.
1835 	 */
1836 	switch (tp->t_state) {
1837 	/*
1838 	 * In SYN_RECEIVED state, the ACK acknowledges our SYN, so enter
1839 	 * ESTABLISHED state and continue processing.
1840 	 * The ACK was checked above.
1841 	 */
1842 	case TCPS_SYN_RECEIVED:
1843 
1844 		tcpstat.tcps_connects++;
1845 		soisconnected(so);
1846 		/* Do window scaling? */
1847 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1848 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
1849 			tp->snd_scale = tp->requested_s_scale;
1850 			tp->rcv_scale = tp->request_r_scale;
1851 		}
1852 		/*
1853 		 * Upon successful completion of 3-way handshake,
1854 		 * update cache.CC if it was undefined, pass any queued
1855 		 * data to the user, and advance state appropriately.
1856 		 */
1857 		if ((taop = tcp_gettaocache(&inp->inp_inc)) != NULL &&
1858 		    taop->tao_cc == 0)
1859 			taop->tao_cc = tp->cc_recv;
1860 
1861 		/*
1862 		 * Make transitions:
1863 		 *      SYN-RECEIVED  -> ESTABLISHED
1864 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1865 		 */
1866 		tp->t_starttime = ticks;
1867 		if (tp->t_flags & TF_NEEDFIN) {
1868 			tp->t_state = TCPS_FIN_WAIT_1;
1869 			tp->t_flags &= ~TF_NEEDFIN;
1870 		} else {
1871 			tp->t_state = TCPS_ESTABLISHED;
1872 			callout_reset(tp->tt_keep, tcp_keepidle,
1873 				      tcp_timer_keep, tp);
1874 		}
1875 		/*
1876 		 * If segment contains data or ACK, will call tcp_reass()
1877 		 * later; if not, do so now to pass queued data to user.
1878 		 */
1879 		if (tlen == 0 && !(thflags & TH_FIN))
1880 			tcp_reass(tp, NULL, NULL, NULL);
1881 		/* fall into ... */
1882 
1883 	/*
1884 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1885 	 * ACKs.  If the ack is in the range
1886 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1887 	 * then advance tp->snd_una to th->th_ack and drop
1888 	 * data from the retransmission queue.  If this ACK reflects
1889 	 * more up to date window information we update our window information.
1890 	 */
1891 	case TCPS_ESTABLISHED:
1892 	case TCPS_FIN_WAIT_1:
1893 	case TCPS_FIN_WAIT_2:
1894 	case TCPS_CLOSE_WAIT:
1895 	case TCPS_CLOSING:
1896 	case TCPS_LAST_ACK:
1897 	case TCPS_TIME_WAIT:
1898 
1899 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1900 			if (TCP_DO_SACK(tp))
1901 				tcp_sack_update_scoreboard(tp, &to);
1902 			if (tlen != 0 || tiwin != tp->snd_wnd) {
1903 				tp->t_dupacks = 0;
1904 				break;
1905 			}
1906 			tcpstat.tcps_rcvdupack++;
1907 			if (!callout_active(tp->tt_rexmt) ||
1908 			    th->th_ack != tp->snd_una) {
1909 				tp->t_dupacks = 0;
1910 				break;
1911 			}
1912 			/*
1913 			 * We have outstanding data (other than
1914 			 * a window probe), this is a completely
1915 			 * duplicate ack (ie, window info didn't
1916 			 * change), the ack is the biggest we've
1917 			 * seen and we've seen exactly our rexmt
1918 			 * threshhold of them, so assume a packet
1919 			 * has been dropped and retransmit it.
1920 			 * Kludge snd_nxt & the congestion
1921 			 * window so we send only this one
1922 			 * packet.
1923 			 */
1924 			if (IN_FASTRECOVERY(tp)) {
1925 				if (TCP_DO_SACK(tp)) {
1926 					/* No artifical cwnd inflation. */
1927 					tcp_sack_rexmt(tp, th);
1928 				} else {
1929 					/*
1930 					 * Dup acks mean that packets
1931 					 * have left the network
1932 					 * (they're now cached at the
1933 					 * receiver) so bump cwnd by
1934 					 * the amount in the receiver
1935 					 * to keep a constant cwnd
1936 					 * packets in the network.
1937 					 */
1938 					tp->snd_cwnd += tp->t_maxseg;
1939 					tcp_output(tp);
1940 				}
1941 			} else if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1942 				tp->t_dupacks = 0;
1943 				break;
1944 			} else if (++tp->t_dupacks == tcprexmtthresh) {
1945 				tcp_seq old_snd_nxt;
1946 				u_int win;
1947 
1948 fastretransmit:
1949 				if (tcp_do_eifel_detect &&
1950 				    (tp->t_flags & TF_RCVD_TSTMP)) {
1951 					tcp_save_congestion_state(tp);
1952 					tp->t_flags |= TF_FASTREXMT;
1953 				}
1954 				/*
1955 				 * We know we're losing at the current
1956 				 * window size, so do congestion avoidance:
1957 				 * set ssthresh to half the current window
1958 				 * and pull our congestion window back to the
1959 				 * new ssthresh.
1960 				 */
1961 				win = min(tp->snd_wnd, tp->snd_cwnd) / 2 /
1962 				    tp->t_maxseg;
1963 				if (win < 2)
1964 					win = 2;
1965 				tp->snd_ssthresh = win * tp->t_maxseg;
1966 				ENTER_FASTRECOVERY(tp);
1967 				tp->snd_recover = tp->snd_max;
1968 				callout_stop(tp->tt_rexmt);
1969 				tp->t_rtttime = 0;
1970 				old_snd_nxt = tp->snd_nxt;
1971 				tp->snd_nxt = th->th_ack;
1972 				tp->snd_cwnd = tp->t_maxseg;
1973 				tcp_output(tp);
1974 				++tcpstat.tcps_sndfastrexmit;
1975 				tp->snd_cwnd = tp->snd_ssthresh;
1976 				tp->rexmt_high = tp->snd_nxt;
1977 				if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
1978 					tp->snd_nxt = old_snd_nxt;
1979 				KASSERT(tp->snd_limited <= 2,
1980 				    ("tp->snd_limited too big"));
1981 				if (TCP_DO_SACK(tp))
1982 					tcp_sack_rexmt(tp, th);
1983 				else
1984 					tp->snd_cwnd += tp->t_maxseg *
1985 					    (tp->t_dupacks - tp->snd_limited);
1986 			} else if (tcp_do_limitedtransmit) {
1987 				u_long oldcwnd = tp->snd_cwnd;
1988 				tcp_seq oldsndmax = tp->snd_max;
1989 				tcp_seq oldsndnxt = tp->snd_nxt;
1990 				/* outstanding data */
1991 				uint32_t ownd = tp->snd_max - tp->snd_una;
1992 				u_int sent;
1993 
1994 #define	iceildiv(n, d)		(((n)+(d)-1) / (d))
1995 
1996 				KASSERT(tp->t_dupacks == 1 ||
1997 					tp->t_dupacks == 2,
1998 				    ("dupacks not 1 or 2"));
1999 				if (tp->t_dupacks == 1)
2000 					tp->snd_limited = 0;
2001 				tp->snd_nxt = tp->snd_max;
2002 				tp->snd_cwnd = ownd +
2003 				    (tp->t_dupacks - tp->snd_limited) *
2004 				    tp->t_maxseg;
2005 				tcp_output(tp);
2006 
2007 				/*
2008 				 * Other acks may have been processed,
2009 				 * snd_nxt cannot be reset to a value less
2010 				 * then snd_una.
2011 				 */
2012 				if (SEQ_LT(oldsndnxt, oldsndmax)) {
2013 				    if (SEQ_GT(oldsndnxt, tp->snd_una))
2014 					tp->snd_nxt = oldsndnxt;
2015 				    else
2016 					tp->snd_nxt = tp->snd_una;
2017 				}
2018 				tp->snd_cwnd = oldcwnd;
2019 				sent = tp->snd_max - oldsndmax;
2020 				if (sent > tp->t_maxseg) {
2021 					KASSERT((tp->t_dupacks == 2 &&
2022 						 tp->snd_limited == 0) ||
2023 						(sent == tp->t_maxseg + 1 &&
2024 						 tp->t_flags & TF_SENTFIN),
2025 					    ("sent too much"));
2026 					KASSERT(sent <= tp->t_maxseg * 2,
2027 					    ("sent too many segments"));
2028 					tp->snd_limited = 2;
2029 					tcpstat.tcps_sndlimited += 2;
2030 				} else if (sent > 0) {
2031 					++tp->snd_limited;
2032 					++tcpstat.tcps_sndlimited;
2033 				} else if (tcp_do_early_retransmit &&
2034 				    (tcp_do_eifel_detect &&
2035 				     (tp->t_flags & TF_RCVD_TSTMP)) &&
2036 				    ownd < 4 * tp->t_maxseg &&
2037 				    tp->t_dupacks + 1 >=
2038 				      iceildiv(ownd, tp->t_maxseg) &&
2039 				    (!TCP_DO_SACK(tp) ||
2040 				     ownd <= tp->t_maxseg ||
2041 				     tcp_sack_has_sacked(&tp->scb,
2042 							ownd - tp->t_maxseg))) {
2043 					++tcpstat.tcps_sndearlyrexmit;
2044 					tp->t_flags |= TF_EARLYREXMT;
2045 					goto fastretransmit;
2046 				}
2047 			}
2048 			goto drop;
2049 		}
2050 
2051 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
2052 		tp->t_dupacks = 0;
2053 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2054 			/*
2055 			 * Detected optimistic ACK attack.
2056 			 * Force slow-start to de-synchronize attack.
2057 			 */
2058 			tp->snd_cwnd = tp->t_maxseg;
2059 			tp->snd_wacked = 0;
2060 
2061 			tcpstat.tcps_rcvacktoomuch++;
2062 			goto dropafterack;
2063 		}
2064 		/*
2065 		 * If we reach this point, ACK is not a duplicate,
2066 		 *     i.e., it ACKs something we sent.
2067 		 */
2068 		if (tp->t_flags & TF_NEEDSYN) {
2069 			/*
2070 			 * T/TCP: Connection was half-synchronized, and our
2071 			 * SYN has been ACK'd (so connection is now fully
2072 			 * synchronized).  Go to non-starred state,
2073 			 * increment snd_una for ACK of SYN, and check if
2074 			 * we can do window scaling.
2075 			 */
2076 			tp->t_flags &= ~TF_NEEDSYN;
2077 			tp->snd_una++;
2078 			/* Do window scaling? */
2079 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
2080 			    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
2081 				tp->snd_scale = tp->requested_s_scale;
2082 				tp->rcv_scale = tp->request_r_scale;
2083 			}
2084 		}
2085 
2086 process_ACK:
2087 		acked = th->th_ack - tp->snd_una;
2088 		tcpstat.tcps_rcvackpack++;
2089 		tcpstat.tcps_rcvackbyte += acked;
2090 
2091 		if (tcp_do_eifel_detect && acked > 0 &&
2092 		    (to.to_flags & TOF_TS) && (to.to_tsecr != 0) &&
2093 		    (tp->t_flags & TF_FIRSTACCACK)) {
2094 			/* Eifel detection applicable. */
2095 			if (to.to_tsecr < tp->t_rexmtTS) {
2096 				++tcpstat.tcps_eifeldetected;
2097 				tcp_revert_congestion_state(tp);
2098 				if (tp->t_rxtshift == 1 &&
2099 				    ticks >= tp->t_badrxtwin)
2100 					++tcpstat.tcps_rttcantdetect;
2101 			}
2102 		} else if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
2103 			/*
2104 			 * If we just performed our first retransmit,
2105 			 * and the ACK arrives within our recovery window,
2106 			 * then it was a mistake to do the retransmit
2107 			 * in the first place.  Recover our original cwnd
2108 			 * and ssthresh, and proceed to transmit where we
2109 			 * left off.
2110 			 */
2111 			tcp_revert_congestion_state(tp);
2112 			++tcpstat.tcps_rttdetected;
2113 		}
2114 
2115 		/*
2116 		 * If we have a timestamp reply, update smoothed
2117 		 * round trip time.  If no timestamp is present but
2118 		 * transmit timer is running and timed sequence
2119 		 * number was acked, update smoothed round trip time.
2120 		 * Since we now have an rtt measurement, cancel the
2121 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2122 		 * Recompute the initial retransmit timer.
2123 		 *
2124 		 * Some machines (certain windows boxes) send broken
2125 		 * timestamp replies during the SYN+ACK phase, ignore
2126 		 * timestamps of 0.
2127 		 */
2128 		if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0))
2129 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2130 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2131 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2132 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2133 
2134 		/*
2135 		 * If no data (only SYN) was ACK'd,
2136 		 *    skip rest of ACK processing.
2137 		 */
2138 		if (acked == 0)
2139 			goto step6;
2140 
2141 		/* Stop looking for an acceptable ACK since one was received. */
2142 		tp->t_flags &= ~(TF_FIRSTACCACK | TF_FASTREXMT | TF_EARLYREXMT);
2143 
2144 		if (acked > so->so_snd.ssb_cc) {
2145 			tp->snd_wnd -= so->so_snd.ssb_cc;
2146 			sbdrop(&so->so_snd.sb, (int)so->so_snd.ssb_cc);
2147 			ourfinisacked = TRUE;
2148 		} else {
2149 			sbdrop(&so->so_snd.sb, acked);
2150 			tp->snd_wnd -= acked;
2151 			ourfinisacked = FALSE;
2152 		}
2153 		sowwakeup(so);
2154 
2155 		/*
2156 		 * Update window information.
2157 		 * Don't look at window if no ACK:
2158 		 * TAC's send garbage on first SYN.
2159 		 */
2160 		if (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2161 		    (tp->snd_wl1 == th->th_seq &&
2162 		     (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2163 		      (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)))) {
2164 			/* keep track of pure window updates */
2165 			if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2166 			    tiwin > tp->snd_wnd)
2167 				tcpstat.tcps_rcvwinupd++;
2168 			tp->snd_wnd = tiwin;
2169 			tp->snd_wl1 = th->th_seq;
2170 			tp->snd_wl2 = th->th_ack;
2171 			if (tp->snd_wnd > tp->max_sndwnd)
2172 				tp->max_sndwnd = tp->snd_wnd;
2173 			needoutput = TRUE;
2174 		}
2175 
2176 		tp->snd_una = th->th_ack;
2177 		if (TCP_DO_SACK(tp))
2178 			tcp_sack_update_scoreboard(tp, &to);
2179 		if (IN_FASTRECOVERY(tp)) {
2180 			if (SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2181 				EXIT_FASTRECOVERY(tp);
2182 				needoutput = TRUE;
2183 				/*
2184 				 * If the congestion window was inflated
2185 				 * to account for the other side's
2186 				 * cached packets, retract it.
2187 				 */
2188 				if (!TCP_DO_SACK(tp))
2189 					tp->snd_cwnd = tp->snd_ssthresh;
2190 
2191 				/*
2192 				 * Window inflation should have left us
2193 				 * with approximately snd_ssthresh outstanding
2194 				 * data.  But, in case we would be inclined
2195 				 * to send a burst, better do it using
2196 				 * slow start.
2197 				 */
2198 				if (SEQ_GT(th->th_ack + tp->snd_cwnd,
2199 					   tp->snd_max + 2 * tp->t_maxseg))
2200 					tp->snd_cwnd =
2201 					    (tp->snd_max - tp->snd_una) +
2202 					    2 * tp->t_maxseg;
2203 
2204 				tp->snd_wacked = 0;
2205 			} else {
2206 				if (TCP_DO_SACK(tp)) {
2207 					tp->snd_max_rexmt = tp->snd_max;
2208 					tcp_sack_rexmt(tp, th);
2209 				} else {
2210 					tcp_newreno_partial_ack(tp, th, acked);
2211 				}
2212 				needoutput = FALSE;
2213 			}
2214 		} else {
2215 			/*
2216 			 * Open the congestion window.  When in slow-start,
2217 			 * open exponentially: maxseg per packet.  Otherwise,
2218 			 * open linearly: maxseg per window.
2219 			 */
2220 			if (tp->snd_cwnd <= tp->snd_ssthresh) {
2221 				u_int abc_sslimit =
2222 				    (SEQ_LT(tp->snd_nxt, tp->snd_max) ?
2223 				     tp->t_maxseg : 2 * tp->t_maxseg);
2224 
2225 				/* slow-start */
2226 				tp->snd_cwnd += tcp_do_abc ?
2227 				    min(acked, abc_sslimit) : tp->t_maxseg;
2228 			} else {
2229 				/* linear increase */
2230 				tp->snd_wacked += tcp_do_abc ? acked :
2231 				    tp->t_maxseg;
2232 				if (tp->snd_wacked >= tp->snd_cwnd) {
2233 					tp->snd_wacked -= tp->snd_cwnd;
2234 					tp->snd_cwnd += tp->t_maxseg;
2235 				}
2236 			}
2237 			tp->snd_cwnd = min(tp->snd_cwnd,
2238 					   TCP_MAXWIN << tp->snd_scale);
2239 			tp->snd_recover = th->th_ack - 1;
2240 		}
2241 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2242 			tp->snd_nxt = tp->snd_una;
2243 
2244 		/*
2245 		 * If all outstanding data is acked, stop retransmit
2246 		 * timer and remember to restart (more output or persist).
2247 		 * If there is more data to be acked, restart retransmit
2248 		 * timer, using current (possibly backed-off) value.
2249 		 */
2250 		if (th->th_ack == tp->snd_max) {
2251 			callout_stop(tp->tt_rexmt);
2252 			needoutput = TRUE;
2253 		} else if (!callout_active(tp->tt_persist))
2254 			callout_reset(tp->tt_rexmt, tp->t_rxtcur,
2255 				      tcp_timer_rexmt, tp);
2256 
2257 		switch (tp->t_state) {
2258 		/*
2259 		 * In FIN_WAIT_1 STATE in addition to the processing
2260 		 * for the ESTABLISHED state if our FIN is now acknowledged
2261 		 * then enter FIN_WAIT_2.
2262 		 */
2263 		case TCPS_FIN_WAIT_1:
2264 			if (ourfinisacked) {
2265 				/*
2266 				 * If we can't receive any more
2267 				 * data, then closing user can proceed.
2268 				 * Starting the timer is contrary to the
2269 				 * specification, but if we don't get a FIN
2270 				 * we'll hang forever.
2271 				 */
2272 				if (so->so_state & SS_CANTRCVMORE) {
2273 					soisdisconnected(so);
2274 					callout_reset(tp->tt_2msl, tcp_maxidle,
2275 						      tcp_timer_2msl, tp);
2276 				}
2277 				tp->t_state = TCPS_FIN_WAIT_2;
2278 			}
2279 			break;
2280 
2281 		/*
2282 		 * In CLOSING STATE in addition to the processing for
2283 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2284 		 * then enter the TIME-WAIT state, otherwise ignore
2285 		 * the segment.
2286 		 */
2287 		case TCPS_CLOSING:
2288 			if (ourfinisacked) {
2289 				tp->t_state = TCPS_TIME_WAIT;
2290 				tcp_canceltimers(tp);
2291 				/* Shorten TIME_WAIT [RFC-1644, p.28] */
2292 				if (tp->cc_recv != 0 &&
2293 				    (ticks - tp->t_starttime) < tcp_msl)
2294 					callout_reset(tp->tt_2msl,
2295 					    tp->t_rxtcur * TCPTV_TWTRUNC,
2296 					    tcp_timer_2msl, tp);
2297 				else
2298 					callout_reset(tp->tt_2msl, 2 * tcp_msl,
2299 					    tcp_timer_2msl, tp);
2300 				soisdisconnected(so);
2301 			}
2302 			break;
2303 
2304 		/*
2305 		 * In LAST_ACK, we may still be waiting for data to drain
2306 		 * and/or to be acked, as well as for the ack of our FIN.
2307 		 * If our FIN is now acknowledged, delete the TCB,
2308 		 * enter the closed state and return.
2309 		 */
2310 		case TCPS_LAST_ACK:
2311 			if (ourfinisacked) {
2312 				tp = tcp_close(tp);
2313 				goto drop;
2314 			}
2315 			break;
2316 
2317 		/*
2318 		 * In TIME_WAIT state the only thing that should arrive
2319 		 * is a retransmission of the remote FIN.  Acknowledge
2320 		 * it and restart the finack timer.
2321 		 */
2322 		case TCPS_TIME_WAIT:
2323 			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2324 				      tcp_timer_2msl, tp);
2325 			goto dropafterack;
2326 		}
2327 	}
2328 
2329 step6:
2330 	/*
2331 	 * Update window information.
2332 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2333 	 */
2334 	if ((thflags & TH_ACK) &&
2335 	    acceptable_window_update(tp, th, tiwin)) {
2336 		/* keep track of pure window updates */
2337 		if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2338 		    tiwin > tp->snd_wnd)
2339 			tcpstat.tcps_rcvwinupd++;
2340 		tp->snd_wnd = tiwin;
2341 		tp->snd_wl1 = th->th_seq;
2342 		tp->snd_wl2 = th->th_ack;
2343 		if (tp->snd_wnd > tp->max_sndwnd)
2344 			tp->max_sndwnd = tp->snd_wnd;
2345 		needoutput = TRUE;
2346 	}
2347 
2348 	/*
2349 	 * Process segments with URG.
2350 	 */
2351 	if ((thflags & TH_URG) && th->th_urp &&
2352 	    !TCPS_HAVERCVDFIN(tp->t_state)) {
2353 		/*
2354 		 * This is a kludge, but if we receive and accept
2355 		 * random urgent pointers, we'll crash in
2356 		 * soreceive.  It's hard to imagine someone
2357 		 * actually wanting to send this much urgent data.
2358 		 */
2359 		if (th->th_urp + so->so_rcv.ssb_cc > sb_max) {
2360 			th->th_urp = 0;			/* XXX */
2361 			thflags &= ~TH_URG;		/* XXX */
2362 			goto dodata;			/* XXX */
2363 		}
2364 		/*
2365 		 * If this segment advances the known urgent pointer,
2366 		 * then mark the data stream.  This should not happen
2367 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2368 		 * a FIN has been received from the remote side.
2369 		 * In these states we ignore the URG.
2370 		 *
2371 		 * According to RFC961 (Assigned Protocols),
2372 		 * the urgent pointer points to the last octet
2373 		 * of urgent data.  We continue, however,
2374 		 * to consider it to indicate the first octet
2375 		 * of data past the urgent section as the original
2376 		 * spec states (in one of two places).
2377 		 */
2378 		if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) {
2379 			tp->rcv_up = th->th_seq + th->th_urp;
2380 			so->so_oobmark = so->so_rcv.ssb_cc +
2381 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2382 			if (so->so_oobmark == 0)
2383 				so->so_state |= SS_RCVATMARK;
2384 			sohasoutofband(so);
2385 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2386 		}
2387 		/*
2388 		 * Remove out of band data so doesn't get presented to user.
2389 		 * This can happen independent of advancing the URG pointer,
2390 		 * but if two URG's are pending at once, some out-of-band
2391 		 * data may creep in... ick.
2392 		 */
2393 		if (th->th_urp <= (u_long)tlen &&
2394 		    !(so->so_options & SO_OOBINLINE)) {
2395 			/* hdr drop is delayed */
2396 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2397 		}
2398 	} else {
2399 		/*
2400 		 * If no out of band data is expected,
2401 		 * pull receive urgent pointer along
2402 		 * with the receive window.
2403 		 */
2404 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2405 			tp->rcv_up = tp->rcv_nxt;
2406 	}
2407 
2408 dodata:							/* XXX */
2409 	/*
2410 	 * Process the segment text, merging it into the TCP sequencing queue,
2411 	 * and arranging for acknowledgment of receipt if necessary.
2412 	 * This process logically involves adjusting tp->rcv_wnd as data
2413 	 * is presented to the user (this happens in tcp_usrreq.c,
2414 	 * case PRU_RCVD).  If a FIN has already been received on this
2415 	 * connection then we just ignore the text.
2416 	 */
2417 	if ((tlen || (thflags & TH_FIN)) && !TCPS_HAVERCVDFIN(tp->t_state)) {
2418 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2419 		/*
2420 		 * Insert segment which includes th into TCP reassembly queue
2421 		 * with control block tp.  Set thflags to whether reassembly now
2422 		 * includes a segment with FIN.  This handles the common case
2423 		 * inline (segment is the next to be received on an established
2424 		 * connection, and the queue is empty), avoiding linkage into
2425 		 * and removal from the queue and repetition of various
2426 		 * conversions.
2427 		 * Set DELACK for segments received in order, but ack
2428 		 * immediately when segments are out of order (so
2429 		 * fast retransmit can work).
2430 		 */
2431 		if (th->th_seq == tp->rcv_nxt &&
2432 		    LIST_EMPTY(&tp->t_segq) &&
2433 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2434 			if (DELAY_ACK(tp))
2435 				callout_reset(tp->tt_delack, tcp_delacktime,
2436 					      tcp_timer_delack, tp);
2437 			else
2438 				tp->t_flags |= TF_ACKNOW;
2439 			tp->rcv_nxt += tlen;
2440 			thflags = th->th_flags & TH_FIN;
2441 			tcpstat.tcps_rcvpack++;
2442 			tcpstat.tcps_rcvbyte += tlen;
2443 			ND6_HINT(tp);
2444 			if (so->so_state & SS_CANTRCVMORE)
2445 				m_freem(m);
2446 			else
2447 				ssb_appendstream(&so->so_rcv, m);
2448 			sorwakeup(so);
2449 		} else {
2450 			if (!(tp->t_flags & TF_DUPSEG)) {
2451 				/* Initialize SACK report block. */
2452 				tp->reportblk.rblk_start = th->th_seq;
2453 				tp->reportblk.rblk_end = th->th_seq + tlen +
2454 				    ((thflags & TH_FIN) != 0);
2455 			}
2456 			thflags = tcp_reass(tp, th, &tlen, m);
2457 			tp->t_flags |= TF_ACKNOW;
2458 		}
2459 
2460 		/*
2461 		 * Note the amount of data that peer has sent into
2462 		 * our window, in order to estimate the sender's
2463 		 * buffer size.
2464 		 */
2465 		len = so->so_rcv.ssb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2466 	} else {
2467 		m_freem(m);
2468 		thflags &= ~TH_FIN;
2469 	}
2470 
2471 	/*
2472 	 * If FIN is received ACK the FIN and let the user know
2473 	 * that the connection is closing.
2474 	 */
2475 	if (thflags & TH_FIN) {
2476 		if (!TCPS_HAVERCVDFIN(tp->t_state)) {
2477 			socantrcvmore(so);
2478 			/*
2479 			 * If connection is half-synchronized
2480 			 * (ie NEEDSYN flag on) then delay ACK,
2481 			 * so it may be piggybacked when SYN is sent.
2482 			 * Otherwise, since we received a FIN then no
2483 			 * more input can be expected, send ACK now.
2484 			 */
2485 			if (DELAY_ACK(tp) && (tp->t_flags & TF_NEEDSYN))
2486 				callout_reset(tp->tt_delack, tcp_delacktime,
2487 				    tcp_timer_delack, tp);
2488 			else
2489 				tp->t_flags |= TF_ACKNOW;
2490 			tp->rcv_nxt++;
2491 		}
2492 
2493 		switch (tp->t_state) {
2494 		/*
2495 		 * In SYN_RECEIVED and ESTABLISHED STATES
2496 		 * enter the CLOSE_WAIT state.
2497 		 */
2498 		case TCPS_SYN_RECEIVED:
2499 			tp->t_starttime = ticks;
2500 			/*FALLTHROUGH*/
2501 		case TCPS_ESTABLISHED:
2502 			tp->t_state = TCPS_CLOSE_WAIT;
2503 			break;
2504 
2505 		/*
2506 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2507 		 * enter the CLOSING state.
2508 		 */
2509 		case TCPS_FIN_WAIT_1:
2510 			tp->t_state = TCPS_CLOSING;
2511 			break;
2512 
2513 		/*
2514 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2515 		 * starting the time-wait timer, turning off the other
2516 		 * standard timers.
2517 		 */
2518 		case TCPS_FIN_WAIT_2:
2519 			tp->t_state = TCPS_TIME_WAIT;
2520 			tcp_canceltimers(tp);
2521 			/* Shorten TIME_WAIT [RFC-1644, p.28] */
2522 			if (tp->cc_recv != 0 &&
2523 			    (ticks - tp->t_starttime) < tcp_msl) {
2524 				callout_reset(tp->tt_2msl,
2525 					      tp->t_rxtcur * TCPTV_TWTRUNC,
2526 					      tcp_timer_2msl, tp);
2527 				/* For transaction client, force ACK now. */
2528 				tp->t_flags |= TF_ACKNOW;
2529 			}
2530 			else
2531 				callout_reset(tp->tt_2msl, 2 * tcp_msl,
2532 					      tcp_timer_2msl, tp);
2533 			soisdisconnected(so);
2534 			break;
2535 
2536 		/*
2537 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2538 		 */
2539 		case TCPS_TIME_WAIT:
2540 			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2541 				      tcp_timer_2msl, tp);
2542 			break;
2543 		}
2544 	}
2545 
2546 #ifdef TCPDEBUG
2547 	if (so->so_options & SO_DEBUG)
2548 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2549 #endif
2550 
2551 	/*
2552 	 * Return any desired output.
2553 	 */
2554 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2555 		tcp_output(tp);
2556 	return;
2557 
2558 dropafterack:
2559 	/*
2560 	 * Generate an ACK dropping incoming segment if it occupies
2561 	 * sequence space, where the ACK reflects our state.
2562 	 *
2563 	 * We can now skip the test for the RST flag since all
2564 	 * paths to this code happen after packets containing
2565 	 * RST have been dropped.
2566 	 *
2567 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2568 	 * segment we received passes the SYN-RECEIVED ACK test.
2569 	 * If it fails send a RST.  This breaks the loop in the
2570 	 * "LAND" DoS attack, and also prevents an ACK storm
2571 	 * between two listening ports that have been sent forged
2572 	 * SYN segments, each with the source address of the other.
2573 	 */
2574 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2575 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2576 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2577 		rstreason = BANDLIM_RST_OPENPORT;
2578 		goto dropwithreset;
2579 	}
2580 #ifdef TCPDEBUG
2581 	if (so->so_options & SO_DEBUG)
2582 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2583 #endif
2584 	m_freem(m);
2585 	tp->t_flags |= TF_ACKNOW;
2586 	tcp_output(tp);
2587 	return;
2588 
2589 dropwithreset:
2590 	/*
2591 	 * Generate a RST, dropping incoming segment.
2592 	 * Make ACK acceptable to originator of segment.
2593 	 * Don't bother to respond if destination was broadcast/multicast.
2594 	 */
2595 	if ((thflags & TH_RST) || m->m_flags & (M_BCAST | M_MCAST))
2596 		goto drop;
2597 	if (isipv6) {
2598 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2599 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2600 			goto drop;
2601 	} else {
2602 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2603 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2604 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2605 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2606 			goto drop;
2607 	}
2608 	/* IPv6 anycast check is done at tcp6_input() */
2609 
2610 	/*
2611 	 * Perform bandwidth limiting.
2612 	 */
2613 #ifdef ICMP_BANDLIM
2614 	if (badport_bandlim(rstreason) < 0)
2615 		goto drop;
2616 #endif
2617 
2618 #ifdef TCPDEBUG
2619 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2620 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2621 #endif
2622 	if (thflags & TH_ACK)
2623 		/* mtod() below is safe as long as hdr dropping is delayed */
2624 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2625 			    TH_RST);
2626 	else {
2627 		if (thflags & TH_SYN)
2628 			tlen++;
2629 		/* mtod() below is safe as long as hdr dropping is delayed */
2630 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq + tlen,
2631 			    (tcp_seq)0, TH_RST | TH_ACK);
2632 	}
2633 	return;
2634 
2635 drop:
2636 	/*
2637 	 * Drop space held by incoming segment and return.
2638 	 */
2639 #ifdef TCPDEBUG
2640 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2641 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2642 #endif
2643 	m_freem(m);
2644 	return;
2645 }
2646 
2647 /*
2648  * Parse TCP options and place in tcpopt.
2649  */
2650 static void
2651 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, boolean_t is_syn)
2652 {
2653 	int opt, optlen, i;
2654 
2655 	to->to_flags = 0;
2656 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2657 		opt = cp[0];
2658 		if (opt == TCPOPT_EOL)
2659 			break;
2660 		if (opt == TCPOPT_NOP)
2661 			optlen = 1;
2662 		else {
2663 			if (cnt < 2)
2664 				break;
2665 			optlen = cp[1];
2666 			if (optlen < 2 || optlen > cnt)
2667 				break;
2668 		}
2669 		switch (opt) {
2670 		case TCPOPT_MAXSEG:
2671 			if (optlen != TCPOLEN_MAXSEG)
2672 				continue;
2673 			if (!is_syn)
2674 				continue;
2675 			to->to_flags |= TOF_MSS;
2676 			bcopy(cp + 2, &to->to_mss, sizeof to->to_mss);
2677 			to->to_mss = ntohs(to->to_mss);
2678 			break;
2679 		case TCPOPT_WINDOW:
2680 			if (optlen != TCPOLEN_WINDOW)
2681 				continue;
2682 			if (!is_syn)
2683 				continue;
2684 			to->to_flags |= TOF_SCALE;
2685 			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2686 			break;
2687 		case TCPOPT_TIMESTAMP:
2688 			if (optlen != TCPOLEN_TIMESTAMP)
2689 				continue;
2690 			to->to_flags |= TOF_TS;
2691 			bcopy(cp + 2, &to->to_tsval, sizeof to->to_tsval);
2692 			to->to_tsval = ntohl(to->to_tsval);
2693 			bcopy(cp + 6, &to->to_tsecr, sizeof to->to_tsecr);
2694 			to->to_tsecr = ntohl(to->to_tsecr);
2695 			/*
2696 			 * If echoed timestamp is later than the current time,
2697 			 * fall back to non RFC1323 RTT calculation.
2698 			 */
2699 			if (to->to_tsecr != 0 && TSTMP_GT(to->to_tsecr, ticks))
2700 				to->to_tsecr = 0;
2701 			break;
2702 		case TCPOPT_CC:
2703 			if (optlen != TCPOLEN_CC)
2704 				continue;
2705 			to->to_flags |= TOF_CC;
2706 			bcopy(cp + 2, &to->to_cc, sizeof to->to_cc);
2707 			to->to_cc = ntohl(to->to_cc);
2708 			break;
2709 		case TCPOPT_CCNEW:
2710 			if (optlen != TCPOLEN_CC)
2711 				continue;
2712 			if (!is_syn)
2713 				continue;
2714 			to->to_flags |= TOF_CCNEW;
2715 			bcopy(cp + 2, &to->to_cc, sizeof to->to_cc);
2716 			to->to_cc = ntohl(to->to_cc);
2717 			break;
2718 		case TCPOPT_CCECHO:
2719 			if (optlen != TCPOLEN_CC)
2720 				continue;
2721 			if (!is_syn)
2722 				continue;
2723 			to->to_flags |= TOF_CCECHO;
2724 			bcopy(cp + 2, &to->to_ccecho, sizeof to->to_ccecho);
2725 			to->to_ccecho = ntohl(to->to_ccecho);
2726 			break;
2727 		case TCPOPT_SACK_PERMITTED:
2728 			if (optlen != TCPOLEN_SACK_PERMITTED)
2729 				continue;
2730 			if (!is_syn)
2731 				continue;
2732 			to->to_flags |= TOF_SACK_PERMITTED;
2733 			break;
2734 		case TCPOPT_SACK:
2735 			if ((optlen - 2) & 0x07)	/* not multiple of 8 */
2736 				continue;
2737 			to->to_nsackblocks = (optlen - 2) / 8;
2738 			to->to_sackblocks = (struct raw_sackblock *) (cp + 2);
2739 			to->to_flags |= TOF_SACK;
2740 			for (i = 0; i < to->to_nsackblocks; i++) {
2741 				struct raw_sackblock *r = &to->to_sackblocks[i];
2742 
2743 				r->rblk_start = ntohl(r->rblk_start);
2744 				r->rblk_end = ntohl(r->rblk_end);
2745 			}
2746 			break;
2747 		default:
2748 			continue;
2749 		}
2750 	}
2751 }
2752 
2753 /*
2754  * Pull out of band byte out of a segment so
2755  * it doesn't appear in the user's data queue.
2756  * It is still reflected in the segment length for
2757  * sequencing purposes.
2758  * "off" is the delayed to be dropped hdrlen.
2759  */
2760 static void
2761 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m, int off)
2762 {
2763 	int cnt = off + th->th_urp - 1;
2764 
2765 	while (cnt >= 0) {
2766 		if (m->m_len > cnt) {
2767 			char *cp = mtod(m, caddr_t) + cnt;
2768 			struct tcpcb *tp = sototcpcb(so);
2769 
2770 			tp->t_iobc = *cp;
2771 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2772 			bcopy(cp + 1, cp, m->m_len - cnt - 1);
2773 			m->m_len--;
2774 			if (m->m_flags & M_PKTHDR)
2775 				m->m_pkthdr.len--;
2776 			return;
2777 		}
2778 		cnt -= m->m_len;
2779 		m = m->m_next;
2780 		if (m == 0)
2781 			break;
2782 	}
2783 	panic("tcp_pulloutofband");
2784 }
2785 
2786 /*
2787  * Collect new round-trip time estimate
2788  * and update averages and current timeout.
2789  */
2790 static void
2791 tcp_xmit_timer(struct tcpcb *tp, int rtt)
2792 {
2793 	int delta;
2794 
2795 	tcpstat.tcps_rttupdated++;
2796 	tp->t_rttupdated++;
2797 	if (tp->t_srtt != 0) {
2798 		/*
2799 		 * srtt is stored as fixed point with 5 bits after the
2800 		 * binary point (i.e., scaled by 8).  The following magic
2801 		 * is equivalent to the smoothing algorithm in rfc793 with
2802 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2803 		 * point).  Adjust rtt to origin 0.
2804 		 */
2805 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2806 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2807 
2808 		if ((tp->t_srtt += delta) <= 0)
2809 			tp->t_srtt = 1;
2810 
2811 		/*
2812 		 * We accumulate a smoothed rtt variance (actually, a
2813 		 * smoothed mean difference), then set the retransmit
2814 		 * timer to smoothed rtt + 4 times the smoothed variance.
2815 		 * rttvar is stored as fixed point with 4 bits after the
2816 		 * binary point (scaled by 16).  The following is
2817 		 * equivalent to rfc793 smoothing with an alpha of .75
2818 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2819 		 * rfc793's wired-in beta.
2820 		 */
2821 		if (delta < 0)
2822 			delta = -delta;
2823 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2824 		if ((tp->t_rttvar += delta) <= 0)
2825 			tp->t_rttvar = 1;
2826 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2827 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2828 	} else {
2829 		/*
2830 		 * No rtt measurement yet - use the unsmoothed rtt.
2831 		 * Set the variance to half the rtt (so our first
2832 		 * retransmit happens at 3*rtt).
2833 		 */
2834 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2835 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2836 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2837 	}
2838 	tp->t_rtttime = 0;
2839 	tp->t_rxtshift = 0;
2840 
2841 	/*
2842 	 * the retransmit should happen at rtt + 4 * rttvar.
2843 	 * Because of the way we do the smoothing, srtt and rttvar
2844 	 * will each average +1/2 tick of bias.  When we compute
2845 	 * the retransmit timer, we want 1/2 tick of rounding and
2846 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2847 	 * firing of the timer.  The bias will give us exactly the
2848 	 * 1.5 tick we need.  But, because the bias is
2849 	 * statistical, we have to test that we don't drop below
2850 	 * the minimum feasible timer (which is 2 ticks).
2851 	 */
2852 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2853 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2854 
2855 	/*
2856 	 * We received an ack for a packet that wasn't retransmitted;
2857 	 * it is probably safe to discard any error indications we've
2858 	 * received recently.  This isn't quite right, but close enough
2859 	 * for now (a route might have failed after we sent a segment,
2860 	 * and the return path might not be symmetrical).
2861 	 */
2862 	tp->t_softerror = 0;
2863 }
2864 
2865 /*
2866  * Determine a reasonable value for maxseg size.
2867  * If the route is known, check route for mtu.
2868  * If none, use an mss that can be handled on the outgoing
2869  * interface without forcing IP to fragment; if bigger than
2870  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2871  * to utilize large mbufs.  If no route is found, route has no mtu,
2872  * or the destination isn't local, use a default, hopefully conservative
2873  * size (usually 512 or the default IP max size, but no more than the mtu
2874  * of the interface), as we can't discover anything about intervening
2875  * gateways or networks.  We also initialize the congestion/slow start
2876  * window to be a single segment if the destination isn't local.
2877  * While looking at the routing entry, we also initialize other path-dependent
2878  * parameters from pre-set or cached values in the routing entry.
2879  *
2880  * Also take into account the space needed for options that we
2881  * send regularly.  Make maxseg shorter by that amount to assure
2882  * that we can send maxseg amount of data even when the options
2883  * are present.  Store the upper limit of the length of options plus
2884  * data in maxopd.
2885  *
2886  * NOTE that this routine is only called when we process an incoming
2887  * segment, for outgoing segments only tcp_mssopt is called.
2888  *
2889  * In case of T/TCP, we call this routine during implicit connection
2890  * setup as well (offer = -1), to initialize maxseg from the cached
2891  * MSS of our peer.
2892  */
2893 void
2894 tcp_mss(struct tcpcb *tp, int offer)
2895 {
2896 	struct rtentry *rt;
2897 	struct ifnet *ifp;
2898 	int rtt, mss;
2899 	u_long bufsize;
2900 	struct inpcb *inp = tp->t_inpcb;
2901 	struct socket *so;
2902 	struct rmxp_tao *taop;
2903 	int origoffer = offer;
2904 #ifdef INET6
2905 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
2906 	size_t min_protoh = isipv6 ?
2907 			    sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
2908 			    sizeof(struct tcpiphdr);
2909 #else
2910 	const boolean_t isipv6 = FALSE;
2911 	const size_t min_protoh = sizeof(struct tcpiphdr);
2912 #endif
2913 
2914 	if (isipv6)
2915 		rt = tcp_rtlookup6(&inp->inp_inc);
2916 	else
2917 		rt = tcp_rtlookup(&inp->inp_inc);
2918 	if (rt == NULL) {
2919 		tp->t_maxopd = tp->t_maxseg =
2920 		    (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2921 		return;
2922 	}
2923 	ifp = rt->rt_ifp;
2924 	so = inp->inp_socket;
2925 
2926 	taop = rmx_taop(rt->rt_rmx);
2927 	/*
2928 	 * Offer == -1 means that we didn't receive SYN yet,
2929 	 * use cached value in that case;
2930 	 */
2931 	if (offer == -1)
2932 		offer = taop->tao_mssopt;
2933 	/*
2934 	 * Offer == 0 means that there was no MSS on the SYN segment,
2935 	 * in this case we use tcp_mssdflt.
2936 	 */
2937 	if (offer == 0)
2938 		offer = (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2939 	else
2940 		/*
2941 		 * Sanity check: make sure that maxopd will be large
2942 		 * enough to allow some data on segments even is the
2943 		 * all the option space is used (40bytes).  Otherwise
2944 		 * funny things may happen in tcp_output.
2945 		 */
2946 		offer = max(offer, 64);
2947 	taop->tao_mssopt = offer;
2948 
2949 	/*
2950 	 * While we're here, check if there's an initial rtt
2951 	 * or rttvar.  Convert from the route-table units
2952 	 * to scaled multiples of the slow timeout timer.
2953 	 */
2954 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2955 		/*
2956 		 * XXX the lock bit for RTT indicates that the value
2957 		 * is also a minimum value; this is subject to time.
2958 		 */
2959 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2960 			tp->t_rttmin = rtt / (RTM_RTTUNIT / hz);
2961 		tp->t_srtt = rtt / (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
2962 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
2963 		tcpstat.tcps_usedrtt++;
2964 		if (rt->rt_rmx.rmx_rttvar) {
2965 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2966 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
2967 			tcpstat.tcps_usedrttvar++;
2968 		} else {
2969 			/* default variation is +- 1 rtt */
2970 			tp->t_rttvar =
2971 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2972 		}
2973 		TCPT_RANGESET(tp->t_rxtcur,
2974 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2975 			      tp->t_rttmin, TCPTV_REXMTMAX);
2976 	}
2977 	/*
2978 	 * if there's an mtu associated with the route, use it
2979 	 * else, use the link mtu.
2980 	 */
2981 	if (rt->rt_rmx.rmx_mtu)
2982 		mss = rt->rt_rmx.rmx_mtu - min_protoh;
2983 	else {
2984 		if (isipv6) {
2985 			mss = ND_IFINFO(rt->rt_ifp)->linkmtu - min_protoh;
2986 			if (!in6_localaddr(&inp->in6p_faddr))
2987 				mss = min(mss, tcp_v6mssdflt);
2988 		} else {
2989 			mss = ifp->if_mtu - min_protoh;
2990 			if (!in_localaddr(inp->inp_faddr))
2991 				mss = min(mss, tcp_mssdflt);
2992 		}
2993 	}
2994 	mss = min(mss, offer);
2995 	/*
2996 	 * maxopd stores the maximum length of data AND options
2997 	 * in a segment; maxseg is the amount of data in a normal
2998 	 * segment.  We need to store this value (maxopd) apart
2999 	 * from maxseg, because now every segment carries options
3000 	 * and thus we normally have somewhat less data in segments.
3001 	 */
3002 	tp->t_maxopd = mss;
3003 
3004 	/*
3005 	 * In case of T/TCP, origoffer==-1 indicates, that no segments
3006 	 * were received yet.  In this case we just guess, otherwise
3007 	 * we do the same as before T/TCP.
3008 	 */
3009 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP &&
3010 	    (origoffer == -1 ||
3011 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3012 		mss -= TCPOLEN_TSTAMP_APPA;
3013 	if ((tp->t_flags & (TF_REQ_CC | TF_NOOPT)) == TF_REQ_CC &&
3014 	    (origoffer == -1 ||
3015 	     (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC))
3016 		mss -= TCPOLEN_CC_APPA;
3017 
3018 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
3019 		if (mss > MCLBYTES)
3020 			mss &= ~(MCLBYTES-1);
3021 #else
3022 		if (mss > MCLBYTES)
3023 			mss = mss / MCLBYTES * MCLBYTES;
3024 #endif
3025 	/*
3026 	 * If there's a pipesize, change the socket buffer
3027 	 * to that size.  Make the socket buffers an integral
3028 	 * number of mss units; if the mss is larger than
3029 	 * the socket buffer, decrease the mss.
3030 	 */
3031 #ifdef RTV_SPIPE
3032 	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
3033 #endif
3034 		bufsize = so->so_snd.ssb_hiwat;
3035 	if (bufsize < mss)
3036 		mss = bufsize;
3037 	else {
3038 		bufsize = roundup(bufsize, mss);
3039 		if (bufsize > sb_max)
3040 			bufsize = sb_max;
3041 		if (bufsize > so->so_snd.ssb_hiwat)
3042 			ssb_reserve(&so->so_snd, bufsize, so, NULL);
3043 	}
3044 	tp->t_maxseg = mss;
3045 
3046 #ifdef RTV_RPIPE
3047 	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
3048 #endif
3049 		bufsize = so->so_rcv.ssb_hiwat;
3050 	if (bufsize > mss) {
3051 		bufsize = roundup(bufsize, mss);
3052 		if (bufsize > sb_max)
3053 			bufsize = sb_max;
3054 		if (bufsize > so->so_rcv.ssb_hiwat)
3055 			ssb_reserve(&so->so_rcv, bufsize, so, NULL);
3056 	}
3057 
3058 	/*
3059 	 * Set the slow-start flight size depending on whether this
3060 	 * is a local network or not.
3061 	 */
3062 	if (tcp_do_rfc3390)
3063 		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
3064 	else
3065 		tp->snd_cwnd = mss;
3066 
3067 	if (rt->rt_rmx.rmx_ssthresh) {
3068 		/*
3069 		 * There's some sort of gateway or interface
3070 		 * buffer limit on the path.  Use this to set
3071 		 * the slow start threshhold, but set the
3072 		 * threshold to no less than 2*mss.
3073 		 */
3074 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
3075 		tcpstat.tcps_usedssthresh++;
3076 	}
3077 }
3078 
3079 /*
3080  * Determine the MSS option to send on an outgoing SYN.
3081  */
3082 int
3083 tcp_mssopt(struct tcpcb *tp)
3084 {
3085 	struct rtentry *rt;
3086 #ifdef INET6
3087 	boolean_t isipv6 =
3088 	    ((tp->t_inpcb->inp_vflag & INP_IPV6) ? TRUE : FALSE);
3089 	int min_protoh = isipv6 ?
3090 			     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
3091 			     sizeof(struct tcpiphdr);
3092 #else
3093 	const boolean_t isipv6 = FALSE;
3094 	const size_t min_protoh = sizeof(struct tcpiphdr);
3095 #endif
3096 
3097 	if (isipv6)
3098 		rt = tcp_rtlookup6(&tp->t_inpcb->inp_inc);
3099 	else
3100 		rt = tcp_rtlookup(&tp->t_inpcb->inp_inc);
3101 	if (rt == NULL)
3102 		return (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
3103 
3104 	return (rt->rt_ifp->if_mtu - min_protoh);
3105 }
3106 
3107 /*
3108  * When a partial ack arrives, force the retransmission of the
3109  * next unacknowledged segment.  Do not exit Fast Recovery.
3110  *
3111  * Implement the Slow-but-Steady variant of NewReno by restarting the
3112  * the retransmission timer.  Turn it off here so it can be restarted
3113  * later in tcp_output().
3114  */
3115 static void
3116 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th, int acked)
3117 {
3118 	tcp_seq old_snd_nxt = tp->snd_nxt;
3119 	u_long ocwnd = tp->snd_cwnd;
3120 
3121 	callout_stop(tp->tt_rexmt);
3122 	tp->t_rtttime = 0;
3123 	tp->snd_nxt = th->th_ack;
3124 	/* Set snd_cwnd to one segment beyond acknowledged offset. */
3125 	tp->snd_cwnd = tp->t_maxseg;
3126 	tp->t_flags |= TF_ACKNOW;
3127 	tcp_output(tp);
3128 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3129 		tp->snd_nxt = old_snd_nxt;
3130 	/* partial window deflation */
3131 	if (ocwnd > acked)
3132 		tp->snd_cwnd = ocwnd - acked + tp->t_maxseg;
3133 	else
3134 		tp->snd_cwnd = tp->t_maxseg;
3135 }
3136 
3137 /*
3138  * In contrast to the Slow-but-Steady NewReno variant,
3139  * we do not reset the retransmission timer for SACK retransmissions,
3140  * except when retransmitting snd_una.
3141  */
3142 static void
3143 tcp_sack_rexmt(struct tcpcb *tp, struct tcphdr *th)
3144 {
3145 	uint32_t pipe, seglen;
3146 	tcp_seq nextrexmt;
3147 	boolean_t lostdup;
3148 	tcp_seq old_snd_nxt = tp->snd_nxt;
3149 	u_long ocwnd = tp->snd_cwnd;
3150 	int nseg = 0;		/* consecutive new segments */
3151 #define MAXBURST 4		/* limit burst of new packets on partial ack */
3152 
3153 	tp->t_rtttime = 0;
3154 	pipe = tcp_sack_compute_pipe(tp);
3155 	while ((tcp_seq_diff_t)(ocwnd - pipe) >= (tcp_seq_diff_t)tp->t_maxseg &&
3156 	    (!tcp_do_smartsack || nseg < MAXBURST) &&
3157 	    tcp_sack_nextseg(tp, &nextrexmt, &seglen, &lostdup)) {
3158 		uint32_t sent;
3159 		tcp_seq old_snd_max;
3160 		int error;
3161 
3162 		if (nextrexmt == tp->snd_max)
3163 			++nseg;
3164 		tp->snd_nxt = nextrexmt;
3165 		tp->snd_cwnd = nextrexmt - tp->snd_una + seglen;
3166 		old_snd_max = tp->snd_max;
3167 		if (nextrexmt == tp->snd_una)
3168 			callout_stop(tp->tt_rexmt);
3169 		error = tcp_output(tp);
3170 		if (error != 0)
3171 			break;
3172 		sent = tp->snd_nxt - nextrexmt;
3173 		if (sent <= 0)
3174 			break;
3175 		if (!lostdup)
3176 			pipe += sent;
3177 		tcpstat.tcps_sndsackpack++;
3178 		tcpstat.tcps_sndsackbyte += sent;
3179 		if (SEQ_LT(nextrexmt, old_snd_max) &&
3180 		    SEQ_LT(tp->rexmt_high, tp->snd_nxt))
3181 			tp->rexmt_high = seq_min(tp->snd_nxt, old_snd_max);
3182 	}
3183 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3184 		tp->snd_nxt = old_snd_nxt;
3185 	tp->snd_cwnd = ocwnd;
3186 }
3187