xref: /dragonfly/sys/netinet/tcp_input.c (revision 9c600e7d)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
34  * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.38 2003/05/21 04:46:41 cjc Exp $
35  * $DragonFly: src/sys/netinet/tcp_input.c,v 1.4 2003/07/24 01:31:07 dillon Exp $
36  */
37 
38 #include "opt_ipfw.h"		/* for ipfw_fwd		*/
39 #include "opt_inet6.h"
40 #include "opt_ipsec.h"
41 #include "opt_tcpdebug.h"
42 #include "opt_tcp_input.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/sysctl.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/proc.h>		/* for proc0 declaration */
51 #include <sys/protosw.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/syslog.h>
55 
56 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
57 
58 #include <net/if.h>
59 #include <net/route.h>
60 
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/ip.h>
64 #include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM		*/
65 #include <netinet/in_var.h>
66 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM		*/
67 #include <netinet/in_pcb.h>
68 #include <netinet/ip_var.h>
69 #include <netinet/ip6.h>
70 #include <netinet/icmp6.h>
71 #include <netinet6/nd6.h>
72 #include <netinet6/ip6_var.h>
73 #include <netinet6/in6_pcb.h>
74 #include <netinet/tcp.h>
75 #include <netinet/tcp_fsm.h>
76 #include <netinet/tcp_seq.h>
77 #include <netinet/tcp_timer.h>
78 #include <netinet/tcp_var.h>
79 #include <netinet6/tcp6_var.h>
80 #include <netinet/tcpip.h>
81 #ifdef TCPDEBUG
82 #include <netinet/tcp_debug.h>
83 
84 u_char tcp_saveipgen[40]; /* the size must be of max ip header, now IPv6 */
85 struct tcphdr tcp_savetcp;
86 #endif /* TCPDEBUG */
87 
88 #ifdef FAST_IPSEC
89 #include <netipsec/ipsec.h>
90 #include <netipsec/ipsec6.h>
91 #endif
92 
93 #ifdef IPSEC
94 #include <netinet6/ipsec.h>
95 #include <netinet6/ipsec6.h>
96 #include <netkey/key.h>
97 #endif /*IPSEC*/
98 
99 #include <machine/in_cksum.h>
100 
101 MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
102 
103 static const int tcprexmtthresh = 3;
104 tcp_cc	tcp_ccgen;
105 
106 struct	tcpstat tcpstat;
107 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
108     &tcpstat , tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
109 
110 static int log_in_vain = 0;
111 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
112     &log_in_vain, 0, "Log all incoming TCP connections");
113 
114 static int blackhole = 0;
115 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
116     &blackhole, 0, "Do not send RST when dropping refused connections");
117 
118 int tcp_delack_enabled = 1;
119 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
120     &tcp_delack_enabled, 0,
121     "Delay ACK to try and piggyback it onto a data packet");
122 
123 #ifdef TCP_DROP_SYNFIN
124 static int drop_synfin = 0;
125 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
126     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
127 #endif
128 
129 static int tcp_do_limitedtransmit = 1;
130 SYSCTL_INT(_net_inet_tcp, OID_AUTO, limitedtransmit, CTLFLAG_RW,
131     &tcp_do_limitedtransmit, 0, "Enable RFC 3042 (Limited Transmit)");
132 
133 struct inpcbhead tcb;
134 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
135 struct inpcbinfo tcbinfo;
136 
137 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
138 static void	 tcp_pulloutofband(struct socket *,
139 		     struct tcphdr *, struct mbuf *, int);
140 static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
141 		     struct mbuf *);
142 static void	 tcp_xmit_timer(struct tcpcb *, int);
143 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
144 
145 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
146 #ifdef INET6
147 #define ND6_HINT(tp) \
148 do { \
149 	if ((tp) && (tp)->t_inpcb && \
150 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0 && \
151 	    (tp)->t_inpcb->in6p_route.ro_rt) \
152 		nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
153 } while (0)
154 #else
155 #define ND6_HINT(tp)
156 #endif
157 
158 /*
159  * Indicate whether this ack should be delayed.  We can delay the ack if
160  *	- delayed acks are enabled and
161  *	- there is no delayed ack timer in progress and
162  *	- our last ack wasn't a 0-sized window.  We never want to delay
163  *	  the ack that opens up a 0-sized window.
164  */
165 #define DELAY_ACK(tp) \
166 	(tcp_delack_enabled && !callout_pending(tp->tt_delack) && \
167 	(tp->t_flags & TF_RXWIN0SENT) == 0)
168 
169 static int
170 tcp_reass(tp, th, tlenp, m)
171 	register struct tcpcb *tp;
172 	register struct tcphdr *th;
173 	int *tlenp;
174 	struct mbuf *m;
175 {
176 	struct tseg_qent *q;
177 	struct tseg_qent *p = NULL;
178 	struct tseg_qent *nq;
179 	struct tseg_qent *te;
180 	struct socket *so = tp->t_inpcb->inp_socket;
181 	int flags;
182 
183 	/*
184 	 * Call with th==0 after become established to
185 	 * force pre-ESTABLISHED data up to user socket.
186 	 */
187 	if (th == 0)
188 		goto present;
189 
190 	/* Allocate a new queue entry. If we can't, just drop the pkt. XXX */
191 	MALLOC(te, struct tseg_qent *, sizeof(struct tseg_qent), M_TSEGQ,
192 	       M_NOWAIT);
193 	if (te == NULL) {
194 		tcpstat.tcps_rcvmemdrop++;
195 		m_freem(m);
196 		return (0);
197 	}
198 
199 	/*
200 	 * Find a segment which begins after this one does.
201 	 */
202 	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
203 		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
204 			break;
205 		p = q;
206 	}
207 
208 	/*
209 	 * If there is a preceding segment, it may provide some of
210 	 * our data already.  If so, drop the data from the incoming
211 	 * segment.  If it provides all of our data, drop us.
212 	 */
213 	if (p != NULL) {
214 		register int i;
215 		/* conversion to int (in i) handles seq wraparound */
216 		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
217 		if (i > 0) {
218 			if (i >= *tlenp) {
219 				tcpstat.tcps_rcvduppack++;
220 				tcpstat.tcps_rcvdupbyte += *tlenp;
221 				m_freem(m);
222 				free(te, M_TSEGQ);
223 				/*
224 				 * Try to present any queued data
225 				 * at the left window edge to the user.
226 				 * This is needed after the 3-WHS
227 				 * completes.
228 				 */
229 				goto present;	/* ??? */
230 			}
231 			m_adj(m, i);
232 			*tlenp -= i;
233 			th->th_seq += i;
234 		}
235 	}
236 	tcpstat.tcps_rcvoopack++;
237 	tcpstat.tcps_rcvoobyte += *tlenp;
238 
239 	/*
240 	 * While we overlap succeeding segments trim them or,
241 	 * if they are completely covered, dequeue them.
242 	 */
243 	while (q) {
244 		register int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
245 		if (i <= 0)
246 			break;
247 		if (i < q->tqe_len) {
248 			q->tqe_th->th_seq += i;
249 			q->tqe_len -= i;
250 			m_adj(q->tqe_m, i);
251 			break;
252 		}
253 
254 		nq = LIST_NEXT(q, tqe_q);
255 		LIST_REMOVE(q, tqe_q);
256 		m_freem(q->tqe_m);
257 		free(q, M_TSEGQ);
258 		q = nq;
259 	}
260 
261 	/* Insert the new segment queue entry into place. */
262 	te->tqe_m = m;
263 	te->tqe_th = th;
264 	te->tqe_len = *tlenp;
265 
266 	if (p == NULL) {
267 		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
268 	} else {
269 		LIST_INSERT_AFTER(p, te, tqe_q);
270 	}
271 
272 present:
273 	/*
274 	 * Present data to user, advancing rcv_nxt through
275 	 * completed sequence space.
276 	 */
277 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
278 		return (0);
279 	q = LIST_FIRST(&tp->t_segq);
280 	if (!q || q->tqe_th->th_seq != tp->rcv_nxt)
281 		return (0);
282 	do {
283 		tp->rcv_nxt += q->tqe_len;
284 		flags = q->tqe_th->th_flags & TH_FIN;
285 		nq = LIST_NEXT(q, tqe_q);
286 		LIST_REMOVE(q, tqe_q);
287 		if (so->so_state & SS_CANTRCVMORE)
288 			m_freem(q->tqe_m);
289 		else
290 			sbappend(&so->so_rcv, q->tqe_m);
291 		free(q, M_TSEGQ);
292 		q = nq;
293 	} while (q && q->tqe_th->th_seq == tp->rcv_nxt);
294 	ND6_HINT(tp);
295 	sorwakeup(so);
296 	return (flags);
297 }
298 
299 /*
300  * TCP input routine, follows pages 65-76 of the
301  * protocol specification dated September, 1981 very closely.
302  */
303 #ifdef INET6
304 int
305 tcp6_input(mp, offp, proto)
306 	struct mbuf **mp;
307 	int *offp, proto;
308 {
309 	register struct mbuf *m = *mp;
310 	struct in6_ifaddr *ia6;
311 
312 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
313 
314 	/*
315 	 * draft-itojun-ipv6-tcp-to-anycast
316 	 * better place to put this in?
317 	 */
318 	ia6 = ip6_getdstifaddr(m);
319 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
320 		struct ip6_hdr *ip6;
321 
322 		ip6 = mtod(m, struct ip6_hdr *);
323 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
324 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
325 		return IPPROTO_DONE;
326 	}
327 
328 	tcp_input(m, *offp, proto);
329 	return IPPROTO_DONE;
330 }
331 #endif
332 
333 void
334 tcp_input(m, off0, proto)
335 	register struct mbuf *m;
336 	int off0, proto;
337 {
338 	register struct tcphdr *th;
339 	register struct ip *ip = NULL;
340 	register struct ipovly *ipov;
341 	register struct inpcb *inp = NULL;
342 	u_char *optp = NULL;
343 	int optlen = 0;
344 	int len, tlen, off;
345 	int drop_hdrlen;
346 	register struct tcpcb *tp = NULL;
347 	register int thflags;
348 	struct socket *so = 0;
349 	int todrop, acked, ourfinisacked, needoutput = 0;
350 	u_long tiwin;
351 	struct tcpopt to;		/* options in this segment */
352 	struct rmxp_tao *taop;		/* pointer to our TAO cache entry */
353 	struct rmxp_tao	tao_noncached;	/* in case there's no cached entry */
354 	struct sockaddr_in *next_hop = NULL;
355 	int rstreason; /* For badport_bandlim accounting purposes */
356 	struct ip6_hdr *ip6 = NULL;
357 #ifdef INET6
358 	int isipv6;
359 #else
360 	const int isipv6 = 0;
361 #endif
362 #ifdef TCPDEBUG
363 	short ostate = 0;
364 #endif
365 
366 	/* Grab info from MT_TAG mbufs prepended to the chain. */
367 	for (;m && m->m_type == MT_TAG; m = m->m_next) {
368 		if (m->_m_tag_id == PACKET_TAG_IPFORWARD)
369 			next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
370 	}
371 #ifdef INET6
372 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
373 #endif
374 	bzero((char *)&to, sizeof(to));
375 
376 	tcpstat.tcps_rcvtotal++;
377 
378 	if (isipv6) {
379 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
380 		ip6 = mtod(m, struct ip6_hdr *);
381 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
382 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
383 			tcpstat.tcps_rcvbadsum++;
384 			goto drop;
385 		}
386 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
387 
388 		/*
389 		 * Be proactive about unspecified IPv6 address in source.
390 		 * As we use all-zero to indicate unbounded/unconnected pcb,
391 		 * unspecified IPv6 address can be used to confuse us.
392 		 *
393 		 * Note that packets with unspecified IPv6 destination is
394 		 * already dropped in ip6_input.
395 		 */
396 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
397 			/* XXX stat */
398 			goto drop;
399 		}
400 	} else {
401 		/*
402 		 * Get IP and TCP header together in first mbuf.
403 		 * Note: IP leaves IP header in first mbuf.
404 		 */
405 		if (off0 > sizeof(struct ip)) {
406 			ip_stripoptions(m, (struct mbuf *)0);
407 			off0 = sizeof(struct ip);
408 		}
409 		if (m->m_len < sizeof(struct tcpiphdr)) {
410 			if ((m = m_pullup(m, sizeof(struct tcpiphdr))) == 0) {
411 				tcpstat.tcps_rcvshort++;
412 				return;
413 			}
414 		}
415 		ip = mtod(m, struct ip *);
416 		ipov = (struct ipovly *)ip;
417 		th = (struct tcphdr *)((caddr_t)ip + off0);
418 		tlen = ip->ip_len;
419 
420 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
421 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
422 				th->th_sum = m->m_pkthdr.csum_data;
423 			else
424 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
425 						ip->ip_dst.s_addr,
426 						htonl(m->m_pkthdr.csum_data +
427 							ip->ip_len +
428 							IPPROTO_TCP));
429 			th->th_sum ^= 0xffff;
430 		} else {
431 			/*
432 			 * Checksum extended TCP header and data.
433 			 */
434 			len = sizeof(struct ip) + tlen;
435 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
436 			ipov->ih_len = (u_short)tlen;
437 			ipov->ih_len = htons(ipov->ih_len);
438 			th->th_sum = in_cksum(m, len);
439 		}
440 		if (th->th_sum) {
441 			tcpstat.tcps_rcvbadsum++;
442 			goto drop;
443 		}
444 #ifdef INET6
445 		/* Re-initialization for later version check */
446 		ip->ip_v = IPVERSION;
447 #endif
448 	}
449 
450 	/*
451 	 * Check that TCP offset makes sense,
452 	 * pull out TCP options and adjust length.		XXX
453 	 */
454 	off = th->th_off << 2;
455 	if (off < sizeof(struct tcphdr) || off > tlen) {
456 		tcpstat.tcps_rcvbadoff++;
457 		goto drop;
458 	}
459 	tlen -= off;	/* tlen is used instead of ti->ti_len */
460 	if (off > sizeof(struct tcphdr)) {
461 		if (isipv6) {
462 			IP6_EXTHDR_CHECK(m, off0, off, );
463 			ip6 = mtod(m, struct ip6_hdr *);
464 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
465 		} else {
466 			if (m->m_len < sizeof(struct ip) + off) {
467 				if ((m = m_pullup(m, sizeof(struct ip) + off))
468 						== 0) {
469 					tcpstat.tcps_rcvshort++;
470 					return;
471 				}
472 				ip = mtod(m, struct ip *);
473 				ipov = (struct ipovly *)ip;
474 				th = (struct tcphdr *)((caddr_t)ip + off0);
475 			}
476 		}
477 		optlen = off - sizeof(struct tcphdr);
478 		optp = (u_char *)(th + 1);
479 	}
480 	thflags = th->th_flags;
481 
482 #ifdef TCP_DROP_SYNFIN
483 	/*
484 	 * If the drop_synfin option is enabled, drop all packets with
485 	 * both the SYN and FIN bits set. This prevents e.g. nmap from
486 	 * identifying the TCP/IP stack.
487 	 *
488 	 * This is a violation of the TCP specification.
489 	 */
490 	if (drop_synfin && (thflags & (TH_SYN|TH_FIN)) == (TH_SYN|TH_FIN))
491 		goto drop;
492 #endif
493 
494 	/*
495 	 * Convert TCP protocol specific fields to host format.
496 	 */
497 	th->th_seq = ntohl(th->th_seq);
498 	th->th_ack = ntohl(th->th_ack);
499 	th->th_win = ntohs(th->th_win);
500 	th->th_urp = ntohs(th->th_urp);
501 
502 	/*
503 	 * Delay droping TCP, IP headers, IPv6 ext headers, and TCP options,
504 	 * until after ip6_savecontrol() is called and before other functions
505 	 * which don't want those proto headers.
506 	 * Because ip6_savecontrol() is going to parse the mbuf to
507 	 * search for data to be passed up to user-land, it wants mbuf
508 	 * parameters to be unchanged.
509 	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
510 	 * latest version of the advanced API (20020110).
511 	 */
512 	drop_hdrlen = off0 + off;
513 
514 	/*
515 	 * Locate pcb for segment.
516 	 */
517 findpcb:
518 	/* IPFIREWALL_FORWARD section */
519 	if (next_hop != NULL && isipv6 == 0) {  /* IPv6 support is not yet */
520 		/*
521 		 * Transparently forwarded. Pretend to be the destination.
522 		 * already got one like this?
523 		 */
524 		inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, th->th_sport,
525 					ip->ip_dst, th->th_dport,
526 					0, m->m_pkthdr.rcvif);
527 		if (!inp) {
528 			/* It's new.  Try find the ambushing socket. */
529 			inp = in_pcblookup_hash(&tcbinfo,
530 						ip->ip_src, th->th_sport,
531 						next_hop->sin_addr,
532 						next_hop->sin_port ?
533 						    ntohs(next_hop->sin_port) :
534 						    th->th_dport,
535 						1, m->m_pkthdr.rcvif);
536 		}
537 	} else {
538 		if (isipv6)
539 			inp = in6_pcblookup_hash(&tcbinfo,
540 						 &ip6->ip6_src, th->th_sport,
541 						 &ip6->ip6_dst, th->th_dport,
542 						 1, m->m_pkthdr.rcvif);
543 		else
544 			inp = in_pcblookup_hash(&tcbinfo,
545 						ip->ip_src, th->th_sport,
546 						ip->ip_dst, th->th_dport,
547 						1, m->m_pkthdr.rcvif);
548       }
549 
550 #ifdef IPSEC
551 	if (isipv6) {
552 		if (inp != NULL && ipsec6_in_reject_so(m, inp->inp_socket)) {
553 			ipsec6stat.in_polvio++;
554 			goto drop;
555 		}
556 	} else {
557 		if (inp != NULL && ipsec4_in_reject_so(m, inp->inp_socket)) {
558 			ipsecstat.in_polvio++;
559 			goto drop;
560 		}
561 	}
562 #endif
563 #ifdef FAST_IPSEC
564 	if (isipv6) {
565 		if (inp != NULL && ipsec6_in_reject(m, inp)) {
566 			goto drop;
567 		}
568 	} else {
569 		if (inp != NULL && ipsec4_in_reject(m, inp)) {
570 			goto drop;
571 		}
572 	}
573 #endif
574 
575 	/*
576 	 * If the state is CLOSED (i.e., TCB does not exist) then
577 	 * all data in the incoming segment is discarded.
578 	 * If the TCB exists but is in CLOSED state, it is embryonic,
579 	 * but should either do a listen or a connect soon.
580 	 */
581 	if (inp == NULL) {
582 		if (log_in_vain) {
583 #ifdef INET6
584 			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
585 #else
586 			char dbuf[4*sizeof "123"], sbuf[4*sizeof "123"];
587 #endif
588 			if (isipv6) {
589 				strcpy(dbuf, "[");
590 				strcpy(sbuf, "[");
591 				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
592 				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
593 				strcat(dbuf, "]");
594 				strcat(sbuf, "]");
595 			} else {
596 				strcpy(dbuf, inet_ntoa(ip->ip_dst));
597 				strcpy(sbuf, inet_ntoa(ip->ip_src));
598 			}
599 			switch (log_in_vain) {
600 			case 1:
601 				if ((thflags & TH_SYN) == 0)
602 					break;
603 			case 2:
604 				log(LOG_INFO,
605 				    "Connection attempt to TCP %s:%d "
606 				    "from %s:%d flags:0x%02x\n",
607 				    dbuf, ntohs(th->th_dport), sbuf,
608 				    ntohs(th->th_sport), thflags);
609 				break;
610 			default:
611 				break;
612 			}
613 		}
614 		if (blackhole) {
615 			switch (blackhole) {
616 			case 1:
617 				if (thflags & TH_SYN)
618 					goto drop;
619 				break;
620 			case 2:
621 				goto drop;
622 			default:
623 				goto drop;
624 			}
625 		}
626 		rstreason = BANDLIM_RST_CLOSEDPORT;
627 		goto dropwithreset;
628 	}
629 	tp = intotcpcb(inp);
630 	if (tp == NULL) {
631 		rstreason = BANDLIM_RST_CLOSEDPORT;
632 		goto dropwithreset;
633 	}
634 	if (tp->t_state == TCPS_CLOSED)
635 		goto drop;
636 
637 	/* Unscale the window into a 32-bit value. */
638 	if ((thflags & TH_SYN) == 0)
639 		tiwin = th->th_win << tp->snd_scale;
640 	else
641 		tiwin = th->th_win;
642 
643 	so = inp->inp_socket;
644 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
645 		struct in_conninfo inc;
646 #ifdef TCPDEBUG
647 		if (so->so_options & SO_DEBUG) {
648 			ostate = tp->t_state;
649 			if (isipv6)
650 				bcopy((char *)ip6, (char *)tcp_saveipgen,
651 				    sizeof(*ip6));
652 			else
653 				bcopy((char *)ip, (char *)tcp_saveipgen,
654 				    sizeof(*ip));
655 			tcp_savetcp = *th;
656 		}
657 #endif
658 		/* skip if this isn't a listen socket */
659 		if ((so->so_options & SO_ACCEPTCONN) == 0)
660 			goto after_listen;
661 #ifdef INET6
662 		inc.inc_isipv6 = isipv6;
663 #endif
664 		if (isipv6) {
665 			inc.inc6_faddr = ip6->ip6_src;
666 			inc.inc6_laddr = ip6->ip6_dst;
667 			inc.inc6_route.ro_rt = NULL;		/* XXX */
668 		} else {
669 			inc.inc_faddr = ip->ip_src;
670 			inc.inc_laddr = ip->ip_dst;
671 			inc.inc_route.ro_rt = NULL;		/* XXX */
672 		}
673 		inc.inc_fport = th->th_sport;
674 		inc.inc_lport = th->th_dport;
675 
676 	        /*
677 	         * If the state is LISTEN then ignore segment if it contains
678 		 * a RST.  If the segment contains an ACK then it is bad and
679 		 * send a RST.  If it does not contain a SYN then it is not
680 		 * interesting; drop it.
681 		 *
682 		 * If the state is SYN_RECEIVED (syncache) and seg contains
683 		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
684 		 * contains a RST, check the sequence number to see if it
685 		 * is a valid reset segment.
686 		 */
687 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
688 			if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
689 				if (!syncache_expand(&inc, th, &so, m)) {
690 					/*
691 					 * No syncache entry, or ACK was not
692 					 * for our SYN/ACK.  Send a RST.
693 					 */
694 					tcpstat.tcps_badsyn++;
695 					rstreason = BANDLIM_RST_OPENPORT;
696 					goto dropwithreset;
697 				}
698 				if (so == NULL)
699 					/*
700 					 * Could not complete 3-way handshake,
701 					 * connection is being closed down, and
702 					 * syncache will free mbuf.
703 					 */
704 					return;
705 				/*
706 				 * Socket is created in state SYN_RECEIVED.
707 				 * Continue processing segment.
708 				 */
709 				inp = sotoinpcb(so);
710 				tp = intotcpcb(inp);
711 				/*
712 				 * This is what would have happened in
713 				 * tcp_output() when the SYN,ACK was sent.
714 				 */
715 				tp->snd_up = tp->snd_una;
716 				tp->snd_max = tp->snd_nxt = tp->iss + 1;
717 				tp->last_ack_sent = tp->rcv_nxt;
718 /*
719  * XXX possible bug - it doesn't appear that tp->snd_wnd is unscaled
720  * until the _second_ ACK is received:
721  *    rcv SYN (set wscale opts)	 --> send SYN/ACK, set snd_wnd = window.
722  *    rcv ACK, calculate tiwin --> process SYN_RECEIVED, determine wscale,
723  *        move to ESTAB, set snd_wnd to tiwin.
724  */
725 				tp->snd_wnd = tiwin;	/* unscaled */
726 				goto after_listen;
727 			}
728 			if (thflags & TH_RST) {
729 				syncache_chkrst(&inc, th);
730 				goto drop;
731 			}
732 			if (thflags & TH_ACK) {
733 				syncache_badack(&inc);
734 				tcpstat.tcps_badsyn++;
735 				rstreason = BANDLIM_RST_OPENPORT;
736 				goto dropwithreset;
737 			}
738 			goto drop;
739 		}
740 
741 		/*
742 		 * Segment's flags are (SYN) or (SYN|FIN).
743 		 */
744 #ifdef INET6
745 		/*
746 		 * If deprecated address is forbidden,
747 		 * we do not accept SYN to deprecated interface
748 		 * address to prevent any new inbound connection from
749 		 * getting established.
750 		 * When we do not accept SYN, we send a TCP RST,
751 		 * with deprecated source address (instead of dropping
752 		 * it).  We compromise it as it is much better for peer
753 		 * to send a RST, and RST will be the final packet
754 		 * for the exchange.
755 		 *
756 		 * If we do not forbid deprecated addresses, we accept
757 		 * the SYN packet.  RFC2462 does not suggest dropping
758 		 * SYN in this case.
759 		 * If we decipher RFC2462 5.5.4, it says like this:
760 		 * 1. use of deprecated addr with existing
761 		 *    communication is okay - "SHOULD continue to be
762 		 *    used"
763 		 * 2. use of it with new communication:
764 		 *   (2a) "SHOULD NOT be used if alternate address
765 		 *        with sufficient scope is available"
766 		 *   (2b) nothing mentioned otherwise.
767 		 * Here we fall into (2b) case as we have no choice in
768 		 * our source address selection - we must obey the peer.
769 		 *
770 		 * The wording in RFC2462 is confusing, and there are
771 		 * multiple description text for deprecated address
772 		 * handling - worse, they are not exactly the same.
773 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
774 		 */
775 		if (isipv6 && !ip6_use_deprecated) {
776 			struct in6_ifaddr *ia6;
777 
778 			if ((ia6 = ip6_getdstifaddr(m)) &&
779 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
780 				tp = NULL;
781 				rstreason = BANDLIM_RST_OPENPORT;
782 				goto dropwithreset;
783 			}
784 		}
785 #endif
786 		/*
787 		 * If it is from this socket, drop it, it must be forged.
788 		 * Don't bother responding if the destination was a broadcast.
789 		 */
790 		if (th->th_dport == th->th_sport) {
791 			if (isipv6) {
792 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
793 						       &ip6->ip6_src))
794 					goto drop;
795 			} else {
796 				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
797 					goto drop;
798 			}
799 		}
800 		/*
801 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
802 		 *
803 		 * Note that it is quite possible to receive unicast
804 		 * link-layer packets with a broadcast IP address. Use
805 		 * in_broadcast() to find them.
806 		 */
807 		if (m->m_flags & (M_BCAST|M_MCAST))
808 			goto drop;
809 		if (isipv6) {
810 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
811 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
812 				goto drop;
813 		} else {
814 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
815 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
816 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
817 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
818 				goto drop;
819 		}
820 		/*
821 		 * SYN appears to be valid; create compressed TCP state
822 		 * for syncache, or perform t/tcp connection.
823 		 */
824 		if (so->so_qlen <= so->so_qlimit) {
825 			tcp_dooptions(&to, optp, optlen, 1);
826 			if (!syncache_add(&inc, &to, th, &so, m))
827 				goto drop;
828 			if (so == NULL)
829 				/*
830 				 * Entry added to syncache, mbuf used to
831 				 * send SYN,ACK packet.
832 				 */
833 				return;
834 			/*
835 			 * Segment passed TAO tests.
836 			 */
837 			inp = sotoinpcb(so);
838 			tp = intotcpcb(inp);
839 			tp->snd_wnd = tiwin;
840 			tp->t_starttime = ticks;
841 			tp->t_state = TCPS_ESTABLISHED;
842 
843 			/*
844 			 * If there is a FIN, or if there is data and the
845 			 * connection is local, then delay SYN,ACK(SYN) in
846 			 * the hope of piggy-backing it on a response
847 			 * segment.  Otherwise must send ACK now in case
848 			 * the other side is slow starting.
849 			 */
850 			if (DELAY_ACK(tp) &&
851 			    ((thflags & TH_FIN) ||
852 			     (tlen != 0 &&
853 			      ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
854 			       (!isipv6 && in_localaddr(inp->inp_faddr)))))) {
855 				callout_reset(tp->tt_delack, tcp_delacktime,
856 						tcp_timer_delack, tp);
857 				tp->t_flags |= TF_NEEDSYN;
858 			} else
859 				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
860 
861 			tcpstat.tcps_connects++;
862 			soisconnected(so);
863 			goto trimthenstep6;
864 		}
865 		goto drop;
866 	}
867 after_listen:
868 
869 /* XXX temp debugging */
870 	/* should not happen - syncache should pick up these connections */
871 	if (tp->t_state == TCPS_LISTEN)
872 		panic("tcp_input: TCPS_LISTEN");
873 
874 	/*
875 	 * Segment received on connection.
876 	 * Reset idle time and keep-alive timer.
877 	 */
878 	tp->t_rcvtime = ticks;
879 	if (TCPS_HAVEESTABLISHED(tp->t_state))
880 		callout_reset(tp->tt_keep, tcp_keepidle, tcp_timer_keep, tp);
881 
882 	/*
883 	 * Process options.
884 	 * XXX this is tradtitional behavior, may need to be cleaned up.
885 	 */
886 	tcp_dooptions(&to, optp, optlen, thflags & TH_SYN);
887 	if (thflags & TH_SYN) {
888 		if (to.to_flags & TOF_SCALE) {
889 			tp->t_flags |= TF_RCVD_SCALE;
890 			tp->requested_s_scale = to.to_requested_s_scale;
891 		}
892 		if (to.to_flags & TOF_TS) {
893 			tp->t_flags |= TF_RCVD_TSTMP;
894 			tp->ts_recent = to.to_tsval;
895 			tp->ts_recent_age = ticks;
896 		}
897 		if (to.to_flags & (TOF_CC|TOF_CCNEW))
898 			tp->t_flags |= TF_RCVD_CC;
899 		if (to.to_flags & TOF_MSS)
900 			tcp_mss(tp, to.to_mss);
901 	}
902 
903 	/*
904 	 * Header prediction: check for the two common cases
905 	 * of a uni-directional data xfer.  If the packet has
906 	 * no control flags, is in-sequence, the window didn't
907 	 * change and we're not retransmitting, it's a
908 	 * candidate.  If the length is zero and the ack moved
909 	 * forward, we're the sender side of the xfer.  Just
910 	 * free the data acked & wake any higher level process
911 	 * that was blocked waiting for space.  If the length
912 	 * is non-zero and the ack didn't move, we're the
913 	 * receiver side.  If we're getting packets in-order
914 	 * (the reassembly queue is empty), add the data to
915 	 * the socket buffer and note that we need a delayed ack.
916 	 * Make sure that the hidden state-flags are also off.
917 	 * Since we check for TCPS_ESTABLISHED above, it can only
918 	 * be TH_NEEDSYN.
919 	 */
920 	if (tp->t_state == TCPS_ESTABLISHED &&
921 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
922 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
923 	    ((to.to_flags & TOF_TS) == 0 ||
924 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
925 	    /*
926 	     * Using the CC option is compulsory if once started:
927 	     *   the segment is OK if no T/TCP was negotiated or
928 	     *   if the segment has a CC option equal to CCrecv
929 	     */
930 	    ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) != (TF_REQ_CC|TF_RCVD_CC) ||
931 	     ((to.to_flags & TOF_CC) != 0 && to.to_cc == tp->cc_recv)) &&
932 	    th->th_seq == tp->rcv_nxt &&
933 	    tiwin && tiwin == tp->snd_wnd &&
934 	    tp->snd_nxt == tp->snd_max) {
935 
936 		/*
937 		 * If last ACK falls within this segment's sequence numbers,
938 		 * record the timestamp.
939 		 * NOTE that the test is modified according to the latest
940 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
941 		 */
942 		if ((to.to_flags & TOF_TS) != 0 &&
943 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
944 			tp->ts_recent_age = ticks;
945 			tp->ts_recent = to.to_tsval;
946 		}
947 
948 		if (tlen == 0) {
949 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
950 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
951 			    tp->snd_cwnd >= tp->snd_wnd &&
952 			    ((!tcp_do_newreno &&
953 			      tp->t_dupacks < tcprexmtthresh) ||
954 			     (tcp_do_newreno && !IN_FASTRECOVERY(tp)))) {
955 				/*
956 				 * this is a pure ack for outstanding data.
957 				 */
958 				++tcpstat.tcps_predack;
959 				/*
960 				 * "bad retransmit" recovery
961 				 */
962 				if (tp->t_rxtshift == 1 &&
963 				    ticks < tp->t_badrxtwin) {
964 					tp->snd_cwnd = tp->snd_cwnd_prev;
965 					tp->snd_ssthresh =
966 					    tp->snd_ssthresh_prev;
967 					tp->snd_recover = tp->snd_recover_prev;
968 					if (tp->t_flags & TF_WASFRECOVERY)
969 					    ENTER_FASTRECOVERY(tp);
970 					tp->snd_nxt = tp->snd_max;
971 					tp->t_badrxtwin = 0;
972 				}
973 				/*
974 				 * Recalculate the retransmit timer / rtt.
975 				 *
976 				 * Some machines (certain windows boxes)
977 				 * send broken timestamp replies during the
978 				 * SYN+ACK phase, ignore timestamps of 0.
979 				 */
980 				if ((to.to_flags & TOF_TS) != 0 &&
981 				    to.to_tsecr) {
982 					tcp_xmit_timer(tp,
983 					    ticks - to.to_tsecr + 1);
984 				} else if (tp->t_rtttime &&
985 					    SEQ_GT(th->th_ack, tp->t_rtseq)) {
986 					tcp_xmit_timer(tp,
987 						       ticks - tp->t_rtttime);
988 				}
989 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
990 				acked = th->th_ack - tp->snd_una;
991 				tcpstat.tcps_rcvackpack++;
992 				tcpstat.tcps_rcvackbyte += acked;
993 				sbdrop(&so->so_snd, acked);
994 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
995 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
996 					tp->snd_recover = th->th_ack - 1;
997 				tp->snd_una = th->th_ack;
998 				tp->t_dupacks = 0;
999 				m_freem(m);
1000 				ND6_HINT(tp); /* some progress has been done */
1001 
1002 				/*
1003 				 * If all outstanding data are acked, stop
1004 				 * retransmit timer, otherwise restart timer
1005 				 * using current (possibly backed-off) value.
1006 				 * If process is waiting for space,
1007 				 * wakeup/selwakeup/signal.  If data
1008 				 * are ready to send, let tcp_output
1009 				 * decide between more output or persist.
1010 				 */
1011 				if (tp->snd_una == tp->snd_max)
1012 					callout_stop(tp->tt_rexmt);
1013 				else if (!callout_active(tp->tt_persist))
1014 					callout_reset(tp->tt_rexmt,
1015 						      tp->t_rxtcur,
1016 						      tcp_timer_rexmt, tp);
1017 
1018 				sowwakeup(so);
1019 				if (so->so_snd.sb_cc)
1020 					(void) tcp_output(tp);
1021 				return;
1022 			}
1023 		} else if (th->th_ack == tp->snd_una &&
1024 		    LIST_EMPTY(&tp->t_segq) &&
1025 		    tlen <= sbspace(&so->so_rcv)) {
1026 			/*
1027 			 * this is a pure, in-sequence data packet
1028 			 * with nothing on the reassembly queue and
1029 			 * we have enough buffer space to take it.
1030 			 */
1031 			++tcpstat.tcps_preddat;
1032 			tp->rcv_nxt += tlen;
1033 			tcpstat.tcps_rcvpack++;
1034 			tcpstat.tcps_rcvbyte += tlen;
1035 			ND6_HINT(tp);	/* some progress has been done */
1036 			/*
1037 			 * Add data to socket buffer.
1038 			 */
1039 			if (so->so_state & SS_CANTRCVMORE) {
1040 				m_freem(m);
1041 			} else {
1042 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1043 				sbappend(&so->so_rcv, m);
1044 			}
1045 			sorwakeup(so);
1046 			if (DELAY_ACK(tp)) {
1047 	                        callout_reset(tp->tt_delack, tcp_delacktime,
1048 	                            tcp_timer_delack, tp);
1049 			} else {
1050 				tp->t_flags |= TF_ACKNOW;
1051 				tcp_output(tp);
1052 			}
1053 			return;
1054 		}
1055 	}
1056 
1057 	/*
1058 	 * Calculate amount of space in receive window,
1059 	 * and then do TCP input processing.
1060 	 * Receive window is amount of space in rcv queue,
1061 	 * but not less than advertised window.
1062 	 */
1063 	{ int win;
1064 
1065 	win = sbspace(&so->so_rcv);
1066 	if (win < 0)
1067 		win = 0;
1068 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1069 	}
1070 
1071 	switch (tp->t_state) {
1072 
1073 	/*
1074 	 * If the state is SYN_RECEIVED:
1075 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1076 	 */
1077 	case TCPS_SYN_RECEIVED:
1078 		if ((thflags & TH_ACK) &&
1079 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1080 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1081 				rstreason = BANDLIM_RST_OPENPORT;
1082 				goto dropwithreset;
1083 		}
1084 		break;
1085 
1086 	/*
1087 	 * If the state is SYN_SENT:
1088 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1089 	 *	if seg contains a RST, then drop the connection.
1090 	 *	if seg does not contain SYN, then drop it.
1091 	 * Otherwise this is an acceptable SYN segment
1092 	 *	initialize tp->rcv_nxt and tp->irs
1093 	 *	if seg contains ack then advance tp->snd_una
1094 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1095 	 *	arrange for segment to be acked (eventually)
1096 	 *	continue processing rest of data/controls, beginning with URG
1097 	 */
1098 	case TCPS_SYN_SENT:
1099 		if ((taop = tcp_gettaocache(&inp->inp_inc)) == NULL) {
1100 			taop = &tao_noncached;
1101 			bzero(taop, sizeof(*taop));
1102 		}
1103 
1104 		if ((thflags & TH_ACK) &&
1105 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1106 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1107 			/*
1108 			 * If we have a cached CCsent for the remote host,
1109 			 * hence we haven't just crashed and restarted,
1110 			 * do not send a RST.  This may be a retransmission
1111 			 * from the other side after our earlier ACK was lost.
1112 			 * Our new SYN, when it arrives, will serve as the
1113 			 * needed ACK.
1114 			 */
1115 			if (taop->tao_ccsent != 0)
1116 				goto drop;
1117 			else {
1118 				rstreason = BANDLIM_UNLIMITED;
1119 				goto dropwithreset;
1120 			}
1121 		}
1122 		if (thflags & TH_RST) {
1123 			if (thflags & TH_ACK)
1124 				tp = tcp_drop(tp, ECONNREFUSED);
1125 			goto drop;
1126 		}
1127 		if ((thflags & TH_SYN) == 0)
1128 			goto drop;
1129 		tp->snd_wnd = th->th_win;	/* initial send window */
1130 		tp->cc_recv = to.to_cc;		/* foreign CC */
1131 
1132 		tp->irs = th->th_seq;
1133 		tcp_rcvseqinit(tp);
1134 		if (thflags & TH_ACK) {
1135 			/*
1136 			 * Our SYN was acked.  If segment contains CC.ECHO
1137 			 * option, check it to make sure this segment really
1138 			 * matches our SYN.  If not, just drop it as old
1139 			 * duplicate, but send an RST if we're still playing
1140 			 * by the old rules.  If no CC.ECHO option, make sure
1141 			 * we don't get fooled into using T/TCP.
1142 			 */
1143 			if (to.to_flags & TOF_CCECHO) {
1144 				if (tp->cc_send != to.to_ccecho) {
1145 					if (taop->tao_ccsent != 0)
1146 						goto drop;
1147 					else {
1148 						rstreason = BANDLIM_UNLIMITED;
1149 						goto dropwithreset;
1150 					}
1151 				}
1152 			} else
1153 				tp->t_flags &= ~TF_RCVD_CC;
1154 			tcpstat.tcps_connects++;
1155 			soisconnected(so);
1156 			/* Do window scaling on this connection? */
1157 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1158 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1159 				tp->snd_scale = tp->requested_s_scale;
1160 				tp->rcv_scale = tp->request_r_scale;
1161 			}
1162 			/* Segment is acceptable, update cache if undefined. */
1163 			if (taop->tao_ccsent == 0)
1164 				taop->tao_ccsent = to.to_ccecho;
1165 
1166 			tp->rcv_adv += tp->rcv_wnd;
1167 			tp->snd_una++;		/* SYN is acked */
1168 			/*
1169 			 * If there's data, delay ACK; if there's also a FIN
1170 			 * ACKNOW will be turned on later.
1171 			 */
1172 			if (DELAY_ACK(tp) && tlen != 0)
1173                                 callout_reset(tp->tt_delack, tcp_delacktime,
1174                                     tcp_timer_delack, tp);
1175 			else
1176 				tp->t_flags |= TF_ACKNOW;
1177 			/*
1178 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1179 			 * Transitions:
1180 			 *	SYN_SENT  --> ESTABLISHED
1181 			 *	SYN_SENT* --> FIN_WAIT_1
1182 			 */
1183 			tp->t_starttime = ticks;
1184 			if (tp->t_flags & TF_NEEDFIN) {
1185 				tp->t_state = TCPS_FIN_WAIT_1;
1186 				tp->t_flags &= ~TF_NEEDFIN;
1187 				thflags &= ~TH_SYN;
1188 			} else {
1189 				tp->t_state = TCPS_ESTABLISHED;
1190 				callout_reset(tp->tt_keep, tcp_keepidle,
1191 					      tcp_timer_keep, tp);
1192 			}
1193 		} else {
1194 			/*
1195 		 	 * Received initial SYN in SYN-SENT[*] state =>
1196 		 	 * simultaneous open.  If segment contains CC option
1197 		 	 * and there is a cached CC, apply TAO test.
1198 		 	 * If it succeeds, connection is * half-synchronized.
1199 		 	 * Otherwise, do 3-way handshake:
1200 		 	 *        SYN-SENT -> SYN-RECEIVED
1201 		 	 *        SYN-SENT* -> SYN-RECEIVED*
1202 		 	 * If there was no CC option, clear cached CC value.
1203 		 	 */
1204 			tp->t_flags |= TF_ACKNOW;
1205 			callout_stop(tp->tt_rexmt);
1206 			if (to.to_flags & TOF_CC) {
1207 				if (taop->tao_cc != 0 &&
1208 				    CC_GT(to.to_cc, taop->tao_cc)) {
1209 					/*
1210 					 * update cache and make transition:
1211 					 *        SYN-SENT -> ESTABLISHED*
1212 					 *        SYN-SENT* -> FIN-WAIT-1*
1213 					 */
1214 					taop->tao_cc = to.to_cc;
1215 					tp->t_starttime = ticks;
1216 					if (tp->t_flags & TF_NEEDFIN) {
1217 						tp->t_state = TCPS_FIN_WAIT_1;
1218 						tp->t_flags &= ~TF_NEEDFIN;
1219 					} else {
1220 						tp->t_state = TCPS_ESTABLISHED;
1221 						callout_reset(tp->tt_keep,
1222 							      tcp_keepidle,
1223 							      tcp_timer_keep,
1224 							      tp);
1225 					}
1226 					tp->t_flags |= TF_NEEDSYN;
1227 				} else
1228 					tp->t_state = TCPS_SYN_RECEIVED;
1229 			} else {
1230 				/* CC.NEW or no option => invalidate cache */
1231 				taop->tao_cc = 0;
1232 				tp->t_state = TCPS_SYN_RECEIVED;
1233 			}
1234 		}
1235 
1236 trimthenstep6:
1237 		/*
1238 		 * Advance th->th_seq to correspond to first data byte.
1239 		 * If data, trim to stay within window,
1240 		 * dropping FIN if necessary.
1241 		 */
1242 		th->th_seq++;
1243 		if (tlen > tp->rcv_wnd) {
1244 			todrop = tlen - tp->rcv_wnd;
1245 			m_adj(m, -todrop);
1246 			tlen = tp->rcv_wnd;
1247 			thflags &= ~TH_FIN;
1248 			tcpstat.tcps_rcvpackafterwin++;
1249 			tcpstat.tcps_rcvbyteafterwin += todrop;
1250 		}
1251 		tp->snd_wl1 = th->th_seq - 1;
1252 		tp->rcv_up = th->th_seq;
1253 		/*
1254 		 * Client side of transaction: already sent SYN and data.
1255 		 * If the remote host used T/TCP to validate the SYN,
1256 		 * our data will be ACK'd; if so, enter normal data segment
1257 		 * processing in the middle of step 5, ack processing.
1258 		 * Otherwise, goto step 6.
1259 		 */
1260  		if (thflags & TH_ACK)
1261 			goto process_ACK;
1262 
1263 		goto step6;
1264 
1265 	/*
1266 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1267 	 *	if segment contains a SYN and CC [not CC.NEW] option:
1268 	 *              if state == TIME_WAIT and connection duration > MSL,
1269 	 *                  drop packet and send RST;
1270 	 *
1271 	 *		if SEG.CC > CCrecv then is new SYN, and can implicitly
1272 	 *		    ack the FIN (and data) in retransmission queue.
1273 	 *                  Complete close and delete TCPCB.  Then reprocess
1274 	 *                  segment, hoping to find new TCPCB in LISTEN state;
1275 	 *
1276 	 *		else must be old SYN; drop it.
1277 	 *      else do normal processing.
1278 	 */
1279 	case TCPS_LAST_ACK:
1280 	case TCPS_CLOSING:
1281 	case TCPS_TIME_WAIT:
1282 		if ((thflags & TH_SYN) &&
1283 		    (to.to_flags & TOF_CC) && tp->cc_recv != 0) {
1284 			if (tp->t_state == TCPS_TIME_WAIT &&
1285 					(ticks - tp->t_starttime) > tcp_msl) {
1286 				rstreason = BANDLIM_UNLIMITED;
1287 				goto dropwithreset;
1288 			}
1289 			if (CC_GT(to.to_cc, tp->cc_recv)) {
1290 				tp = tcp_close(tp);
1291 				goto findpcb;
1292 			}
1293 			else
1294 				goto drop;
1295 		}
1296  		break;  /* continue normal processing */
1297 	}
1298 
1299 	/*
1300 	 * States other than LISTEN or SYN_SENT.
1301 	 * First check the RST flag and sequence number since reset segments
1302 	 * are exempt from the timestamp and connection count tests.  This
1303 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1304 	 * below which allowed reset segments in half the sequence space
1305 	 * to fall though and be processed (which gives forged reset
1306 	 * segments with a random sequence number a 50 percent chance of
1307 	 * killing a connection).
1308 	 * Then check timestamp, if present.
1309 	 * Then check the connection count, if present.
1310 	 * Then check that at least some bytes of segment are within
1311 	 * receive window.  If segment begins before rcv_nxt,
1312 	 * drop leading data (and SYN); if nothing left, just ack.
1313 	 *
1314 	 *
1315 	 * If the RST bit is set, check the sequence number to see
1316 	 * if this is a valid reset segment.
1317 	 * RFC 793 page 37:
1318 	 *   In all states except SYN-SENT, all reset (RST) segments
1319 	 *   are validated by checking their SEQ-fields.  A reset is
1320 	 *   valid if its sequence number is in the window.
1321 	 * Note: this does not take into account delayed ACKs, so
1322 	 *   we should test against last_ack_sent instead of rcv_nxt.
1323 	 *   The sequence number in the reset segment is normally an
1324 	 *   echo of our outgoing acknowlegement numbers, but some hosts
1325 	 *   send a reset with the sequence number at the rightmost edge
1326 	 *   of our receive window, and we have to handle this case.
1327 	 * If we have multiple segments in flight, the intial reset
1328 	 * segment sequence numbers will be to the left of last_ack_sent,
1329 	 * but they will eventually catch up.
1330 	 * In any case, it never made sense to trim reset segments to
1331 	 * fit the receive window since RFC 1122 says:
1332 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1333 	 *
1334 	 *    A TCP SHOULD allow a received RST segment to include data.
1335 	 *
1336 	 *    DISCUSSION
1337 	 *         It has been suggested that a RST segment could contain
1338 	 *         ASCII text that encoded and explained the cause of the
1339 	 *         RST.  No standard has yet been established for such
1340 	 *         data.
1341 	 *
1342 	 * If the reset segment passes the sequence number test examine
1343 	 * the state:
1344 	 *    SYN_RECEIVED STATE:
1345 	 *	If passive open, return to LISTEN state.
1346 	 *	If active open, inform user that connection was refused.
1347 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1348 	 *	Inform user that connection was reset, and close tcb.
1349 	 *    CLOSING, LAST_ACK STATES:
1350 	 *	Close the tcb.
1351 	 *    TIME_WAIT STATE:
1352 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1353 	 *      RFC 1337.
1354 	 */
1355 	if (thflags & TH_RST) {
1356 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1357 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1358 			switch (tp->t_state) {
1359 
1360 			case TCPS_SYN_RECEIVED:
1361 				so->so_error = ECONNREFUSED;
1362 				goto close;
1363 
1364 			case TCPS_ESTABLISHED:
1365 			case TCPS_FIN_WAIT_1:
1366 			case TCPS_FIN_WAIT_2:
1367 			case TCPS_CLOSE_WAIT:
1368 				so->so_error = ECONNRESET;
1369 			close:
1370 				tp->t_state = TCPS_CLOSED;
1371 				tcpstat.tcps_drops++;
1372 				tp = tcp_close(tp);
1373 				break;
1374 
1375 			case TCPS_CLOSING:
1376 			case TCPS_LAST_ACK:
1377 				tp = tcp_close(tp);
1378 				break;
1379 
1380 			case TCPS_TIME_WAIT:
1381 				break;
1382 			}
1383 		}
1384 		goto drop;
1385 	}
1386 
1387 	/*
1388 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1389 	 * and it's less than ts_recent, drop it.
1390 	 */
1391 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
1392 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1393 
1394 		/* Check to see if ts_recent is over 24 days old.  */
1395 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1396 			/*
1397 			 * Invalidate ts_recent.  If this segment updates
1398 			 * ts_recent, the age will be reset later and ts_recent
1399 			 * will get a valid value.  If it does not, setting
1400 			 * ts_recent to zero will at least satisfy the
1401 			 * requirement that zero be placed in the timestamp
1402 			 * echo reply when ts_recent isn't valid.  The
1403 			 * age isn't reset until we get a valid ts_recent
1404 			 * because we don't want out-of-order segments to be
1405 			 * dropped when ts_recent is old.
1406 			 */
1407 			tp->ts_recent = 0;
1408 		} else {
1409 			tcpstat.tcps_rcvduppack++;
1410 			tcpstat.tcps_rcvdupbyte += tlen;
1411 			tcpstat.tcps_pawsdrop++;
1412 			if (tlen)
1413 				goto dropafterack;
1414 			goto drop;
1415 		}
1416 	}
1417 
1418 	/*
1419 	 * T/TCP mechanism
1420 	 *   If T/TCP was negotiated and the segment doesn't have CC,
1421 	 *   or if its CC is wrong then drop the segment.
1422 	 *   RST segments do not have to comply with this.
1423 	 */
1424 	if ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) == (TF_REQ_CC|TF_RCVD_CC) &&
1425 	    ((to.to_flags & TOF_CC) == 0 || tp->cc_recv != to.to_cc))
1426  		goto dropafterack;
1427 
1428 	/*
1429 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1430 	 * this connection before trimming the data to fit the receive
1431 	 * window.  Check the sequence number versus IRS since we know
1432 	 * the sequence numbers haven't wrapped.  This is a partial fix
1433 	 * for the "LAND" DoS attack.
1434 	 */
1435 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1436 		rstreason = BANDLIM_RST_OPENPORT;
1437 		goto dropwithreset;
1438 	}
1439 
1440 	todrop = tp->rcv_nxt - th->th_seq;
1441 	if (todrop > 0) {
1442 		if (thflags & TH_SYN) {
1443 			thflags &= ~TH_SYN;
1444 			th->th_seq++;
1445 			if (th->th_urp > 1)
1446 				th->th_urp--;
1447 			else
1448 				thflags &= ~TH_URG;
1449 			todrop--;
1450 		}
1451 		/*
1452 		 * Following if statement from Stevens, vol. 2, p. 960.
1453 		 */
1454 		if (todrop > tlen
1455 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1456 			/*
1457 			 * Any valid FIN must be to the left of the window.
1458 			 * At this point the FIN must be a duplicate or out
1459 			 * of sequence; drop it.
1460 			 */
1461 			thflags &= ~TH_FIN;
1462 
1463 			/*
1464 			 * Send an ACK to resynchronize and drop any data.
1465 			 * But keep on processing for RST or ACK.
1466 			 */
1467 			tp->t_flags |= TF_ACKNOW;
1468 			todrop = tlen;
1469 			tcpstat.tcps_rcvduppack++;
1470 			tcpstat.tcps_rcvdupbyte += todrop;
1471 		} else {
1472 			tcpstat.tcps_rcvpartduppack++;
1473 			tcpstat.tcps_rcvpartdupbyte += todrop;
1474 		}
1475 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1476 		th->th_seq += todrop;
1477 		tlen -= todrop;
1478 		if (th->th_urp > todrop)
1479 			th->th_urp -= todrop;
1480 		else {
1481 			thflags &= ~TH_URG;
1482 			th->th_urp = 0;
1483 		}
1484 	}
1485 
1486 	/*
1487 	 * If new data are received on a connection after the
1488 	 * user processes are gone, then RST the other end.
1489 	 */
1490 	if ((so->so_state & SS_NOFDREF) &&
1491 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1492 		tp = tcp_close(tp);
1493 		tcpstat.tcps_rcvafterclose++;
1494 		rstreason = BANDLIM_UNLIMITED;
1495 		goto dropwithreset;
1496 	}
1497 
1498 	/*
1499 	 * If segment ends after window, drop trailing data
1500 	 * (and PUSH and FIN); if nothing left, just ACK.
1501 	 */
1502 	todrop = (th->th_seq+tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1503 	if (todrop > 0) {
1504 		tcpstat.tcps_rcvpackafterwin++;
1505 		if (todrop >= tlen) {
1506 			tcpstat.tcps_rcvbyteafterwin += tlen;
1507 			/*
1508 			 * If a new connection request is received
1509 			 * while in TIME_WAIT, drop the old connection
1510 			 * and start over if the sequence numbers
1511 			 * are above the previous ones.
1512 			 */
1513 			if (thflags & TH_SYN &&
1514 			    tp->t_state == TCPS_TIME_WAIT &&
1515 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1516 				tp = tcp_close(tp);
1517 				goto findpcb;
1518 			}
1519 			/*
1520 			 * If window is closed can only take segments at
1521 			 * window edge, and have to drop data and PUSH from
1522 			 * incoming segments.  Continue processing, but
1523 			 * remember to ack.  Otherwise, drop segment
1524 			 * and ack.
1525 			 */
1526 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1527 				tp->t_flags |= TF_ACKNOW;
1528 				tcpstat.tcps_rcvwinprobe++;
1529 			} else
1530 				goto dropafterack;
1531 		} else
1532 			tcpstat.tcps_rcvbyteafterwin += todrop;
1533 		m_adj(m, -todrop);
1534 		tlen -= todrop;
1535 		thflags &= ~(TH_PUSH|TH_FIN);
1536 	}
1537 
1538 	/*
1539 	 * If last ACK falls within this segment's sequence numbers,
1540 	 * record its timestamp.
1541 	 * NOTE that the test is modified according to the latest
1542 	 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1543 	 */
1544 	if ((to.to_flags & TOF_TS) != 0 &&
1545 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1546 		tp->ts_recent_age = ticks;
1547 		tp->ts_recent = to.to_tsval;
1548 	}
1549 
1550 	/*
1551 	 * If a SYN is in the window, then this is an
1552 	 * error and we send an RST and drop the connection.
1553 	 */
1554 	if (thflags & TH_SYN) {
1555 		tp = tcp_drop(tp, ECONNRESET);
1556 		rstreason = BANDLIM_UNLIMITED;
1557 		goto dropwithreset;
1558 	}
1559 
1560 	/*
1561 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1562 	 * flag is on (half-synchronized state), then queue data for
1563 	 * later processing; else drop segment and return.
1564 	 */
1565 	if ((thflags & TH_ACK) == 0) {
1566 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1567 		    (tp->t_flags & TF_NEEDSYN))
1568 			goto step6;
1569 		else
1570 			goto drop;
1571 	}
1572 
1573 	/*
1574 	 * Ack processing.
1575 	 */
1576 	switch (tp->t_state) {
1577 
1578 	/*
1579 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1580 	 * ESTABLISHED state and continue processing.
1581 	 * The ACK was checked above.
1582 	 */
1583 	case TCPS_SYN_RECEIVED:
1584 
1585 		tcpstat.tcps_connects++;
1586 		soisconnected(so);
1587 		/* Do window scaling? */
1588 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1589 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1590 			tp->snd_scale = tp->requested_s_scale;
1591 			tp->rcv_scale = tp->request_r_scale;
1592 		}
1593 		/*
1594 		 * Upon successful completion of 3-way handshake,
1595 		 * update cache.CC if it was undefined, pass any queued
1596 		 * data to the user, and advance state appropriately.
1597 		 */
1598 		if ((taop = tcp_gettaocache(&inp->inp_inc)) != NULL &&
1599 		    taop->tao_cc == 0)
1600 			taop->tao_cc = tp->cc_recv;
1601 
1602 		/*
1603 		 * Make transitions:
1604 		 *      SYN-RECEIVED  -> ESTABLISHED
1605 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1606 		 */
1607 		tp->t_starttime = ticks;
1608 		if (tp->t_flags & TF_NEEDFIN) {
1609 			tp->t_state = TCPS_FIN_WAIT_1;
1610 			tp->t_flags &= ~TF_NEEDFIN;
1611 		} else {
1612 			tp->t_state = TCPS_ESTABLISHED;
1613 			callout_reset(tp->tt_keep, tcp_keepidle,
1614 				      tcp_timer_keep, tp);
1615 		}
1616 		/*
1617 		 * If segment contains data or ACK, will call tcp_reass()
1618 		 * later; if not, do so now to pass queued data to user.
1619 		 */
1620 		if (tlen == 0 && (thflags & TH_FIN) == 0)
1621 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
1622 			    (struct mbuf *)0);
1623 		tp->snd_wl1 = th->th_seq - 1;
1624 		/* fall into ... */
1625 
1626 	/*
1627 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1628 	 * ACKs.  If the ack is in the range
1629 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1630 	 * then advance tp->snd_una to th->th_ack and drop
1631 	 * data from the retransmission queue.  If this ACK reflects
1632 	 * more up to date window information we update our window information.
1633 	 */
1634 	case TCPS_ESTABLISHED:
1635 	case TCPS_FIN_WAIT_1:
1636 	case TCPS_FIN_WAIT_2:
1637 	case TCPS_CLOSE_WAIT:
1638 	case TCPS_CLOSING:
1639 	case TCPS_LAST_ACK:
1640 	case TCPS_TIME_WAIT:
1641 
1642 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1643 			if (tlen == 0 && tiwin == tp->snd_wnd) {
1644 				tcpstat.tcps_rcvdupack++;
1645 				/*
1646 				 * If we have outstanding data (other than
1647 				 * a window probe), this is a completely
1648 				 * duplicate ack (ie, window info didn't
1649 				 * change), the ack is the biggest we've
1650 				 * seen and we've seen exactly our rexmt
1651 				 * threshhold of them, assume a packet
1652 				 * has been dropped and retransmit it.
1653 				 * Kludge snd_nxt & the congestion
1654 				 * window so we send only this one
1655 				 * packet.
1656 				 *
1657 				 * We know we're losing at the current
1658 				 * window size so do congestion avoidance
1659 				 * (set ssthresh to half the current window
1660 				 * and pull our congestion window back to
1661 				 * the new ssthresh).
1662 				 *
1663 				 * Dup acks mean that packets have left the
1664 				 * network (they're now cached at the receiver)
1665 				 * so bump cwnd by the amount in the receiver
1666 				 * to keep a constant cwnd packets in the
1667 				 * network.
1668 				 */
1669 				if (!callout_active(tp->tt_rexmt) ||
1670 				    th->th_ack != tp->snd_una)
1671 					tp->t_dupacks = 0;
1672 				else if (++tp->t_dupacks > tcprexmtthresh ||
1673 					 (tcp_do_newreno &&
1674 					  IN_FASTRECOVERY(tp))) {
1675 					tp->snd_cwnd += tp->t_maxseg;
1676 					(void) tcp_output(tp);
1677 					goto drop;
1678 				} else if (tp->t_dupacks == tcprexmtthresh) {
1679 					tcp_seq onxt = tp->snd_nxt;
1680 					u_int win;
1681 					if (tcp_do_newreno &&
1682 					    SEQ_LEQ(th->th_ack,
1683 					            tp->snd_recover)) {
1684 						tp->t_dupacks = 0;
1685 						break;
1686 					}
1687 					win = min(tp->snd_wnd, tp->snd_cwnd) /
1688 					    2 / tp->t_maxseg;
1689 					if (win < 2)
1690 						win = 2;
1691 					tp->snd_ssthresh = win * tp->t_maxseg;
1692 					ENTER_FASTRECOVERY(tp);
1693 					tp->snd_recover = tp->snd_max;
1694 					callout_stop(tp->tt_rexmt);
1695 					tp->t_rtttime = 0;
1696 					tp->snd_nxt = th->th_ack;
1697 					tp->snd_cwnd = tp->t_maxseg;
1698 					(void) tcp_output(tp);
1699 					KASSERT(tp->snd_limited <= 2,
1700 					    ("tp->snd_limited too big"));
1701 					tp->snd_cwnd = tp->snd_ssthresh +
1702 					    (tp->t_maxseg *
1703 					     (tp->t_dupacks - tp->snd_limited));
1704 					if (SEQ_GT(onxt, tp->snd_nxt))
1705 						tp->snd_nxt = onxt;
1706 					goto drop;
1707 				} else if (tcp_do_limitedtransmit) {
1708 					u_long oldcwnd = tp->snd_cwnd;
1709 					tcp_seq oldsndmax = tp->snd_max;
1710 					u_int sent;
1711 					KASSERT(tp->t_dupacks == 1 ||
1712 					    tp->t_dupacks == 2,
1713 					    ("dupacks not 1 or 2"));
1714 					if (tp->t_dupacks == 1) {
1715 						tp->snd_limited = 0;
1716 						tp->snd_cwnd += tp->t_maxseg;
1717 					} else {
1718 						tp->snd_cwnd +=
1719 						    tp->t_maxseg * 2;
1720 					}
1721 					(void) tcp_output(tp);
1722 					sent = tp->snd_max - oldsndmax;
1723 					if (sent > tp->t_maxseg) {
1724 						KASSERT(tp->snd_limited == 0 &&
1725 						    tp->t_dupacks == 2,
1726 						    ("sent too much"));
1727 						tp->snd_limited = 2;
1728 					} else if (sent > 0)
1729 						++tp->snd_limited;
1730 					tp->snd_cwnd = oldcwnd;
1731 					goto drop;
1732 				}
1733 			} else
1734 				tp->t_dupacks = 0;
1735 			break;
1736 		}
1737 
1738 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
1739 
1740 		/*
1741 		 * If the congestion window was inflated to account
1742 		 * for the other side's cached packets, retract it.
1743 		 */
1744 		if (tcp_do_newreno) {
1745 			if (IN_FASTRECOVERY(tp)) {
1746 				if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1747 					tcp_newreno_partial_ack(tp, th);
1748 				} else {
1749 					/*
1750 					 * Window inflation should have left us
1751 					 * with approximately snd_ssthresh
1752 					 * outstanding data.
1753 					 * But in case we would be inclined to
1754 					 * send a burst, better to do it via
1755 					 * the slow start mechanism.
1756 					 */
1757 					if (SEQ_GT(th->th_ack +
1758 							tp->snd_ssthresh,
1759 						   tp->snd_max))
1760 						tp->snd_cwnd = tp->snd_max -
1761 								th->th_ack +
1762 								tp->t_maxseg;
1763 					else
1764 						tp->snd_cwnd = tp->snd_ssthresh;
1765 				}
1766 			}
1767                 } else {
1768                         if (tp->t_dupacks >= tcprexmtthresh &&
1769                             tp->snd_cwnd > tp->snd_ssthresh)
1770 				tp->snd_cwnd = tp->snd_ssthresh;
1771                 }
1772 		tp->t_dupacks = 0;
1773 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1774 			tcpstat.tcps_rcvacktoomuch++;
1775 			goto dropafterack;
1776 		}
1777 		/*
1778 		 * If we reach this point, ACK is not a duplicate,
1779 		 *     i.e., it ACKs something we sent.
1780 		 */
1781 		if (tp->t_flags & TF_NEEDSYN) {
1782 			/*
1783 			 * T/TCP: Connection was half-synchronized, and our
1784 			 * SYN has been ACK'd (so connection is now fully
1785 			 * synchronized).  Go to non-starred state,
1786 			 * increment snd_una for ACK of SYN, and check if
1787 			 * we can do window scaling.
1788 			 */
1789 			tp->t_flags &= ~TF_NEEDSYN;
1790 			tp->snd_una++;
1791 			/* Do window scaling? */
1792 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1793 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1794 				tp->snd_scale = tp->requested_s_scale;
1795 				tp->rcv_scale = tp->request_r_scale;
1796 			}
1797 		}
1798 
1799 process_ACK:
1800 		acked = th->th_ack - tp->snd_una;
1801 		tcpstat.tcps_rcvackpack++;
1802 		tcpstat.tcps_rcvackbyte += acked;
1803 
1804 		/*
1805 		 * If we just performed our first retransmit, and the ACK
1806 		 * arrives within our recovery window, then it was a mistake
1807 		 * to do the retransmit in the first place.  Recover our
1808 		 * original cwnd and ssthresh, and proceed to transmit where
1809 		 * we left off.
1810 		 */
1811 		if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
1812 			tp->snd_cwnd = tp->snd_cwnd_prev;
1813 			tp->snd_ssthresh = tp->snd_ssthresh_prev;
1814 			tp->snd_recover = tp->snd_recover_prev;
1815 			if (tp->t_flags & TF_WASFRECOVERY)
1816 				ENTER_FASTRECOVERY(tp);
1817 			tp->snd_nxt = tp->snd_max;
1818 			tp->t_badrxtwin = 0;	/* XXX probably not required */
1819 		}
1820 
1821 		/*
1822 		 * If we have a timestamp reply, update smoothed
1823 		 * round trip time.  If no timestamp is present but
1824 		 * transmit timer is running and timed sequence
1825 		 * number was acked, update smoothed round trip time.
1826 		 * Since we now have an rtt measurement, cancel the
1827 		 * timer backoff (cf., Phil Karn's retransmit alg.).
1828 		 * Recompute the initial retransmit timer.
1829 		 *
1830 		 * Some machines (certain windows boxes) send broken
1831 		 * timestamp replies during the SYN+ACK phase, ignore
1832 		 * timestamps of 0.
1833 		 */
1834 		if ((to.to_flags & TOF_TS) != 0 &&
1835 		    to.to_tsecr) {
1836 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
1837 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
1838 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
1839 		}
1840 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
1841 
1842 		/*
1843 		 * If all outstanding data is acked, stop retransmit
1844 		 * timer and remember to restart (more output or persist).
1845 		 * If there is more data to be acked, restart retransmit
1846 		 * timer, using current (possibly backed-off) value.
1847 		 */
1848 		if (th->th_ack == tp->snd_max) {
1849 			callout_stop(tp->tt_rexmt);
1850 			needoutput = 1;
1851 		} else if (!callout_active(tp->tt_persist))
1852 			callout_reset(tp->tt_rexmt, tp->t_rxtcur,
1853 				      tcp_timer_rexmt, tp);
1854 
1855 		/*
1856 		 * If no data (only SYN) was ACK'd,
1857 		 *    skip rest of ACK processing.
1858 		 */
1859 		if (acked == 0)
1860 			goto step6;
1861 
1862 		/*
1863 		 * When new data is acked, open the congestion window.
1864 		 * If the window gives us less than ssthresh packets
1865 		 * in flight, open exponentially (maxseg per packet).
1866 		 * Otherwise open linearly: maxseg per window
1867 		 * (maxseg^2 / cwnd per packet).
1868 		 */
1869 		if (!tcp_do_newreno || !IN_FASTRECOVERY(tp)) {
1870 			register u_int cw = tp->snd_cwnd;
1871 			register u_int incr = tp->t_maxseg;
1872 			if (cw > tp->snd_ssthresh)
1873 				incr = incr * incr / cw;
1874 			tp->snd_cwnd = min(cw+incr, TCP_MAXWIN<<tp->snd_scale);
1875 		}
1876 		if (acked > so->so_snd.sb_cc) {
1877 			tp->snd_wnd -= so->so_snd.sb_cc;
1878 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1879 			ourfinisacked = 1;
1880 		} else {
1881 			sbdrop(&so->so_snd, acked);
1882 			tp->snd_wnd -= acked;
1883 			ourfinisacked = 0;
1884 		}
1885 		sowwakeup(so);
1886 		/* detect una wraparound */
1887 		if (tcp_do_newreno && !IN_FASTRECOVERY(tp) &&
1888 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
1889 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
1890 			tp->snd_recover = th->th_ack - 1;
1891 		if (tcp_do_newreno && IN_FASTRECOVERY(tp) &&
1892 		    SEQ_GEQ(th->th_ack, tp->snd_recover))
1893 			EXIT_FASTRECOVERY(tp);
1894 		tp->snd_una = th->th_ack;
1895 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1896 			tp->snd_nxt = tp->snd_una;
1897 
1898 		switch (tp->t_state) {
1899 
1900 		/*
1901 		 * In FIN_WAIT_1 STATE in addition to the processing
1902 		 * for the ESTABLISHED state if our FIN is now acknowledged
1903 		 * then enter FIN_WAIT_2.
1904 		 */
1905 		case TCPS_FIN_WAIT_1:
1906 			if (ourfinisacked) {
1907 				/*
1908 				 * If we can't receive any more
1909 				 * data, then closing user can proceed.
1910 				 * Starting the timer is contrary to the
1911 				 * specification, but if we don't get a FIN
1912 				 * we'll hang forever.
1913 				 */
1914 				if (so->so_state & SS_CANTRCVMORE) {
1915 					soisdisconnected(so);
1916 					callout_reset(tp->tt_2msl, tcp_maxidle,
1917 						      tcp_timer_2msl, tp);
1918 				}
1919 				tp->t_state = TCPS_FIN_WAIT_2;
1920 			}
1921 			break;
1922 
1923 	 	/*
1924 		 * In CLOSING STATE in addition to the processing for
1925 		 * the ESTABLISHED state if the ACK acknowledges our FIN
1926 		 * then enter the TIME-WAIT state, otherwise ignore
1927 		 * the segment.
1928 		 */
1929 		case TCPS_CLOSING:
1930 			if (ourfinisacked) {
1931 				tp->t_state = TCPS_TIME_WAIT;
1932 				tcp_canceltimers(tp);
1933 				/* Shorten TIME_WAIT [RFC-1644, p.28] */
1934 				if (tp->cc_recv != 0 &&
1935 				    (ticks - tp->t_starttime) < tcp_msl)
1936 					callout_reset(tp->tt_2msl,
1937 						      tp->t_rxtcur *
1938 						      TCPTV_TWTRUNC,
1939 						      tcp_timer_2msl, tp);
1940 				else
1941 					callout_reset(tp->tt_2msl, 2 * tcp_msl,
1942 						      tcp_timer_2msl, tp);
1943 				soisdisconnected(so);
1944 			}
1945 			break;
1946 
1947 		/*
1948 		 * In LAST_ACK, we may still be waiting for data to drain
1949 		 * and/or to be acked, as well as for the ack of our FIN.
1950 		 * If our FIN is now acknowledged, delete the TCB,
1951 		 * enter the closed state and return.
1952 		 */
1953 		case TCPS_LAST_ACK:
1954 			if (ourfinisacked) {
1955 				tp = tcp_close(tp);
1956 				goto drop;
1957 			}
1958 			break;
1959 
1960 		/*
1961 		 * In TIME_WAIT state the only thing that should arrive
1962 		 * is a retransmission of the remote FIN.  Acknowledge
1963 		 * it and restart the finack timer.
1964 		 */
1965 		case TCPS_TIME_WAIT:
1966 			callout_reset(tp->tt_2msl, 2 * tcp_msl,
1967 				      tcp_timer_2msl, tp);
1968 			goto dropafterack;
1969 		}
1970 	}
1971 
1972 step6:
1973 	/*
1974 	 * Update window information.
1975 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1976 	 */
1977 	if ((thflags & TH_ACK) &&
1978 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
1979 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
1980 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
1981 		/* keep track of pure window updates */
1982 		if (tlen == 0 &&
1983 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
1984 			tcpstat.tcps_rcvwinupd++;
1985 		tp->snd_wnd = tiwin;
1986 		tp->snd_wl1 = th->th_seq;
1987 		tp->snd_wl2 = th->th_ack;
1988 		if (tp->snd_wnd > tp->max_sndwnd)
1989 			tp->max_sndwnd = tp->snd_wnd;
1990 		needoutput = 1;
1991 	}
1992 
1993 	/*
1994 	 * Process segments with URG.
1995 	 */
1996 	if ((thflags & TH_URG) && th->th_urp &&
1997 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1998 		/*
1999 		 * This is a kludge, but if we receive and accept
2000 		 * random urgent pointers, we'll crash in
2001 		 * soreceive.  It's hard to imagine someone
2002 		 * actually wanting to send this much urgent data.
2003 		 */
2004 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2005 			th->th_urp = 0;			/* XXX */
2006 			thflags &= ~TH_URG;		/* XXX */
2007 			goto dodata;			/* XXX */
2008 		}
2009 		/*
2010 		 * If this segment advances the known urgent pointer,
2011 		 * then mark the data stream.  This should not happen
2012 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2013 		 * a FIN has been received from the remote side.
2014 		 * In these states we ignore the URG.
2015 		 *
2016 		 * According to RFC961 (Assigned Protocols),
2017 		 * the urgent pointer points to the last octet
2018 		 * of urgent data.  We continue, however,
2019 		 * to consider it to indicate the first octet
2020 		 * of data past the urgent section as the original
2021 		 * spec states (in one of two places).
2022 		 */
2023 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2024 			tp->rcv_up = th->th_seq + th->th_urp;
2025 			so->so_oobmark = so->so_rcv.sb_cc +
2026 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2027 			if (so->so_oobmark == 0)
2028 				so->so_state |= SS_RCVATMARK;
2029 			sohasoutofband(so);
2030 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2031 		}
2032 		/*
2033 		 * Remove out of band data so doesn't get presented to user.
2034 		 * This can happen independent of advancing the URG pointer,
2035 		 * but if two URG's are pending at once, some out-of-band
2036 		 * data may creep in... ick.
2037 		 */
2038 		if (th->th_urp <= (u_long)tlen
2039 #ifdef SO_OOBINLINE
2040 		     && (so->so_options & SO_OOBINLINE) == 0
2041 #endif
2042 		     )
2043 			tcp_pulloutofband(so, th, m,
2044 				drop_hdrlen);	/* hdr drop is delayed */
2045 	} else {
2046 		/*
2047 		 * If no out of band data is expected,
2048 		 * pull receive urgent pointer along
2049 		 * with the receive window.
2050 		 */
2051 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2052 			tp->rcv_up = tp->rcv_nxt;
2053 	}
2054 dodata:							/* XXX */
2055 
2056 	/*
2057 	 * Process the segment text, merging it into the TCP sequencing queue,
2058 	 * and arranging for acknowledgment of receipt if necessary.
2059 	 * This process logically involves adjusting tp->rcv_wnd as data
2060 	 * is presented to the user (this happens in tcp_usrreq.c,
2061 	 * case PRU_RCVD).  If a FIN has already been received on this
2062 	 * connection then we just ignore the text.
2063 	 */
2064 	if ((tlen || (thflags & TH_FIN)) &&
2065 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2066 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2067 		/*
2068 		 * Insert segment which includes th into TCP reassembly queue
2069 		 * with control block tp.  Set thflags to whether reassembly now
2070 		 * includes a segment with FIN.  This handles the common case
2071 		 * inline (segment is the next to be received on an established
2072 		 * connection, and the queue is empty), avoiding linkage into
2073 		 * and removal from the queue and repetition of various
2074 		 * conversions.
2075 		 * Set DELACK for segments received in order, but ack
2076 		 * immediately when segments are out of order (so
2077 		 * fast retransmit can work).
2078 		 */
2079 		if (th->th_seq == tp->rcv_nxt &&
2080 		    LIST_EMPTY(&tp->t_segq) &&
2081 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2082 			if (DELAY_ACK(tp))
2083 				callout_reset(tp->tt_delack, tcp_delacktime,
2084 					      tcp_timer_delack, tp);
2085 			else
2086 				tp->t_flags |= TF_ACKNOW;
2087 			tp->rcv_nxt += tlen;
2088 			thflags = th->th_flags & TH_FIN;
2089 			tcpstat.tcps_rcvpack++;
2090 			tcpstat.tcps_rcvbyte += tlen;
2091 			ND6_HINT(tp);
2092 			if (so->so_state & SS_CANTRCVMORE)
2093 				m_freem(m);
2094 			else
2095 				sbappend(&so->so_rcv, m);
2096 			sorwakeup(so);
2097 		} else {
2098 			thflags = tcp_reass(tp, th, &tlen, m);
2099 			tp->t_flags |= TF_ACKNOW;
2100 		}
2101 
2102 		/*
2103 		 * Note the amount of data that peer has sent into
2104 		 * our window, in order to estimate the sender's
2105 		 * buffer size.
2106 		 */
2107 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2108 	} else {
2109 		m_freem(m);
2110 		thflags &= ~TH_FIN;
2111 	}
2112 
2113 	/*
2114 	 * If FIN is received ACK the FIN and let the user know
2115 	 * that the connection is closing.
2116 	 */
2117 	if (thflags & TH_FIN) {
2118 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2119 			socantrcvmore(so);
2120 			/*
2121 			 * If connection is half-synchronized
2122 			 * (ie NEEDSYN flag on) then delay ACK,
2123 			 * so it may be piggybacked when SYN is sent.
2124 			 * Otherwise, since we received a FIN then no
2125 			 * more input can be expected, send ACK now.
2126 			 */
2127 			if (DELAY_ACK(tp) && (tp->t_flags & TF_NEEDSYN))
2128                                 callout_reset(tp->tt_delack, tcp_delacktime,
2129                                     tcp_timer_delack, tp);
2130 			else
2131 				tp->t_flags |= TF_ACKNOW;
2132 			tp->rcv_nxt++;
2133 		}
2134 		switch (tp->t_state) {
2135 
2136 	 	/*
2137 		 * In SYN_RECEIVED and ESTABLISHED STATES
2138 		 * enter the CLOSE_WAIT state.
2139 		 */
2140 		case TCPS_SYN_RECEIVED:
2141 			tp->t_starttime = ticks;
2142 			/*FALLTHROUGH*/
2143 		case TCPS_ESTABLISHED:
2144 			tp->t_state = TCPS_CLOSE_WAIT;
2145 			break;
2146 
2147 	 	/*
2148 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2149 		 * enter the CLOSING state.
2150 		 */
2151 		case TCPS_FIN_WAIT_1:
2152 			tp->t_state = TCPS_CLOSING;
2153 			break;
2154 
2155 	 	/*
2156 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2157 		 * starting the time-wait timer, turning off the other
2158 		 * standard timers.
2159 		 */
2160 		case TCPS_FIN_WAIT_2:
2161 			tp->t_state = TCPS_TIME_WAIT;
2162 			tcp_canceltimers(tp);
2163 			/* Shorten TIME_WAIT [RFC-1644, p.28] */
2164 			if (tp->cc_recv != 0 &&
2165 			    (ticks - tp->t_starttime) < tcp_msl) {
2166 				callout_reset(tp->tt_2msl,
2167 					      tp->t_rxtcur * TCPTV_TWTRUNC,
2168 					      tcp_timer_2msl, tp);
2169 				/* For transaction client, force ACK now. */
2170 				tp->t_flags |= TF_ACKNOW;
2171 			}
2172 			else
2173 				callout_reset(tp->tt_2msl, 2 * tcp_msl,
2174 					      tcp_timer_2msl, tp);
2175 			soisdisconnected(so);
2176 			break;
2177 
2178 		/*
2179 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2180 		 */
2181 		case TCPS_TIME_WAIT:
2182 			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2183 				      tcp_timer_2msl, tp);
2184 			break;
2185 		}
2186 	}
2187 #ifdef TCPDEBUG
2188 	if (so->so_options & SO_DEBUG)
2189 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2190 			  &tcp_savetcp, 0);
2191 #endif
2192 
2193 	/*
2194 	 * Return any desired output.
2195 	 */
2196 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2197 		(void) tcp_output(tp);
2198 	return;
2199 
2200 dropafterack:
2201 	/*
2202 	 * Generate an ACK dropping incoming segment if it occupies
2203 	 * sequence space, where the ACK reflects our state.
2204 	 *
2205 	 * We can now skip the test for the RST flag since all
2206 	 * paths to this code happen after packets containing
2207 	 * RST have been dropped.
2208 	 *
2209 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2210 	 * segment we received passes the SYN-RECEIVED ACK test.
2211 	 * If it fails send a RST.  This breaks the loop in the
2212 	 * "LAND" DoS attack, and also prevents an ACK storm
2213 	 * between two listening ports that have been sent forged
2214 	 * SYN segments, each with the source address of the other.
2215 	 */
2216 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2217 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2218 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2219 		rstreason = BANDLIM_RST_OPENPORT;
2220 		goto dropwithreset;
2221 	}
2222 #ifdef TCPDEBUG
2223 	if (so->so_options & SO_DEBUG)
2224 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2225 			  &tcp_savetcp, 0);
2226 #endif
2227 	m_freem(m);
2228 	tp->t_flags |= TF_ACKNOW;
2229 	(void) tcp_output(tp);
2230 	return;
2231 
2232 dropwithreset:
2233 	/*
2234 	 * Generate a RST, dropping incoming segment.
2235 	 * Make ACK acceptable to originator of segment.
2236 	 * Don't bother to respond if destination was broadcast/multicast.
2237 	 */
2238 	if ((thflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2239 		goto drop;
2240 	if (isipv6) {
2241 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2242 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2243 			goto drop;
2244 	} else {
2245 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2246 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2247 	    	    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2248 	    	    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2249 			goto drop;
2250 	}
2251 	/* IPv6 anycast check is done at tcp6_input() */
2252 
2253 	/*
2254 	 * Perform bandwidth limiting.
2255 	 */
2256 #ifdef ICMP_BANDLIM
2257 	if (badport_bandlim(rstreason) < 0)
2258 		goto drop;
2259 #endif
2260 
2261 #ifdef TCPDEBUG
2262 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2263 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2264 			  &tcp_savetcp, 0);
2265 #endif
2266 	if (thflags & TH_ACK)
2267 		/* mtod() below is safe as long as hdr dropping is delayed */
2268 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2269 			    TH_RST);
2270 	else {
2271 		if (thflags & TH_SYN)
2272 			tlen++;
2273 		/* mtod() below is safe as long as hdr dropping is delayed */
2274 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
2275 			    (tcp_seq)0, TH_RST|TH_ACK);
2276 	}
2277 	return;
2278 
2279 drop:
2280 	/*
2281 	 * Drop space held by incoming segment and return.
2282 	 */
2283 #ifdef TCPDEBUG
2284 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2285 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2286 			  &tcp_savetcp, 0);
2287 #endif
2288 	m_freem(m);
2289 	return;
2290 }
2291 
2292 /*
2293  * Parse TCP options and place in tcpopt.
2294  */
2295 static void
2296 tcp_dooptions(to, cp, cnt, is_syn)
2297 	struct tcpopt *to;
2298 	u_char *cp;
2299 	int cnt;
2300 {
2301 	int opt, optlen;
2302 
2303 	to->to_flags = 0;
2304 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2305 		opt = cp[0];
2306 		if (opt == TCPOPT_EOL)
2307 			break;
2308 		if (opt == TCPOPT_NOP)
2309 			optlen = 1;
2310 		else {
2311 			if (cnt < 2)
2312 				break;
2313 			optlen = cp[1];
2314 			if (optlen < 2 || optlen > cnt)
2315 				break;
2316 		}
2317 		switch (opt) {
2318 		case TCPOPT_MAXSEG:
2319 			if (optlen != TCPOLEN_MAXSEG)
2320 				continue;
2321 			if (!is_syn)
2322 				continue;
2323 			to->to_flags |= TOF_MSS;
2324 			bcopy((char *)cp + 2,
2325 			    (char *)&to->to_mss, sizeof(to->to_mss));
2326 			to->to_mss = ntohs(to->to_mss);
2327 			break;
2328 		case TCPOPT_WINDOW:
2329 			if (optlen != TCPOLEN_WINDOW)
2330 				continue;
2331 			if (! is_syn)
2332 				continue;
2333 			to->to_flags |= TOF_SCALE;
2334 			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2335 			break;
2336 		case TCPOPT_TIMESTAMP:
2337 			if (optlen != TCPOLEN_TIMESTAMP)
2338 				continue;
2339 			to->to_flags |= TOF_TS;
2340 			bcopy((char *)cp + 2,
2341 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
2342 			to->to_tsval = ntohl(to->to_tsval);
2343 			bcopy((char *)cp + 6,
2344 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
2345 			to->to_tsecr = ntohl(to->to_tsecr);
2346 			break;
2347 		case TCPOPT_CC:
2348 			if (optlen != TCPOLEN_CC)
2349 				continue;
2350 			to->to_flags |= TOF_CC;
2351 			bcopy((char *)cp + 2,
2352 			    (char *)&to->to_cc, sizeof(to->to_cc));
2353 			to->to_cc = ntohl(to->to_cc);
2354 			break;
2355 		case TCPOPT_CCNEW:
2356 			if (optlen != TCPOLEN_CC)
2357 				continue;
2358 			if (!is_syn)
2359 				continue;
2360 			to->to_flags |= TOF_CCNEW;
2361 			bcopy((char *)cp + 2,
2362 			    (char *)&to->to_cc, sizeof(to->to_cc));
2363 			to->to_cc = ntohl(to->to_cc);
2364 			break;
2365 		case TCPOPT_CCECHO:
2366 			if (optlen != TCPOLEN_CC)
2367 				continue;
2368 			if (!is_syn)
2369 				continue;
2370 			to->to_flags |= TOF_CCECHO;
2371 			bcopy((char *)cp + 2,
2372 			    (char *)&to->to_ccecho, sizeof(to->to_ccecho));
2373 			to->to_ccecho = ntohl(to->to_ccecho);
2374 			break;
2375 		default:
2376 			continue;
2377 		}
2378 	}
2379 }
2380 
2381 /*
2382  * Pull out of band byte out of a segment so
2383  * it doesn't appear in the user's data queue.
2384  * It is still reflected in the segment length for
2385  * sequencing purposes.
2386  */
2387 static void
2388 tcp_pulloutofband(so, th, m, off)
2389 	struct socket *so;
2390 	struct tcphdr *th;
2391 	register struct mbuf *m;
2392 	int off;		/* delayed to be droped hdrlen */
2393 {
2394 	int cnt = off + th->th_urp - 1;
2395 
2396 	while (cnt >= 0) {
2397 		if (m->m_len > cnt) {
2398 			char *cp = mtod(m, caddr_t) + cnt;
2399 			struct tcpcb *tp = sototcpcb(so);
2400 
2401 			tp->t_iobc = *cp;
2402 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2403 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2404 			m->m_len--;
2405 			if (m->m_flags & M_PKTHDR)
2406 				m->m_pkthdr.len--;
2407 			return;
2408 		}
2409 		cnt -= m->m_len;
2410 		m = m->m_next;
2411 		if (m == 0)
2412 			break;
2413 	}
2414 	panic("tcp_pulloutofband");
2415 }
2416 
2417 /*
2418  * Collect new round-trip time estimate
2419  * and update averages and current timeout.
2420  */
2421 static void
2422 tcp_xmit_timer(tp, rtt)
2423 	register struct tcpcb *tp;
2424 	int rtt;
2425 {
2426 	register int delta;
2427 
2428 	tcpstat.tcps_rttupdated++;
2429 	tp->t_rttupdated++;
2430 	if (tp->t_srtt != 0) {
2431 		/*
2432 		 * srtt is stored as fixed point with 5 bits after the
2433 		 * binary point (i.e., scaled by 8).  The following magic
2434 		 * is equivalent to the smoothing algorithm in rfc793 with
2435 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2436 		 * point).  Adjust rtt to origin 0.
2437 		 */
2438 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2439 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2440 
2441 		if ((tp->t_srtt += delta) <= 0)
2442 			tp->t_srtt = 1;
2443 
2444 		/*
2445 		 * We accumulate a smoothed rtt variance (actually, a
2446 		 * smoothed mean difference), then set the retransmit
2447 		 * timer to smoothed rtt + 4 times the smoothed variance.
2448 		 * rttvar is stored as fixed point with 4 bits after the
2449 		 * binary point (scaled by 16).  The following is
2450 		 * equivalent to rfc793 smoothing with an alpha of .75
2451 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2452 		 * rfc793's wired-in beta.
2453 		 */
2454 		if (delta < 0)
2455 			delta = -delta;
2456 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2457 		if ((tp->t_rttvar += delta) <= 0)
2458 			tp->t_rttvar = 1;
2459 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2460 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2461 	} else {
2462 		/*
2463 		 * No rtt measurement yet - use the unsmoothed rtt.
2464 		 * Set the variance to half the rtt (so our first
2465 		 * retransmit happens at 3*rtt).
2466 		 */
2467 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2468 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2469 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2470 	}
2471 	tp->t_rtttime = 0;
2472 	tp->t_rxtshift = 0;
2473 
2474 	/*
2475 	 * the retransmit should happen at rtt + 4 * rttvar.
2476 	 * Because of the way we do the smoothing, srtt and rttvar
2477 	 * will each average +1/2 tick of bias.  When we compute
2478 	 * the retransmit timer, we want 1/2 tick of rounding and
2479 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2480 	 * firing of the timer.  The bias will give us exactly the
2481 	 * 1.5 tick we need.  But, because the bias is
2482 	 * statistical, we have to test that we don't drop below
2483 	 * the minimum feasible timer (which is 2 ticks).
2484 	 */
2485 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2486 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2487 
2488 	/*
2489 	 * We received an ack for a packet that wasn't retransmitted;
2490 	 * it is probably safe to discard any error indications we've
2491 	 * received recently.  This isn't quite right, but close enough
2492 	 * for now (a route might have failed after we sent a segment,
2493 	 * and the return path might not be symmetrical).
2494 	 */
2495 	tp->t_softerror = 0;
2496 }
2497 
2498 /*
2499  * Determine a reasonable value for maxseg size.
2500  * If the route is known, check route for mtu.
2501  * If none, use an mss that can be handled on the outgoing
2502  * interface without forcing IP to fragment; if bigger than
2503  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2504  * to utilize large mbufs.  If no route is found, route has no mtu,
2505  * or the destination isn't local, use a default, hopefully conservative
2506  * size (usually 512 or the default IP max size, but no more than the mtu
2507  * of the interface), as we can't discover anything about intervening
2508  * gateways or networks.  We also initialize the congestion/slow start
2509  * window to be a single segment if the destination isn't local.
2510  * While looking at the routing entry, we also initialize other path-dependent
2511  * parameters from pre-set or cached values in the routing entry.
2512  *
2513  * Also take into account the space needed for options that we
2514  * send regularly.  Make maxseg shorter by that amount to assure
2515  * that we can send maxseg amount of data even when the options
2516  * are present.  Store the upper limit of the length of options plus
2517  * data in maxopd.
2518  *
2519  * NOTE that this routine is only called when we process an incoming
2520  * segment, for outgoing segments only tcp_mssopt is called.
2521  *
2522  * In case of T/TCP, we call this routine during implicit connection
2523  * setup as well (offer = -1), to initialize maxseg from the cached
2524  * MSS of our peer.
2525  */
2526 void
2527 tcp_mss(tp, offer)
2528 	struct tcpcb *tp;
2529 	int offer;
2530 {
2531 	register struct rtentry *rt;
2532 	struct ifnet *ifp;
2533 	register int rtt, mss;
2534 	u_long bufsize;
2535 	struct inpcb *inp = tp->t_inpcb;
2536 	struct socket *so;
2537 	struct rmxp_tao *taop;
2538 	int origoffer = offer;
2539 #ifdef INET6
2540 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
2541 	size_t min_protoh = isipv6 ?
2542 			    sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
2543 			    sizeof(struct tcpiphdr);
2544 #else
2545 	const int isipv6 = 0;
2546 	const size_t min_protoh = sizeof(struct tcpiphdr);
2547 #endif
2548 
2549 	if (isipv6)
2550 		rt = tcp_rtlookup6(&inp->inp_inc);
2551 	else
2552 		rt = tcp_rtlookup(&inp->inp_inc);
2553 	if (rt == NULL) {
2554 		tp->t_maxopd = tp->t_maxseg =
2555 				isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
2556 		return;
2557 	}
2558 	ifp = rt->rt_ifp;
2559 	so = inp->inp_socket;
2560 
2561 	taop = rmx_taop(rt->rt_rmx);
2562 	/*
2563 	 * Offer == -1 means that we didn't receive SYN yet,
2564 	 * use cached value in that case;
2565 	 */
2566 	if (offer == -1)
2567 		offer = taop->tao_mssopt;
2568 	/*
2569 	 * Offer == 0 means that there was no MSS on the SYN segment,
2570 	 * in this case we use tcp_mssdflt.
2571 	 */
2572 	if (offer == 0)
2573 		offer = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
2574 	else
2575 		/*
2576 		 * Sanity check: make sure that maxopd will be large
2577 		 * enough to allow some data on segments even is the
2578 		 * all the option space is used (40bytes).  Otherwise
2579 		 * funny things may happen in tcp_output.
2580 		 */
2581 		offer = max(offer, 64);
2582 	taop->tao_mssopt = offer;
2583 
2584 	/*
2585 	 * While we're here, check if there's an initial rtt
2586 	 * or rttvar.  Convert from the route-table units
2587 	 * to scaled multiples of the slow timeout timer.
2588 	 */
2589 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2590 		/*
2591 		 * XXX the lock bit for RTT indicates that the value
2592 		 * is also a minimum value; this is subject to time.
2593 		 */
2594 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2595 			tp->t_rttmin = rtt / (RTM_RTTUNIT / hz);
2596 		tp->t_srtt = rtt / (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
2597 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
2598 		tcpstat.tcps_usedrtt++;
2599 		if (rt->rt_rmx.rmx_rttvar) {
2600 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2601 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
2602 			tcpstat.tcps_usedrttvar++;
2603 		} else {
2604 			/* default variation is +- 1 rtt */
2605 			tp->t_rttvar =
2606 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2607 		}
2608 		TCPT_RANGESET(tp->t_rxtcur,
2609 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2610 			      tp->t_rttmin, TCPTV_REXMTMAX);
2611 	}
2612 	/*
2613 	 * if there's an mtu associated with the route, use it
2614 	 * else, use the link mtu.
2615 	 */
2616 	if (rt->rt_rmx.rmx_mtu)
2617 		mss = rt->rt_rmx.rmx_mtu - min_protoh;
2618 	else {
2619 		if (isipv6) {
2620 			mss = nd_ifinfo[rt->rt_ifp->if_index].linkmtu -
2621 				min_protoh;
2622 			if (!in6_localaddr(&inp->in6p_faddr))
2623 				mss = min(mss, tcp_v6mssdflt);
2624 		} else {
2625 			mss = ifp->if_mtu - min_protoh;
2626 			if (!in_localaddr(inp->inp_faddr))
2627 				mss = min(mss, tcp_mssdflt);
2628 		}
2629 	}
2630 	mss = min(mss, offer);
2631 	/*
2632 	 * maxopd stores the maximum length of data AND options
2633 	 * in a segment; maxseg is the amount of data in a normal
2634 	 * segment.  We need to store this value (maxopd) apart
2635 	 * from maxseg, because now every segment carries options
2636 	 * and thus we normally have somewhat less data in segments.
2637 	 */
2638 	tp->t_maxopd = mss;
2639 
2640 	/*
2641 	 * In case of T/TCP, origoffer==-1 indicates, that no segments
2642 	 * were received yet.  In this case we just guess, otherwise
2643 	 * we do the same as before T/TCP.
2644 	 */
2645  	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2646 	    (origoffer == -1 ||
2647 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
2648 		mss -= TCPOLEN_TSTAMP_APPA;
2649  	if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
2650 	    (origoffer == -1 ||
2651 	     (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC))
2652 		mss -= TCPOLEN_CC_APPA;
2653 
2654 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
2655 		if (mss > MCLBYTES)
2656 			mss &= ~(MCLBYTES-1);
2657 #else
2658 		if (mss > MCLBYTES)
2659 			mss = mss / MCLBYTES * MCLBYTES;
2660 #endif
2661 	/*
2662 	 * If there's a pipesize, change the socket buffer
2663 	 * to that size.  Make the socket buffers an integral
2664 	 * number of mss units; if the mss is larger than
2665 	 * the socket buffer, decrease the mss.
2666 	 */
2667 #ifdef RTV_SPIPE
2668 	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
2669 #endif
2670 		bufsize = so->so_snd.sb_hiwat;
2671 	if (bufsize < mss)
2672 		mss = bufsize;
2673 	else {
2674 		bufsize = roundup(bufsize, mss);
2675 		if (bufsize > sb_max)
2676 			bufsize = sb_max;
2677 		if (bufsize > so->so_snd.sb_hiwat)
2678 			(void)sbreserve(&so->so_snd, bufsize, so, NULL);
2679 	}
2680 	tp->t_maxseg = mss;
2681 
2682 #ifdef RTV_RPIPE
2683 	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
2684 #endif
2685 		bufsize = so->so_rcv.sb_hiwat;
2686 	if (bufsize > mss) {
2687 		bufsize = roundup(bufsize, mss);
2688 		if (bufsize > sb_max)
2689 			bufsize = sb_max;
2690 		if (bufsize > so->so_rcv.sb_hiwat)
2691 			(void)sbreserve(&so->so_rcv, bufsize, so, NULL);
2692 	}
2693 
2694 	/*
2695 	 * Set the slow-start flight size depending on whether this
2696 	 * is a local network or not.
2697 	 */
2698 	if ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
2699 	    (!isipv6 && in_localaddr(inp->inp_faddr)))
2700 		tp->snd_cwnd = mss * ss_fltsz_local;
2701 	else
2702 		tp->snd_cwnd = mss * ss_fltsz;
2703 
2704 	if (rt->rt_rmx.rmx_ssthresh) {
2705 		/*
2706 		 * There's some sort of gateway or interface
2707 		 * buffer limit on the path.  Use this to set
2708 		 * the slow start threshhold, but set the
2709 		 * threshold to no less than 2*mss.
2710 		 */
2711 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
2712 		tcpstat.tcps_usedssthresh++;
2713 	}
2714 }
2715 
2716 /*
2717  * Determine the MSS option to send on an outgoing SYN.
2718  */
2719 int
2720 tcp_mssopt(tp)
2721 	struct tcpcb *tp;
2722 {
2723 	struct rtentry *rt;
2724 #ifdef INET6
2725 	int isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
2726 	int min_protoh = isipv6 ?
2727 			     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
2728 			     sizeof(struct tcpiphdr);
2729 #else
2730 	const int isipv6 = 0;
2731 	const size_t min_protoh = sizeof(struct tcpiphdr);
2732 #endif
2733 
2734 	if (isipv6)
2735 		rt = tcp_rtlookup6(&tp->t_inpcb->inp_inc);
2736 	else
2737 		rt = tcp_rtlookup(&tp->t_inpcb->inp_inc);
2738 	if (rt == NULL)
2739 		return (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2740 
2741 	return (rt->rt_ifp->if_mtu - min_protoh);
2742 }
2743 
2744 
2745 /*
2746  * When a partial ack arrives, force the retransmission of the
2747  * next unacknowledged segment.  Do not clear tp->t_dupacks.
2748  * By setting snd_nxt to ti_ack, this forces retransmission timer to
2749  * be started again.
2750  */
2751 static void
2752 tcp_newreno_partial_ack(tp, th)
2753 	struct tcpcb *tp;
2754 	struct tcphdr *th;
2755 {
2756 	tcp_seq onxt = tp->snd_nxt;
2757 	u_long  ocwnd = tp->snd_cwnd;
2758 
2759 	callout_stop(tp->tt_rexmt);
2760 	tp->t_rtttime = 0;
2761 	tp->snd_nxt = th->th_ack;
2762 	/*
2763 	 * Set snd_cwnd to one segment beyond acknowledged offset
2764 	 * (tp->snd_una has not yet been updated when this function is called.)
2765 	 */
2766 	tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
2767 	tp->t_flags |= TF_ACKNOW;
2768 	(void) tcp_output(tp);
2769 	tp->snd_cwnd = ocwnd;
2770 	if (SEQ_GT(onxt, tp->snd_nxt))
2771 		tp->snd_nxt = onxt;
2772 	/*
2773 	 * Partial window deflation.  Relies on fact that tp->snd_una
2774 	 * not updated yet.
2775 	 */
2776 	tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_maxseg);
2777 }
2778