xref: /dragonfly/sys/netinet/tcp_input.c (revision ce0e08e2)
1 /*
2  * Copyright (c) 2002, 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2002, 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
67  * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.38 2003/05/21 04:46:41 cjc Exp $
68  * $DragonFly: src/sys/netinet/tcp_input.c,v 1.68 2008/08/22 09:14:17 sephe Exp $
69  */
70 
71 #include "opt_ipfw.h"		/* for ipfw_fwd		*/
72 #include "opt_inet6.h"
73 #include "opt_ipsec.h"
74 #include "opt_tcpdebug.h"
75 #include "opt_tcp_input.h"
76 
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 #include <sys/malloc.h>
82 #include <sys/mbuf.h>
83 #include <sys/proc.h>		/* for proc0 declaration */
84 #include <sys/protosw.h>
85 #include <sys/socket.h>
86 #include <sys/socketvar.h>
87 #include <sys/syslog.h>
88 #include <sys/in_cksum.h>
89 
90 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
91 #include <machine/stdarg.h>
92 
93 #include <net/if.h>
94 #include <net/route.h>
95 
96 #include <netinet/in.h>
97 #include <netinet/in_systm.h>
98 #include <netinet/ip.h>
99 #include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM */
100 #include <netinet/in_var.h>
101 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
102 #include <netinet/in_pcb.h>
103 #include <netinet/ip_var.h>
104 #include <netinet/ip6.h>
105 #include <netinet/icmp6.h>
106 #include <netinet6/nd6.h>
107 #include <netinet6/ip6_var.h>
108 #include <netinet6/in6_pcb.h>
109 #include <netinet/tcp.h>
110 #include <netinet/tcp_fsm.h>
111 #include <netinet/tcp_seq.h>
112 #include <netinet/tcp_timer.h>
113 #include <netinet/tcp_timer2.h>
114 #include <netinet/tcp_var.h>
115 #include <netinet6/tcp6_var.h>
116 #include <netinet/tcpip.h>
117 
118 #ifdef TCPDEBUG
119 #include <netinet/tcp_debug.h>
120 
121 u_char tcp_saveipgen[40];    /* the size must be of max ip header, now IPv6 */
122 struct tcphdr tcp_savetcp;
123 #endif
124 
125 #ifdef FAST_IPSEC
126 #include <netproto/ipsec/ipsec.h>
127 #include <netproto/ipsec/ipsec6.h>
128 #endif
129 
130 #ifdef IPSEC
131 #include <netinet6/ipsec.h>
132 #include <netinet6/ipsec6.h>
133 #include <netproto/key/key.h>
134 #endif
135 
136 MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
137 
138 tcp_cc	tcp_ccgen;
139 static int log_in_vain = 0;
140 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
141     &log_in_vain, 0, "Log all incoming TCP connections");
142 
143 static int blackhole = 0;
144 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
145     &blackhole, 0, "Do not send RST when dropping refused connections");
146 
147 int tcp_delack_enabled = 1;
148 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
149     &tcp_delack_enabled, 0,
150     "Delay ACK to try and piggyback it onto a data packet");
151 
152 #ifdef TCP_DROP_SYNFIN
153 static int drop_synfin = 0;
154 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
155     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
156 #endif
157 
158 static int tcp_do_limitedtransmit = 1;
159 SYSCTL_INT(_net_inet_tcp, OID_AUTO, limitedtransmit, CTLFLAG_RW,
160     &tcp_do_limitedtransmit, 0, "Enable RFC 3042 (Limited Transmit)");
161 
162 static int tcp_do_early_retransmit = 1;
163 SYSCTL_INT(_net_inet_tcp, OID_AUTO, earlyretransmit, CTLFLAG_RW,
164     &tcp_do_early_retransmit, 0, "Early retransmit");
165 
166 int tcp_aggregate_acks = 1;
167 SYSCTL_INT(_net_inet_tcp, OID_AUTO, aggregate_acks, CTLFLAG_RW,
168     &tcp_aggregate_acks, 0, "Aggregate built-up acks into one ack");
169 
170 int tcp_do_rfc3390 = 1;
171 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
172     &tcp_do_rfc3390, 0,
173     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
174 
175 static int tcp_do_eifel_detect = 1;
176 SYSCTL_INT(_net_inet_tcp, OID_AUTO, eifel, CTLFLAG_RW,
177     &tcp_do_eifel_detect, 0, "Eifel detection algorithm (RFC 3522)");
178 
179 static int tcp_do_abc = 1;
180 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc, CTLFLAG_RW,
181     &tcp_do_abc, 0,
182     "TCP Appropriate Byte Counting (RFC 3465)");
183 
184 /*
185  * Define as tunable for easy testing with SACK on and off.
186  * Warning:  do not change setting in the middle of an existing active TCP flow,
187  *   else strange things might happen to that flow.
188  */
189 int tcp_do_sack = 1;
190 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW,
191     &tcp_do_sack, 0, "Enable SACK Algorithms");
192 
193 int tcp_do_smartsack = 1;
194 SYSCTL_INT(_net_inet_tcp, OID_AUTO, smartsack, CTLFLAG_RW,
195     &tcp_do_smartsack, 0, "Enable Smart SACK Algorithms");
196 
197 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
198     "TCP Segment Reassembly Queue");
199 
200 int tcp_reass_maxseg = 0;
201 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RD,
202     &tcp_reass_maxseg, 0,
203     "Global maximum number of TCP Segments in Reassembly Queue");
204 
205 int tcp_reass_qsize = 0;
206 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
207     &tcp_reass_qsize, 0,
208     "Global number of TCP Segments currently in Reassembly Queue");
209 
210 static int tcp_reass_overflows = 0;
211 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
212     &tcp_reass_overflows, 0,
213     "Global number of TCP Segment Reassembly Queue Overflows");
214 
215 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, boolean_t);
216 static void	 tcp_pulloutofband(struct socket *,
217 		     struct tcphdr *, struct mbuf *, int);
218 static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
219 		     struct mbuf *);
220 static void	 tcp_xmit_timer(struct tcpcb *, int);
221 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *, int);
222 static void	 tcp_sack_rexmt(struct tcpcb *, struct tcphdr *);
223 
224 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
225 #ifdef INET6
226 #define ND6_HINT(tp) \
227 do { \
228 	if ((tp) && (tp)->t_inpcb && \
229 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) && \
230 	    (tp)->t_inpcb->in6p_route.ro_rt) \
231 		nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
232 } while (0)
233 #else
234 #define ND6_HINT(tp)
235 #endif
236 
237 /*
238  * Indicate whether this ack should be delayed.  We can delay the ack if
239  *	- delayed acks are enabled and
240  *	- there is no delayed ack timer in progress and
241  *	- our last ack wasn't a 0-sized window.  We never want to delay
242  *	  the ack that opens up a 0-sized window.
243  */
244 #define DELAY_ACK(tp) \
245 	(tcp_delack_enabled && !tcp_callout_pending(tp, tp->tt_delack) && \
246 	!(tp->t_flags & TF_RXWIN0SENT))
247 
248 #define acceptable_window_update(tp, th, tiwin)				\
249     (SEQ_LT(tp->snd_wl1, th->th_seq) ||					\
250      (tp->snd_wl1 == th->th_seq &&					\
251       (SEQ_LT(tp->snd_wl2, th->th_ack) ||				\
252        (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))
253 
254 static int
255 tcp_reass(struct tcpcb *tp, struct tcphdr *th, int *tlenp, struct mbuf *m)
256 {
257 	struct tseg_qent *q;
258 	struct tseg_qent *p = NULL;
259 	struct tseg_qent *te;
260 	struct socket *so = tp->t_inpcb->inp_socket;
261 	int flags;
262 
263 	/*
264 	 * Call with th == NULL after become established to
265 	 * force pre-ESTABLISHED data up to user socket.
266 	 */
267 	if (th == NULL)
268 		goto present;
269 
270 	/*
271 	 * Limit the number of segments in the reassembly queue to prevent
272 	 * holding on to too many segments (and thus running out of mbufs).
273 	 * Make sure to let the missing segment through which caused this
274 	 * queue.  Always keep one global queue entry spare to be able to
275 	 * process the missing segment.
276 	 */
277 	if (th->th_seq != tp->rcv_nxt &&
278 	    tcp_reass_qsize + 1 >= tcp_reass_maxseg) {
279 		tcp_reass_overflows++;
280 		tcpstat.tcps_rcvmemdrop++;
281 		m_freem(m);
282 		/* no SACK block to report */
283 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
284 		return (0);
285 	}
286 
287 	/* Allocate a new queue entry. */
288 	MALLOC(te, struct tseg_qent *, sizeof(struct tseg_qent), M_TSEGQ,
289 	       M_INTWAIT | M_NULLOK);
290 	if (te == NULL) {
291 		tcpstat.tcps_rcvmemdrop++;
292 		m_freem(m);
293 		/* no SACK block to report */
294 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
295 		return (0);
296 	}
297 	tcp_reass_qsize++;
298 
299 	/*
300 	 * Find a segment which begins after this one does.
301 	 */
302 	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
303 		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
304 			break;
305 		p = q;
306 	}
307 
308 	/*
309 	 * If there is a preceding segment, it may provide some of
310 	 * our data already.  If so, drop the data from the incoming
311 	 * segment.  If it provides all of our data, drop us.
312 	 */
313 	if (p != NULL) {
314 		tcp_seq_diff_t i;
315 
316 		/* conversion to int (in i) handles seq wraparound */
317 		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
318 		if (i > 0) {		/* overlaps preceding segment */
319 			tp->t_flags |= (TF_DUPSEG | TF_ENCLOSESEG);
320 			/* enclosing block starts w/ preceding segment */
321 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
322 			if (i >= *tlenp) {
323 				/* preceding encloses incoming segment */
324 				tp->encloseblk.rblk_end = p->tqe_th->th_seq +
325 				    p->tqe_len;
326 				tcpstat.tcps_rcvduppack++;
327 				tcpstat.tcps_rcvdupbyte += *tlenp;
328 				m_freem(m);
329 				kfree(te, M_TSEGQ);
330 				tcp_reass_qsize--;
331 				/*
332 				 * Try to present any queued data
333 				 * at the left window edge to the user.
334 				 * This is needed after the 3-WHS
335 				 * completes.
336 				 */
337 				goto present;	/* ??? */
338 			}
339 			m_adj(m, i);
340 			*tlenp -= i;
341 			th->th_seq += i;
342 			/* incoming segment end is enclosing block end */
343 			tp->encloseblk.rblk_end = th->th_seq + *tlenp +
344 			    ((th->th_flags & TH_FIN) != 0);
345 			/* trim end of reported D-SACK block */
346 			tp->reportblk.rblk_end = th->th_seq;
347 		}
348 	}
349 	tcpstat.tcps_rcvoopack++;
350 	tcpstat.tcps_rcvoobyte += *tlenp;
351 
352 	/*
353 	 * While we overlap succeeding segments trim them or,
354 	 * if they are completely covered, dequeue them.
355 	 */
356 	while (q) {
357 		tcp_seq_diff_t i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
358 		tcp_seq qend = q->tqe_th->th_seq + q->tqe_len;
359 		struct tseg_qent *nq;
360 
361 		if (i <= 0)
362 			break;
363 		if (!(tp->t_flags & TF_DUPSEG)) {    /* first time through */
364 			tp->t_flags |= (TF_DUPSEG | TF_ENCLOSESEG);
365 			tp->encloseblk = tp->reportblk;
366 			/* report trailing duplicate D-SACK segment */
367 			tp->reportblk.rblk_start = q->tqe_th->th_seq;
368 		}
369 		if ((tp->t_flags & TF_ENCLOSESEG) &&
370 		    SEQ_GT(qend, tp->encloseblk.rblk_end)) {
371 			/* extend enclosing block if one exists */
372 			tp->encloseblk.rblk_end = qend;
373 		}
374 		if (i < q->tqe_len) {
375 			q->tqe_th->th_seq += i;
376 			q->tqe_len -= i;
377 			m_adj(q->tqe_m, i);
378 			break;
379 		}
380 
381 		nq = LIST_NEXT(q, tqe_q);
382 		LIST_REMOVE(q, tqe_q);
383 		m_freem(q->tqe_m);
384 		kfree(q, M_TSEGQ);
385 		tcp_reass_qsize--;
386 		q = nq;
387 	}
388 
389 	/* Insert the new segment queue entry into place. */
390 	te->tqe_m = m;
391 	te->tqe_th = th;
392 	te->tqe_len = *tlenp;
393 
394 	/* check if can coalesce with following segment */
395 	if (q != NULL && (th->th_seq + *tlenp == q->tqe_th->th_seq)) {
396 		tcp_seq tend = te->tqe_th->th_seq + te->tqe_len;
397 
398 		te->tqe_len += q->tqe_len;
399 		if (q->tqe_th->th_flags & TH_FIN)
400 			te->tqe_th->th_flags |= TH_FIN;
401 		m_cat(te->tqe_m, q->tqe_m);
402 		tp->encloseblk.rblk_end = tend;
403 		/*
404 		 * When not reporting a duplicate segment, use
405 		 * the larger enclosing block as the SACK block.
406 		 */
407 		if (!(tp->t_flags & TF_DUPSEG))
408 			tp->reportblk.rblk_end = tend;
409 		LIST_REMOVE(q, tqe_q);
410 		kfree(q, M_TSEGQ);
411 		tcp_reass_qsize--;
412 	}
413 
414 	if (p == NULL) {
415 		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
416 	} else {
417 		/* check if can coalesce with preceding segment */
418 		if (p->tqe_th->th_seq + p->tqe_len == th->th_seq) {
419 			p->tqe_len += te->tqe_len;
420 			m_cat(p->tqe_m, te->tqe_m);
421 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
422 			/*
423 			 * When not reporting a duplicate segment, use
424 			 * the larger enclosing block as the SACK block.
425 			 */
426 			if (!(tp->t_flags & TF_DUPSEG))
427 				tp->reportblk.rblk_start = p->tqe_th->th_seq;
428 			kfree(te, M_TSEGQ);
429 			tcp_reass_qsize--;
430 		} else
431 			LIST_INSERT_AFTER(p, te, tqe_q);
432 	}
433 
434 present:
435 	/*
436 	 * Present data to user, advancing rcv_nxt through
437 	 * completed sequence space.
438 	 */
439 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
440 		return (0);
441 	q = LIST_FIRST(&tp->t_segq);
442 	if (q == NULL || q->tqe_th->th_seq != tp->rcv_nxt)
443 		return (0);
444 	tp->rcv_nxt += q->tqe_len;
445 	if (!(tp->t_flags & TF_DUPSEG))	{
446 		/* no SACK block to report since ACK advanced */
447 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
448 	}
449 	/* no enclosing block to report since ACK advanced */
450 	tp->t_flags &= ~TF_ENCLOSESEG;
451 	flags = q->tqe_th->th_flags & TH_FIN;
452 	LIST_REMOVE(q, tqe_q);
453 	KASSERT(LIST_EMPTY(&tp->t_segq) ||
454 		LIST_FIRST(&tp->t_segq)->tqe_th->th_seq != tp->rcv_nxt,
455 		("segment not coalesced"));
456 	if (so->so_state & SS_CANTRCVMORE)
457 		m_freem(q->tqe_m);
458 	else
459 		ssb_appendstream(&so->so_rcv, q->tqe_m);
460 	kfree(q, M_TSEGQ);
461 	tcp_reass_qsize--;
462 	ND6_HINT(tp);
463 	sorwakeup(so);
464 	return (flags);
465 }
466 
467 /*
468  * TCP input routine, follows pages 65-76 of the
469  * protocol specification dated September, 1981 very closely.
470  */
471 #ifdef INET6
472 int
473 tcp6_input(struct mbuf **mp, int *offp, int proto)
474 {
475 	struct mbuf *m = *mp;
476 	struct in6_ifaddr *ia6;
477 
478 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
479 
480 	/*
481 	 * draft-itojun-ipv6-tcp-to-anycast
482 	 * better place to put this in?
483 	 */
484 	ia6 = ip6_getdstifaddr(m);
485 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
486 		struct ip6_hdr *ip6;
487 
488 		ip6 = mtod(m, struct ip6_hdr *);
489 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
490 			    offsetof(struct ip6_hdr, ip6_dst));
491 		return (IPPROTO_DONE);
492 	}
493 
494 	tcp_input(m, *offp, proto);
495 	return (IPPROTO_DONE);
496 }
497 #endif
498 
499 void
500 tcp_input(struct mbuf *m, ...)
501 {
502 	__va_list ap;
503 	int off0, proto;
504 	struct tcphdr *th;
505 	struct ip *ip = NULL;
506 	struct ipovly *ipov;
507 	struct inpcb *inp = NULL;
508 	u_char *optp = NULL;
509 	int optlen = 0;
510 	int len, tlen, off;
511 	int drop_hdrlen;
512 	struct tcpcb *tp = NULL;
513 	int thflags;
514 	struct socket *so = 0;
515 	int todrop, acked;
516 	boolean_t ourfinisacked, needoutput = FALSE;
517 	u_long tiwin;
518 	int recvwin;
519 	struct tcpopt to;		/* options in this segment */
520 	struct rmxp_tao *taop;		/* pointer to our TAO cache entry */
521 	struct rmxp_tao	tao_noncached;	/* in case there's no cached entry */
522 	struct sockaddr_in *next_hop = NULL;
523 	int rstreason; /* For badport_bandlim accounting purposes */
524 	int cpu;
525 	struct ip6_hdr *ip6 = NULL;
526 #ifdef INET6
527 	boolean_t isipv6;
528 #else
529 	const boolean_t isipv6 = FALSE;
530 #endif
531 #ifdef TCPDEBUG
532 	short ostate = 0;
533 #endif
534 
535 	__va_start(ap, m);
536 	off0 = __va_arg(ap, int);
537 	proto = __va_arg(ap, int);
538 	__va_end(ap);
539 
540 	tcpstat.tcps_rcvtotal++;
541 
542 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
543 		struct m_tag *mtag;
544 
545 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
546 		KKASSERT(mtag != NULL);
547 		next_hop = m_tag_data(mtag);
548 	}
549 
550 #ifdef INET6
551 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? TRUE : FALSE;
552 #endif
553 
554 	if (isipv6) {
555 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
556 		ip6 = mtod(m, struct ip6_hdr *);
557 		tlen = (sizeof *ip6) + ntohs(ip6->ip6_plen) - off0;
558 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
559 			tcpstat.tcps_rcvbadsum++;
560 			goto drop;
561 		}
562 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
563 
564 		/*
565 		 * Be proactive about unspecified IPv6 address in source.
566 		 * As we use all-zero to indicate unbounded/unconnected pcb,
567 		 * unspecified IPv6 address can be used to confuse us.
568 		 *
569 		 * Note that packets with unspecified IPv6 destination is
570 		 * already dropped in ip6_input.
571 		 */
572 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
573 			/* XXX stat */
574 			goto drop;
575 		}
576 	} else {
577 		/*
578 		 * Get IP and TCP header together in first mbuf.
579 		 * Note: IP leaves IP header in first mbuf.
580 		 */
581 		if (off0 > sizeof(struct ip)) {
582 			ip_stripoptions(m);
583 			off0 = sizeof(struct ip);
584 		}
585 		/* already checked and pulled up in ip_demux() */
586 		KASSERT(m->m_len >= sizeof(struct tcpiphdr),
587 		    ("TCP header not in one mbuf: m->m_len %d", m->m_len));
588 		ip = mtod(m, struct ip *);
589 		ipov = (struct ipovly *)ip;
590 		th = (struct tcphdr *)((caddr_t)ip + off0);
591 		tlen = ip->ip_len;
592 
593 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
594 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
595 				th->th_sum = m->m_pkthdr.csum_data;
596 			else
597 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
598 						ip->ip_dst.s_addr,
599 						htonl(m->m_pkthdr.csum_data +
600 							ip->ip_len +
601 							IPPROTO_TCP));
602 			th->th_sum ^= 0xffff;
603 		} else {
604 			/*
605 			 * Checksum extended TCP header and data.
606 			 */
607 			len = sizeof(struct ip) + tlen;
608 			bzero(ipov->ih_x1, sizeof ipov->ih_x1);
609 			ipov->ih_len = (u_short)tlen;
610 			ipov->ih_len = htons(ipov->ih_len);
611 			th->th_sum = in_cksum(m, len);
612 		}
613 		if (th->th_sum) {
614 			tcpstat.tcps_rcvbadsum++;
615 			goto drop;
616 		}
617 #ifdef INET6
618 		/* Re-initialization for later version check */
619 		ip->ip_v = IPVERSION;
620 #endif
621 	}
622 
623 	/*
624 	 * Check that TCP offset makes sense,
625 	 * pull out TCP options and adjust length.		XXX
626 	 */
627 	off = th->th_off << 2;
628 	/* already checked and pulled up in ip_demux() */
629 	KASSERT(off >= sizeof(struct tcphdr) && off <= tlen,
630 	    ("bad TCP data offset %d (tlen %d)", off, tlen));
631 	tlen -= off;	/* tlen is used instead of ti->ti_len */
632 	if (off > sizeof(struct tcphdr)) {
633 		if (isipv6) {
634 			IP6_EXTHDR_CHECK(m, off0, off, );
635 			ip6 = mtod(m, struct ip6_hdr *);
636 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
637 		} else {
638 			/* already pulled up in ip_demux() */
639 			KASSERT(m->m_len >= sizeof(struct ip) + off,
640 			    ("TCP header and options not in one mbuf: "
641 			     "m_len %d, off %d", m->m_len, off));
642 		}
643 		optlen = off - sizeof(struct tcphdr);
644 		optp = (u_char *)(th + 1);
645 	}
646 	thflags = th->th_flags;
647 
648 #ifdef TCP_DROP_SYNFIN
649 	/*
650 	 * If the drop_synfin option is enabled, drop all packets with
651 	 * both the SYN and FIN bits set. This prevents e.g. nmap from
652 	 * identifying the TCP/IP stack.
653 	 *
654 	 * This is a violation of the TCP specification.
655 	 */
656 	if (drop_synfin && (thflags & (TH_SYN | TH_FIN)) == (TH_SYN | TH_FIN))
657 		goto drop;
658 #endif
659 
660 	/*
661 	 * Convert TCP protocol specific fields to host format.
662 	 */
663 	th->th_seq = ntohl(th->th_seq);
664 	th->th_ack = ntohl(th->th_ack);
665 	th->th_win = ntohs(th->th_win);
666 	th->th_urp = ntohs(th->th_urp);
667 
668 	/*
669 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
670 	 * until after ip6_savecontrol() is called and before other functions
671 	 * which don't want those proto headers.
672 	 * Because ip6_savecontrol() is going to parse the mbuf to
673 	 * search for data to be passed up to user-land, it wants mbuf
674 	 * parameters to be unchanged.
675 	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
676 	 * latest version of the advanced API (20020110).
677 	 */
678 	drop_hdrlen = off0 + off;
679 
680 	/*
681 	 * Locate pcb for segment.
682 	 */
683 findpcb:
684 	/* IPFIREWALL_FORWARD section */
685 	if (next_hop != NULL && !isipv6) {  /* IPv6 support is not there yet */
686 		/*
687 		 * Transparently forwarded. Pretend to be the destination.
688 		 * already got one like this?
689 		 */
690 		cpu = mycpu->gd_cpuid;
691 		inp = in_pcblookup_hash(&tcbinfo[cpu],
692 					ip->ip_src, th->th_sport,
693 					ip->ip_dst, th->th_dport,
694 					0, m->m_pkthdr.rcvif);
695 		if (!inp) {
696 			/*
697 			 * It's new.  Try to find the ambushing socket.
698 			 */
699 
700 			/*
701 			 * The rest of the ipfw code stores the port in
702 			 * host order.  XXX
703 			 * (The IP address is still in network order.)
704 			 */
705 			in_port_t dport = next_hop->sin_port ?
706 						htons(next_hop->sin_port) :
707 						th->th_dport;
708 
709 			cpu = tcp_addrcpu(ip->ip_src.s_addr, th->th_sport,
710 					  next_hop->sin_addr.s_addr, dport);
711 			inp = in_pcblookup_hash(&tcbinfo[cpu],
712 						ip->ip_src, th->th_sport,
713 						next_hop->sin_addr, dport,
714 						1, m->m_pkthdr.rcvif);
715 		}
716 	} else {
717 		if (isipv6) {
718 			inp = in6_pcblookup_hash(&tcbinfo[0],
719 						 &ip6->ip6_src, th->th_sport,
720 						 &ip6->ip6_dst, th->th_dport,
721 						 1, m->m_pkthdr.rcvif);
722 		} else {
723 			cpu = mycpu->gd_cpuid;
724 			inp = in_pcblookup_hash(&tcbinfo[cpu],
725 						ip->ip_src, th->th_sport,
726 						ip->ip_dst, th->th_dport,
727 						1, m->m_pkthdr.rcvif);
728 		}
729 	}
730 
731 	/*
732 	 * If the state is CLOSED (i.e., TCB does not exist) then
733 	 * all data in the incoming segment is discarded.
734 	 * If the TCB exists but is in CLOSED state, it is embryonic,
735 	 * but should either do a listen or a connect soon.
736 	 */
737 	if (inp == NULL) {
738 		if (log_in_vain) {
739 #ifdef INET6
740 			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
741 #else
742 			char dbuf[sizeof "aaa.bbb.ccc.ddd"];
743 			char sbuf[sizeof "aaa.bbb.ccc.ddd"];
744 #endif
745 			if (isipv6) {
746 				strcpy(dbuf, "[");
747 				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
748 				strcat(dbuf, "]");
749 				strcpy(sbuf, "[");
750 				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
751 				strcat(sbuf, "]");
752 			} else {
753 				strcpy(dbuf, inet_ntoa(ip->ip_dst));
754 				strcpy(sbuf, inet_ntoa(ip->ip_src));
755 			}
756 			switch (log_in_vain) {
757 			case 1:
758 				if (!(thflags & TH_SYN))
759 					break;
760 			case 2:
761 				log(LOG_INFO,
762 				    "Connection attempt to TCP %s:%d "
763 				    "from %s:%d flags:0x%02x\n",
764 				    dbuf, ntohs(th->th_dport), sbuf,
765 				    ntohs(th->th_sport), thflags);
766 				break;
767 			default:
768 				break;
769 			}
770 		}
771 		if (blackhole) {
772 			switch (blackhole) {
773 			case 1:
774 				if (thflags & TH_SYN)
775 					goto drop;
776 				break;
777 			case 2:
778 				goto drop;
779 			default:
780 				goto drop;
781 			}
782 		}
783 		rstreason = BANDLIM_RST_CLOSEDPORT;
784 		goto dropwithreset;
785 	}
786 
787 #ifdef IPSEC
788 	if (isipv6) {
789 		if (ipsec6_in_reject_so(m, inp->inp_socket)) {
790 			ipsec6stat.in_polvio++;
791 			goto drop;
792 		}
793 	} else {
794 		if (ipsec4_in_reject_so(m, inp->inp_socket)) {
795 			ipsecstat.in_polvio++;
796 			goto drop;
797 		}
798 	}
799 #endif
800 #ifdef FAST_IPSEC
801 	if (isipv6) {
802 		if (ipsec6_in_reject(m, inp))
803 			goto drop;
804 	} else {
805 		if (ipsec4_in_reject(m, inp))
806 			goto drop;
807 	}
808 #endif
809 	/* Check the minimum TTL for socket. */
810 #ifdef INET6
811 	if ((isipv6 ? ip6->ip6_hlim : ip->ip_ttl) < inp->inp_ip_minttl)
812 		goto drop;
813 #endif
814 
815 	tp = intotcpcb(inp);
816 	if (tp == NULL) {
817 		rstreason = BANDLIM_RST_CLOSEDPORT;
818 		goto dropwithreset;
819 	}
820 	if (tp->t_state <= TCPS_CLOSED)
821 		goto drop;
822 
823 	/* Unscale the window into a 32-bit value. */
824 	if (!(thflags & TH_SYN))
825 		tiwin = th->th_win << tp->snd_scale;
826 	else
827 		tiwin = th->th_win;
828 
829 	so = inp->inp_socket;
830 
831 #ifdef TCPDEBUG
832 	if (so->so_options & SO_DEBUG) {
833 		ostate = tp->t_state;
834 		if (isipv6)
835 			bcopy(ip6, tcp_saveipgen, sizeof(*ip6));
836 		else
837 			bcopy(ip, tcp_saveipgen, sizeof(*ip));
838 		tcp_savetcp = *th;
839 	}
840 #endif
841 
842 	bzero(&to, sizeof to);
843 
844 	if (so->so_options & SO_ACCEPTCONN) {
845 		struct in_conninfo inc;
846 
847 #ifdef INET6
848 		inc.inc_isipv6 = (isipv6 == TRUE);
849 #endif
850 		if (isipv6) {
851 			inc.inc6_faddr = ip6->ip6_src;
852 			inc.inc6_laddr = ip6->ip6_dst;
853 			inc.inc6_route.ro_rt = NULL;		/* XXX */
854 		} else {
855 			inc.inc_faddr = ip->ip_src;
856 			inc.inc_laddr = ip->ip_dst;
857 			inc.inc_route.ro_rt = NULL;		/* XXX */
858 		}
859 		inc.inc_fport = th->th_sport;
860 		inc.inc_lport = th->th_dport;
861 
862 		/*
863 		 * If the state is LISTEN then ignore segment if it contains
864 		 * a RST.  If the segment contains an ACK then it is bad and
865 		 * send a RST.  If it does not contain a SYN then it is not
866 		 * interesting; drop it.
867 		 *
868 		 * If the state is SYN_RECEIVED (syncache) and seg contains
869 		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
870 		 * contains a RST, check the sequence number to see if it
871 		 * is a valid reset segment.
872 		 */
873 		if ((thflags & (TH_RST | TH_ACK | TH_SYN)) != TH_SYN) {
874 			if ((thflags & (TH_RST | TH_ACK | TH_SYN)) == TH_ACK) {
875 				if (!syncache_expand(&inc, th, &so, m)) {
876 					/*
877 					 * No syncache entry, or ACK was not
878 					 * for our SYN/ACK.  Send a RST.
879 					 */
880 					tcpstat.tcps_badsyn++;
881 					rstreason = BANDLIM_RST_OPENPORT;
882 					goto dropwithreset;
883 				}
884 				if (so == NULL)
885 					/*
886 					 * Could not complete 3-way handshake,
887 					 * connection is being closed down, and
888 					 * syncache will free mbuf.
889 					 */
890 					return;
891 				/*
892 				 * Socket is created in state SYN_RECEIVED.
893 				 * Continue processing segment.
894 				 */
895 				inp = so->so_pcb;
896 				tp = intotcpcb(inp);
897 				/*
898 				 * This is what would have happened in
899 				 * tcp_output() when the SYN,ACK was sent.
900 				 */
901 				tp->snd_up = tp->snd_una;
902 				tp->snd_max = tp->snd_nxt = tp->iss + 1;
903 				tp->last_ack_sent = tp->rcv_nxt;
904 /*
905  * XXX possible bug - it doesn't appear that tp->snd_wnd is unscaled
906  * until the _second_ ACK is received:
907  *    rcv SYN (set wscale opts)	 --> send SYN/ACK, set snd_wnd = window.
908  *    rcv ACK, calculate tiwin --> process SYN_RECEIVED, determine wscale,
909  *	  move to ESTAB, set snd_wnd to tiwin.
910  */
911 				tp->snd_wnd = tiwin;	/* unscaled */
912 				goto after_listen;
913 			}
914 			if (thflags & TH_RST) {
915 				syncache_chkrst(&inc, th);
916 				goto drop;
917 			}
918 			if (thflags & TH_ACK) {
919 				syncache_badack(&inc);
920 				tcpstat.tcps_badsyn++;
921 				rstreason = BANDLIM_RST_OPENPORT;
922 				goto dropwithreset;
923 			}
924 			goto drop;
925 		}
926 
927 		/*
928 		 * Segment's flags are (SYN) or (SYN | FIN).
929 		 */
930 #ifdef INET6
931 		/*
932 		 * If deprecated address is forbidden,
933 		 * we do not accept SYN to deprecated interface
934 		 * address to prevent any new inbound connection from
935 		 * getting established.
936 		 * When we do not accept SYN, we send a TCP RST,
937 		 * with deprecated source address (instead of dropping
938 		 * it).  We compromise it as it is much better for peer
939 		 * to send a RST, and RST will be the final packet
940 		 * for the exchange.
941 		 *
942 		 * If we do not forbid deprecated addresses, we accept
943 		 * the SYN packet.  RFC2462 does not suggest dropping
944 		 * SYN in this case.
945 		 * If we decipher RFC2462 5.5.4, it says like this:
946 		 * 1. use of deprecated addr with existing
947 		 *    communication is okay - "SHOULD continue to be
948 		 *    used"
949 		 * 2. use of it with new communication:
950 		 *   (2a) "SHOULD NOT be used if alternate address
951 		 *	  with sufficient scope is available"
952 		 *   (2b) nothing mentioned otherwise.
953 		 * Here we fall into (2b) case as we have no choice in
954 		 * our source address selection - we must obey the peer.
955 		 *
956 		 * The wording in RFC2462 is confusing, and there are
957 		 * multiple description text for deprecated address
958 		 * handling - worse, they are not exactly the same.
959 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
960 		 */
961 		if (isipv6 && !ip6_use_deprecated) {
962 			struct in6_ifaddr *ia6;
963 
964 			if ((ia6 = ip6_getdstifaddr(m)) &&
965 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
966 				tp = NULL;
967 				rstreason = BANDLIM_RST_OPENPORT;
968 				goto dropwithreset;
969 			}
970 		}
971 #endif
972 		/*
973 		 * If it is from this socket, drop it, it must be forged.
974 		 * Don't bother responding if the destination was a broadcast.
975 		 */
976 		if (th->th_dport == th->th_sport) {
977 			if (isipv6) {
978 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
979 						       &ip6->ip6_src))
980 					goto drop;
981 			} else {
982 				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
983 					goto drop;
984 			}
985 		}
986 		/*
987 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
988 		 *
989 		 * Note that it is quite possible to receive unicast
990 		 * link-layer packets with a broadcast IP address. Use
991 		 * in_broadcast() to find them.
992 		 */
993 		if (m->m_flags & (M_BCAST | M_MCAST))
994 			goto drop;
995 		if (isipv6) {
996 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
997 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
998 				goto drop;
999 		} else {
1000 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1001 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1002 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1003 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1004 				goto drop;
1005 		}
1006 		/*
1007 		 * SYN appears to be valid; create compressed TCP state
1008 		 * for syncache, or perform t/tcp connection.
1009 		 */
1010 		if (so->so_qlen <= so->so_qlimit) {
1011 			tcp_dooptions(&to, optp, optlen, TRUE);
1012 			if (!syncache_add(&inc, &to, th, &so, m))
1013 				goto drop;
1014 			if (so == NULL)
1015 				/*
1016 				 * Entry added to syncache, mbuf used to
1017 				 * send SYN,ACK packet.
1018 				 */
1019 				return;
1020 			/*
1021 			 * Segment passed TAO tests.
1022 			 */
1023 			inp = so->so_pcb;
1024 			tp = intotcpcb(inp);
1025 			tp->snd_wnd = tiwin;
1026 			tp->t_starttime = ticks;
1027 			tp->t_state = TCPS_ESTABLISHED;
1028 
1029 			/*
1030 			 * If there is a FIN, or if there is data and the
1031 			 * connection is local, then delay SYN,ACK(SYN) in
1032 			 * the hope of piggy-backing it on a response
1033 			 * segment.  Otherwise must send ACK now in case
1034 			 * the other side is slow starting.
1035 			 */
1036 			if (DELAY_ACK(tp) &&
1037 			    ((thflags & TH_FIN) ||
1038 			     (tlen != 0 &&
1039 			      ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
1040 			       (!isipv6 && in_localaddr(inp->inp_faddr)))))) {
1041 				tcp_callout_reset(tp, tp->tt_delack,
1042 				    tcp_delacktime, tcp_timer_delack);
1043 				tp->t_flags |= TF_NEEDSYN;
1044 			} else {
1045 				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1046 			}
1047 
1048 			tcpstat.tcps_connects++;
1049 			soisconnected(so);
1050 			goto trimthenstep6;
1051 		}
1052 		goto drop;
1053 	}
1054 after_listen:
1055 
1056 	/* should not happen - syncache should pick up these connections */
1057 	KASSERT(tp->t_state != TCPS_LISTEN, ("tcp_input: TCPS_LISTEN state"));
1058 
1059 	/*
1060 	 * Segment received on connection.
1061 	 * Reset idle time and keep-alive timer.
1062 	 */
1063 	tp->t_rcvtime = ticks;
1064 	if (TCPS_HAVEESTABLISHED(tp->t_state)) {
1065 		tcp_callout_reset(tp, tp->tt_keep, tcp_keepidle,
1066 		    tcp_timer_keep);
1067 	}
1068 
1069 	/*
1070 	 * Process options.
1071 	 * XXX this is tradtitional behavior, may need to be cleaned up.
1072 	 */
1073 	tcp_dooptions(&to, optp, optlen, (thflags & TH_SYN) != 0);
1074 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1075 		if (to.to_flags & TOF_SCALE) {
1076 			tp->t_flags |= TF_RCVD_SCALE;
1077 			tp->requested_s_scale = to.to_requested_s_scale;
1078 		}
1079 		if (to.to_flags & TOF_TS) {
1080 			tp->t_flags |= TF_RCVD_TSTMP;
1081 			tp->ts_recent = to.to_tsval;
1082 			tp->ts_recent_age = ticks;
1083 		}
1084 		if (to.to_flags & (TOF_CC | TOF_CCNEW))
1085 			tp->t_flags |= TF_RCVD_CC;
1086 		if (to.to_flags & TOF_MSS)
1087 			tcp_mss(tp, to.to_mss);
1088 		/*
1089 		 * Only set the TF_SACK_PERMITTED per-connection flag
1090 		 * if we got a SACK_PERMITTED option from the other side
1091 		 * and the global tcp_do_sack variable is true.
1092 		 */
1093 		if (tcp_do_sack && (to.to_flags & TOF_SACK_PERMITTED))
1094 			tp->t_flags |= TF_SACK_PERMITTED;
1095 	}
1096 
1097 	/*
1098 	 * Header prediction: check for the two common cases
1099 	 * of a uni-directional data xfer.  If the packet has
1100 	 * no control flags, is in-sequence, the window didn't
1101 	 * change and we're not retransmitting, it's a
1102 	 * candidate.  If the length is zero and the ack moved
1103 	 * forward, we're the sender side of the xfer.  Just
1104 	 * free the data acked & wake any higher level process
1105 	 * that was blocked waiting for space.  If the length
1106 	 * is non-zero and the ack didn't move, we're the
1107 	 * receiver side.  If we're getting packets in-order
1108 	 * (the reassembly queue is empty), add the data to
1109 	 * the socket buffer and note that we need a delayed ack.
1110 	 * Make sure that the hidden state-flags are also off.
1111 	 * Since we check for TCPS_ESTABLISHED above, it can only
1112 	 * be TH_NEEDSYN.
1113 	 */
1114 	if (tp->t_state == TCPS_ESTABLISHED &&
1115 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1116 	    !(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)) &&
1117 	    (!(to.to_flags & TOF_TS) ||
1118 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1119 	    /*
1120 	     * Using the CC option is compulsory if once started:
1121 	     *   the segment is OK if no T/TCP was negotiated or
1122 	     *   if the segment has a CC option equal to CCrecv
1123 	     */
1124 	    ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) != (TF_REQ_CC|TF_RCVD_CC) ||
1125 	     ((to.to_flags & TOF_CC) && to.to_cc == tp->cc_recv)) &&
1126 	    th->th_seq == tp->rcv_nxt &&
1127 	    tp->snd_nxt == tp->snd_max) {
1128 
1129 		/*
1130 		 * If last ACK falls within this segment's sequence numbers,
1131 		 * record the timestamp.
1132 		 * NOTE that the test is modified according to the latest
1133 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1134 		 */
1135 		if ((to.to_flags & TOF_TS) &&
1136 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1137 			tp->ts_recent_age = ticks;
1138 			tp->ts_recent = to.to_tsval;
1139 		}
1140 
1141 		if (tlen == 0) {
1142 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1143 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1144 			    tp->snd_cwnd >= tp->snd_wnd &&
1145 			    !IN_FASTRECOVERY(tp)) {
1146 				/*
1147 				 * This is a pure ack for outstanding data.
1148 				 */
1149 				++tcpstat.tcps_predack;
1150 				/*
1151 				 * "bad retransmit" recovery
1152 				 *
1153 				 * If Eifel detection applies, then
1154 				 * it is deterministic, so use it
1155 				 * unconditionally over the old heuristic.
1156 				 * Otherwise, fall back to the old heuristic.
1157 				 */
1158 				if (tcp_do_eifel_detect &&
1159 				    (to.to_flags & TOF_TS) && to.to_tsecr &&
1160 				    (tp->t_flags & TF_FIRSTACCACK)) {
1161 					/* Eifel detection applicable. */
1162 					if (to.to_tsecr < tp->t_rexmtTS) {
1163 						tcp_revert_congestion_state(tp);
1164 						++tcpstat.tcps_eifeldetected;
1165 					}
1166 				} else if (tp->t_rxtshift == 1 &&
1167 					   ticks < tp->t_badrxtwin) {
1168 					tcp_revert_congestion_state(tp);
1169 					++tcpstat.tcps_rttdetected;
1170 				}
1171 				tp->t_flags &= ~(TF_FIRSTACCACK |
1172 						 TF_FASTREXMT | TF_EARLYREXMT);
1173 				/*
1174 				 * Recalculate the retransmit timer / rtt.
1175 				 *
1176 				 * Some machines (certain windows boxes)
1177 				 * send broken timestamp replies during the
1178 				 * SYN+ACK phase, ignore timestamps of 0.
1179 				 */
1180 				if ((to.to_flags & TOF_TS) && to.to_tsecr) {
1181 					tcp_xmit_timer(tp,
1182 						       ticks - to.to_tsecr + 1);
1183 				} else if (tp->t_rtttime &&
1184 					   SEQ_GT(th->th_ack, tp->t_rtseq)) {
1185 					tcp_xmit_timer(tp,
1186 						       ticks - tp->t_rtttime);
1187 				}
1188 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1189 				acked = th->th_ack - tp->snd_una;
1190 				tcpstat.tcps_rcvackpack++;
1191 				tcpstat.tcps_rcvackbyte += acked;
1192 				sbdrop(&so->so_snd.sb, acked);
1193 				tp->snd_recover = th->th_ack - 1;
1194 				tp->snd_una = th->th_ack;
1195 				tp->t_dupacks = 0;
1196 				/*
1197 				 * Update window information.
1198 				 */
1199 				if (tiwin != tp->snd_wnd &&
1200 				    acceptable_window_update(tp, th, tiwin)) {
1201 					/* keep track of pure window updates */
1202 					if (tp->snd_wl2 == th->th_ack &&
1203 					    tiwin > tp->snd_wnd)
1204 						tcpstat.tcps_rcvwinupd++;
1205 					tp->snd_wnd = tiwin;
1206 					tp->snd_wl1 = th->th_seq;
1207 					tp->snd_wl2 = th->th_ack;
1208 					if (tp->snd_wnd > tp->max_sndwnd)
1209 						tp->max_sndwnd = tp->snd_wnd;
1210 				}
1211 				m_freem(m);
1212 				ND6_HINT(tp); /* some progress has been done */
1213 				/*
1214 				 * If all outstanding data are acked, stop
1215 				 * retransmit timer, otherwise restart timer
1216 				 * using current (possibly backed-off) value.
1217 				 * If process is waiting for space,
1218 				 * wakeup/selwakeup/signal.  If data
1219 				 * are ready to send, let tcp_output
1220 				 * decide between more output or persist.
1221 				 */
1222 				if (tp->snd_una == tp->snd_max) {
1223 					tcp_callout_stop(tp, tp->tt_rexmt);
1224 				} else if (!tcp_callout_active(tp,
1225 					    tp->tt_persist)) {
1226 					tcp_callout_reset(tp, tp->tt_rexmt,
1227 					    tp->t_rxtcur, tcp_timer_rexmt);
1228 				}
1229 				sowwakeup(so);
1230 				if (so->so_snd.ssb_cc > 0)
1231 					tcp_output(tp);
1232 				return;
1233 			}
1234 		} else if (tiwin == tp->snd_wnd &&
1235 		    th->th_ack == tp->snd_una &&
1236 		    LIST_EMPTY(&tp->t_segq) &&
1237 		    tlen <= ssb_space(&so->so_rcv)) {
1238 			/*
1239 			 * This is a pure, in-sequence data packet
1240 			 * with nothing on the reassembly queue and
1241 			 * we have enough buffer space to take it.
1242 			 */
1243 			++tcpstat.tcps_preddat;
1244 			tp->rcv_nxt += tlen;
1245 			tcpstat.tcps_rcvpack++;
1246 			tcpstat.tcps_rcvbyte += tlen;
1247 			ND6_HINT(tp);	/* some progress has been done */
1248 			/*
1249 			 * Add data to socket buffer.
1250 			 */
1251 			if (so->so_state & SS_CANTRCVMORE) {
1252 				m_freem(m);
1253 			} else {
1254 				m_adj(m, drop_hdrlen); /* delayed header drop */
1255 				ssb_appendstream(&so->so_rcv, m);
1256 			}
1257 			sorwakeup(so);
1258 			/*
1259 			 * This code is responsible for most of the ACKs
1260 			 * the TCP stack sends back after receiving a data
1261 			 * packet.  Note that the DELAY_ACK check fails if
1262 			 * the delack timer is already running, which results
1263 			 * in an ack being sent every other packet (which is
1264 			 * what we want).
1265 			 *
1266 			 * We then further aggregate acks by not actually
1267 			 * sending one until the protocol thread has completed
1268 			 * processing the current backlog of packets.  This
1269 			 * does not delay the ack any further, but allows us
1270 			 * to take advantage of the packet aggregation that
1271 			 * high speed NICs do (usually blocks of 8-10 packets)
1272 			 * to send a single ack rather then four or five acks,
1273 			 * greatly reducing the ack rate, the return channel
1274 			 * bandwidth, and the protocol overhead on both ends.
1275 			 *
1276 			 * Since this also has the effect of slowing down
1277 			 * the exponential slow-start ramp-up, systems with
1278 			 * very large bandwidth-delay products might want
1279 			 * to turn the feature off.
1280 			 */
1281 			if (DELAY_ACK(tp)) {
1282 				tcp_callout_reset(tp, tp->tt_delack,
1283 				    tcp_delacktime, tcp_timer_delack);
1284 			} else if (tcp_aggregate_acks) {
1285 				tp->t_flags |= TF_ACKNOW;
1286 				if (!(tp->t_flags & TF_ONOUTPUTQ)) {
1287 					tp->t_flags |= TF_ONOUTPUTQ;
1288 					tp->tt_cpu = mycpu->gd_cpuid;
1289 					TAILQ_INSERT_TAIL(
1290 					    &tcpcbackq[tp->tt_cpu],
1291 					    tp, t_outputq);
1292 				}
1293 			} else {
1294 				tp->t_flags |= TF_ACKNOW;
1295 				tcp_output(tp);
1296 			}
1297 			return;
1298 		}
1299 	}
1300 
1301 	/*
1302 	 * Calculate amount of space in receive window,
1303 	 * and then do TCP input processing.
1304 	 * Receive window is amount of space in rcv queue,
1305 	 * but not less than advertised window.
1306 	 */
1307 	recvwin = ssb_space(&so->so_rcv);
1308 	if (recvwin < 0)
1309 		recvwin = 0;
1310 	tp->rcv_wnd = imax(recvwin, (int)(tp->rcv_adv - tp->rcv_nxt));
1311 
1312 	switch (tp->t_state) {
1313 	/*
1314 	 * If the state is SYN_RECEIVED:
1315 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1316 	 */
1317 	case TCPS_SYN_RECEIVED:
1318 		if ((thflags & TH_ACK) &&
1319 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1320 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1321 				rstreason = BANDLIM_RST_OPENPORT;
1322 				goto dropwithreset;
1323 		}
1324 		break;
1325 
1326 	/*
1327 	 * If the state is SYN_SENT:
1328 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1329 	 *	if seg contains a RST, then drop the connection.
1330 	 *	if seg does not contain SYN, then drop it.
1331 	 * Otherwise this is an acceptable SYN segment
1332 	 *	initialize tp->rcv_nxt and tp->irs
1333 	 *	if seg contains ack then advance tp->snd_una
1334 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1335 	 *	arrange for segment to be acked (eventually)
1336 	 *	continue processing rest of data/controls, beginning with URG
1337 	 */
1338 	case TCPS_SYN_SENT:
1339 		if ((taop = tcp_gettaocache(&inp->inp_inc)) == NULL) {
1340 			taop = &tao_noncached;
1341 			bzero(taop, sizeof *taop);
1342 		}
1343 
1344 		if ((thflags & TH_ACK) &&
1345 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1346 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1347 			/*
1348 			 * If we have a cached CCsent for the remote host,
1349 			 * hence we haven't just crashed and restarted,
1350 			 * do not send a RST.  This may be a retransmission
1351 			 * from the other side after our earlier ACK was lost.
1352 			 * Our new SYN, when it arrives, will serve as the
1353 			 * needed ACK.
1354 			 */
1355 			if (taop->tao_ccsent != 0)
1356 				goto drop;
1357 			else {
1358 				rstreason = BANDLIM_UNLIMITED;
1359 				goto dropwithreset;
1360 			}
1361 		}
1362 		if (thflags & TH_RST) {
1363 			if (thflags & TH_ACK)
1364 				tp = tcp_drop(tp, ECONNREFUSED);
1365 			goto drop;
1366 		}
1367 		if (!(thflags & TH_SYN))
1368 			goto drop;
1369 		tp->snd_wnd = th->th_win;	/* initial send window */
1370 		tp->cc_recv = to.to_cc;		/* foreign CC */
1371 
1372 		tp->irs = th->th_seq;
1373 		tcp_rcvseqinit(tp);
1374 		if (thflags & TH_ACK) {
1375 			/*
1376 			 * Our SYN was acked.  If segment contains CC.ECHO
1377 			 * option, check it to make sure this segment really
1378 			 * matches our SYN.  If not, just drop it as old
1379 			 * duplicate, but send an RST if we're still playing
1380 			 * by the old rules.  If no CC.ECHO option, make sure
1381 			 * we don't get fooled into using T/TCP.
1382 			 */
1383 			if (to.to_flags & TOF_CCECHO) {
1384 				if (tp->cc_send != to.to_ccecho) {
1385 					if (taop->tao_ccsent != 0)
1386 						goto drop;
1387 					else {
1388 						rstreason = BANDLIM_UNLIMITED;
1389 						goto dropwithreset;
1390 					}
1391 				}
1392 			} else
1393 				tp->t_flags &= ~TF_RCVD_CC;
1394 			tcpstat.tcps_connects++;
1395 			soisconnected(so);
1396 			/* Do window scaling on this connection? */
1397 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1398 			    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
1399 				tp->snd_scale = tp->requested_s_scale;
1400 				tp->rcv_scale = tp->request_r_scale;
1401 			}
1402 			/* Segment is acceptable, update cache if undefined. */
1403 			if (taop->tao_ccsent == 0)
1404 				taop->tao_ccsent = to.to_ccecho;
1405 
1406 			tp->rcv_adv += tp->rcv_wnd;
1407 			tp->snd_una++;		/* SYN is acked */
1408 			tcp_callout_stop(tp, tp->tt_rexmt);
1409 			/*
1410 			 * If there's data, delay ACK; if there's also a FIN
1411 			 * ACKNOW will be turned on later.
1412 			 */
1413 			if (DELAY_ACK(tp) && tlen != 0) {
1414 				tcp_callout_reset(tp, tp->tt_delack,
1415 				    tcp_delacktime, tcp_timer_delack);
1416 			} else {
1417 				tp->t_flags |= TF_ACKNOW;
1418 			}
1419 			/*
1420 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1421 			 * Transitions:
1422 			 *	SYN_SENT  --> ESTABLISHED
1423 			 *	SYN_SENT* --> FIN_WAIT_1
1424 			 */
1425 			tp->t_starttime = ticks;
1426 			if (tp->t_flags & TF_NEEDFIN) {
1427 				tp->t_state = TCPS_FIN_WAIT_1;
1428 				tp->t_flags &= ~TF_NEEDFIN;
1429 				thflags &= ~TH_SYN;
1430 			} else {
1431 				tp->t_state = TCPS_ESTABLISHED;
1432 				tcp_callout_reset(tp, tp->tt_keep, tcp_keepidle,
1433 				    tcp_timer_keep);
1434 			}
1435 		} else {
1436 			/*
1437 			 * Received initial SYN in SYN-SENT[*] state =>
1438 			 * simultaneous open.  If segment contains CC option
1439 			 * and there is a cached CC, apply TAO test.
1440 			 * If it succeeds, connection is * half-synchronized.
1441 			 * Otherwise, do 3-way handshake:
1442 			 *	  SYN-SENT -> SYN-RECEIVED
1443 			 *	  SYN-SENT* -> SYN-RECEIVED*
1444 			 * If there was no CC option, clear cached CC value.
1445 			 */
1446 			tp->t_flags |= TF_ACKNOW;
1447 			tcp_callout_stop(tp, tp->tt_rexmt);
1448 			if (to.to_flags & TOF_CC) {
1449 				if (taop->tao_cc != 0 &&
1450 				    CC_GT(to.to_cc, taop->tao_cc)) {
1451 					/*
1452 					 * update cache and make transition:
1453 					 *	  SYN-SENT -> ESTABLISHED*
1454 					 *	  SYN-SENT* -> FIN-WAIT-1*
1455 					 */
1456 					taop->tao_cc = to.to_cc;
1457 					tp->t_starttime = ticks;
1458 					if (tp->t_flags & TF_NEEDFIN) {
1459 						tp->t_state = TCPS_FIN_WAIT_1;
1460 						tp->t_flags &= ~TF_NEEDFIN;
1461 					} else {
1462 						tp->t_state = TCPS_ESTABLISHED;
1463 						tcp_callout_reset(tp,
1464 						    tp->tt_keep, tcp_keepidle,
1465 						    tcp_timer_keep);
1466 					}
1467 					tp->t_flags |= TF_NEEDSYN;
1468 				} else
1469 					tp->t_state = TCPS_SYN_RECEIVED;
1470 			} else {
1471 				/* CC.NEW or no option => invalidate cache */
1472 				taop->tao_cc = 0;
1473 				tp->t_state = TCPS_SYN_RECEIVED;
1474 			}
1475 		}
1476 
1477 trimthenstep6:
1478 		/*
1479 		 * Advance th->th_seq to correspond to first data byte.
1480 		 * If data, trim to stay within window,
1481 		 * dropping FIN if necessary.
1482 		 */
1483 		th->th_seq++;
1484 		if (tlen > tp->rcv_wnd) {
1485 			todrop = tlen - tp->rcv_wnd;
1486 			m_adj(m, -todrop);
1487 			tlen = tp->rcv_wnd;
1488 			thflags &= ~TH_FIN;
1489 			tcpstat.tcps_rcvpackafterwin++;
1490 			tcpstat.tcps_rcvbyteafterwin += todrop;
1491 		}
1492 		tp->snd_wl1 = th->th_seq - 1;
1493 		tp->rcv_up = th->th_seq;
1494 		/*
1495 		 * Client side of transaction: already sent SYN and data.
1496 		 * If the remote host used T/TCP to validate the SYN,
1497 		 * our data will be ACK'd; if so, enter normal data segment
1498 		 * processing in the middle of step 5, ack processing.
1499 		 * Otherwise, goto step 6.
1500 		 */
1501 		if (thflags & TH_ACK)
1502 			goto process_ACK;
1503 
1504 		goto step6;
1505 
1506 	/*
1507 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1508 	 *	if segment contains a SYN and CC [not CC.NEW] option:
1509 	 *		if state == TIME_WAIT and connection duration > MSL,
1510 	 *		    drop packet and send RST;
1511 	 *
1512 	 *		if SEG.CC > CCrecv then is new SYN, and can implicitly
1513 	 *		    ack the FIN (and data) in retransmission queue.
1514 	 *		    Complete close and delete TCPCB.  Then reprocess
1515 	 *		    segment, hoping to find new TCPCB in LISTEN state;
1516 	 *
1517 	 *		else must be old SYN; drop it.
1518 	 *	else do normal processing.
1519 	 */
1520 	case TCPS_LAST_ACK:
1521 	case TCPS_CLOSING:
1522 	case TCPS_TIME_WAIT:
1523 		if ((thflags & TH_SYN) &&
1524 		    (to.to_flags & TOF_CC) && tp->cc_recv != 0) {
1525 			if (tp->t_state == TCPS_TIME_WAIT &&
1526 					(ticks - tp->t_starttime) > tcp_msl) {
1527 				rstreason = BANDLIM_UNLIMITED;
1528 				goto dropwithreset;
1529 			}
1530 			if (CC_GT(to.to_cc, tp->cc_recv)) {
1531 				tp = tcp_close(tp);
1532 				goto findpcb;
1533 			}
1534 			else
1535 				goto drop;
1536 		}
1537 		break;  /* continue normal processing */
1538 	}
1539 
1540 	/*
1541 	 * States other than LISTEN or SYN_SENT.
1542 	 * First check the RST flag and sequence number since reset segments
1543 	 * are exempt from the timestamp and connection count tests.  This
1544 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1545 	 * below which allowed reset segments in half the sequence space
1546 	 * to fall though and be processed (which gives forged reset
1547 	 * segments with a random sequence number a 50 percent chance of
1548 	 * killing a connection).
1549 	 * Then check timestamp, if present.
1550 	 * Then check the connection count, if present.
1551 	 * Then check that at least some bytes of segment are within
1552 	 * receive window.  If segment begins before rcv_nxt,
1553 	 * drop leading data (and SYN); if nothing left, just ack.
1554 	 *
1555 	 *
1556 	 * If the RST bit is set, check the sequence number to see
1557 	 * if this is a valid reset segment.
1558 	 * RFC 793 page 37:
1559 	 *   In all states except SYN-SENT, all reset (RST) segments
1560 	 *   are validated by checking their SEQ-fields.  A reset is
1561 	 *   valid if its sequence number is in the window.
1562 	 * Note: this does not take into account delayed ACKs, so
1563 	 *   we should test against last_ack_sent instead of rcv_nxt.
1564 	 *   The sequence number in the reset segment is normally an
1565 	 *   echo of our outgoing acknowledgement numbers, but some hosts
1566 	 *   send a reset with the sequence number at the rightmost edge
1567 	 *   of our receive window, and we have to handle this case.
1568 	 * If we have multiple segments in flight, the intial reset
1569 	 * segment sequence numbers will be to the left of last_ack_sent,
1570 	 * but they will eventually catch up.
1571 	 * In any case, it never made sense to trim reset segments to
1572 	 * fit the receive window since RFC 1122 says:
1573 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1574 	 *
1575 	 *    A TCP SHOULD allow a received RST segment to include data.
1576 	 *
1577 	 *    DISCUSSION
1578 	 *	   It has been suggested that a RST segment could contain
1579 	 *	   ASCII text that encoded and explained the cause of the
1580 	 *	   RST.  No standard has yet been established for such
1581 	 *	   data.
1582 	 *
1583 	 * If the reset segment passes the sequence number test examine
1584 	 * the state:
1585 	 *    SYN_RECEIVED STATE:
1586 	 *	If passive open, return to LISTEN state.
1587 	 *	If active open, inform user that connection was refused.
1588 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1589 	 *	Inform user that connection was reset, and close tcb.
1590 	 *    CLOSING, LAST_ACK STATES:
1591 	 *	Close the tcb.
1592 	 *    TIME_WAIT STATE:
1593 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1594 	 *	RFC 1337.
1595 	 */
1596 	if (thflags & TH_RST) {
1597 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1598 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1599 			switch (tp->t_state) {
1600 
1601 			case TCPS_SYN_RECEIVED:
1602 				so->so_error = ECONNREFUSED;
1603 				goto close;
1604 
1605 			case TCPS_ESTABLISHED:
1606 			case TCPS_FIN_WAIT_1:
1607 			case TCPS_FIN_WAIT_2:
1608 			case TCPS_CLOSE_WAIT:
1609 				so->so_error = ECONNRESET;
1610 			close:
1611 				tp->t_state = TCPS_CLOSED;
1612 				tcpstat.tcps_drops++;
1613 				tp = tcp_close(tp);
1614 				break;
1615 
1616 			case TCPS_CLOSING:
1617 			case TCPS_LAST_ACK:
1618 				tp = tcp_close(tp);
1619 				break;
1620 
1621 			case TCPS_TIME_WAIT:
1622 				break;
1623 			}
1624 		}
1625 		goto drop;
1626 	}
1627 
1628 	/*
1629 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1630 	 * and it's less than ts_recent, drop it.
1631 	 */
1632 	if ((to.to_flags & TOF_TS) && tp->ts_recent != 0 &&
1633 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1634 
1635 		/* Check to see if ts_recent is over 24 days old.  */
1636 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1637 			/*
1638 			 * Invalidate ts_recent.  If this segment updates
1639 			 * ts_recent, the age will be reset later and ts_recent
1640 			 * will get a valid value.  If it does not, setting
1641 			 * ts_recent to zero will at least satisfy the
1642 			 * requirement that zero be placed in the timestamp
1643 			 * echo reply when ts_recent isn't valid.  The
1644 			 * age isn't reset until we get a valid ts_recent
1645 			 * because we don't want out-of-order segments to be
1646 			 * dropped when ts_recent is old.
1647 			 */
1648 			tp->ts_recent = 0;
1649 		} else {
1650 			tcpstat.tcps_rcvduppack++;
1651 			tcpstat.tcps_rcvdupbyte += tlen;
1652 			tcpstat.tcps_pawsdrop++;
1653 			if (tlen)
1654 				goto dropafterack;
1655 			goto drop;
1656 		}
1657 	}
1658 
1659 	/*
1660 	 * T/TCP mechanism
1661 	 *   If T/TCP was negotiated and the segment doesn't have CC,
1662 	 *   or if its CC is wrong then drop the segment.
1663 	 *   RST segments do not have to comply with this.
1664 	 */
1665 	if ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) == (TF_REQ_CC|TF_RCVD_CC) &&
1666 	    (!(to.to_flags & TOF_CC) || tp->cc_recv != to.to_cc))
1667 		goto dropafterack;
1668 
1669 	/*
1670 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1671 	 * this connection before trimming the data to fit the receive
1672 	 * window.  Check the sequence number versus IRS since we know
1673 	 * the sequence numbers haven't wrapped.  This is a partial fix
1674 	 * for the "LAND" DoS attack.
1675 	 */
1676 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1677 		rstreason = BANDLIM_RST_OPENPORT;
1678 		goto dropwithreset;
1679 	}
1680 
1681 	todrop = tp->rcv_nxt - th->th_seq;
1682 	if (todrop > 0) {
1683 		if (TCP_DO_SACK(tp)) {
1684 			/* Report duplicate segment at head of packet. */
1685 			tp->reportblk.rblk_start = th->th_seq;
1686 			tp->reportblk.rblk_end = th->th_seq + tlen;
1687 			if (thflags & TH_FIN)
1688 				++tp->reportblk.rblk_end;
1689 			if (SEQ_GT(tp->reportblk.rblk_end, tp->rcv_nxt))
1690 				tp->reportblk.rblk_end = tp->rcv_nxt;
1691 			tp->t_flags |= (TF_DUPSEG | TF_SACKLEFT | TF_ACKNOW);
1692 		}
1693 		if (thflags & TH_SYN) {
1694 			thflags &= ~TH_SYN;
1695 			th->th_seq++;
1696 			if (th->th_urp > 1)
1697 				th->th_urp--;
1698 			else
1699 				thflags &= ~TH_URG;
1700 			todrop--;
1701 		}
1702 		/*
1703 		 * Following if statement from Stevens, vol. 2, p. 960.
1704 		 */
1705 		if (todrop > tlen ||
1706 		    (todrop == tlen && !(thflags & TH_FIN))) {
1707 			/*
1708 			 * Any valid FIN must be to the left of the window.
1709 			 * At this point the FIN must be a duplicate or out
1710 			 * of sequence; drop it.
1711 			 */
1712 			thflags &= ~TH_FIN;
1713 
1714 			/*
1715 			 * Send an ACK to resynchronize and drop any data.
1716 			 * But keep on processing for RST or ACK.
1717 			 */
1718 			tp->t_flags |= TF_ACKNOW;
1719 			todrop = tlen;
1720 			tcpstat.tcps_rcvduppack++;
1721 			tcpstat.tcps_rcvdupbyte += todrop;
1722 		} else {
1723 			tcpstat.tcps_rcvpartduppack++;
1724 			tcpstat.tcps_rcvpartdupbyte += todrop;
1725 		}
1726 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1727 		th->th_seq += todrop;
1728 		tlen -= todrop;
1729 		if (th->th_urp > todrop)
1730 			th->th_urp -= todrop;
1731 		else {
1732 			thflags &= ~TH_URG;
1733 			th->th_urp = 0;
1734 		}
1735 	}
1736 
1737 	/*
1738 	 * If new data are received on a connection after the
1739 	 * user processes are gone, then RST the other end.
1740 	 */
1741 	if ((so->so_state & SS_NOFDREF) &&
1742 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1743 		tp = tcp_close(tp);
1744 		tcpstat.tcps_rcvafterclose++;
1745 		rstreason = BANDLIM_UNLIMITED;
1746 		goto dropwithreset;
1747 	}
1748 
1749 	/*
1750 	 * If segment ends after window, drop trailing data
1751 	 * (and PUSH and FIN); if nothing left, just ACK.
1752 	 */
1753 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1754 	if (todrop > 0) {
1755 		tcpstat.tcps_rcvpackafterwin++;
1756 		if (todrop >= tlen) {
1757 			tcpstat.tcps_rcvbyteafterwin += tlen;
1758 			/*
1759 			 * If a new connection request is received
1760 			 * while in TIME_WAIT, drop the old connection
1761 			 * and start over if the sequence numbers
1762 			 * are above the previous ones.
1763 			 */
1764 			if (thflags & TH_SYN &&
1765 			    tp->t_state == TCPS_TIME_WAIT &&
1766 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1767 				tp = tcp_close(tp);
1768 				goto findpcb;
1769 			}
1770 			/*
1771 			 * If window is closed can only take segments at
1772 			 * window edge, and have to drop data and PUSH from
1773 			 * incoming segments.  Continue processing, but
1774 			 * remember to ack.  Otherwise, drop segment
1775 			 * and ack.
1776 			 */
1777 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1778 				tp->t_flags |= TF_ACKNOW;
1779 				tcpstat.tcps_rcvwinprobe++;
1780 			} else
1781 				goto dropafterack;
1782 		} else
1783 			tcpstat.tcps_rcvbyteafterwin += todrop;
1784 		m_adj(m, -todrop);
1785 		tlen -= todrop;
1786 		thflags &= ~(TH_PUSH | TH_FIN);
1787 	}
1788 
1789 	/*
1790 	 * If last ACK falls within this segment's sequence numbers,
1791 	 * record its timestamp.
1792 	 * NOTE:
1793 	 * 1) That the test incorporates suggestions from the latest
1794 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1795 	 * 2) That updating only on newer timestamps interferes with
1796 	 *    our earlier PAWS tests, so this check should be solely
1797 	 *    predicated on the sequence space of this segment.
1798 	 * 3) That we modify the segment boundary check to be
1799 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.LEN
1800 	 *    instead of RFC1323's
1801 	 *        Last.ACK.Sent < SEG.SEQ + SEG.LEN,
1802 	 *    This modified check allows us to overcome RFC1323's
1803 	 *    limitations as described in Stevens TCP/IP Illustrated
1804 	 *    Vol. 2 p.869. In such cases, we can still calculate the
1805 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1806 	 */
1807 	if ((to.to_flags & TOF_TS) && SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1808 	    SEQ_LEQ(tp->last_ack_sent, (th->th_seq + tlen
1809 					+ ((thflags & TH_SYN) != 0)
1810 					+ ((thflags & TH_FIN) != 0)))) {
1811 		tp->ts_recent_age = ticks;
1812 		tp->ts_recent = to.to_tsval;
1813 	}
1814 
1815 	/*
1816 	 * If a SYN is in the window, then this is an
1817 	 * error and we send an RST and drop the connection.
1818 	 */
1819 	if (thflags & TH_SYN) {
1820 		tp = tcp_drop(tp, ECONNRESET);
1821 		rstreason = BANDLIM_UNLIMITED;
1822 		goto dropwithreset;
1823 	}
1824 
1825 	/*
1826 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1827 	 * flag is on (half-synchronized state), then queue data for
1828 	 * later processing; else drop segment and return.
1829 	 */
1830 	if (!(thflags & TH_ACK)) {
1831 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1832 		    (tp->t_flags & TF_NEEDSYN))
1833 			goto step6;
1834 		else
1835 			goto drop;
1836 	}
1837 
1838 	/*
1839 	 * Ack processing.
1840 	 */
1841 	switch (tp->t_state) {
1842 	/*
1843 	 * In SYN_RECEIVED state, the ACK acknowledges our SYN, so enter
1844 	 * ESTABLISHED state and continue processing.
1845 	 * The ACK was checked above.
1846 	 */
1847 	case TCPS_SYN_RECEIVED:
1848 
1849 		tcpstat.tcps_connects++;
1850 		soisconnected(so);
1851 		/* Do window scaling? */
1852 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1853 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
1854 			tp->snd_scale = tp->requested_s_scale;
1855 			tp->rcv_scale = tp->request_r_scale;
1856 		}
1857 		/*
1858 		 * Upon successful completion of 3-way handshake,
1859 		 * update cache.CC if it was undefined, pass any queued
1860 		 * data to the user, and advance state appropriately.
1861 		 */
1862 		if ((taop = tcp_gettaocache(&inp->inp_inc)) != NULL &&
1863 		    taop->tao_cc == 0)
1864 			taop->tao_cc = tp->cc_recv;
1865 
1866 		/*
1867 		 * Make transitions:
1868 		 *      SYN-RECEIVED  -> ESTABLISHED
1869 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1870 		 */
1871 		tp->t_starttime = ticks;
1872 		if (tp->t_flags & TF_NEEDFIN) {
1873 			tp->t_state = TCPS_FIN_WAIT_1;
1874 			tp->t_flags &= ~TF_NEEDFIN;
1875 		} else {
1876 			tp->t_state = TCPS_ESTABLISHED;
1877 			tcp_callout_reset(tp, tp->tt_keep, tcp_keepidle,
1878 			    tcp_timer_keep);
1879 		}
1880 		/*
1881 		 * If segment contains data or ACK, will call tcp_reass()
1882 		 * later; if not, do so now to pass queued data to user.
1883 		 */
1884 		if (tlen == 0 && !(thflags & TH_FIN))
1885 			tcp_reass(tp, NULL, NULL, NULL);
1886 		/* fall into ... */
1887 
1888 	/*
1889 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1890 	 * ACKs.  If the ack is in the range
1891 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1892 	 * then advance tp->snd_una to th->th_ack and drop
1893 	 * data from the retransmission queue.  If this ACK reflects
1894 	 * more up to date window information we update our window information.
1895 	 */
1896 	case TCPS_ESTABLISHED:
1897 	case TCPS_FIN_WAIT_1:
1898 	case TCPS_FIN_WAIT_2:
1899 	case TCPS_CLOSE_WAIT:
1900 	case TCPS_CLOSING:
1901 	case TCPS_LAST_ACK:
1902 	case TCPS_TIME_WAIT:
1903 
1904 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1905 			if (TCP_DO_SACK(tp))
1906 				tcp_sack_update_scoreboard(tp, &to);
1907 			if (tlen != 0 || tiwin != tp->snd_wnd) {
1908 				tp->t_dupacks = 0;
1909 				break;
1910 			}
1911 			tcpstat.tcps_rcvdupack++;
1912 			if (!tcp_callout_active(tp, tp->tt_rexmt) ||
1913 			    th->th_ack != tp->snd_una) {
1914 				tp->t_dupacks = 0;
1915 				break;
1916 			}
1917 			/*
1918 			 * We have outstanding data (other than
1919 			 * a window probe), this is a completely
1920 			 * duplicate ack (ie, window info didn't
1921 			 * change), the ack is the biggest we've
1922 			 * seen and we've seen exactly our rexmt
1923 			 * threshhold of them, so assume a packet
1924 			 * has been dropped and retransmit it.
1925 			 * Kludge snd_nxt & the congestion
1926 			 * window so we send only this one
1927 			 * packet.
1928 			 */
1929 			if (IN_FASTRECOVERY(tp)) {
1930 				if (TCP_DO_SACK(tp)) {
1931 					/* No artifical cwnd inflation. */
1932 					tcp_sack_rexmt(tp, th);
1933 				} else {
1934 					/*
1935 					 * Dup acks mean that packets
1936 					 * have left the network
1937 					 * (they're now cached at the
1938 					 * receiver) so bump cwnd by
1939 					 * the amount in the receiver
1940 					 * to keep a constant cwnd
1941 					 * packets in the network.
1942 					 */
1943 					tp->snd_cwnd += tp->t_maxseg;
1944 					tcp_output(tp);
1945 				}
1946 			} else if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1947 				tp->t_dupacks = 0;
1948 				break;
1949 			} else if (++tp->t_dupacks == tcprexmtthresh) {
1950 				tcp_seq old_snd_nxt;
1951 				u_int win;
1952 
1953 fastretransmit:
1954 				if (tcp_do_eifel_detect &&
1955 				    (tp->t_flags & TF_RCVD_TSTMP)) {
1956 					tcp_save_congestion_state(tp);
1957 					tp->t_flags |= TF_FASTREXMT;
1958 				}
1959 				/*
1960 				 * We know we're losing at the current
1961 				 * window size, so do congestion avoidance:
1962 				 * set ssthresh to half the current window
1963 				 * and pull our congestion window back to the
1964 				 * new ssthresh.
1965 				 */
1966 				win = min(tp->snd_wnd, tp->snd_cwnd) / 2 /
1967 				    tp->t_maxseg;
1968 				if (win < 2)
1969 					win = 2;
1970 				tp->snd_ssthresh = win * tp->t_maxseg;
1971 				ENTER_FASTRECOVERY(tp);
1972 				tp->snd_recover = tp->snd_max;
1973 				tcp_callout_stop(tp, tp->tt_rexmt);
1974 				tp->t_rtttime = 0;
1975 				old_snd_nxt = tp->snd_nxt;
1976 				tp->snd_nxt = th->th_ack;
1977 				tp->snd_cwnd = tp->t_maxseg;
1978 				tcp_output(tp);
1979 				++tcpstat.tcps_sndfastrexmit;
1980 				tp->snd_cwnd = tp->snd_ssthresh;
1981 				tp->rexmt_high = tp->snd_nxt;
1982 				if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
1983 					tp->snd_nxt = old_snd_nxt;
1984 				KASSERT(tp->snd_limited <= 2,
1985 				    ("tp->snd_limited too big"));
1986 				if (TCP_DO_SACK(tp))
1987 					tcp_sack_rexmt(tp, th);
1988 				else
1989 					tp->snd_cwnd += tp->t_maxseg *
1990 					    (tp->t_dupacks - tp->snd_limited);
1991 			} else if (tcp_do_limitedtransmit) {
1992 				u_long oldcwnd = tp->snd_cwnd;
1993 				tcp_seq oldsndmax = tp->snd_max;
1994 				tcp_seq oldsndnxt = tp->snd_nxt;
1995 				/* outstanding data */
1996 				uint32_t ownd = tp->snd_max - tp->snd_una;
1997 				u_int sent;
1998 
1999 #define	iceildiv(n, d)		(((n)+(d)-1) / (d))
2000 
2001 				KASSERT(tp->t_dupacks == 1 ||
2002 					tp->t_dupacks == 2,
2003 				    ("dupacks not 1 or 2"));
2004 				if (tp->t_dupacks == 1)
2005 					tp->snd_limited = 0;
2006 				tp->snd_nxt = tp->snd_max;
2007 				tp->snd_cwnd = ownd +
2008 				    (tp->t_dupacks - tp->snd_limited) *
2009 				    tp->t_maxseg;
2010 				tcp_output(tp);
2011 
2012 				/*
2013 				 * Other acks may have been processed,
2014 				 * snd_nxt cannot be reset to a value less
2015 				 * then snd_una.
2016 				 */
2017 				if (SEQ_LT(oldsndnxt, oldsndmax)) {
2018 				    if (SEQ_GT(oldsndnxt, tp->snd_una))
2019 					tp->snd_nxt = oldsndnxt;
2020 				    else
2021 					tp->snd_nxt = tp->snd_una;
2022 				}
2023 				tp->snd_cwnd = oldcwnd;
2024 				sent = tp->snd_max - oldsndmax;
2025 				if (sent > tp->t_maxseg) {
2026 					KASSERT((tp->t_dupacks == 2 &&
2027 						 tp->snd_limited == 0) ||
2028 						(sent == tp->t_maxseg + 1 &&
2029 						 tp->t_flags & TF_SENTFIN),
2030 					    ("sent too much"));
2031 					KASSERT(sent <= tp->t_maxseg * 2,
2032 					    ("sent too many segments"));
2033 					tp->snd_limited = 2;
2034 					tcpstat.tcps_sndlimited += 2;
2035 				} else if (sent > 0) {
2036 					++tp->snd_limited;
2037 					++tcpstat.tcps_sndlimited;
2038 				} else if (tcp_do_early_retransmit &&
2039 				    (tcp_do_eifel_detect &&
2040 				     (tp->t_flags & TF_RCVD_TSTMP)) &&
2041 				    ownd < 4 * tp->t_maxseg &&
2042 				    tp->t_dupacks + 1 >=
2043 				      iceildiv(ownd, tp->t_maxseg) &&
2044 				    (!TCP_DO_SACK(tp) ||
2045 				     ownd <= tp->t_maxseg ||
2046 				     tcp_sack_has_sacked(&tp->scb,
2047 							ownd - tp->t_maxseg))) {
2048 					++tcpstat.tcps_sndearlyrexmit;
2049 					tp->t_flags |= TF_EARLYREXMT;
2050 					goto fastretransmit;
2051 				}
2052 			}
2053 			goto drop;
2054 		}
2055 
2056 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
2057 		tp->t_dupacks = 0;
2058 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2059 			/*
2060 			 * Detected optimistic ACK attack.
2061 			 * Force slow-start to de-synchronize attack.
2062 			 */
2063 			tp->snd_cwnd = tp->t_maxseg;
2064 			tp->snd_wacked = 0;
2065 
2066 			tcpstat.tcps_rcvacktoomuch++;
2067 			goto dropafterack;
2068 		}
2069 		/*
2070 		 * If we reach this point, ACK is not a duplicate,
2071 		 *     i.e., it ACKs something we sent.
2072 		 */
2073 		if (tp->t_flags & TF_NEEDSYN) {
2074 			/*
2075 			 * T/TCP: Connection was half-synchronized, and our
2076 			 * SYN has been ACK'd (so connection is now fully
2077 			 * synchronized).  Go to non-starred state,
2078 			 * increment snd_una for ACK of SYN, and check if
2079 			 * we can do window scaling.
2080 			 */
2081 			tp->t_flags &= ~TF_NEEDSYN;
2082 			tp->snd_una++;
2083 			/* Do window scaling? */
2084 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
2085 			    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
2086 				tp->snd_scale = tp->requested_s_scale;
2087 				tp->rcv_scale = tp->request_r_scale;
2088 			}
2089 		}
2090 
2091 process_ACK:
2092 		acked = th->th_ack - tp->snd_una;
2093 		tcpstat.tcps_rcvackpack++;
2094 		tcpstat.tcps_rcvackbyte += acked;
2095 
2096 		if (tcp_do_eifel_detect && acked > 0 &&
2097 		    (to.to_flags & TOF_TS) && (to.to_tsecr != 0) &&
2098 		    (tp->t_flags & TF_FIRSTACCACK)) {
2099 			/* Eifel detection applicable. */
2100 			if (to.to_tsecr < tp->t_rexmtTS) {
2101 				++tcpstat.tcps_eifeldetected;
2102 				tcp_revert_congestion_state(tp);
2103 				if (tp->t_rxtshift == 1 &&
2104 				    ticks >= tp->t_badrxtwin)
2105 					++tcpstat.tcps_rttcantdetect;
2106 			}
2107 		} else if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
2108 			/*
2109 			 * If we just performed our first retransmit,
2110 			 * and the ACK arrives within our recovery window,
2111 			 * then it was a mistake to do the retransmit
2112 			 * in the first place.  Recover our original cwnd
2113 			 * and ssthresh, and proceed to transmit where we
2114 			 * left off.
2115 			 */
2116 			tcp_revert_congestion_state(tp);
2117 			++tcpstat.tcps_rttdetected;
2118 		}
2119 
2120 		/*
2121 		 * If we have a timestamp reply, update smoothed
2122 		 * round trip time.  If no timestamp is present but
2123 		 * transmit timer is running and timed sequence
2124 		 * number was acked, update smoothed round trip time.
2125 		 * Since we now have an rtt measurement, cancel the
2126 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2127 		 * Recompute the initial retransmit timer.
2128 		 *
2129 		 * Some machines (certain windows boxes) send broken
2130 		 * timestamp replies during the SYN+ACK phase, ignore
2131 		 * timestamps of 0.
2132 		 */
2133 		if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0))
2134 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2135 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2136 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2137 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2138 
2139 		/*
2140 		 * If no data (only SYN) was ACK'd,
2141 		 *    skip rest of ACK processing.
2142 		 */
2143 		if (acked == 0)
2144 			goto step6;
2145 
2146 		/* Stop looking for an acceptable ACK since one was received. */
2147 		tp->t_flags &= ~(TF_FIRSTACCACK | TF_FASTREXMT | TF_EARLYREXMT);
2148 
2149 		if (acked > so->so_snd.ssb_cc) {
2150 			tp->snd_wnd -= so->so_snd.ssb_cc;
2151 			sbdrop(&so->so_snd.sb, (int)so->so_snd.ssb_cc);
2152 			ourfinisacked = TRUE;
2153 		} else {
2154 			sbdrop(&so->so_snd.sb, acked);
2155 			tp->snd_wnd -= acked;
2156 			ourfinisacked = FALSE;
2157 		}
2158 		sowwakeup(so);
2159 
2160 		/*
2161 		 * Update window information.
2162 		 * Don't look at window if no ACK:
2163 		 * TAC's send garbage on first SYN.
2164 		 */
2165 		if (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2166 		    (tp->snd_wl1 == th->th_seq &&
2167 		     (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2168 		      (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)))) {
2169 			/* keep track of pure window updates */
2170 			if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2171 			    tiwin > tp->snd_wnd)
2172 				tcpstat.tcps_rcvwinupd++;
2173 			tp->snd_wnd = tiwin;
2174 			tp->snd_wl1 = th->th_seq;
2175 			tp->snd_wl2 = th->th_ack;
2176 			if (tp->snd_wnd > tp->max_sndwnd)
2177 				tp->max_sndwnd = tp->snd_wnd;
2178 			needoutput = TRUE;
2179 		}
2180 
2181 		tp->snd_una = th->th_ack;
2182 		if (TCP_DO_SACK(tp))
2183 			tcp_sack_update_scoreboard(tp, &to);
2184 		if (IN_FASTRECOVERY(tp)) {
2185 			if (SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2186 				EXIT_FASTRECOVERY(tp);
2187 				needoutput = TRUE;
2188 				/*
2189 				 * If the congestion window was inflated
2190 				 * to account for the other side's
2191 				 * cached packets, retract it.
2192 				 */
2193 				if (!TCP_DO_SACK(tp))
2194 					tp->snd_cwnd = tp->snd_ssthresh;
2195 
2196 				/*
2197 				 * Window inflation should have left us
2198 				 * with approximately snd_ssthresh outstanding
2199 				 * data.  But, in case we would be inclined
2200 				 * to send a burst, better do it using
2201 				 * slow start.
2202 				 */
2203 				if (SEQ_GT(th->th_ack + tp->snd_cwnd,
2204 					   tp->snd_max + 2 * tp->t_maxseg))
2205 					tp->snd_cwnd =
2206 					    (tp->snd_max - tp->snd_una) +
2207 					    2 * tp->t_maxseg;
2208 
2209 				tp->snd_wacked = 0;
2210 			} else {
2211 				if (TCP_DO_SACK(tp)) {
2212 					tp->snd_max_rexmt = tp->snd_max;
2213 					tcp_sack_rexmt(tp, th);
2214 				} else {
2215 					tcp_newreno_partial_ack(tp, th, acked);
2216 				}
2217 				needoutput = FALSE;
2218 			}
2219 		} else {
2220 			/*
2221 			 * Open the congestion window.  When in slow-start,
2222 			 * open exponentially: maxseg per packet.  Otherwise,
2223 			 * open linearly: maxseg per window.
2224 			 */
2225 			if (tp->snd_cwnd <= tp->snd_ssthresh) {
2226 				u_int abc_sslimit =
2227 				    (SEQ_LT(tp->snd_nxt, tp->snd_max) ?
2228 				     tp->t_maxseg : 2 * tp->t_maxseg);
2229 
2230 				/* slow-start */
2231 				tp->snd_cwnd += tcp_do_abc ?
2232 				    min(acked, abc_sslimit) : tp->t_maxseg;
2233 			} else {
2234 				/* linear increase */
2235 				tp->snd_wacked += tcp_do_abc ? acked :
2236 				    tp->t_maxseg;
2237 				if (tp->snd_wacked >= tp->snd_cwnd) {
2238 					tp->snd_wacked -= tp->snd_cwnd;
2239 					tp->snd_cwnd += tp->t_maxseg;
2240 				}
2241 			}
2242 			tp->snd_cwnd = min(tp->snd_cwnd,
2243 					   TCP_MAXWIN << tp->snd_scale);
2244 			tp->snd_recover = th->th_ack - 1;
2245 		}
2246 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2247 			tp->snd_nxt = tp->snd_una;
2248 
2249 		/*
2250 		 * If all outstanding data is acked, stop retransmit
2251 		 * timer and remember to restart (more output or persist).
2252 		 * If there is more data to be acked, restart retransmit
2253 		 * timer, using current (possibly backed-off) value.
2254 		 */
2255 		if (th->th_ack == tp->snd_max) {
2256 			tcp_callout_stop(tp, tp->tt_rexmt);
2257 			needoutput = TRUE;
2258 		} else if (!tcp_callout_active(tp, tp->tt_persist)) {
2259 			tcp_callout_reset(tp, tp->tt_rexmt, tp->t_rxtcur,
2260 			    tcp_timer_rexmt);
2261 		}
2262 
2263 		switch (tp->t_state) {
2264 		/*
2265 		 * In FIN_WAIT_1 STATE in addition to the processing
2266 		 * for the ESTABLISHED state if our FIN is now acknowledged
2267 		 * then enter FIN_WAIT_2.
2268 		 */
2269 		case TCPS_FIN_WAIT_1:
2270 			if (ourfinisacked) {
2271 				/*
2272 				 * If we can't receive any more
2273 				 * data, then closing user can proceed.
2274 				 * Starting the timer is contrary to the
2275 				 * specification, but if we don't get a FIN
2276 				 * we'll hang forever.
2277 				 */
2278 				if (so->so_state & SS_CANTRCVMORE) {
2279 					soisdisconnected(so);
2280 					tcp_callout_reset(tp, tp->tt_2msl,
2281 					    tcp_maxidle, tcp_timer_2msl);
2282 				}
2283 				tp->t_state = TCPS_FIN_WAIT_2;
2284 			}
2285 			break;
2286 
2287 		/*
2288 		 * In CLOSING STATE in addition to the processing for
2289 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2290 		 * then enter the TIME-WAIT state, otherwise ignore
2291 		 * the segment.
2292 		 */
2293 		case TCPS_CLOSING:
2294 			if (ourfinisacked) {
2295 				tp->t_state = TCPS_TIME_WAIT;
2296 				tcp_canceltimers(tp);
2297 				/* Shorten TIME_WAIT [RFC-1644, p.28] */
2298 				if (tp->cc_recv != 0 &&
2299 				    (ticks - tp->t_starttime) < tcp_msl) {
2300 					tcp_callout_reset(tp, tp->tt_2msl,
2301 					    tp->t_rxtcur * TCPTV_TWTRUNC,
2302 					    tcp_timer_2msl);
2303 				} else {
2304 					tcp_callout_reset(tp, tp->tt_2msl,
2305 					    2 * tcp_msl, tcp_timer_2msl);
2306 				}
2307 				soisdisconnected(so);
2308 			}
2309 			break;
2310 
2311 		/*
2312 		 * In LAST_ACK, we may still be waiting for data to drain
2313 		 * and/or to be acked, as well as for the ack of our FIN.
2314 		 * If our FIN is now acknowledged, delete the TCB,
2315 		 * enter the closed state and return.
2316 		 */
2317 		case TCPS_LAST_ACK:
2318 			if (ourfinisacked) {
2319 				tp = tcp_close(tp);
2320 				goto drop;
2321 			}
2322 			break;
2323 
2324 		/*
2325 		 * In TIME_WAIT state the only thing that should arrive
2326 		 * is a retransmission of the remote FIN.  Acknowledge
2327 		 * it and restart the finack timer.
2328 		 */
2329 		case TCPS_TIME_WAIT:
2330 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_msl,
2331 			    tcp_timer_2msl);
2332 			goto dropafterack;
2333 		}
2334 	}
2335 
2336 step6:
2337 	/*
2338 	 * Update window information.
2339 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2340 	 */
2341 	if ((thflags & TH_ACK) &&
2342 	    acceptable_window_update(tp, th, tiwin)) {
2343 		/* keep track of pure window updates */
2344 		if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2345 		    tiwin > tp->snd_wnd)
2346 			tcpstat.tcps_rcvwinupd++;
2347 		tp->snd_wnd = tiwin;
2348 		tp->snd_wl1 = th->th_seq;
2349 		tp->snd_wl2 = th->th_ack;
2350 		if (tp->snd_wnd > tp->max_sndwnd)
2351 			tp->max_sndwnd = tp->snd_wnd;
2352 		needoutput = TRUE;
2353 	}
2354 
2355 	/*
2356 	 * Process segments with URG.
2357 	 */
2358 	if ((thflags & TH_URG) && th->th_urp &&
2359 	    !TCPS_HAVERCVDFIN(tp->t_state)) {
2360 		/*
2361 		 * This is a kludge, but if we receive and accept
2362 		 * random urgent pointers, we'll crash in
2363 		 * soreceive.  It's hard to imagine someone
2364 		 * actually wanting to send this much urgent data.
2365 		 */
2366 		if (th->th_urp + so->so_rcv.ssb_cc > sb_max) {
2367 			th->th_urp = 0;			/* XXX */
2368 			thflags &= ~TH_URG;		/* XXX */
2369 			goto dodata;			/* XXX */
2370 		}
2371 		/*
2372 		 * If this segment advances the known urgent pointer,
2373 		 * then mark the data stream.  This should not happen
2374 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2375 		 * a FIN has been received from the remote side.
2376 		 * In these states we ignore the URG.
2377 		 *
2378 		 * According to RFC961 (Assigned Protocols),
2379 		 * the urgent pointer points to the last octet
2380 		 * of urgent data.  We continue, however,
2381 		 * to consider it to indicate the first octet
2382 		 * of data past the urgent section as the original
2383 		 * spec states (in one of two places).
2384 		 */
2385 		if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) {
2386 			tp->rcv_up = th->th_seq + th->th_urp;
2387 			so->so_oobmark = so->so_rcv.ssb_cc +
2388 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2389 			if (so->so_oobmark == 0)
2390 				so->so_state |= SS_RCVATMARK;
2391 			sohasoutofband(so);
2392 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2393 		}
2394 		/*
2395 		 * Remove out of band data so doesn't get presented to user.
2396 		 * This can happen independent of advancing the URG pointer,
2397 		 * but if two URG's are pending at once, some out-of-band
2398 		 * data may creep in... ick.
2399 		 */
2400 		if (th->th_urp <= (u_long)tlen &&
2401 		    !(so->so_options & SO_OOBINLINE)) {
2402 			/* hdr drop is delayed */
2403 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2404 		}
2405 	} else {
2406 		/*
2407 		 * If no out of band data is expected,
2408 		 * pull receive urgent pointer along
2409 		 * with the receive window.
2410 		 */
2411 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2412 			tp->rcv_up = tp->rcv_nxt;
2413 	}
2414 
2415 dodata:							/* XXX */
2416 	/*
2417 	 * Process the segment text, merging it into the TCP sequencing queue,
2418 	 * and arranging for acknowledgment of receipt if necessary.
2419 	 * This process logically involves adjusting tp->rcv_wnd as data
2420 	 * is presented to the user (this happens in tcp_usrreq.c,
2421 	 * case PRU_RCVD).  If a FIN has already been received on this
2422 	 * connection then we just ignore the text.
2423 	 */
2424 	if ((tlen || (thflags & TH_FIN)) && !TCPS_HAVERCVDFIN(tp->t_state)) {
2425 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2426 		/*
2427 		 * Insert segment which includes th into TCP reassembly queue
2428 		 * with control block tp.  Set thflags to whether reassembly now
2429 		 * includes a segment with FIN.  This handles the common case
2430 		 * inline (segment is the next to be received on an established
2431 		 * connection, and the queue is empty), avoiding linkage into
2432 		 * and removal from the queue and repetition of various
2433 		 * conversions.
2434 		 * Set DELACK for segments received in order, but ack
2435 		 * immediately when segments are out of order (so
2436 		 * fast retransmit can work).
2437 		 */
2438 		if (th->th_seq == tp->rcv_nxt &&
2439 		    LIST_EMPTY(&tp->t_segq) &&
2440 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2441 			if (DELAY_ACK(tp)) {
2442 				tcp_callout_reset(tp, tp->tt_delack,
2443 				    tcp_delacktime, tcp_timer_delack);
2444 			} else {
2445 				tp->t_flags |= TF_ACKNOW;
2446 			}
2447 			tp->rcv_nxt += tlen;
2448 			thflags = th->th_flags & TH_FIN;
2449 			tcpstat.tcps_rcvpack++;
2450 			tcpstat.tcps_rcvbyte += tlen;
2451 			ND6_HINT(tp);
2452 			if (so->so_state & SS_CANTRCVMORE)
2453 				m_freem(m);
2454 			else
2455 				ssb_appendstream(&so->so_rcv, m);
2456 			sorwakeup(so);
2457 		} else {
2458 			if (!(tp->t_flags & TF_DUPSEG)) {
2459 				/* Initialize SACK report block. */
2460 				tp->reportblk.rblk_start = th->th_seq;
2461 				tp->reportblk.rblk_end = th->th_seq + tlen +
2462 				    ((thflags & TH_FIN) != 0);
2463 			}
2464 			thflags = tcp_reass(tp, th, &tlen, m);
2465 			tp->t_flags |= TF_ACKNOW;
2466 		}
2467 
2468 		/*
2469 		 * Note the amount of data that peer has sent into
2470 		 * our window, in order to estimate the sender's
2471 		 * buffer size.
2472 		 */
2473 		len = so->so_rcv.ssb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2474 	} else {
2475 		m_freem(m);
2476 		thflags &= ~TH_FIN;
2477 	}
2478 
2479 	/*
2480 	 * If FIN is received ACK the FIN and let the user know
2481 	 * that the connection is closing.
2482 	 */
2483 	if (thflags & TH_FIN) {
2484 		if (!TCPS_HAVERCVDFIN(tp->t_state)) {
2485 			socantrcvmore(so);
2486 			/*
2487 			 * If connection is half-synchronized
2488 			 * (ie NEEDSYN flag on) then delay ACK,
2489 			 * so it may be piggybacked when SYN is sent.
2490 			 * Otherwise, since we received a FIN then no
2491 			 * more input can be expected, send ACK now.
2492 			 */
2493 			if (DELAY_ACK(tp) && (tp->t_flags & TF_NEEDSYN)) {
2494 				tcp_callout_reset(tp, tp->tt_delack,
2495 				    tcp_delacktime, tcp_timer_delack);
2496 			} else {
2497 				tp->t_flags |= TF_ACKNOW;
2498 			}
2499 			tp->rcv_nxt++;
2500 		}
2501 
2502 		switch (tp->t_state) {
2503 		/*
2504 		 * In SYN_RECEIVED and ESTABLISHED STATES
2505 		 * enter the CLOSE_WAIT state.
2506 		 */
2507 		case TCPS_SYN_RECEIVED:
2508 			tp->t_starttime = ticks;
2509 			/*FALLTHROUGH*/
2510 		case TCPS_ESTABLISHED:
2511 			tp->t_state = TCPS_CLOSE_WAIT;
2512 			break;
2513 
2514 		/*
2515 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2516 		 * enter the CLOSING state.
2517 		 */
2518 		case TCPS_FIN_WAIT_1:
2519 			tp->t_state = TCPS_CLOSING;
2520 			break;
2521 
2522 		/*
2523 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2524 		 * starting the time-wait timer, turning off the other
2525 		 * standard timers.
2526 		 */
2527 		case TCPS_FIN_WAIT_2:
2528 			tp->t_state = TCPS_TIME_WAIT;
2529 			tcp_canceltimers(tp);
2530 			/* Shorten TIME_WAIT [RFC-1644, p.28] */
2531 			if (tp->cc_recv != 0 &&
2532 			    (ticks - tp->t_starttime) < tcp_msl) {
2533 				tcp_callout_reset(tp, tp->tt_2msl,
2534 				    tp->t_rxtcur * TCPTV_TWTRUNC,
2535 				    tcp_timer_2msl);
2536 				/* For transaction client, force ACK now. */
2537 				tp->t_flags |= TF_ACKNOW;
2538 			} else {
2539 				tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_msl,
2540 				    tcp_timer_2msl);
2541 			}
2542 			soisdisconnected(so);
2543 			break;
2544 
2545 		/*
2546 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2547 		 */
2548 		case TCPS_TIME_WAIT:
2549 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_msl,
2550 			    tcp_timer_2msl);
2551 			break;
2552 		}
2553 	}
2554 
2555 #ifdef TCPDEBUG
2556 	if (so->so_options & SO_DEBUG)
2557 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2558 #endif
2559 
2560 	/*
2561 	 * Return any desired output.
2562 	 */
2563 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2564 		tcp_output(tp);
2565 	return;
2566 
2567 dropafterack:
2568 	/*
2569 	 * Generate an ACK dropping incoming segment if it occupies
2570 	 * sequence space, where the ACK reflects our state.
2571 	 *
2572 	 * We can now skip the test for the RST flag since all
2573 	 * paths to this code happen after packets containing
2574 	 * RST have been dropped.
2575 	 *
2576 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2577 	 * segment we received passes the SYN-RECEIVED ACK test.
2578 	 * If it fails send a RST.  This breaks the loop in the
2579 	 * "LAND" DoS attack, and also prevents an ACK storm
2580 	 * between two listening ports that have been sent forged
2581 	 * SYN segments, each with the source address of the other.
2582 	 */
2583 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2584 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2585 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2586 		rstreason = BANDLIM_RST_OPENPORT;
2587 		goto dropwithreset;
2588 	}
2589 #ifdef TCPDEBUG
2590 	if (so->so_options & SO_DEBUG)
2591 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2592 #endif
2593 	m_freem(m);
2594 	tp->t_flags |= TF_ACKNOW;
2595 	tcp_output(tp);
2596 	return;
2597 
2598 dropwithreset:
2599 	/*
2600 	 * Generate a RST, dropping incoming segment.
2601 	 * Make ACK acceptable to originator of segment.
2602 	 * Don't bother to respond if destination was broadcast/multicast.
2603 	 */
2604 	if ((thflags & TH_RST) || m->m_flags & (M_BCAST | M_MCAST))
2605 		goto drop;
2606 	if (isipv6) {
2607 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2608 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2609 			goto drop;
2610 	} else {
2611 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2612 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2613 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2614 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2615 			goto drop;
2616 	}
2617 	/* IPv6 anycast check is done at tcp6_input() */
2618 
2619 	/*
2620 	 * Perform bandwidth limiting.
2621 	 */
2622 #ifdef ICMP_BANDLIM
2623 	if (badport_bandlim(rstreason) < 0)
2624 		goto drop;
2625 #endif
2626 
2627 #ifdef TCPDEBUG
2628 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2629 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2630 #endif
2631 	if (thflags & TH_ACK)
2632 		/* mtod() below is safe as long as hdr dropping is delayed */
2633 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2634 			    TH_RST);
2635 	else {
2636 		if (thflags & TH_SYN)
2637 			tlen++;
2638 		/* mtod() below is safe as long as hdr dropping is delayed */
2639 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq + tlen,
2640 			    (tcp_seq)0, TH_RST | TH_ACK);
2641 	}
2642 	return;
2643 
2644 drop:
2645 	/*
2646 	 * Drop space held by incoming segment and return.
2647 	 */
2648 #ifdef TCPDEBUG
2649 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2650 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2651 #endif
2652 	m_freem(m);
2653 	return;
2654 }
2655 
2656 /*
2657  * Parse TCP options and place in tcpopt.
2658  */
2659 static void
2660 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, boolean_t is_syn)
2661 {
2662 	int opt, optlen, i;
2663 
2664 	to->to_flags = 0;
2665 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2666 		opt = cp[0];
2667 		if (opt == TCPOPT_EOL)
2668 			break;
2669 		if (opt == TCPOPT_NOP)
2670 			optlen = 1;
2671 		else {
2672 			if (cnt < 2)
2673 				break;
2674 			optlen = cp[1];
2675 			if (optlen < 2 || optlen > cnt)
2676 				break;
2677 		}
2678 		switch (opt) {
2679 		case TCPOPT_MAXSEG:
2680 			if (optlen != TCPOLEN_MAXSEG)
2681 				continue;
2682 			if (!is_syn)
2683 				continue;
2684 			to->to_flags |= TOF_MSS;
2685 			bcopy(cp + 2, &to->to_mss, sizeof to->to_mss);
2686 			to->to_mss = ntohs(to->to_mss);
2687 			break;
2688 		case TCPOPT_WINDOW:
2689 			if (optlen != TCPOLEN_WINDOW)
2690 				continue;
2691 			if (!is_syn)
2692 				continue;
2693 			to->to_flags |= TOF_SCALE;
2694 			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2695 			break;
2696 		case TCPOPT_TIMESTAMP:
2697 			if (optlen != TCPOLEN_TIMESTAMP)
2698 				continue;
2699 			to->to_flags |= TOF_TS;
2700 			bcopy(cp + 2, &to->to_tsval, sizeof to->to_tsval);
2701 			to->to_tsval = ntohl(to->to_tsval);
2702 			bcopy(cp + 6, &to->to_tsecr, sizeof to->to_tsecr);
2703 			to->to_tsecr = ntohl(to->to_tsecr);
2704 			/*
2705 			 * If echoed timestamp is later than the current time,
2706 			 * fall back to non RFC1323 RTT calculation.
2707 			 */
2708 			if (to->to_tsecr != 0 && TSTMP_GT(to->to_tsecr, ticks))
2709 				to->to_tsecr = 0;
2710 			break;
2711 		case TCPOPT_CC:
2712 			if (optlen != TCPOLEN_CC)
2713 				continue;
2714 			to->to_flags |= TOF_CC;
2715 			bcopy(cp + 2, &to->to_cc, sizeof to->to_cc);
2716 			to->to_cc = ntohl(to->to_cc);
2717 			break;
2718 		case TCPOPT_CCNEW:
2719 			if (optlen != TCPOLEN_CC)
2720 				continue;
2721 			if (!is_syn)
2722 				continue;
2723 			to->to_flags |= TOF_CCNEW;
2724 			bcopy(cp + 2, &to->to_cc, sizeof to->to_cc);
2725 			to->to_cc = ntohl(to->to_cc);
2726 			break;
2727 		case TCPOPT_CCECHO:
2728 			if (optlen != TCPOLEN_CC)
2729 				continue;
2730 			if (!is_syn)
2731 				continue;
2732 			to->to_flags |= TOF_CCECHO;
2733 			bcopy(cp + 2, &to->to_ccecho, sizeof to->to_ccecho);
2734 			to->to_ccecho = ntohl(to->to_ccecho);
2735 			break;
2736 		case TCPOPT_SACK_PERMITTED:
2737 			if (optlen != TCPOLEN_SACK_PERMITTED)
2738 				continue;
2739 			if (!is_syn)
2740 				continue;
2741 			to->to_flags |= TOF_SACK_PERMITTED;
2742 			break;
2743 		case TCPOPT_SACK:
2744 			if ((optlen - 2) & 0x07)	/* not multiple of 8 */
2745 				continue;
2746 			to->to_nsackblocks = (optlen - 2) / 8;
2747 			to->to_sackblocks = (struct raw_sackblock *) (cp + 2);
2748 			to->to_flags |= TOF_SACK;
2749 			for (i = 0; i < to->to_nsackblocks; i++) {
2750 				struct raw_sackblock *r = &to->to_sackblocks[i];
2751 
2752 				r->rblk_start = ntohl(r->rblk_start);
2753 				r->rblk_end = ntohl(r->rblk_end);
2754 			}
2755 			break;
2756 		default:
2757 			continue;
2758 		}
2759 	}
2760 }
2761 
2762 /*
2763  * Pull out of band byte out of a segment so
2764  * it doesn't appear in the user's data queue.
2765  * It is still reflected in the segment length for
2766  * sequencing purposes.
2767  * "off" is the delayed to be dropped hdrlen.
2768  */
2769 static void
2770 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m, int off)
2771 {
2772 	int cnt = off + th->th_urp - 1;
2773 
2774 	while (cnt >= 0) {
2775 		if (m->m_len > cnt) {
2776 			char *cp = mtod(m, caddr_t) + cnt;
2777 			struct tcpcb *tp = sototcpcb(so);
2778 
2779 			tp->t_iobc = *cp;
2780 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2781 			bcopy(cp + 1, cp, m->m_len - cnt - 1);
2782 			m->m_len--;
2783 			if (m->m_flags & M_PKTHDR)
2784 				m->m_pkthdr.len--;
2785 			return;
2786 		}
2787 		cnt -= m->m_len;
2788 		m = m->m_next;
2789 		if (m == 0)
2790 			break;
2791 	}
2792 	panic("tcp_pulloutofband");
2793 }
2794 
2795 /*
2796  * Collect new round-trip time estimate
2797  * and update averages and current timeout.
2798  */
2799 static void
2800 tcp_xmit_timer(struct tcpcb *tp, int rtt)
2801 {
2802 	int delta;
2803 
2804 	tcpstat.tcps_rttupdated++;
2805 	tp->t_rttupdated++;
2806 	if (tp->t_srtt != 0) {
2807 		/*
2808 		 * srtt is stored as fixed point with 5 bits after the
2809 		 * binary point (i.e., scaled by 8).  The following magic
2810 		 * is equivalent to the smoothing algorithm in rfc793 with
2811 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2812 		 * point).  Adjust rtt to origin 0.
2813 		 */
2814 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2815 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2816 
2817 		if ((tp->t_srtt += delta) <= 0)
2818 			tp->t_srtt = 1;
2819 
2820 		/*
2821 		 * We accumulate a smoothed rtt variance (actually, a
2822 		 * smoothed mean difference), then set the retransmit
2823 		 * timer to smoothed rtt + 4 times the smoothed variance.
2824 		 * rttvar is stored as fixed point with 4 bits after the
2825 		 * binary point (scaled by 16).  The following is
2826 		 * equivalent to rfc793 smoothing with an alpha of .75
2827 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2828 		 * rfc793's wired-in beta.
2829 		 */
2830 		if (delta < 0)
2831 			delta = -delta;
2832 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2833 		if ((tp->t_rttvar += delta) <= 0)
2834 			tp->t_rttvar = 1;
2835 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2836 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2837 	} else {
2838 		/*
2839 		 * No rtt measurement yet - use the unsmoothed rtt.
2840 		 * Set the variance to half the rtt (so our first
2841 		 * retransmit happens at 3*rtt).
2842 		 */
2843 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2844 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2845 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2846 	}
2847 	tp->t_rtttime = 0;
2848 	tp->t_rxtshift = 0;
2849 
2850 	/*
2851 	 * the retransmit should happen at rtt + 4 * rttvar.
2852 	 * Because of the way we do the smoothing, srtt and rttvar
2853 	 * will each average +1/2 tick of bias.  When we compute
2854 	 * the retransmit timer, we want 1/2 tick of rounding and
2855 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2856 	 * firing of the timer.  The bias will give us exactly the
2857 	 * 1.5 tick we need.  But, because the bias is
2858 	 * statistical, we have to test that we don't drop below
2859 	 * the minimum feasible timer (which is 2 ticks).
2860 	 */
2861 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2862 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2863 
2864 	/*
2865 	 * We received an ack for a packet that wasn't retransmitted;
2866 	 * it is probably safe to discard any error indications we've
2867 	 * received recently.  This isn't quite right, but close enough
2868 	 * for now (a route might have failed after we sent a segment,
2869 	 * and the return path might not be symmetrical).
2870 	 */
2871 	tp->t_softerror = 0;
2872 }
2873 
2874 /*
2875  * Determine a reasonable value for maxseg size.
2876  * If the route is known, check route for mtu.
2877  * If none, use an mss that can be handled on the outgoing
2878  * interface without forcing IP to fragment; if bigger than
2879  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2880  * to utilize large mbufs.  If no route is found, route has no mtu,
2881  * or the destination isn't local, use a default, hopefully conservative
2882  * size (usually 512 or the default IP max size, but no more than the mtu
2883  * of the interface), as we can't discover anything about intervening
2884  * gateways or networks.  We also initialize the congestion/slow start
2885  * window to be a single segment if the destination isn't local.
2886  * While looking at the routing entry, we also initialize other path-dependent
2887  * parameters from pre-set or cached values in the routing entry.
2888  *
2889  * Also take into account the space needed for options that we
2890  * send regularly.  Make maxseg shorter by that amount to assure
2891  * that we can send maxseg amount of data even when the options
2892  * are present.  Store the upper limit of the length of options plus
2893  * data in maxopd.
2894  *
2895  * NOTE that this routine is only called when we process an incoming
2896  * segment, for outgoing segments only tcp_mssopt is called.
2897  *
2898  * In case of T/TCP, we call this routine during implicit connection
2899  * setup as well (offer = -1), to initialize maxseg from the cached
2900  * MSS of our peer.
2901  */
2902 void
2903 tcp_mss(struct tcpcb *tp, int offer)
2904 {
2905 	struct rtentry *rt;
2906 	struct ifnet *ifp;
2907 	int rtt, mss;
2908 	u_long bufsize;
2909 	struct inpcb *inp = tp->t_inpcb;
2910 	struct socket *so;
2911 	struct rmxp_tao *taop;
2912 	int origoffer = offer;
2913 #ifdef INET6
2914 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
2915 	size_t min_protoh = isipv6 ?
2916 			    sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
2917 			    sizeof(struct tcpiphdr);
2918 #else
2919 	const boolean_t isipv6 = FALSE;
2920 	const size_t min_protoh = sizeof(struct tcpiphdr);
2921 #endif
2922 
2923 	if (isipv6)
2924 		rt = tcp_rtlookup6(&inp->inp_inc);
2925 	else
2926 		rt = tcp_rtlookup(&inp->inp_inc);
2927 	if (rt == NULL) {
2928 		tp->t_maxopd = tp->t_maxseg =
2929 		    (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2930 		return;
2931 	}
2932 	ifp = rt->rt_ifp;
2933 	so = inp->inp_socket;
2934 
2935 	taop = rmx_taop(rt->rt_rmx);
2936 	/*
2937 	 * Offer == -1 means that we didn't receive SYN yet,
2938 	 * use cached value in that case;
2939 	 */
2940 	if (offer == -1)
2941 		offer = taop->tao_mssopt;
2942 	/*
2943 	 * Offer == 0 means that there was no MSS on the SYN segment,
2944 	 * in this case we use tcp_mssdflt.
2945 	 */
2946 	if (offer == 0)
2947 		offer = (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2948 	else
2949 		/*
2950 		 * Sanity check: make sure that maxopd will be large
2951 		 * enough to allow some data on segments even is the
2952 		 * all the option space is used (40bytes).  Otherwise
2953 		 * funny things may happen in tcp_output.
2954 		 */
2955 		offer = max(offer, 64);
2956 	taop->tao_mssopt = offer;
2957 
2958 	/*
2959 	 * While we're here, check if there's an initial rtt
2960 	 * or rttvar.  Convert from the route-table units
2961 	 * to scaled multiples of the slow timeout timer.
2962 	 */
2963 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2964 		/*
2965 		 * XXX the lock bit for RTT indicates that the value
2966 		 * is also a minimum value; this is subject to time.
2967 		 */
2968 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2969 			tp->t_rttmin = rtt / (RTM_RTTUNIT / hz);
2970 		tp->t_srtt = rtt / (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
2971 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
2972 		tcpstat.tcps_usedrtt++;
2973 		if (rt->rt_rmx.rmx_rttvar) {
2974 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2975 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
2976 			tcpstat.tcps_usedrttvar++;
2977 		} else {
2978 			/* default variation is +- 1 rtt */
2979 			tp->t_rttvar =
2980 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2981 		}
2982 		TCPT_RANGESET(tp->t_rxtcur,
2983 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2984 			      tp->t_rttmin, TCPTV_REXMTMAX);
2985 	}
2986 	/*
2987 	 * if there's an mtu associated with the route, use it
2988 	 * else, use the link mtu.
2989 	 */
2990 	if (rt->rt_rmx.rmx_mtu)
2991 		mss = rt->rt_rmx.rmx_mtu - min_protoh;
2992 	else {
2993 		if (isipv6) {
2994 			mss = ND_IFINFO(rt->rt_ifp)->linkmtu - min_protoh;
2995 			if (!in6_localaddr(&inp->in6p_faddr))
2996 				mss = min(mss, tcp_v6mssdflt);
2997 		} else {
2998 			mss = ifp->if_mtu - min_protoh;
2999 			if (!in_localaddr(inp->inp_faddr))
3000 				mss = min(mss, tcp_mssdflt);
3001 		}
3002 	}
3003 	mss = min(mss, offer);
3004 	/*
3005 	 * maxopd stores the maximum length of data AND options
3006 	 * in a segment; maxseg is the amount of data in a normal
3007 	 * segment.  We need to store this value (maxopd) apart
3008 	 * from maxseg, because now every segment carries options
3009 	 * and thus we normally have somewhat less data in segments.
3010 	 */
3011 	tp->t_maxopd = mss;
3012 
3013 	/*
3014 	 * In case of T/TCP, origoffer==-1 indicates, that no segments
3015 	 * were received yet.  In this case we just guess, otherwise
3016 	 * we do the same as before T/TCP.
3017 	 */
3018 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP &&
3019 	    (origoffer == -1 ||
3020 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3021 		mss -= TCPOLEN_TSTAMP_APPA;
3022 	if ((tp->t_flags & (TF_REQ_CC | TF_NOOPT)) == TF_REQ_CC &&
3023 	    (origoffer == -1 ||
3024 	     (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC))
3025 		mss -= TCPOLEN_CC_APPA;
3026 
3027 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
3028 		if (mss > MCLBYTES)
3029 			mss &= ~(MCLBYTES-1);
3030 #else
3031 		if (mss > MCLBYTES)
3032 			mss = mss / MCLBYTES * MCLBYTES;
3033 #endif
3034 	/*
3035 	 * If there's a pipesize, change the socket buffer
3036 	 * to that size.  Make the socket buffers an integral
3037 	 * number of mss units; if the mss is larger than
3038 	 * the socket buffer, decrease the mss.
3039 	 */
3040 #ifdef RTV_SPIPE
3041 	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
3042 #endif
3043 		bufsize = so->so_snd.ssb_hiwat;
3044 	if (bufsize < mss)
3045 		mss = bufsize;
3046 	else {
3047 		bufsize = roundup(bufsize, mss);
3048 		if (bufsize > sb_max)
3049 			bufsize = sb_max;
3050 		if (bufsize > so->so_snd.ssb_hiwat)
3051 			ssb_reserve(&so->so_snd, bufsize, so, NULL);
3052 	}
3053 	tp->t_maxseg = mss;
3054 
3055 #ifdef RTV_RPIPE
3056 	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
3057 #endif
3058 		bufsize = so->so_rcv.ssb_hiwat;
3059 	if (bufsize > mss) {
3060 		bufsize = roundup(bufsize, mss);
3061 		if (bufsize > sb_max)
3062 			bufsize = sb_max;
3063 		if (bufsize > so->so_rcv.ssb_hiwat)
3064 			ssb_reserve(&so->so_rcv, bufsize, so, NULL);
3065 	}
3066 
3067 	/*
3068 	 * Set the slow-start flight size depending on whether this
3069 	 * is a local network or not.
3070 	 */
3071 	if (tcp_do_rfc3390)
3072 		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
3073 	else
3074 		tp->snd_cwnd = mss;
3075 
3076 	if (rt->rt_rmx.rmx_ssthresh) {
3077 		/*
3078 		 * There's some sort of gateway or interface
3079 		 * buffer limit on the path.  Use this to set
3080 		 * the slow start threshhold, but set the
3081 		 * threshold to no less than 2*mss.
3082 		 */
3083 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
3084 		tcpstat.tcps_usedssthresh++;
3085 	}
3086 }
3087 
3088 /*
3089  * Determine the MSS option to send on an outgoing SYN.
3090  */
3091 int
3092 tcp_mssopt(struct tcpcb *tp)
3093 {
3094 	struct rtentry *rt;
3095 #ifdef INET6
3096 	boolean_t isipv6 =
3097 	    ((tp->t_inpcb->inp_vflag & INP_IPV6) ? TRUE : FALSE);
3098 	int min_protoh = isipv6 ?
3099 			     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
3100 			     sizeof(struct tcpiphdr);
3101 #else
3102 	const boolean_t isipv6 = FALSE;
3103 	const size_t min_protoh = sizeof(struct tcpiphdr);
3104 #endif
3105 
3106 	if (isipv6)
3107 		rt = tcp_rtlookup6(&tp->t_inpcb->inp_inc);
3108 	else
3109 		rt = tcp_rtlookup(&tp->t_inpcb->inp_inc);
3110 	if (rt == NULL)
3111 		return (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
3112 
3113 	return (rt->rt_ifp->if_mtu - min_protoh);
3114 }
3115 
3116 /*
3117  * When a partial ack arrives, force the retransmission of the
3118  * next unacknowledged segment.  Do not exit Fast Recovery.
3119  *
3120  * Implement the Slow-but-Steady variant of NewReno by restarting the
3121  * the retransmission timer.  Turn it off here so it can be restarted
3122  * later in tcp_output().
3123  */
3124 static void
3125 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th, int acked)
3126 {
3127 	tcp_seq old_snd_nxt = tp->snd_nxt;
3128 	u_long ocwnd = tp->snd_cwnd;
3129 
3130 	tcp_callout_stop(tp, tp->tt_rexmt);
3131 	tp->t_rtttime = 0;
3132 	tp->snd_nxt = th->th_ack;
3133 	/* Set snd_cwnd to one segment beyond acknowledged offset. */
3134 	tp->snd_cwnd = tp->t_maxseg;
3135 	tp->t_flags |= TF_ACKNOW;
3136 	tcp_output(tp);
3137 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3138 		tp->snd_nxt = old_snd_nxt;
3139 	/* partial window deflation */
3140 	if (ocwnd > acked)
3141 		tp->snd_cwnd = ocwnd - acked + tp->t_maxseg;
3142 	else
3143 		tp->snd_cwnd = tp->t_maxseg;
3144 }
3145 
3146 /*
3147  * In contrast to the Slow-but-Steady NewReno variant,
3148  * we do not reset the retransmission timer for SACK retransmissions,
3149  * except when retransmitting snd_una.
3150  */
3151 static void
3152 tcp_sack_rexmt(struct tcpcb *tp, struct tcphdr *th)
3153 {
3154 	uint32_t pipe, seglen;
3155 	tcp_seq nextrexmt;
3156 	boolean_t lostdup;
3157 	tcp_seq old_snd_nxt = tp->snd_nxt;
3158 	u_long ocwnd = tp->snd_cwnd;
3159 	int nseg = 0;		/* consecutive new segments */
3160 #define MAXBURST 4		/* limit burst of new packets on partial ack */
3161 
3162 	tp->t_rtttime = 0;
3163 	pipe = tcp_sack_compute_pipe(tp);
3164 	while ((tcp_seq_diff_t)(ocwnd - pipe) >= (tcp_seq_diff_t)tp->t_maxseg &&
3165 	    (!tcp_do_smartsack || nseg < MAXBURST) &&
3166 	    tcp_sack_nextseg(tp, &nextrexmt, &seglen, &lostdup)) {
3167 		uint32_t sent;
3168 		tcp_seq old_snd_max;
3169 		int error;
3170 
3171 		if (nextrexmt == tp->snd_max)
3172 			++nseg;
3173 		tp->snd_nxt = nextrexmt;
3174 		tp->snd_cwnd = nextrexmt - tp->snd_una + seglen;
3175 		old_snd_max = tp->snd_max;
3176 		if (nextrexmt == tp->snd_una)
3177 			tcp_callout_stop(tp, tp->tt_rexmt);
3178 		error = tcp_output(tp);
3179 		if (error != 0)
3180 			break;
3181 		sent = tp->snd_nxt - nextrexmt;
3182 		if (sent <= 0)
3183 			break;
3184 		if (!lostdup)
3185 			pipe += sent;
3186 		tcpstat.tcps_sndsackpack++;
3187 		tcpstat.tcps_sndsackbyte += sent;
3188 		if (SEQ_LT(nextrexmt, old_snd_max) &&
3189 		    SEQ_LT(tp->rexmt_high, tp->snd_nxt))
3190 			tp->rexmt_high = seq_min(tp->snd_nxt, old_snd_max);
3191 	}
3192 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3193 		tp->snd_nxt = old_snd_nxt;
3194 	tp->snd_cwnd = ocwnd;
3195 }
3196