xref: /dragonfly/sys/netinet/tcp_input.c (revision dcd37f7d)
1 /*
2  * Copyright (c) 2002, 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2002, 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
67  * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.38 2003/05/21 04:46:41 cjc Exp $
68  * $DragonFly: src/sys/netinet/tcp_input.c,v 1.68 2008/08/22 09:14:17 sephe Exp $
69  */
70 
71 #include "opt_ipfw.h"		/* for ipfw_fwd		*/
72 #include "opt_inet6.h"
73 #include "opt_ipsec.h"
74 #include "opt_tcpdebug.h"
75 #include "opt_tcp_input.h"
76 
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 #include <sys/malloc.h>
82 #include <sys/mbuf.h>
83 #include <sys/proc.h>		/* for proc0 declaration */
84 #include <sys/protosw.h>
85 #include <sys/socket.h>
86 #include <sys/socketvar.h>
87 #include <sys/syslog.h>
88 #include <sys/in_cksum.h>
89 
90 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
91 #include <machine/stdarg.h>
92 
93 #include <net/if.h>
94 #include <net/route.h>
95 
96 #include <netinet/in.h>
97 #include <netinet/in_systm.h>
98 #include <netinet/ip.h>
99 #include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM */
100 #include <netinet/in_var.h>
101 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
102 #include <netinet/in_pcb.h>
103 #include <netinet/ip_var.h>
104 #include <netinet/ip6.h>
105 #include <netinet/icmp6.h>
106 #include <netinet6/nd6.h>
107 #include <netinet6/ip6_var.h>
108 #include <netinet6/in6_pcb.h>
109 #include <netinet/tcp.h>
110 #include <netinet/tcp_fsm.h>
111 #include <netinet/tcp_seq.h>
112 #include <netinet/tcp_timer.h>
113 #include <netinet/tcp_timer2.h>
114 #include <netinet/tcp_var.h>
115 #include <netinet6/tcp6_var.h>
116 #include <netinet/tcpip.h>
117 
118 #ifdef TCPDEBUG
119 #include <netinet/tcp_debug.h>
120 
121 u_char tcp_saveipgen[40];    /* the size must be of max ip header, now IPv6 */
122 struct tcphdr tcp_savetcp;
123 #endif
124 
125 #ifdef FAST_IPSEC
126 #include <netproto/ipsec/ipsec.h>
127 #include <netproto/ipsec/ipsec6.h>
128 #endif
129 
130 #ifdef IPSEC
131 #include <netinet6/ipsec.h>
132 #include <netinet6/ipsec6.h>
133 #include <netproto/key/key.h>
134 #endif
135 
136 MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
137 
138 static int log_in_vain = 0;
139 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
140     &log_in_vain, 0, "Log all incoming TCP connections");
141 
142 static int blackhole = 0;
143 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
144     &blackhole, 0, "Do not send RST when dropping refused connections");
145 
146 int tcp_delack_enabled = 1;
147 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
148     &tcp_delack_enabled, 0,
149     "Delay ACK to try and piggyback it onto a data packet");
150 
151 #ifdef TCP_DROP_SYNFIN
152 static int drop_synfin = 0;
153 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
154     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
155 #endif
156 
157 static int tcp_do_limitedtransmit = 1;
158 SYSCTL_INT(_net_inet_tcp, OID_AUTO, limitedtransmit, CTLFLAG_RW,
159     &tcp_do_limitedtransmit, 0, "Enable RFC 3042 (Limited Transmit)");
160 
161 static int tcp_do_early_retransmit = 1;
162 SYSCTL_INT(_net_inet_tcp, OID_AUTO, earlyretransmit, CTLFLAG_RW,
163     &tcp_do_early_retransmit, 0, "Early retransmit");
164 
165 int tcp_aggregate_acks = 1;
166 SYSCTL_INT(_net_inet_tcp, OID_AUTO, aggregate_acks, CTLFLAG_RW,
167     &tcp_aggregate_acks, 0, "Aggregate built-up acks into one ack");
168 
169 int tcp_do_rfc3390 = 1;
170 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
171     &tcp_do_rfc3390, 0,
172     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
173 
174 static int tcp_do_eifel_detect = 1;
175 SYSCTL_INT(_net_inet_tcp, OID_AUTO, eifel, CTLFLAG_RW,
176     &tcp_do_eifel_detect, 0, "Eifel detection algorithm (RFC 3522)");
177 
178 static int tcp_do_abc = 1;
179 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc, CTLFLAG_RW,
180     &tcp_do_abc, 0,
181     "TCP Appropriate Byte Counting (RFC 3465)");
182 
183 /*
184  * Define as tunable for easy testing with SACK on and off.
185  * Warning:  do not change setting in the middle of an existing active TCP flow,
186  *   else strange things might happen to that flow.
187  */
188 int tcp_do_sack = 1;
189 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW,
190     &tcp_do_sack, 0, "Enable SACK Algorithms");
191 
192 int tcp_do_smartsack = 1;
193 SYSCTL_INT(_net_inet_tcp, OID_AUTO, smartsack, CTLFLAG_RW,
194     &tcp_do_smartsack, 0, "Enable Smart SACK Algorithms");
195 
196 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
197     "TCP Segment Reassembly Queue");
198 
199 int tcp_reass_maxseg = 0;
200 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RD,
201     &tcp_reass_maxseg, 0,
202     "Global maximum number of TCP Segments in Reassembly Queue");
203 
204 int tcp_reass_qsize = 0;
205 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
206     &tcp_reass_qsize, 0,
207     "Global number of TCP Segments currently in Reassembly Queue");
208 
209 static int tcp_reass_overflows = 0;
210 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
211     &tcp_reass_overflows, 0,
212     "Global number of TCP Segment Reassembly Queue Overflows");
213 
214 int tcp_do_autorcvbuf = 1;
215 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
216     &tcp_do_autorcvbuf, 0, "Enable automatic receive buffer sizing");
217 
218 int tcp_autorcvbuf_inc = 16*1024;
219 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
220     &tcp_autorcvbuf_inc, 0,
221     "Incrementor step size of automatic receive buffer");
222 
223 int tcp_autorcvbuf_max = 2*1024*1024;
224 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
225     &tcp_autorcvbuf_max, 0, "Max size of automatic receive buffer");
226 
227 
228 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, boolean_t);
229 static void	 tcp_pulloutofband(struct socket *,
230 		     struct tcphdr *, struct mbuf *, int);
231 static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
232 		     struct mbuf *);
233 static void	 tcp_xmit_timer(struct tcpcb *, int);
234 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *, int);
235 static void	 tcp_sack_rexmt(struct tcpcb *, struct tcphdr *);
236 
237 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
238 #ifdef INET6
239 #define ND6_HINT(tp) \
240 do { \
241 	if ((tp) && (tp)->t_inpcb && \
242 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) && \
243 	    (tp)->t_inpcb->in6p_route.ro_rt) \
244 		nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
245 } while (0)
246 #else
247 #define ND6_HINT(tp)
248 #endif
249 
250 /*
251  * Indicate whether this ack should be delayed.  We can delay the ack if
252  *	- delayed acks are enabled and
253  *	- there is no delayed ack timer in progress and
254  *	- our last ack wasn't a 0-sized window.  We never want to delay
255  *	  the ack that opens up a 0-sized window.
256  */
257 #define DELAY_ACK(tp) \
258 	(tcp_delack_enabled && !tcp_callout_pending(tp, tp->tt_delack) && \
259 	!(tp->t_flags & TF_RXWIN0SENT))
260 
261 #define acceptable_window_update(tp, th, tiwin)				\
262     (SEQ_LT(tp->snd_wl1, th->th_seq) ||					\
263      (tp->snd_wl1 == th->th_seq &&					\
264       (SEQ_LT(tp->snd_wl2, th->th_ack) ||				\
265        (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))
266 
267 static int
268 tcp_reass(struct tcpcb *tp, struct tcphdr *th, int *tlenp, struct mbuf *m)
269 {
270 	struct tseg_qent *q;
271 	struct tseg_qent *p = NULL;
272 	struct tseg_qent *te;
273 	struct socket *so = tp->t_inpcb->inp_socket;
274 	int flags;
275 
276 	/*
277 	 * Call with th == NULL after become established to
278 	 * force pre-ESTABLISHED data up to user socket.
279 	 */
280 	if (th == NULL)
281 		goto present;
282 
283 	/*
284 	 * Limit the number of segments in the reassembly queue to prevent
285 	 * holding on to too many segments (and thus running out of mbufs).
286 	 * Make sure to let the missing segment through which caused this
287 	 * queue.  Always keep one global queue entry spare to be able to
288 	 * process the missing segment.
289 	 */
290 	if (th->th_seq != tp->rcv_nxt &&
291 	    tcp_reass_qsize + 1 >= tcp_reass_maxseg) {
292 		tcp_reass_overflows++;
293 		tcpstat.tcps_rcvmemdrop++;
294 		m_freem(m);
295 		/* no SACK block to report */
296 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
297 		return (0);
298 	}
299 
300 	/* Allocate a new queue entry. */
301 	MALLOC(te, struct tseg_qent *, sizeof(struct tseg_qent), M_TSEGQ,
302 	       M_INTWAIT | M_NULLOK);
303 	if (te == NULL) {
304 		tcpstat.tcps_rcvmemdrop++;
305 		m_freem(m);
306 		/* no SACK block to report */
307 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
308 		return (0);
309 	}
310 	tcp_reass_qsize++;
311 
312 	/*
313 	 * Find a segment which begins after this one does.
314 	 */
315 	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
316 		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
317 			break;
318 		p = q;
319 	}
320 
321 	/*
322 	 * If there is a preceding segment, it may provide some of
323 	 * our data already.  If so, drop the data from the incoming
324 	 * segment.  If it provides all of our data, drop us.
325 	 */
326 	if (p != NULL) {
327 		tcp_seq_diff_t i;
328 
329 		/* conversion to int (in i) handles seq wraparound */
330 		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
331 		if (i > 0) {		/* overlaps preceding segment */
332 			tp->t_flags |= (TF_DUPSEG | TF_ENCLOSESEG);
333 			/* enclosing block starts w/ preceding segment */
334 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
335 			if (i >= *tlenp) {
336 				/* preceding encloses incoming segment */
337 				tp->encloseblk.rblk_end = p->tqe_th->th_seq +
338 				    p->tqe_len;
339 				tcpstat.tcps_rcvduppack++;
340 				tcpstat.tcps_rcvdupbyte += *tlenp;
341 				m_freem(m);
342 				kfree(te, M_TSEGQ);
343 				tcp_reass_qsize--;
344 				/*
345 				 * Try to present any queued data
346 				 * at the left window edge to the user.
347 				 * This is needed after the 3-WHS
348 				 * completes.
349 				 */
350 				goto present;	/* ??? */
351 			}
352 			m_adj(m, i);
353 			*tlenp -= i;
354 			th->th_seq += i;
355 			/* incoming segment end is enclosing block end */
356 			tp->encloseblk.rblk_end = th->th_seq + *tlenp +
357 			    ((th->th_flags & TH_FIN) != 0);
358 			/* trim end of reported D-SACK block */
359 			tp->reportblk.rblk_end = th->th_seq;
360 		}
361 	}
362 	tcpstat.tcps_rcvoopack++;
363 	tcpstat.tcps_rcvoobyte += *tlenp;
364 
365 	/*
366 	 * While we overlap succeeding segments trim them or,
367 	 * if they are completely covered, dequeue them.
368 	 */
369 	while (q) {
370 		tcp_seq_diff_t i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
371 		tcp_seq qend = q->tqe_th->th_seq + q->tqe_len;
372 		struct tseg_qent *nq;
373 
374 		if (i <= 0)
375 			break;
376 		if (!(tp->t_flags & TF_DUPSEG)) {    /* first time through */
377 			tp->t_flags |= (TF_DUPSEG | TF_ENCLOSESEG);
378 			tp->encloseblk = tp->reportblk;
379 			/* report trailing duplicate D-SACK segment */
380 			tp->reportblk.rblk_start = q->tqe_th->th_seq;
381 		}
382 		if ((tp->t_flags & TF_ENCLOSESEG) &&
383 		    SEQ_GT(qend, tp->encloseblk.rblk_end)) {
384 			/* extend enclosing block if one exists */
385 			tp->encloseblk.rblk_end = qend;
386 		}
387 		if (i < q->tqe_len) {
388 			q->tqe_th->th_seq += i;
389 			q->tqe_len -= i;
390 			m_adj(q->tqe_m, i);
391 			break;
392 		}
393 
394 		nq = LIST_NEXT(q, tqe_q);
395 		LIST_REMOVE(q, tqe_q);
396 		m_freem(q->tqe_m);
397 		kfree(q, M_TSEGQ);
398 		tcp_reass_qsize--;
399 		q = nq;
400 	}
401 
402 	/* Insert the new segment queue entry into place. */
403 	te->tqe_m = m;
404 	te->tqe_th = th;
405 	te->tqe_len = *tlenp;
406 
407 	/* check if can coalesce with following segment */
408 	if (q != NULL && (th->th_seq + *tlenp == q->tqe_th->th_seq)) {
409 		tcp_seq tend = te->tqe_th->th_seq + te->tqe_len;
410 
411 		te->tqe_len += q->tqe_len;
412 		if (q->tqe_th->th_flags & TH_FIN)
413 			te->tqe_th->th_flags |= TH_FIN;
414 		m_cat(te->tqe_m, q->tqe_m);
415 		tp->encloseblk.rblk_end = tend;
416 		/*
417 		 * When not reporting a duplicate segment, use
418 		 * the larger enclosing block as the SACK block.
419 		 */
420 		if (!(tp->t_flags & TF_DUPSEG))
421 			tp->reportblk.rblk_end = tend;
422 		LIST_REMOVE(q, tqe_q);
423 		kfree(q, M_TSEGQ);
424 		tcp_reass_qsize--;
425 	}
426 
427 	if (p == NULL) {
428 		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
429 	} else {
430 		/* check if can coalesce with preceding segment */
431 		if (p->tqe_th->th_seq + p->tqe_len == th->th_seq) {
432 			p->tqe_len += te->tqe_len;
433 			m_cat(p->tqe_m, te->tqe_m);
434 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
435 			/*
436 			 * When not reporting a duplicate segment, use
437 			 * the larger enclosing block as the SACK block.
438 			 */
439 			if (!(tp->t_flags & TF_DUPSEG))
440 				tp->reportblk.rblk_start = p->tqe_th->th_seq;
441 			kfree(te, M_TSEGQ);
442 			tcp_reass_qsize--;
443 		} else
444 			LIST_INSERT_AFTER(p, te, tqe_q);
445 	}
446 
447 present:
448 	/*
449 	 * Present data to user, advancing rcv_nxt through
450 	 * completed sequence space.
451 	 */
452 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
453 		return (0);
454 	q = LIST_FIRST(&tp->t_segq);
455 	if (q == NULL || q->tqe_th->th_seq != tp->rcv_nxt)
456 		return (0);
457 	tp->rcv_nxt += q->tqe_len;
458 	if (!(tp->t_flags & TF_DUPSEG))	{
459 		/* no SACK block to report since ACK advanced */
460 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
461 	}
462 	/* no enclosing block to report since ACK advanced */
463 	tp->t_flags &= ~TF_ENCLOSESEG;
464 	flags = q->tqe_th->th_flags & TH_FIN;
465 	LIST_REMOVE(q, tqe_q);
466 	KASSERT(LIST_EMPTY(&tp->t_segq) ||
467 		LIST_FIRST(&tp->t_segq)->tqe_th->th_seq != tp->rcv_nxt,
468 		("segment not coalesced"));
469 	if (so->so_state & SS_CANTRCVMORE)
470 		m_freem(q->tqe_m);
471 	else
472 		ssb_appendstream(&so->so_rcv, q->tqe_m);
473 	kfree(q, M_TSEGQ);
474 	tcp_reass_qsize--;
475 	ND6_HINT(tp);
476 	sorwakeup(so);
477 	return (flags);
478 }
479 
480 /*
481  * TCP input routine, follows pages 65-76 of the
482  * protocol specification dated September, 1981 very closely.
483  */
484 #ifdef INET6
485 int
486 tcp6_input(struct mbuf **mp, int *offp, int proto)
487 {
488 	struct mbuf *m = *mp;
489 	struct in6_ifaddr *ia6;
490 
491 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
492 
493 	/*
494 	 * draft-itojun-ipv6-tcp-to-anycast
495 	 * better place to put this in?
496 	 */
497 	ia6 = ip6_getdstifaddr(m);
498 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
499 		struct ip6_hdr *ip6;
500 
501 		ip6 = mtod(m, struct ip6_hdr *);
502 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
503 			    offsetof(struct ip6_hdr, ip6_dst));
504 		return (IPPROTO_DONE);
505 	}
506 
507 	tcp_input(m, *offp, proto);
508 	return (IPPROTO_DONE);
509 }
510 #endif
511 
512 void
513 tcp_input(struct mbuf *m, ...)
514 {
515 	__va_list ap;
516 	int off0, proto;
517 	struct tcphdr *th;
518 	struct ip *ip = NULL;
519 	struct ipovly *ipov;
520 	struct inpcb *inp = NULL;
521 	u_char *optp = NULL;
522 	int optlen = 0;
523 	int len, tlen, off;
524 	int drop_hdrlen;
525 	struct tcpcb *tp = NULL;
526 	int thflags;
527 	struct socket *so = 0;
528 	int todrop, acked;
529 	boolean_t ourfinisacked, needoutput = FALSE;
530 	u_long tiwin;
531 	int recvwin;
532 	struct tcpopt to;		/* options in this segment */
533 	struct sockaddr_in *next_hop = NULL;
534 	int rstreason; /* For badport_bandlim accounting purposes */
535 	int cpu;
536 	struct ip6_hdr *ip6 = NULL;
537 #ifdef INET6
538 	boolean_t isipv6;
539 #else
540 	const boolean_t isipv6 = FALSE;
541 #endif
542 #ifdef TCPDEBUG
543 	short ostate = 0;
544 #endif
545 
546 	__va_start(ap, m);
547 	off0 = __va_arg(ap, int);
548 	proto = __va_arg(ap, int);
549 	__va_end(ap);
550 
551 	tcpstat.tcps_rcvtotal++;
552 
553 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
554 		struct m_tag *mtag;
555 
556 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
557 		KKASSERT(mtag != NULL);
558 		next_hop = m_tag_data(mtag);
559 	}
560 
561 #ifdef INET6
562 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? TRUE : FALSE;
563 #endif
564 
565 	if (isipv6) {
566 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
567 		ip6 = mtod(m, struct ip6_hdr *);
568 		tlen = (sizeof *ip6) + ntohs(ip6->ip6_plen) - off0;
569 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
570 			tcpstat.tcps_rcvbadsum++;
571 			goto drop;
572 		}
573 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
574 
575 		/*
576 		 * Be proactive about unspecified IPv6 address in source.
577 		 * As we use all-zero to indicate unbounded/unconnected pcb,
578 		 * unspecified IPv6 address can be used to confuse us.
579 		 *
580 		 * Note that packets with unspecified IPv6 destination is
581 		 * already dropped in ip6_input.
582 		 */
583 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
584 			/* XXX stat */
585 			goto drop;
586 		}
587 	} else {
588 		/*
589 		 * Get IP and TCP header together in first mbuf.
590 		 * Note: IP leaves IP header in first mbuf.
591 		 */
592 		if (off0 > sizeof(struct ip)) {
593 			ip_stripoptions(m);
594 			off0 = sizeof(struct ip);
595 		}
596 		/* already checked and pulled up in ip_demux() */
597 		KASSERT(m->m_len >= sizeof(struct tcpiphdr),
598 		    ("TCP header not in one mbuf: m->m_len %d", m->m_len));
599 		ip = mtod(m, struct ip *);
600 		ipov = (struct ipovly *)ip;
601 		th = (struct tcphdr *)((caddr_t)ip + off0);
602 		tlen = ip->ip_len;
603 
604 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
605 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
606 				th->th_sum = m->m_pkthdr.csum_data;
607 			else
608 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
609 						ip->ip_dst.s_addr,
610 						htonl(m->m_pkthdr.csum_data +
611 							ip->ip_len +
612 							IPPROTO_TCP));
613 			th->th_sum ^= 0xffff;
614 		} else {
615 			/*
616 			 * Checksum extended TCP header and data.
617 			 */
618 			len = sizeof(struct ip) + tlen;
619 			bzero(ipov->ih_x1, sizeof ipov->ih_x1);
620 			ipov->ih_len = (u_short)tlen;
621 			ipov->ih_len = htons(ipov->ih_len);
622 			th->th_sum = in_cksum(m, len);
623 		}
624 		if (th->th_sum) {
625 			tcpstat.tcps_rcvbadsum++;
626 			goto drop;
627 		}
628 #ifdef INET6
629 		/* Re-initialization for later version check */
630 		ip->ip_v = IPVERSION;
631 #endif
632 	}
633 
634 	/*
635 	 * Check that TCP offset makes sense,
636 	 * pull out TCP options and adjust length.		XXX
637 	 */
638 	off = th->th_off << 2;
639 	/* already checked and pulled up in ip_demux() */
640 	KASSERT(off >= sizeof(struct tcphdr) && off <= tlen,
641 	    ("bad TCP data offset %d (tlen %d)", off, tlen));
642 	tlen -= off;	/* tlen is used instead of ti->ti_len */
643 	if (off > sizeof(struct tcphdr)) {
644 		if (isipv6) {
645 			IP6_EXTHDR_CHECK(m, off0, off, );
646 			ip6 = mtod(m, struct ip6_hdr *);
647 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
648 		} else {
649 			/* already pulled up in ip_demux() */
650 			KASSERT(m->m_len >= sizeof(struct ip) + off,
651 			    ("TCP header and options not in one mbuf: "
652 			     "m_len %d, off %d", m->m_len, off));
653 		}
654 		optlen = off - sizeof(struct tcphdr);
655 		optp = (u_char *)(th + 1);
656 	}
657 	thflags = th->th_flags;
658 
659 #ifdef TCP_DROP_SYNFIN
660 	/*
661 	 * If the drop_synfin option is enabled, drop all packets with
662 	 * both the SYN and FIN bits set. This prevents e.g. nmap from
663 	 * identifying the TCP/IP stack.
664 	 *
665 	 * This is a violation of the TCP specification.
666 	 */
667 	if (drop_synfin && (thflags & (TH_SYN | TH_FIN)) == (TH_SYN | TH_FIN))
668 		goto drop;
669 #endif
670 
671 	/*
672 	 * Convert TCP protocol specific fields to host format.
673 	 */
674 	th->th_seq = ntohl(th->th_seq);
675 	th->th_ack = ntohl(th->th_ack);
676 	th->th_win = ntohs(th->th_win);
677 	th->th_urp = ntohs(th->th_urp);
678 
679 	/*
680 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
681 	 * until after ip6_savecontrol() is called and before other functions
682 	 * which don't want those proto headers.
683 	 * Because ip6_savecontrol() is going to parse the mbuf to
684 	 * search for data to be passed up to user-land, it wants mbuf
685 	 * parameters to be unchanged.
686 	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
687 	 * latest version of the advanced API (20020110).
688 	 */
689 	drop_hdrlen = off0 + off;
690 
691 	/*
692 	 * Locate pcb for segment.
693 	 */
694 findpcb:
695 	/* IPFIREWALL_FORWARD section */
696 	if (next_hop != NULL && !isipv6) {  /* IPv6 support is not there yet */
697 		/*
698 		 * Transparently forwarded. Pretend to be the destination.
699 		 * already got one like this?
700 		 */
701 		cpu = mycpu->gd_cpuid;
702 		inp = in_pcblookup_hash(&tcbinfo[cpu],
703 					ip->ip_src, th->th_sport,
704 					ip->ip_dst, th->th_dport,
705 					0, m->m_pkthdr.rcvif);
706 		if (!inp) {
707 			/*
708 			 * It's new.  Try to find the ambushing socket.
709 			 */
710 
711 			/*
712 			 * The rest of the ipfw code stores the port in
713 			 * host order.  XXX
714 			 * (The IP address is still in network order.)
715 			 */
716 			in_port_t dport = next_hop->sin_port ?
717 						htons(next_hop->sin_port) :
718 						th->th_dport;
719 
720 			cpu = tcp_addrcpu(ip->ip_src.s_addr, th->th_sport,
721 					  next_hop->sin_addr.s_addr, dport);
722 			inp = in_pcblookup_hash(&tcbinfo[cpu],
723 						ip->ip_src, th->th_sport,
724 						next_hop->sin_addr, dport,
725 						1, m->m_pkthdr.rcvif);
726 		}
727 	} else {
728 		if (isipv6) {
729 			inp = in6_pcblookup_hash(&tcbinfo[0],
730 						 &ip6->ip6_src, th->th_sport,
731 						 &ip6->ip6_dst, th->th_dport,
732 						 1, m->m_pkthdr.rcvif);
733 		} else {
734 			cpu = mycpu->gd_cpuid;
735 			inp = in_pcblookup_hash(&tcbinfo[cpu],
736 						ip->ip_src, th->th_sport,
737 						ip->ip_dst, th->th_dport,
738 						1, m->m_pkthdr.rcvif);
739 		}
740 	}
741 
742 	/*
743 	 * If the state is CLOSED (i.e., TCB does not exist) then
744 	 * all data in the incoming segment is discarded.
745 	 * If the TCB exists but is in CLOSED state, it is embryonic,
746 	 * but should either do a listen or a connect soon.
747 	 */
748 	if (inp == NULL) {
749 		if (log_in_vain) {
750 #ifdef INET6
751 			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
752 #else
753 			char dbuf[sizeof "aaa.bbb.ccc.ddd"];
754 			char sbuf[sizeof "aaa.bbb.ccc.ddd"];
755 #endif
756 			if (isipv6) {
757 				strcpy(dbuf, "[");
758 				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
759 				strcat(dbuf, "]");
760 				strcpy(sbuf, "[");
761 				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
762 				strcat(sbuf, "]");
763 			} else {
764 				strcpy(dbuf, inet_ntoa(ip->ip_dst));
765 				strcpy(sbuf, inet_ntoa(ip->ip_src));
766 			}
767 			switch (log_in_vain) {
768 			case 1:
769 				if (!(thflags & TH_SYN))
770 					break;
771 			case 2:
772 				log(LOG_INFO,
773 				    "Connection attempt to TCP %s:%d "
774 				    "from %s:%d flags:0x%02x\n",
775 				    dbuf, ntohs(th->th_dport), sbuf,
776 				    ntohs(th->th_sport), thflags);
777 				break;
778 			default:
779 				break;
780 			}
781 		}
782 		if (blackhole) {
783 			switch (blackhole) {
784 			case 1:
785 				if (thflags & TH_SYN)
786 					goto drop;
787 				break;
788 			case 2:
789 				goto drop;
790 			default:
791 				goto drop;
792 			}
793 		}
794 		rstreason = BANDLIM_RST_CLOSEDPORT;
795 		goto dropwithreset;
796 	}
797 
798 #ifdef IPSEC
799 	if (isipv6) {
800 		if (ipsec6_in_reject_so(m, inp->inp_socket)) {
801 			ipsec6stat.in_polvio++;
802 			goto drop;
803 		}
804 	} else {
805 		if (ipsec4_in_reject_so(m, inp->inp_socket)) {
806 			ipsecstat.in_polvio++;
807 			goto drop;
808 		}
809 	}
810 #endif
811 #ifdef FAST_IPSEC
812 	if (isipv6) {
813 		if (ipsec6_in_reject(m, inp))
814 			goto drop;
815 	} else {
816 		if (ipsec4_in_reject(m, inp))
817 			goto drop;
818 	}
819 #endif
820 	/* Check the minimum TTL for socket. */
821 #ifdef INET6
822 	if ((isipv6 ? ip6->ip6_hlim : ip->ip_ttl) < inp->inp_ip_minttl)
823 		goto drop;
824 #endif
825 
826 	tp = intotcpcb(inp);
827 	if (tp == NULL) {
828 		rstreason = BANDLIM_RST_CLOSEDPORT;
829 		goto dropwithreset;
830 	}
831 	if (tp->t_state <= TCPS_CLOSED)
832 		goto drop;
833 
834 	/* Unscale the window into a 32-bit value. */
835 	if (!(thflags & TH_SYN))
836 		tiwin = th->th_win << tp->snd_scale;
837 	else
838 		tiwin = th->th_win;
839 
840 	so = inp->inp_socket;
841 
842 #ifdef TCPDEBUG
843 	if (so->so_options & SO_DEBUG) {
844 		ostate = tp->t_state;
845 		if (isipv6)
846 			bcopy(ip6, tcp_saveipgen, sizeof(*ip6));
847 		else
848 			bcopy(ip, tcp_saveipgen, sizeof(*ip));
849 		tcp_savetcp = *th;
850 	}
851 #endif
852 
853 	bzero(&to, sizeof to);
854 
855 	if (so->so_options & SO_ACCEPTCONN) {
856 		struct in_conninfo inc;
857 
858 #ifdef INET6
859 		inc.inc_isipv6 = (isipv6 == TRUE);
860 #endif
861 		if (isipv6) {
862 			inc.inc6_faddr = ip6->ip6_src;
863 			inc.inc6_laddr = ip6->ip6_dst;
864 			inc.inc6_route.ro_rt = NULL;		/* XXX */
865 		} else {
866 			inc.inc_faddr = ip->ip_src;
867 			inc.inc_laddr = ip->ip_dst;
868 			inc.inc_route.ro_rt = NULL;		/* XXX */
869 		}
870 		inc.inc_fport = th->th_sport;
871 		inc.inc_lport = th->th_dport;
872 
873 		/*
874 		 * If the state is LISTEN then ignore segment if it contains
875 		 * a RST.  If the segment contains an ACK then it is bad and
876 		 * send a RST.  If it does not contain a SYN then it is not
877 		 * interesting; drop it.
878 		 *
879 		 * If the state is SYN_RECEIVED (syncache) and seg contains
880 		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
881 		 * contains a RST, check the sequence number to see if it
882 		 * is a valid reset segment.
883 		 */
884 		if ((thflags & (TH_RST | TH_ACK | TH_SYN)) != TH_SYN) {
885 			if ((thflags & (TH_RST | TH_ACK | TH_SYN)) == TH_ACK) {
886 				if (!syncache_expand(&inc, th, &so, m)) {
887 					/*
888 					 * No syncache entry, or ACK was not
889 					 * for our SYN/ACK.  Send a RST.
890 					 */
891 					tcpstat.tcps_badsyn++;
892 					rstreason = BANDLIM_RST_OPENPORT;
893 					goto dropwithreset;
894 				}
895 				if (so == NULL)
896 					/*
897 					 * Could not complete 3-way handshake,
898 					 * connection is being closed down, and
899 					 * syncache will free mbuf.
900 					 */
901 					return;
902 				/*
903 				 * Socket is created in state SYN_RECEIVED.
904 				 * Continue processing segment.
905 				 */
906 				inp = so->so_pcb;
907 				tp = intotcpcb(inp);
908 				/*
909 				 * This is what would have happened in
910 				 * tcp_output() when the SYN,ACK was sent.
911 				 */
912 				tp->snd_up = tp->snd_una;
913 				tp->snd_max = tp->snd_nxt = tp->iss + 1;
914 				tp->last_ack_sent = tp->rcv_nxt;
915 /*
916  * XXX possible bug - it doesn't appear that tp->snd_wnd is unscaled
917  * until the _second_ ACK is received:
918  *    rcv SYN (set wscale opts)	 --> send SYN/ACK, set snd_wnd = window.
919  *    rcv ACK, calculate tiwin --> process SYN_RECEIVED, determine wscale,
920  *	  move to ESTAB, set snd_wnd to tiwin.
921  */
922 				tp->snd_wnd = tiwin;	/* unscaled */
923 				goto after_listen;
924 			}
925 			if (thflags & TH_RST) {
926 				syncache_chkrst(&inc, th);
927 				goto drop;
928 			}
929 			if (thflags & TH_ACK) {
930 				syncache_badack(&inc);
931 				tcpstat.tcps_badsyn++;
932 				rstreason = BANDLIM_RST_OPENPORT;
933 				goto dropwithreset;
934 			}
935 			goto drop;
936 		}
937 
938 		/*
939 		 * Segment's flags are (SYN) or (SYN | FIN).
940 		 */
941 #ifdef INET6
942 		/*
943 		 * If deprecated address is forbidden,
944 		 * we do not accept SYN to deprecated interface
945 		 * address to prevent any new inbound connection from
946 		 * getting established.
947 		 * When we do not accept SYN, we send a TCP RST,
948 		 * with deprecated source address (instead of dropping
949 		 * it).  We compromise it as it is much better for peer
950 		 * to send a RST, and RST will be the final packet
951 		 * for the exchange.
952 		 *
953 		 * If we do not forbid deprecated addresses, we accept
954 		 * the SYN packet.  RFC2462 does not suggest dropping
955 		 * SYN in this case.
956 		 * If we decipher RFC2462 5.5.4, it says like this:
957 		 * 1. use of deprecated addr with existing
958 		 *    communication is okay - "SHOULD continue to be
959 		 *    used"
960 		 * 2. use of it with new communication:
961 		 *   (2a) "SHOULD NOT be used if alternate address
962 		 *	  with sufficient scope is available"
963 		 *   (2b) nothing mentioned otherwise.
964 		 * Here we fall into (2b) case as we have no choice in
965 		 * our source address selection - we must obey the peer.
966 		 *
967 		 * The wording in RFC2462 is confusing, and there are
968 		 * multiple description text for deprecated address
969 		 * handling - worse, they are not exactly the same.
970 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
971 		 */
972 		if (isipv6 && !ip6_use_deprecated) {
973 			struct in6_ifaddr *ia6;
974 
975 			if ((ia6 = ip6_getdstifaddr(m)) &&
976 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
977 				tp = NULL;
978 				rstreason = BANDLIM_RST_OPENPORT;
979 				goto dropwithreset;
980 			}
981 		}
982 #endif
983 		/*
984 		 * If it is from this socket, drop it, it must be forged.
985 		 * Don't bother responding if the destination was a broadcast.
986 		 */
987 		if (th->th_dport == th->th_sport) {
988 			if (isipv6) {
989 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
990 						       &ip6->ip6_src))
991 					goto drop;
992 			} else {
993 				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
994 					goto drop;
995 			}
996 		}
997 		/*
998 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
999 		 *
1000 		 * Note that it is quite possible to receive unicast
1001 		 * link-layer packets with a broadcast IP address. Use
1002 		 * in_broadcast() to find them.
1003 		 */
1004 		if (m->m_flags & (M_BCAST | M_MCAST))
1005 			goto drop;
1006 		if (isipv6) {
1007 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1008 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
1009 				goto drop;
1010 		} else {
1011 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1012 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1013 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1014 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1015 				goto drop;
1016 		}
1017 		/*
1018 		 * SYN appears to be valid; create compressed TCP state
1019 		 * for syncache, or perform t/tcp connection.
1020 		 */
1021 		if (so->so_qlen <= so->so_qlimit) {
1022 			tcp_dooptions(&to, optp, optlen, TRUE);
1023 			if (!syncache_add(&inc, &to, th, &so, m))
1024 				goto drop;
1025 			if (so == NULL)
1026 				/*
1027 				 * Entry added to syncache, mbuf used to
1028 				 * send SYN,ACK packet.
1029 				 */
1030 				return;
1031 			inp = so->so_pcb;
1032 			tp = intotcpcb(inp);
1033 			tp->snd_wnd = tiwin;
1034 			tp->t_starttime = ticks;
1035 			tp->t_state = TCPS_ESTABLISHED;
1036 
1037 			/*
1038 			 * If there is a FIN, or if there is data and the
1039 			 * connection is local, then delay SYN,ACK(SYN) in
1040 			 * the hope of piggy-backing it on a response
1041 			 * segment.  Otherwise must send ACK now in case
1042 			 * the other side is slow starting.
1043 			 */
1044 			if (DELAY_ACK(tp) &&
1045 			    ((thflags & TH_FIN) ||
1046 			     (tlen != 0 &&
1047 			      ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
1048 			       (!isipv6 && in_localaddr(inp->inp_faddr)))))) {
1049 				tcp_callout_reset(tp, tp->tt_delack,
1050 				    tcp_delacktime, tcp_timer_delack);
1051 				tp->t_flags |= TF_NEEDSYN;
1052 			} else {
1053 				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1054 			}
1055 
1056 			tcpstat.tcps_connects++;
1057 			soisconnected(so);
1058 			goto trimthenstep6;
1059 		}
1060 		goto drop;
1061 	}
1062 after_listen:
1063 
1064 	/* should not happen - syncache should pick up these connections */
1065 	KASSERT(tp->t_state != TCPS_LISTEN, ("tcp_input: TCPS_LISTEN state"));
1066 
1067 	/*
1068 	 * This is the second part of the MSS DoS prevention code (after
1069 	 * minmss on the sending side) and it deals with too many too small
1070 	 * tcp packets in a too short timeframe (1 second).
1071 	 *
1072 	 * XXX Removed.  This code was crap.  It does not scale to network
1073 	 *     speed, and default values break NFS.  Gone.
1074 	 */
1075 	/* REMOVED */
1076 
1077 	/*
1078 	 * Segment received on connection.
1079 	 *
1080 	 * Reset idle time and keep-alive timer.  Don't waste time if less
1081 	 * then a second has elapsed.  Only update t_rcvtime for non-SYN
1082 	 * packets.
1083 	 *
1084 	 * Handle the case where one side thinks the connection is established
1085 	 * but the other side has, say, rebooted without cleaning out the
1086 	 * connection.   The SYNs could be construed as an attack and wind
1087 	 * up ignored, but in case it isn't an attack we can validate the
1088 	 * connection by forcing a keepalive.
1089 	 */
1090 	if (TCPS_HAVEESTABLISHED(tp->t_state) && (ticks - tp->t_rcvtime) > hz) {
1091 		if ((thflags & (TH_SYN | TH_ACK)) == TH_SYN) {
1092 			tp->t_flags |= TF_KEEPALIVE;
1093 			tcp_callout_reset(tp, tp->tt_keep, hz / 2,
1094 					  tcp_timer_keep);
1095 		} else {
1096 			tp->t_rcvtime = ticks;
1097 			tp->t_flags &= ~TF_KEEPALIVE;
1098 			tcp_callout_reset(tp, tp->tt_keep, tcp_keepidle,
1099 					  tcp_timer_keep);
1100 		}
1101 	}
1102 
1103 	/*
1104 	 * Process options.
1105 	 * XXX this is tradtitional behavior, may need to be cleaned up.
1106 	 */
1107 	tcp_dooptions(&to, optp, optlen, (thflags & TH_SYN) != 0);
1108 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1109 		if (to.to_flags & TOF_SCALE) {
1110 			tp->t_flags |= TF_RCVD_SCALE;
1111 			tp->requested_s_scale = to.to_requested_s_scale;
1112 		}
1113 		if (to.to_flags & TOF_TS) {
1114 			tp->t_flags |= TF_RCVD_TSTMP;
1115 			tp->ts_recent = to.to_tsval;
1116 			tp->ts_recent_age = ticks;
1117 		}
1118 		if (to.to_flags & TOF_MSS)
1119 			tcp_mss(tp, to.to_mss);
1120 		/*
1121 		 * Only set the TF_SACK_PERMITTED per-connection flag
1122 		 * if we got a SACK_PERMITTED option from the other side
1123 		 * and the global tcp_do_sack variable is true.
1124 		 */
1125 		if (tcp_do_sack && (to.to_flags & TOF_SACK_PERMITTED))
1126 			tp->t_flags |= TF_SACK_PERMITTED;
1127 	}
1128 
1129 	/*
1130 	 * Header prediction: check for the two common cases
1131 	 * of a uni-directional data xfer.  If the packet has
1132 	 * no control flags, is in-sequence, the window didn't
1133 	 * change and we're not retransmitting, it's a
1134 	 * candidate.  If the length is zero and the ack moved
1135 	 * forward, we're the sender side of the xfer.  Just
1136 	 * free the data acked & wake any higher level process
1137 	 * that was blocked waiting for space.  If the length
1138 	 * is non-zero and the ack didn't move, we're the
1139 	 * receiver side.  If we're getting packets in-order
1140 	 * (the reassembly queue is empty), add the data to
1141 	 * the socket buffer and note that we need a delayed ack.
1142 	 * Make sure that the hidden state-flags are also off.
1143 	 * Since we check for TCPS_ESTABLISHED above, it can only
1144 	 * be TH_NEEDSYN.
1145 	 */
1146 	if (tp->t_state == TCPS_ESTABLISHED &&
1147 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1148 	    !(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)) &&
1149 	    (!(to.to_flags & TOF_TS) ||
1150 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1151 	    th->th_seq == tp->rcv_nxt &&
1152 	    tp->snd_nxt == tp->snd_max) {
1153 
1154 		/*
1155 		 * If last ACK falls within this segment's sequence numbers,
1156 		 * record the timestamp.
1157 		 * NOTE that the test is modified according to the latest
1158 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1159 		 */
1160 		if ((to.to_flags & TOF_TS) &&
1161 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1162 			tp->ts_recent_age = ticks;
1163 			tp->ts_recent = to.to_tsval;
1164 		}
1165 
1166 		if (tlen == 0) {
1167 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1168 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1169 			    tp->snd_cwnd >= tp->snd_wnd &&
1170 			    !IN_FASTRECOVERY(tp)) {
1171 				/*
1172 				 * This is a pure ack for outstanding data.
1173 				 */
1174 				++tcpstat.tcps_predack;
1175 				/*
1176 				 * "bad retransmit" recovery
1177 				 *
1178 				 * If Eifel detection applies, then
1179 				 * it is deterministic, so use it
1180 				 * unconditionally over the old heuristic.
1181 				 * Otherwise, fall back to the old heuristic.
1182 				 */
1183 				if (tcp_do_eifel_detect &&
1184 				    (to.to_flags & TOF_TS) && to.to_tsecr &&
1185 				    (tp->t_flags & TF_FIRSTACCACK)) {
1186 					/* Eifel detection applicable. */
1187 					if (to.to_tsecr < tp->t_rexmtTS) {
1188 						tcp_revert_congestion_state(tp);
1189 						++tcpstat.tcps_eifeldetected;
1190 					}
1191 				} else if (tp->t_rxtshift == 1 &&
1192 					   ticks < tp->t_badrxtwin) {
1193 					tcp_revert_congestion_state(tp);
1194 					++tcpstat.tcps_rttdetected;
1195 				}
1196 				tp->t_flags &= ~(TF_FIRSTACCACK |
1197 						 TF_FASTREXMT | TF_EARLYREXMT);
1198 				/*
1199 				 * Recalculate the retransmit timer / rtt.
1200 				 *
1201 				 * Some machines (certain windows boxes)
1202 				 * send broken timestamp replies during the
1203 				 * SYN+ACK phase, ignore timestamps of 0.
1204 				 */
1205 				if ((to.to_flags & TOF_TS) && to.to_tsecr) {
1206 					tcp_xmit_timer(tp,
1207 						       ticks - to.to_tsecr + 1);
1208 				} else if (tp->t_rtttime &&
1209 					   SEQ_GT(th->th_ack, tp->t_rtseq)) {
1210 					tcp_xmit_timer(tp,
1211 						       ticks - tp->t_rtttime);
1212 				}
1213 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1214 				acked = th->th_ack - tp->snd_una;
1215 				tcpstat.tcps_rcvackpack++;
1216 				tcpstat.tcps_rcvackbyte += acked;
1217 				sbdrop(&so->so_snd.sb, acked);
1218 				tp->snd_recover = th->th_ack - 1;
1219 				tp->snd_una = th->th_ack;
1220 				tp->t_dupacks = 0;
1221 				/*
1222 				 * Update window information.
1223 				 */
1224 				if (tiwin != tp->snd_wnd &&
1225 				    acceptable_window_update(tp, th, tiwin)) {
1226 					/* keep track of pure window updates */
1227 					if (tp->snd_wl2 == th->th_ack &&
1228 					    tiwin > tp->snd_wnd)
1229 						tcpstat.tcps_rcvwinupd++;
1230 					tp->snd_wnd = tiwin;
1231 					tp->snd_wl1 = th->th_seq;
1232 					tp->snd_wl2 = th->th_ack;
1233 					if (tp->snd_wnd > tp->max_sndwnd)
1234 						tp->max_sndwnd = tp->snd_wnd;
1235 				}
1236 				m_freem(m);
1237 				ND6_HINT(tp); /* some progress has been done */
1238 				/*
1239 				 * If all outstanding data are acked, stop
1240 				 * retransmit timer, otherwise restart timer
1241 				 * using current (possibly backed-off) value.
1242 				 * If process is waiting for space,
1243 				 * wakeup/selwakeup/signal.  If data
1244 				 * are ready to send, let tcp_output
1245 				 * decide between more output or persist.
1246 				 */
1247 				if (tp->snd_una == tp->snd_max) {
1248 					tcp_callout_stop(tp, tp->tt_rexmt);
1249 				} else if (!tcp_callout_active(tp,
1250 					    tp->tt_persist)) {
1251 					tcp_callout_reset(tp, tp->tt_rexmt,
1252 					    tp->t_rxtcur, tcp_timer_rexmt);
1253 				}
1254 				sowwakeup(so);
1255 				if (so->so_snd.ssb_cc > 0)
1256 					tcp_output(tp);
1257 				return;
1258 			}
1259 		} else if (tiwin == tp->snd_wnd &&
1260 		    th->th_ack == tp->snd_una &&
1261 		    LIST_EMPTY(&tp->t_segq) &&
1262 		    tlen <= ssb_space(&so->so_rcv)) {
1263 			u_long newsize = 0;	/* automatic sockbuf scaling */
1264 			/*
1265 			 * This is a pure, in-sequence data packet
1266 			 * with nothing on the reassembly queue and
1267 			 * we have enough buffer space to take it.
1268 			 */
1269 			++tcpstat.tcps_preddat;
1270 			tp->rcv_nxt += tlen;
1271 			tcpstat.tcps_rcvpack++;
1272 			tcpstat.tcps_rcvbyte += tlen;
1273 			ND6_HINT(tp);	/* some progress has been done */
1274 		/*
1275 		 * Automatic sizing of receive socket buffer.  Often the send
1276 		 * buffer size is not optimally adjusted to the actual network
1277 		 * conditions at hand (delay bandwidth product).  Setting the
1278 		 * buffer size too small limits throughput on links with high
1279 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1280 		 *
1281 		 * On the receive side the socket buffer memory is only rarely
1282 		 * used to any significant extent.  This allows us to be much
1283 		 * more aggressive in scaling the receive socket buffer.  For
1284 		 * the case that the buffer space is actually used to a large
1285 		 * extent and we run out of kernel memory we can simply drop
1286 		 * the new segments; TCP on the sender will just retransmit it
1287 		 * later.  Setting the buffer size too big may only consume too
1288 		 * much kernel memory if the application doesn't read() from
1289 		 * the socket or packet loss or reordering makes use of the
1290 		 * reassembly queue.
1291 		 *
1292 		 * The criteria to step up the receive buffer one notch are:
1293 		 *  1. the number of bytes received during the time it takes
1294 		 *     one timestamp to be reflected back to us (the RTT);
1295 		 *  2. received bytes per RTT is within seven eighth of the
1296 		 *     current socket buffer size;
1297 		 *  3. receive buffer size has not hit maximal automatic size;
1298 		 *
1299 		 * This algorithm does one step per RTT at most and only if
1300 		 * we receive a bulk stream w/o packet losses or reorderings.
1301 		 * Shrinking the buffer during idle times is not necessary as
1302 		 * it doesn't consume any memory when idle.
1303 		 *
1304 		 * TODO: Only step up if the application is actually serving
1305 		 * the buffer to better manage the socket buffer resources.
1306 		 */
1307 			if (tcp_do_autorcvbuf &&
1308 			    to.to_tsecr &&
1309 			    (so->so_rcv.ssb_flags & SSB_AUTOSIZE)) {
1310 				if (to.to_tsecr > tp->rfbuf_ts &&
1311 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1312 					if (tp->rfbuf_cnt >
1313 					    (so->so_rcv.ssb_hiwat / 8 * 7) &&
1314 					    so->so_rcv.ssb_hiwat <
1315 					    tcp_autorcvbuf_max) {
1316 						newsize =
1317 						    ulmin(so->so_rcv.ssb_hiwat +
1318 							  tcp_autorcvbuf_inc,
1319 							  tcp_autorcvbuf_max);
1320 					}
1321 					/* Start over with next RTT. */
1322 					tp->rfbuf_ts = 0;
1323 					tp->rfbuf_cnt = 0;
1324 				} else
1325 					tp->rfbuf_cnt += tlen;	/* add up */
1326 			}
1327 			/*
1328 			 * Add data to socket buffer.
1329 			 */
1330 			if (so->so_state & SS_CANTRCVMORE) {
1331 				m_freem(m);
1332 			} else {
1333 				/*
1334 				 * Set new socket buffer size, give up when
1335 				 * limit is reached.
1336 				 *
1337 				 * Adjusting the size can mess up ACK
1338 				 * sequencing when pure window updates are
1339 				 * being avoided (which is the default),
1340 				 * so force an ack.
1341 				 */
1342 				if (newsize) {
1343 					tp->t_flags |= TF_RXRESIZED;
1344 					if (!ssb_reserve(&so->so_rcv, newsize,
1345 							 so, NULL)) {
1346 						so->so_rcv.ssb_flags &= ~SSB_AUTOSIZE;
1347 					}
1348 					if (newsize >=
1349 					    (TCP_MAXWIN << tp->rcv_scale)) {
1350 						so->so_rcv.ssb_flags &= ~SSB_AUTOSIZE;
1351 					}
1352 				}
1353 				m_adj(m, drop_hdrlen); /* delayed header drop */
1354 				ssb_appendstream(&so->so_rcv, m);
1355 			}
1356 			sorwakeup(so);
1357 			/*
1358 			 * This code is responsible for most of the ACKs
1359 			 * the TCP stack sends back after receiving a data
1360 			 * packet.  Note that the DELAY_ACK check fails if
1361 			 * the delack timer is already running, which results
1362 			 * in an ack being sent every other packet (which is
1363 			 * what we want).
1364 			 *
1365 			 * We then further aggregate acks by not actually
1366 			 * sending one until the protocol thread has completed
1367 			 * processing the current backlog of packets.  This
1368 			 * does not delay the ack any further, but allows us
1369 			 * to take advantage of the packet aggregation that
1370 			 * high speed NICs do (usually blocks of 8-10 packets)
1371 			 * to send a single ack rather then four or five acks,
1372 			 * greatly reducing the ack rate, the return channel
1373 			 * bandwidth, and the protocol overhead on both ends.
1374 			 *
1375 			 * Since this also has the effect of slowing down
1376 			 * the exponential slow-start ramp-up, systems with
1377 			 * very large bandwidth-delay products might want
1378 			 * to turn the feature off.
1379 			 */
1380 			if (DELAY_ACK(tp)) {
1381 				tcp_callout_reset(tp, tp->tt_delack,
1382 				    tcp_delacktime, tcp_timer_delack);
1383 			} else if (tcp_aggregate_acks) {
1384 				tp->t_flags |= TF_ACKNOW;
1385 				if (!(tp->t_flags & TF_ONOUTPUTQ)) {
1386 					tp->t_flags |= TF_ONOUTPUTQ;
1387 					tp->tt_cpu = mycpu->gd_cpuid;
1388 					TAILQ_INSERT_TAIL(
1389 					    &tcpcbackq[tp->tt_cpu],
1390 					    tp, t_outputq);
1391 				}
1392 			} else {
1393 				tp->t_flags |= TF_ACKNOW;
1394 				tcp_output(tp);
1395 			}
1396 			return;
1397 		}
1398 	}
1399 
1400 	/*
1401 	 * Calculate amount of space in receive window,
1402 	 * and then do TCP input processing.
1403 	 * Receive window is amount of space in rcv queue,
1404 	 * but not less than advertised window.
1405 	 */
1406 	recvwin = ssb_space(&so->so_rcv);
1407 	if (recvwin < 0)
1408 		recvwin = 0;
1409 	tp->rcv_wnd = imax(recvwin, (int)(tp->rcv_adv - tp->rcv_nxt));
1410 
1411 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1412 	tp->rfbuf_ts = 0;
1413 	tp->rfbuf_cnt = 0;
1414 
1415 	switch (tp->t_state) {
1416 	/*
1417 	 * If the state is SYN_RECEIVED:
1418 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1419 	 */
1420 	case TCPS_SYN_RECEIVED:
1421 		if ((thflags & TH_ACK) &&
1422 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1423 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1424 				rstreason = BANDLIM_RST_OPENPORT;
1425 				goto dropwithreset;
1426 		}
1427 		break;
1428 
1429 	/*
1430 	 * If the state is SYN_SENT:
1431 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1432 	 *	if seg contains a RST, then drop the connection.
1433 	 *	if seg does not contain SYN, then drop it.
1434 	 * Otherwise this is an acceptable SYN segment
1435 	 *	initialize tp->rcv_nxt and tp->irs
1436 	 *	if seg contains ack then advance tp->snd_una
1437 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1438 	 *	arrange for segment to be acked (eventually)
1439 	 *	continue processing rest of data/controls, beginning with URG
1440 	 */
1441 	case TCPS_SYN_SENT:
1442 		if ((thflags & TH_ACK) &&
1443 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1444 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1445 			rstreason = BANDLIM_UNLIMITED;
1446 			goto dropwithreset;
1447 		}
1448 		if (thflags & TH_RST) {
1449 			if (thflags & TH_ACK)
1450 				tp = tcp_drop(tp, ECONNREFUSED);
1451 			goto drop;
1452 		}
1453 		if (!(thflags & TH_SYN))
1454 			goto drop;
1455 		tp->snd_wnd = th->th_win;	/* initial send window */
1456 
1457 		tp->irs = th->th_seq;
1458 		tcp_rcvseqinit(tp);
1459 		if (thflags & TH_ACK) {
1460 			/* Our SYN was acked. */
1461 			tcpstat.tcps_connects++;
1462 			soisconnected(so);
1463 			/* Do window scaling on this connection? */
1464 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1465 			    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
1466 				tp->snd_scale = tp->requested_s_scale;
1467 				tp->rcv_scale = tp->request_r_scale;
1468 			}
1469 			tp->rcv_adv += tp->rcv_wnd;
1470 			tp->snd_una++;		/* SYN is acked */
1471 			tcp_callout_stop(tp, tp->tt_rexmt);
1472 			/*
1473 			 * If there's data, delay ACK; if there's also a FIN
1474 			 * ACKNOW will be turned on later.
1475 			 */
1476 			if (DELAY_ACK(tp) && tlen != 0) {
1477 				tcp_callout_reset(tp, tp->tt_delack,
1478 				    tcp_delacktime, tcp_timer_delack);
1479 			} else {
1480 				tp->t_flags |= TF_ACKNOW;
1481 			}
1482 			/*
1483 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1484 			 * Transitions:
1485 			 *	SYN_SENT  --> ESTABLISHED
1486 			 *	SYN_SENT* --> FIN_WAIT_1
1487 			 */
1488 			tp->t_starttime = ticks;
1489 			if (tp->t_flags & TF_NEEDFIN) {
1490 				tp->t_state = TCPS_FIN_WAIT_1;
1491 				tp->t_flags &= ~TF_NEEDFIN;
1492 				thflags &= ~TH_SYN;
1493 			} else {
1494 				tp->t_state = TCPS_ESTABLISHED;
1495 				tcp_callout_reset(tp, tp->tt_keep, tcp_keepidle,
1496 				    tcp_timer_keep);
1497 			}
1498 		} else {
1499 			/*
1500 			 * Received initial SYN in SYN-SENT[*] state =>
1501 			 * simultaneous open.
1502 			 * Do 3-way handshake:
1503 			 *	  SYN-SENT -> SYN-RECEIVED
1504 			 *	  SYN-SENT* -> SYN-RECEIVED*
1505 			 */
1506 			tp->t_flags |= TF_ACKNOW;
1507 			tcp_callout_stop(tp, tp->tt_rexmt);
1508 			tp->t_state = TCPS_SYN_RECEIVED;
1509 		}
1510 
1511 trimthenstep6:
1512 		/*
1513 		 * Advance th->th_seq to correspond to first data byte.
1514 		 * If data, trim to stay within window,
1515 		 * dropping FIN if necessary.
1516 		 */
1517 		th->th_seq++;
1518 		if (tlen > tp->rcv_wnd) {
1519 			todrop = tlen - tp->rcv_wnd;
1520 			m_adj(m, -todrop);
1521 			tlen = tp->rcv_wnd;
1522 			thflags &= ~TH_FIN;
1523 			tcpstat.tcps_rcvpackafterwin++;
1524 			tcpstat.tcps_rcvbyteafterwin += todrop;
1525 		}
1526 		tp->snd_wl1 = th->th_seq - 1;
1527 		tp->rcv_up = th->th_seq;
1528 		/*
1529 		 * Client side of transaction: already sent SYN and data.
1530 		 * If the remote host used T/TCP to validate the SYN,
1531 		 * our data will be ACK'd; if so, enter normal data segment
1532 		 * processing in the middle of step 5, ack processing.
1533 		 * Otherwise, goto step 6.
1534 		 */
1535 		if (thflags & TH_ACK)
1536 			goto process_ACK;
1537 
1538 		goto step6;
1539 
1540 	/*
1541 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1542 	 *	do normal processing (we no longer bother with T/TCP).
1543 	 */
1544 	case TCPS_LAST_ACK:
1545 	case TCPS_CLOSING:
1546 	case TCPS_TIME_WAIT:
1547 		break;  /* continue normal processing */
1548 	}
1549 
1550 	/*
1551 	 * States other than LISTEN or SYN_SENT.
1552 	 * First check the RST flag and sequence number since reset segments
1553 	 * are exempt from the timestamp and connection count tests.  This
1554 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1555 	 * below which allowed reset segments in half the sequence space
1556 	 * to fall though and be processed (which gives forged reset
1557 	 * segments with a random sequence number a 50 percent chance of
1558 	 * killing a connection).
1559 	 * Then check timestamp, if present.
1560 	 * Then check the connection count, if present.
1561 	 * Then check that at least some bytes of segment are within
1562 	 * receive window.  If segment begins before rcv_nxt,
1563 	 * drop leading data (and SYN); if nothing left, just ack.
1564 	 *
1565 	 *
1566 	 * If the RST bit is set, check the sequence number to see
1567 	 * if this is a valid reset segment.
1568 	 * RFC 793 page 37:
1569 	 *   In all states except SYN-SENT, all reset (RST) segments
1570 	 *   are validated by checking their SEQ-fields.  A reset is
1571 	 *   valid if its sequence number is in the window.
1572 	 * Note: this does not take into account delayed ACKs, so
1573 	 *   we should test against last_ack_sent instead of rcv_nxt.
1574 	 *   The sequence number in the reset segment is normally an
1575 	 *   echo of our outgoing acknowledgement numbers, but some hosts
1576 	 *   send a reset with the sequence number at the rightmost edge
1577 	 *   of our receive window, and we have to handle this case.
1578 	 * If we have multiple segments in flight, the intial reset
1579 	 * segment sequence numbers will be to the left of last_ack_sent,
1580 	 * but they will eventually catch up.
1581 	 * In any case, it never made sense to trim reset segments to
1582 	 * fit the receive window since RFC 1122 says:
1583 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1584 	 *
1585 	 *    A TCP SHOULD allow a received RST segment to include data.
1586 	 *
1587 	 *    DISCUSSION
1588 	 *	   It has been suggested that a RST segment could contain
1589 	 *	   ASCII text that encoded and explained the cause of the
1590 	 *	   RST.  No standard has yet been established for such
1591 	 *	   data.
1592 	 *
1593 	 * If the reset segment passes the sequence number test examine
1594 	 * the state:
1595 	 *    SYN_RECEIVED STATE:
1596 	 *	If passive open, return to LISTEN state.
1597 	 *	If active open, inform user that connection was refused.
1598 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1599 	 *	Inform user that connection was reset, and close tcb.
1600 	 *    CLOSING, LAST_ACK STATES:
1601 	 *	Close the tcb.
1602 	 *    TIME_WAIT STATE:
1603 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1604 	 *	RFC 1337.
1605 	 */
1606 	if (thflags & TH_RST) {
1607 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1608 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1609 			switch (tp->t_state) {
1610 
1611 			case TCPS_SYN_RECEIVED:
1612 				so->so_error = ECONNREFUSED;
1613 				goto close;
1614 
1615 			case TCPS_ESTABLISHED:
1616 			case TCPS_FIN_WAIT_1:
1617 			case TCPS_FIN_WAIT_2:
1618 			case TCPS_CLOSE_WAIT:
1619 				so->so_error = ECONNRESET;
1620 			close:
1621 				tp->t_state = TCPS_CLOSED;
1622 				tcpstat.tcps_drops++;
1623 				tp = tcp_close(tp);
1624 				break;
1625 
1626 			case TCPS_CLOSING:
1627 			case TCPS_LAST_ACK:
1628 				tp = tcp_close(tp);
1629 				break;
1630 
1631 			case TCPS_TIME_WAIT:
1632 				break;
1633 			}
1634 		}
1635 		goto drop;
1636 	}
1637 
1638 	/*
1639 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1640 	 * and it's less than ts_recent, drop it.
1641 	 */
1642 	if ((to.to_flags & TOF_TS) && tp->ts_recent != 0 &&
1643 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1644 
1645 		/* Check to see if ts_recent is over 24 days old.  */
1646 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1647 			/*
1648 			 * Invalidate ts_recent.  If this segment updates
1649 			 * ts_recent, the age will be reset later and ts_recent
1650 			 * will get a valid value.  If it does not, setting
1651 			 * ts_recent to zero will at least satisfy the
1652 			 * requirement that zero be placed in the timestamp
1653 			 * echo reply when ts_recent isn't valid.  The
1654 			 * age isn't reset until we get a valid ts_recent
1655 			 * because we don't want out-of-order segments to be
1656 			 * dropped when ts_recent is old.
1657 			 */
1658 			tp->ts_recent = 0;
1659 		} else {
1660 			tcpstat.tcps_rcvduppack++;
1661 			tcpstat.tcps_rcvdupbyte += tlen;
1662 			tcpstat.tcps_pawsdrop++;
1663 			if (tlen)
1664 				goto dropafterack;
1665 			goto drop;
1666 		}
1667 	}
1668 
1669 	/*
1670 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1671 	 * this connection before trimming the data to fit the receive
1672 	 * window.  Check the sequence number versus IRS since we know
1673 	 * the sequence numbers haven't wrapped.  This is a partial fix
1674 	 * for the "LAND" DoS attack.
1675 	 */
1676 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1677 		rstreason = BANDLIM_RST_OPENPORT;
1678 		goto dropwithreset;
1679 	}
1680 
1681 	todrop = tp->rcv_nxt - th->th_seq;
1682 	if (todrop > 0) {
1683 		if (TCP_DO_SACK(tp)) {
1684 			/* Report duplicate segment at head of packet. */
1685 			tp->reportblk.rblk_start = th->th_seq;
1686 			tp->reportblk.rblk_end = th->th_seq + tlen;
1687 			if (thflags & TH_FIN)
1688 				++tp->reportblk.rblk_end;
1689 			if (SEQ_GT(tp->reportblk.rblk_end, tp->rcv_nxt))
1690 				tp->reportblk.rblk_end = tp->rcv_nxt;
1691 			tp->t_flags |= (TF_DUPSEG | TF_SACKLEFT | TF_ACKNOW);
1692 		}
1693 		if (thflags & TH_SYN) {
1694 			thflags &= ~TH_SYN;
1695 			th->th_seq++;
1696 			if (th->th_urp > 1)
1697 				th->th_urp--;
1698 			else
1699 				thflags &= ~TH_URG;
1700 			todrop--;
1701 		}
1702 		/*
1703 		 * Following if statement from Stevens, vol. 2, p. 960.
1704 		 */
1705 		if (todrop > tlen ||
1706 		    (todrop == tlen && !(thflags & TH_FIN))) {
1707 			/*
1708 			 * Any valid FIN must be to the left of the window.
1709 			 * At this point the FIN must be a duplicate or out
1710 			 * of sequence; drop it.
1711 			 */
1712 			thflags &= ~TH_FIN;
1713 
1714 			/*
1715 			 * Send an ACK to resynchronize and drop any data.
1716 			 * But keep on processing for RST or ACK.
1717 			 */
1718 			tp->t_flags |= TF_ACKNOW;
1719 			todrop = tlen;
1720 			tcpstat.tcps_rcvduppack++;
1721 			tcpstat.tcps_rcvdupbyte += todrop;
1722 		} else {
1723 			tcpstat.tcps_rcvpartduppack++;
1724 			tcpstat.tcps_rcvpartdupbyte += todrop;
1725 		}
1726 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1727 		th->th_seq += todrop;
1728 		tlen -= todrop;
1729 		if (th->th_urp > todrop)
1730 			th->th_urp -= todrop;
1731 		else {
1732 			thflags &= ~TH_URG;
1733 			th->th_urp = 0;
1734 		}
1735 	}
1736 
1737 	/*
1738 	 * If new data are received on a connection after the
1739 	 * user processes are gone, then RST the other end.
1740 	 */
1741 	if ((so->so_state & SS_NOFDREF) &&
1742 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1743 		tp = tcp_close(tp);
1744 		tcpstat.tcps_rcvafterclose++;
1745 		rstreason = BANDLIM_UNLIMITED;
1746 		goto dropwithreset;
1747 	}
1748 
1749 	/*
1750 	 * If segment ends after window, drop trailing data
1751 	 * (and PUSH and FIN); if nothing left, just ACK.
1752 	 */
1753 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1754 	if (todrop > 0) {
1755 		tcpstat.tcps_rcvpackafterwin++;
1756 		if (todrop >= tlen) {
1757 			tcpstat.tcps_rcvbyteafterwin += tlen;
1758 			/*
1759 			 * If a new connection request is received
1760 			 * while in TIME_WAIT, drop the old connection
1761 			 * and start over if the sequence numbers
1762 			 * are above the previous ones.
1763 			 */
1764 			if (thflags & TH_SYN &&
1765 			    tp->t_state == TCPS_TIME_WAIT &&
1766 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1767 				tp = tcp_close(tp);
1768 				goto findpcb;
1769 			}
1770 			/*
1771 			 * If window is closed can only take segments at
1772 			 * window edge, and have to drop data and PUSH from
1773 			 * incoming segments.  Continue processing, but
1774 			 * remember to ack.  Otherwise, drop segment
1775 			 * and ack.
1776 			 */
1777 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1778 				tp->t_flags |= TF_ACKNOW;
1779 				tcpstat.tcps_rcvwinprobe++;
1780 			} else
1781 				goto dropafterack;
1782 		} else
1783 			tcpstat.tcps_rcvbyteafterwin += todrop;
1784 		m_adj(m, -todrop);
1785 		tlen -= todrop;
1786 		thflags &= ~(TH_PUSH | TH_FIN);
1787 	}
1788 
1789 	/*
1790 	 * If last ACK falls within this segment's sequence numbers,
1791 	 * record its timestamp.
1792 	 * NOTE:
1793 	 * 1) That the test incorporates suggestions from the latest
1794 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1795 	 * 2) That updating only on newer timestamps interferes with
1796 	 *    our earlier PAWS tests, so this check should be solely
1797 	 *    predicated on the sequence space of this segment.
1798 	 * 3) That we modify the segment boundary check to be
1799 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.LEN
1800 	 *    instead of RFC1323's
1801 	 *        Last.ACK.Sent < SEG.SEQ + SEG.LEN,
1802 	 *    This modified check allows us to overcome RFC1323's
1803 	 *    limitations as described in Stevens TCP/IP Illustrated
1804 	 *    Vol. 2 p.869. In such cases, we can still calculate the
1805 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1806 	 */
1807 	if ((to.to_flags & TOF_TS) && SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1808 	    SEQ_LEQ(tp->last_ack_sent, (th->th_seq + tlen
1809 					+ ((thflags & TH_SYN) != 0)
1810 					+ ((thflags & TH_FIN) != 0)))) {
1811 		tp->ts_recent_age = ticks;
1812 		tp->ts_recent = to.to_tsval;
1813 	}
1814 
1815 	/*
1816 	 * If a SYN is in the window, then this is an
1817 	 * error and we send an RST and drop the connection.
1818 	 */
1819 	if (thflags & TH_SYN) {
1820 		tp = tcp_drop(tp, ECONNRESET);
1821 		rstreason = BANDLIM_UNLIMITED;
1822 		goto dropwithreset;
1823 	}
1824 
1825 	/*
1826 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1827 	 * flag is on (half-synchronized state), then queue data for
1828 	 * later processing; else drop segment and return.
1829 	 */
1830 	if (!(thflags & TH_ACK)) {
1831 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1832 		    (tp->t_flags & TF_NEEDSYN))
1833 			goto step6;
1834 		else
1835 			goto drop;
1836 	}
1837 
1838 	/*
1839 	 * Ack processing.
1840 	 */
1841 	switch (tp->t_state) {
1842 	/*
1843 	 * In SYN_RECEIVED state, the ACK acknowledges our SYN, so enter
1844 	 * ESTABLISHED state and continue processing.
1845 	 * The ACK was checked above.
1846 	 */
1847 	case TCPS_SYN_RECEIVED:
1848 
1849 		tcpstat.tcps_connects++;
1850 		soisconnected(so);
1851 		/* Do window scaling? */
1852 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1853 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
1854 			tp->snd_scale = tp->requested_s_scale;
1855 			tp->rcv_scale = tp->request_r_scale;
1856 		}
1857 		/*
1858 		 * Make transitions:
1859 		 *      SYN-RECEIVED  -> ESTABLISHED
1860 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1861 		 */
1862 		tp->t_starttime = ticks;
1863 		if (tp->t_flags & TF_NEEDFIN) {
1864 			tp->t_state = TCPS_FIN_WAIT_1;
1865 			tp->t_flags &= ~TF_NEEDFIN;
1866 		} else {
1867 			tp->t_state = TCPS_ESTABLISHED;
1868 			tcp_callout_reset(tp, tp->tt_keep, tcp_keepidle,
1869 			    tcp_timer_keep);
1870 		}
1871 		/*
1872 		 * If segment contains data or ACK, will call tcp_reass()
1873 		 * later; if not, do so now to pass queued data to user.
1874 		 */
1875 		if (tlen == 0 && !(thflags & TH_FIN))
1876 			tcp_reass(tp, NULL, NULL, NULL);
1877 		/* fall into ... */
1878 
1879 	/*
1880 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1881 	 * ACKs.  If the ack is in the range
1882 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1883 	 * then advance tp->snd_una to th->th_ack and drop
1884 	 * data from the retransmission queue.  If this ACK reflects
1885 	 * more up to date window information we update our window information.
1886 	 */
1887 	case TCPS_ESTABLISHED:
1888 	case TCPS_FIN_WAIT_1:
1889 	case TCPS_FIN_WAIT_2:
1890 	case TCPS_CLOSE_WAIT:
1891 	case TCPS_CLOSING:
1892 	case TCPS_LAST_ACK:
1893 	case TCPS_TIME_WAIT:
1894 
1895 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1896 			if (TCP_DO_SACK(tp))
1897 				tcp_sack_update_scoreboard(tp, &to);
1898 			if (tlen != 0 || tiwin != tp->snd_wnd) {
1899 				tp->t_dupacks = 0;
1900 				break;
1901 			}
1902 			tcpstat.tcps_rcvdupack++;
1903 			if (!tcp_callout_active(tp, tp->tt_rexmt) ||
1904 			    th->th_ack != tp->snd_una) {
1905 				tp->t_dupacks = 0;
1906 				break;
1907 			}
1908 			/*
1909 			 * We have outstanding data (other than
1910 			 * a window probe), this is a completely
1911 			 * duplicate ack (ie, window info didn't
1912 			 * change), the ack is the biggest we've
1913 			 * seen and we've seen exactly our rexmt
1914 			 * threshhold of them, so assume a packet
1915 			 * has been dropped and retransmit it.
1916 			 * Kludge snd_nxt & the congestion
1917 			 * window so we send only this one
1918 			 * packet.
1919 			 */
1920 			if (IN_FASTRECOVERY(tp)) {
1921 				if (TCP_DO_SACK(tp)) {
1922 					/* No artifical cwnd inflation. */
1923 					tcp_sack_rexmt(tp, th);
1924 				} else {
1925 					/*
1926 					 * Dup acks mean that packets
1927 					 * have left the network
1928 					 * (they're now cached at the
1929 					 * receiver) so bump cwnd by
1930 					 * the amount in the receiver
1931 					 * to keep a constant cwnd
1932 					 * packets in the network.
1933 					 */
1934 					tp->snd_cwnd += tp->t_maxseg;
1935 					tcp_output(tp);
1936 				}
1937 			} else if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1938 				tp->t_dupacks = 0;
1939 				break;
1940 			} else if (++tp->t_dupacks == tcprexmtthresh) {
1941 				tcp_seq old_snd_nxt;
1942 				u_int win;
1943 
1944 fastretransmit:
1945 				if (tcp_do_eifel_detect &&
1946 				    (tp->t_flags & TF_RCVD_TSTMP)) {
1947 					tcp_save_congestion_state(tp);
1948 					tp->t_flags |= TF_FASTREXMT;
1949 				}
1950 				/*
1951 				 * We know we're losing at the current
1952 				 * window size, so do congestion avoidance:
1953 				 * set ssthresh to half the current window
1954 				 * and pull our congestion window back to the
1955 				 * new ssthresh.
1956 				 */
1957 				win = min(tp->snd_wnd, tp->snd_cwnd) / 2 /
1958 				    tp->t_maxseg;
1959 				if (win < 2)
1960 					win = 2;
1961 				tp->snd_ssthresh = win * tp->t_maxseg;
1962 				ENTER_FASTRECOVERY(tp);
1963 				tp->snd_recover = tp->snd_max;
1964 				tcp_callout_stop(tp, tp->tt_rexmt);
1965 				tp->t_rtttime = 0;
1966 				old_snd_nxt = tp->snd_nxt;
1967 				tp->snd_nxt = th->th_ack;
1968 				tp->snd_cwnd = tp->t_maxseg;
1969 				tcp_output(tp);
1970 				++tcpstat.tcps_sndfastrexmit;
1971 				tp->snd_cwnd = tp->snd_ssthresh;
1972 				tp->rexmt_high = tp->snd_nxt;
1973 				if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
1974 					tp->snd_nxt = old_snd_nxt;
1975 				KASSERT(tp->snd_limited <= 2,
1976 				    ("tp->snd_limited too big"));
1977 				if (TCP_DO_SACK(tp))
1978 					tcp_sack_rexmt(tp, th);
1979 				else
1980 					tp->snd_cwnd += tp->t_maxseg *
1981 					    (tp->t_dupacks - tp->snd_limited);
1982 			} else if (tcp_do_limitedtransmit) {
1983 				u_long oldcwnd = tp->snd_cwnd;
1984 				tcp_seq oldsndmax = tp->snd_max;
1985 				tcp_seq oldsndnxt = tp->snd_nxt;
1986 				/* outstanding data */
1987 				uint32_t ownd = tp->snd_max - tp->snd_una;
1988 				u_int sent;
1989 
1990 #define	iceildiv(n, d)		(((n)+(d)-1) / (d))
1991 
1992 				KASSERT(tp->t_dupacks == 1 ||
1993 					tp->t_dupacks == 2,
1994 				    ("dupacks not 1 or 2"));
1995 				if (tp->t_dupacks == 1)
1996 					tp->snd_limited = 0;
1997 				tp->snd_nxt = tp->snd_max;
1998 				tp->snd_cwnd = ownd +
1999 				    (tp->t_dupacks - tp->snd_limited) *
2000 				    tp->t_maxseg;
2001 				tcp_output(tp);
2002 
2003 				/*
2004 				 * Other acks may have been processed,
2005 				 * snd_nxt cannot be reset to a value less
2006 				 * then snd_una.
2007 				 */
2008 				if (SEQ_LT(oldsndnxt, oldsndmax)) {
2009 				    if (SEQ_GT(oldsndnxt, tp->snd_una))
2010 					tp->snd_nxt = oldsndnxt;
2011 				    else
2012 					tp->snd_nxt = tp->snd_una;
2013 				}
2014 				tp->snd_cwnd = oldcwnd;
2015 				sent = tp->snd_max - oldsndmax;
2016 				if (sent > tp->t_maxseg) {
2017 					KASSERT((tp->t_dupacks == 2 &&
2018 						 tp->snd_limited == 0) ||
2019 						(sent == tp->t_maxseg + 1 &&
2020 						 tp->t_flags & TF_SENTFIN),
2021 					    ("sent too much"));
2022 					KASSERT(sent <= tp->t_maxseg * 2,
2023 					    ("sent too many segments"));
2024 					tp->snd_limited = 2;
2025 					tcpstat.tcps_sndlimited += 2;
2026 				} else if (sent > 0) {
2027 					++tp->snd_limited;
2028 					++tcpstat.tcps_sndlimited;
2029 				} else if (tcp_do_early_retransmit &&
2030 				    (tcp_do_eifel_detect &&
2031 				     (tp->t_flags & TF_RCVD_TSTMP)) &&
2032 				    ownd < 4 * tp->t_maxseg &&
2033 				    tp->t_dupacks + 1 >=
2034 				      iceildiv(ownd, tp->t_maxseg) &&
2035 				    (!TCP_DO_SACK(tp) ||
2036 				     ownd <= tp->t_maxseg ||
2037 				     tcp_sack_has_sacked(&tp->scb,
2038 							ownd - tp->t_maxseg))) {
2039 					++tcpstat.tcps_sndearlyrexmit;
2040 					tp->t_flags |= TF_EARLYREXMT;
2041 					goto fastretransmit;
2042 				}
2043 			}
2044 			goto drop;
2045 		}
2046 
2047 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
2048 		tp->t_dupacks = 0;
2049 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2050 			/*
2051 			 * Detected optimistic ACK attack.
2052 			 * Force slow-start to de-synchronize attack.
2053 			 */
2054 			tp->snd_cwnd = tp->t_maxseg;
2055 			tp->snd_wacked = 0;
2056 
2057 			tcpstat.tcps_rcvacktoomuch++;
2058 			goto dropafterack;
2059 		}
2060 		/*
2061 		 * If we reach this point, ACK is not a duplicate,
2062 		 *     i.e., it ACKs something we sent.
2063 		 */
2064 		if (tp->t_flags & TF_NEEDSYN) {
2065 			/*
2066 			 * T/TCP: Connection was half-synchronized, and our
2067 			 * SYN has been ACK'd (so connection is now fully
2068 			 * synchronized).  Go to non-starred state,
2069 			 * increment snd_una for ACK of SYN, and check if
2070 			 * we can do window scaling.
2071 			 */
2072 			tp->t_flags &= ~TF_NEEDSYN;
2073 			tp->snd_una++;
2074 			/* Do window scaling? */
2075 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
2076 			    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
2077 				tp->snd_scale = tp->requested_s_scale;
2078 				tp->rcv_scale = tp->request_r_scale;
2079 			}
2080 		}
2081 
2082 process_ACK:
2083 		acked = th->th_ack - tp->snd_una;
2084 		tcpstat.tcps_rcvackpack++;
2085 		tcpstat.tcps_rcvackbyte += acked;
2086 
2087 		if (tcp_do_eifel_detect && acked > 0 &&
2088 		    (to.to_flags & TOF_TS) && (to.to_tsecr != 0) &&
2089 		    (tp->t_flags & TF_FIRSTACCACK)) {
2090 			/* Eifel detection applicable. */
2091 			if (to.to_tsecr < tp->t_rexmtTS) {
2092 				++tcpstat.tcps_eifeldetected;
2093 				tcp_revert_congestion_state(tp);
2094 				if (tp->t_rxtshift == 1 &&
2095 				    ticks >= tp->t_badrxtwin)
2096 					++tcpstat.tcps_rttcantdetect;
2097 			}
2098 		} else if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
2099 			/*
2100 			 * If we just performed our first retransmit,
2101 			 * and the ACK arrives within our recovery window,
2102 			 * then it was a mistake to do the retransmit
2103 			 * in the first place.  Recover our original cwnd
2104 			 * and ssthresh, and proceed to transmit where we
2105 			 * left off.
2106 			 */
2107 			tcp_revert_congestion_state(tp);
2108 			++tcpstat.tcps_rttdetected;
2109 		}
2110 
2111 		/*
2112 		 * If we have a timestamp reply, update smoothed
2113 		 * round trip time.  If no timestamp is present but
2114 		 * transmit timer is running and timed sequence
2115 		 * number was acked, update smoothed round trip time.
2116 		 * Since we now have an rtt measurement, cancel the
2117 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2118 		 * Recompute the initial retransmit timer.
2119 		 *
2120 		 * Some machines (certain windows boxes) send broken
2121 		 * timestamp replies during the SYN+ACK phase, ignore
2122 		 * timestamps of 0.
2123 		 */
2124 		if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0))
2125 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2126 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2127 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2128 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2129 
2130 		/*
2131 		 * If no data (only SYN) was ACK'd,
2132 		 *    skip rest of ACK processing.
2133 		 */
2134 		if (acked == 0)
2135 			goto step6;
2136 
2137 		/* Stop looking for an acceptable ACK since one was received. */
2138 		tp->t_flags &= ~(TF_FIRSTACCACK | TF_FASTREXMT | TF_EARLYREXMT);
2139 
2140 		if (acked > so->so_snd.ssb_cc) {
2141 			tp->snd_wnd -= so->so_snd.ssb_cc;
2142 			sbdrop(&so->so_snd.sb, (int)so->so_snd.ssb_cc);
2143 			ourfinisacked = TRUE;
2144 		} else {
2145 			sbdrop(&so->so_snd.sb, acked);
2146 			tp->snd_wnd -= acked;
2147 			ourfinisacked = FALSE;
2148 		}
2149 		sowwakeup(so);
2150 
2151 		/*
2152 		 * Update window information.
2153 		 * Don't look at window if no ACK:
2154 		 * TAC's send garbage on first SYN.
2155 		 */
2156 		if (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2157 		    (tp->snd_wl1 == th->th_seq &&
2158 		     (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2159 		      (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)))) {
2160 			/* keep track of pure window updates */
2161 			if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2162 			    tiwin > tp->snd_wnd)
2163 				tcpstat.tcps_rcvwinupd++;
2164 			tp->snd_wnd = tiwin;
2165 			tp->snd_wl1 = th->th_seq;
2166 			tp->snd_wl2 = th->th_ack;
2167 			if (tp->snd_wnd > tp->max_sndwnd)
2168 				tp->max_sndwnd = tp->snd_wnd;
2169 			needoutput = TRUE;
2170 		}
2171 
2172 		tp->snd_una = th->th_ack;
2173 		if (TCP_DO_SACK(tp))
2174 			tcp_sack_update_scoreboard(tp, &to);
2175 		if (IN_FASTRECOVERY(tp)) {
2176 			if (SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2177 				EXIT_FASTRECOVERY(tp);
2178 				needoutput = TRUE;
2179 				/*
2180 				 * If the congestion window was inflated
2181 				 * to account for the other side's
2182 				 * cached packets, retract it.
2183 				 */
2184 				if (!TCP_DO_SACK(tp))
2185 					tp->snd_cwnd = tp->snd_ssthresh;
2186 
2187 				/*
2188 				 * Window inflation should have left us
2189 				 * with approximately snd_ssthresh outstanding
2190 				 * data.  But, in case we would be inclined
2191 				 * to send a burst, better do it using
2192 				 * slow start.
2193 				 */
2194 				if (SEQ_GT(th->th_ack + tp->snd_cwnd,
2195 					   tp->snd_max + 2 * tp->t_maxseg))
2196 					tp->snd_cwnd =
2197 					    (tp->snd_max - tp->snd_una) +
2198 					    2 * tp->t_maxseg;
2199 
2200 				tp->snd_wacked = 0;
2201 			} else {
2202 				if (TCP_DO_SACK(tp)) {
2203 					tp->snd_max_rexmt = tp->snd_max;
2204 					tcp_sack_rexmt(tp, th);
2205 				} else {
2206 					tcp_newreno_partial_ack(tp, th, acked);
2207 				}
2208 				needoutput = FALSE;
2209 			}
2210 		} else {
2211 			/*
2212 			 * Open the congestion window.  When in slow-start,
2213 			 * open exponentially: maxseg per packet.  Otherwise,
2214 			 * open linearly: maxseg per window.
2215 			 */
2216 			if (tp->snd_cwnd <= tp->snd_ssthresh) {
2217 				u_int abc_sslimit =
2218 				    (SEQ_LT(tp->snd_nxt, tp->snd_max) ?
2219 				     tp->t_maxseg : 2 * tp->t_maxseg);
2220 
2221 				/* slow-start */
2222 				tp->snd_cwnd += tcp_do_abc ?
2223 				    min(acked, abc_sslimit) : tp->t_maxseg;
2224 			} else {
2225 				/* linear increase */
2226 				tp->snd_wacked += tcp_do_abc ? acked :
2227 				    tp->t_maxseg;
2228 				if (tp->snd_wacked >= tp->snd_cwnd) {
2229 					tp->snd_wacked -= tp->snd_cwnd;
2230 					tp->snd_cwnd += tp->t_maxseg;
2231 				}
2232 			}
2233 			tp->snd_cwnd = min(tp->snd_cwnd,
2234 					   TCP_MAXWIN << tp->snd_scale);
2235 			tp->snd_recover = th->th_ack - 1;
2236 		}
2237 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2238 			tp->snd_nxt = tp->snd_una;
2239 
2240 		/*
2241 		 * If all outstanding data is acked, stop retransmit
2242 		 * timer and remember to restart (more output or persist).
2243 		 * If there is more data to be acked, restart retransmit
2244 		 * timer, using current (possibly backed-off) value.
2245 		 */
2246 		if (th->th_ack == tp->snd_max) {
2247 			tcp_callout_stop(tp, tp->tt_rexmt);
2248 			needoutput = TRUE;
2249 		} else if (!tcp_callout_active(tp, tp->tt_persist)) {
2250 			tcp_callout_reset(tp, tp->tt_rexmt, tp->t_rxtcur,
2251 			    tcp_timer_rexmt);
2252 		}
2253 
2254 		switch (tp->t_state) {
2255 		/*
2256 		 * In FIN_WAIT_1 STATE in addition to the processing
2257 		 * for the ESTABLISHED state if our FIN is now acknowledged
2258 		 * then enter FIN_WAIT_2.
2259 		 */
2260 		case TCPS_FIN_WAIT_1:
2261 			if (ourfinisacked) {
2262 				/*
2263 				 * If we can't receive any more
2264 				 * data, then closing user can proceed.
2265 				 * Starting the timer is contrary to the
2266 				 * specification, but if we don't get a FIN
2267 				 * we'll hang forever.
2268 				 */
2269 				if (so->so_state & SS_CANTRCVMORE) {
2270 					soisdisconnected(so);
2271 					tcp_callout_reset(tp, tp->tt_2msl,
2272 					    tcp_maxidle, tcp_timer_2msl);
2273 				}
2274 				tp->t_state = TCPS_FIN_WAIT_2;
2275 			}
2276 			break;
2277 
2278 		/*
2279 		 * In CLOSING STATE in addition to the processing for
2280 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2281 		 * then enter the TIME-WAIT state, otherwise ignore
2282 		 * the segment.
2283 		 */
2284 		case TCPS_CLOSING:
2285 			if (ourfinisacked) {
2286 				tp->t_state = TCPS_TIME_WAIT;
2287 				tcp_canceltimers(tp);
2288 				tcp_callout_reset(tp, tp->tt_2msl,
2289 					    2 * tcp_msl, tcp_timer_2msl);
2290 				soisdisconnected(so);
2291 			}
2292 			break;
2293 
2294 		/*
2295 		 * In LAST_ACK, we may still be waiting for data to drain
2296 		 * and/or to be acked, as well as for the ack of our FIN.
2297 		 * If our FIN is now acknowledged, delete the TCB,
2298 		 * enter the closed state and return.
2299 		 */
2300 		case TCPS_LAST_ACK:
2301 			if (ourfinisacked) {
2302 				tp = tcp_close(tp);
2303 				goto drop;
2304 			}
2305 			break;
2306 
2307 		/*
2308 		 * In TIME_WAIT state the only thing that should arrive
2309 		 * is a retransmission of the remote FIN.  Acknowledge
2310 		 * it and restart the finack timer.
2311 		 */
2312 		case TCPS_TIME_WAIT:
2313 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_msl,
2314 			    tcp_timer_2msl);
2315 			goto dropafterack;
2316 		}
2317 	}
2318 
2319 step6:
2320 	/*
2321 	 * Update window information.
2322 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2323 	 */
2324 	if ((thflags & TH_ACK) &&
2325 	    acceptable_window_update(tp, th, tiwin)) {
2326 		/* keep track of pure window updates */
2327 		if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2328 		    tiwin > tp->snd_wnd)
2329 			tcpstat.tcps_rcvwinupd++;
2330 		tp->snd_wnd = tiwin;
2331 		tp->snd_wl1 = th->th_seq;
2332 		tp->snd_wl2 = th->th_ack;
2333 		if (tp->snd_wnd > tp->max_sndwnd)
2334 			tp->max_sndwnd = tp->snd_wnd;
2335 		needoutput = TRUE;
2336 	}
2337 
2338 	/*
2339 	 * Process segments with URG.
2340 	 */
2341 	if ((thflags & TH_URG) && th->th_urp &&
2342 	    !TCPS_HAVERCVDFIN(tp->t_state)) {
2343 		/*
2344 		 * This is a kludge, but if we receive and accept
2345 		 * random urgent pointers, we'll crash in
2346 		 * soreceive.  It's hard to imagine someone
2347 		 * actually wanting to send this much urgent data.
2348 		 */
2349 		if (th->th_urp + so->so_rcv.ssb_cc > sb_max) {
2350 			th->th_urp = 0;			/* XXX */
2351 			thflags &= ~TH_URG;		/* XXX */
2352 			goto dodata;			/* XXX */
2353 		}
2354 		/*
2355 		 * If this segment advances the known urgent pointer,
2356 		 * then mark the data stream.  This should not happen
2357 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2358 		 * a FIN has been received from the remote side.
2359 		 * In these states we ignore the URG.
2360 		 *
2361 		 * According to RFC961 (Assigned Protocols),
2362 		 * the urgent pointer points to the last octet
2363 		 * of urgent data.  We continue, however,
2364 		 * to consider it to indicate the first octet
2365 		 * of data past the urgent section as the original
2366 		 * spec states (in one of two places).
2367 		 */
2368 		if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) {
2369 			tp->rcv_up = th->th_seq + th->th_urp;
2370 			so->so_oobmark = so->so_rcv.ssb_cc +
2371 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2372 			if (so->so_oobmark == 0)
2373 				so->so_state |= SS_RCVATMARK;
2374 			sohasoutofband(so);
2375 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2376 		}
2377 		/*
2378 		 * Remove out of band data so doesn't get presented to user.
2379 		 * This can happen independent of advancing the URG pointer,
2380 		 * but if two URG's are pending at once, some out-of-band
2381 		 * data may creep in... ick.
2382 		 */
2383 		if (th->th_urp <= (u_long)tlen &&
2384 		    !(so->so_options & SO_OOBINLINE)) {
2385 			/* hdr drop is delayed */
2386 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2387 		}
2388 	} else {
2389 		/*
2390 		 * If no out of band data is expected,
2391 		 * pull receive urgent pointer along
2392 		 * with the receive window.
2393 		 */
2394 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2395 			tp->rcv_up = tp->rcv_nxt;
2396 	}
2397 
2398 dodata:							/* XXX */
2399 	/*
2400 	 * Process the segment text, merging it into the TCP sequencing queue,
2401 	 * and arranging for acknowledgment of receipt if necessary.
2402 	 * This process logically involves adjusting tp->rcv_wnd as data
2403 	 * is presented to the user (this happens in tcp_usrreq.c,
2404 	 * case PRU_RCVD).  If a FIN has already been received on this
2405 	 * connection then we just ignore the text.
2406 	 */
2407 	if ((tlen || (thflags & TH_FIN)) && !TCPS_HAVERCVDFIN(tp->t_state)) {
2408 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2409 		/*
2410 		 * Insert segment which includes th into TCP reassembly queue
2411 		 * with control block tp.  Set thflags to whether reassembly now
2412 		 * includes a segment with FIN.  This handles the common case
2413 		 * inline (segment is the next to be received on an established
2414 		 * connection, and the queue is empty), avoiding linkage into
2415 		 * and removal from the queue and repetition of various
2416 		 * conversions.
2417 		 * Set DELACK for segments received in order, but ack
2418 		 * immediately when segments are out of order (so
2419 		 * fast retransmit can work).
2420 		 */
2421 		if (th->th_seq == tp->rcv_nxt &&
2422 		    LIST_EMPTY(&tp->t_segq) &&
2423 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2424 			if (DELAY_ACK(tp)) {
2425 				tcp_callout_reset(tp, tp->tt_delack,
2426 				    tcp_delacktime, tcp_timer_delack);
2427 			} else {
2428 				tp->t_flags |= TF_ACKNOW;
2429 			}
2430 			tp->rcv_nxt += tlen;
2431 			thflags = th->th_flags & TH_FIN;
2432 			tcpstat.tcps_rcvpack++;
2433 			tcpstat.tcps_rcvbyte += tlen;
2434 			ND6_HINT(tp);
2435 			if (so->so_state & SS_CANTRCVMORE)
2436 				m_freem(m);
2437 			else
2438 				ssb_appendstream(&so->so_rcv, m);
2439 			sorwakeup(so);
2440 		} else {
2441 			if (!(tp->t_flags & TF_DUPSEG)) {
2442 				/* Initialize SACK report block. */
2443 				tp->reportblk.rblk_start = th->th_seq;
2444 				tp->reportblk.rblk_end = th->th_seq + tlen +
2445 				    ((thflags & TH_FIN) != 0);
2446 			}
2447 			thflags = tcp_reass(tp, th, &tlen, m);
2448 			tp->t_flags |= TF_ACKNOW;
2449 		}
2450 
2451 		/*
2452 		 * Note the amount of data that peer has sent into
2453 		 * our window, in order to estimate the sender's
2454 		 * buffer size.
2455 		 */
2456 		len = so->so_rcv.ssb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2457 	} else {
2458 		m_freem(m);
2459 		thflags &= ~TH_FIN;
2460 	}
2461 
2462 	/*
2463 	 * If FIN is received ACK the FIN and let the user know
2464 	 * that the connection is closing.
2465 	 */
2466 	if (thflags & TH_FIN) {
2467 		if (!TCPS_HAVERCVDFIN(tp->t_state)) {
2468 			socantrcvmore(so);
2469 			/*
2470 			 * If connection is half-synchronized
2471 			 * (ie NEEDSYN flag on) then delay ACK,
2472 			 * so it may be piggybacked when SYN is sent.
2473 			 * Otherwise, since we received a FIN then no
2474 			 * more input can be expected, send ACK now.
2475 			 */
2476 			if (DELAY_ACK(tp) && (tp->t_flags & TF_NEEDSYN)) {
2477 				tcp_callout_reset(tp, tp->tt_delack,
2478 				    tcp_delacktime, tcp_timer_delack);
2479 			} else {
2480 				tp->t_flags |= TF_ACKNOW;
2481 			}
2482 			tp->rcv_nxt++;
2483 		}
2484 
2485 		switch (tp->t_state) {
2486 		/*
2487 		 * In SYN_RECEIVED and ESTABLISHED STATES
2488 		 * enter the CLOSE_WAIT state.
2489 		 */
2490 		case TCPS_SYN_RECEIVED:
2491 			tp->t_starttime = ticks;
2492 			/*FALLTHROUGH*/
2493 		case TCPS_ESTABLISHED:
2494 			tp->t_state = TCPS_CLOSE_WAIT;
2495 			break;
2496 
2497 		/*
2498 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2499 		 * enter the CLOSING state.
2500 		 */
2501 		case TCPS_FIN_WAIT_1:
2502 			tp->t_state = TCPS_CLOSING;
2503 			break;
2504 
2505 		/*
2506 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2507 		 * starting the time-wait timer, turning off the other
2508 		 * standard timers.
2509 		 */
2510 		case TCPS_FIN_WAIT_2:
2511 			tp->t_state = TCPS_TIME_WAIT;
2512 			tcp_canceltimers(tp);
2513 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_msl,
2514 				    tcp_timer_2msl);
2515 			soisdisconnected(so);
2516 			break;
2517 
2518 		/*
2519 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2520 		 */
2521 		case TCPS_TIME_WAIT:
2522 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_msl,
2523 			    tcp_timer_2msl);
2524 			break;
2525 		}
2526 	}
2527 
2528 #ifdef TCPDEBUG
2529 	if (so->so_options & SO_DEBUG)
2530 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2531 #endif
2532 
2533 	/*
2534 	 * Return any desired output.
2535 	 */
2536 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2537 		tcp_output(tp);
2538 	return;
2539 
2540 dropafterack:
2541 	/*
2542 	 * Generate an ACK dropping incoming segment if it occupies
2543 	 * sequence space, where the ACK reflects our state.
2544 	 *
2545 	 * We can now skip the test for the RST flag since all
2546 	 * paths to this code happen after packets containing
2547 	 * RST have been dropped.
2548 	 *
2549 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2550 	 * segment we received passes the SYN-RECEIVED ACK test.
2551 	 * If it fails send a RST.  This breaks the loop in the
2552 	 * "LAND" DoS attack, and also prevents an ACK storm
2553 	 * between two listening ports that have been sent forged
2554 	 * SYN segments, each with the source address of the other.
2555 	 */
2556 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2557 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2558 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2559 		rstreason = BANDLIM_RST_OPENPORT;
2560 		goto dropwithreset;
2561 	}
2562 #ifdef TCPDEBUG
2563 	if (so->so_options & SO_DEBUG)
2564 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2565 #endif
2566 	m_freem(m);
2567 	tp->t_flags |= TF_ACKNOW;
2568 	tcp_output(tp);
2569 	return;
2570 
2571 dropwithreset:
2572 	/*
2573 	 * Generate a RST, dropping incoming segment.
2574 	 * Make ACK acceptable to originator of segment.
2575 	 * Don't bother to respond if destination was broadcast/multicast.
2576 	 */
2577 	if ((thflags & TH_RST) || m->m_flags & (M_BCAST | M_MCAST))
2578 		goto drop;
2579 	if (isipv6) {
2580 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2581 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2582 			goto drop;
2583 	} else {
2584 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2585 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2586 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2587 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2588 			goto drop;
2589 	}
2590 	/* IPv6 anycast check is done at tcp6_input() */
2591 
2592 	/*
2593 	 * Perform bandwidth limiting.
2594 	 */
2595 #ifdef ICMP_BANDLIM
2596 	if (badport_bandlim(rstreason) < 0)
2597 		goto drop;
2598 #endif
2599 
2600 #ifdef TCPDEBUG
2601 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2602 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2603 #endif
2604 	if (thflags & TH_ACK)
2605 		/* mtod() below is safe as long as hdr dropping is delayed */
2606 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2607 			    TH_RST);
2608 	else {
2609 		if (thflags & TH_SYN)
2610 			tlen++;
2611 		/* mtod() below is safe as long as hdr dropping is delayed */
2612 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq + tlen,
2613 			    (tcp_seq)0, TH_RST | TH_ACK);
2614 	}
2615 	return;
2616 
2617 drop:
2618 	/*
2619 	 * Drop space held by incoming segment and return.
2620 	 */
2621 #ifdef TCPDEBUG
2622 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2623 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2624 #endif
2625 	m_freem(m);
2626 	return;
2627 }
2628 
2629 /*
2630  * Parse TCP options and place in tcpopt.
2631  */
2632 static void
2633 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, boolean_t is_syn)
2634 {
2635 	int opt, optlen, i;
2636 
2637 	to->to_flags = 0;
2638 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2639 		opt = cp[0];
2640 		if (opt == TCPOPT_EOL)
2641 			break;
2642 		if (opt == TCPOPT_NOP)
2643 			optlen = 1;
2644 		else {
2645 			if (cnt < 2)
2646 				break;
2647 			optlen = cp[1];
2648 			if (optlen < 2 || optlen > cnt)
2649 				break;
2650 		}
2651 		switch (opt) {
2652 		case TCPOPT_MAXSEG:
2653 			if (optlen != TCPOLEN_MAXSEG)
2654 				continue;
2655 			if (!is_syn)
2656 				continue;
2657 			to->to_flags |= TOF_MSS;
2658 			bcopy(cp + 2, &to->to_mss, sizeof to->to_mss);
2659 			to->to_mss = ntohs(to->to_mss);
2660 			break;
2661 		case TCPOPT_WINDOW:
2662 			if (optlen != TCPOLEN_WINDOW)
2663 				continue;
2664 			if (!is_syn)
2665 				continue;
2666 			to->to_flags |= TOF_SCALE;
2667 			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2668 			break;
2669 		case TCPOPT_TIMESTAMP:
2670 			if (optlen != TCPOLEN_TIMESTAMP)
2671 				continue;
2672 			to->to_flags |= TOF_TS;
2673 			bcopy(cp + 2, &to->to_tsval, sizeof to->to_tsval);
2674 			to->to_tsval = ntohl(to->to_tsval);
2675 			bcopy(cp + 6, &to->to_tsecr, sizeof to->to_tsecr);
2676 			to->to_tsecr = ntohl(to->to_tsecr);
2677 			/*
2678 			 * If echoed timestamp is later than the current time,
2679 			 * fall back to non RFC1323 RTT calculation.
2680 			 */
2681 			if (to->to_tsecr != 0 && TSTMP_GT(to->to_tsecr, ticks))
2682 				to->to_tsecr = 0;
2683 			break;
2684 		case TCPOPT_SACK_PERMITTED:
2685 			if (optlen != TCPOLEN_SACK_PERMITTED)
2686 				continue;
2687 			if (!is_syn)
2688 				continue;
2689 			to->to_flags |= TOF_SACK_PERMITTED;
2690 			break;
2691 		case TCPOPT_SACK:
2692 			if ((optlen - 2) & 0x07)	/* not multiple of 8 */
2693 				continue;
2694 			to->to_nsackblocks = (optlen - 2) / 8;
2695 			to->to_sackblocks = (struct raw_sackblock *) (cp + 2);
2696 			to->to_flags |= TOF_SACK;
2697 			for (i = 0; i < to->to_nsackblocks; i++) {
2698 				struct raw_sackblock *r = &to->to_sackblocks[i];
2699 
2700 				r->rblk_start = ntohl(r->rblk_start);
2701 				r->rblk_end = ntohl(r->rblk_end);
2702 			}
2703 			break;
2704 		default:
2705 			continue;
2706 		}
2707 	}
2708 }
2709 
2710 /*
2711  * Pull out of band byte out of a segment so
2712  * it doesn't appear in the user's data queue.
2713  * It is still reflected in the segment length for
2714  * sequencing purposes.
2715  * "off" is the delayed to be dropped hdrlen.
2716  */
2717 static void
2718 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m, int off)
2719 {
2720 	int cnt = off + th->th_urp - 1;
2721 
2722 	while (cnt >= 0) {
2723 		if (m->m_len > cnt) {
2724 			char *cp = mtod(m, caddr_t) + cnt;
2725 			struct tcpcb *tp = sototcpcb(so);
2726 
2727 			tp->t_iobc = *cp;
2728 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2729 			bcopy(cp + 1, cp, m->m_len - cnt - 1);
2730 			m->m_len--;
2731 			if (m->m_flags & M_PKTHDR)
2732 				m->m_pkthdr.len--;
2733 			return;
2734 		}
2735 		cnt -= m->m_len;
2736 		m = m->m_next;
2737 		if (m == 0)
2738 			break;
2739 	}
2740 	panic("tcp_pulloutofband");
2741 }
2742 
2743 /*
2744  * Collect new round-trip time estimate
2745  * and update averages and current timeout.
2746  */
2747 static void
2748 tcp_xmit_timer(struct tcpcb *tp, int rtt)
2749 {
2750 	int delta;
2751 
2752 	tcpstat.tcps_rttupdated++;
2753 	tp->t_rttupdated++;
2754 	if (tp->t_srtt != 0) {
2755 		/*
2756 		 * srtt is stored as fixed point with 5 bits after the
2757 		 * binary point (i.e., scaled by 8).  The following magic
2758 		 * is equivalent to the smoothing algorithm in rfc793 with
2759 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2760 		 * point).  Adjust rtt to origin 0.
2761 		 */
2762 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2763 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2764 
2765 		if ((tp->t_srtt += delta) <= 0)
2766 			tp->t_srtt = 1;
2767 
2768 		/*
2769 		 * We accumulate a smoothed rtt variance (actually, a
2770 		 * smoothed mean difference), then set the retransmit
2771 		 * timer to smoothed rtt + 4 times the smoothed variance.
2772 		 * rttvar is stored as fixed point with 4 bits after the
2773 		 * binary point (scaled by 16).  The following is
2774 		 * equivalent to rfc793 smoothing with an alpha of .75
2775 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2776 		 * rfc793's wired-in beta.
2777 		 */
2778 		if (delta < 0)
2779 			delta = -delta;
2780 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2781 		if ((tp->t_rttvar += delta) <= 0)
2782 			tp->t_rttvar = 1;
2783 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2784 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2785 	} else {
2786 		/*
2787 		 * No rtt measurement yet - use the unsmoothed rtt.
2788 		 * Set the variance to half the rtt (so our first
2789 		 * retransmit happens at 3*rtt).
2790 		 */
2791 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2792 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2793 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2794 	}
2795 	tp->t_rtttime = 0;
2796 	tp->t_rxtshift = 0;
2797 
2798 	/*
2799 	 * the retransmit should happen at rtt + 4 * rttvar.
2800 	 * Because of the way we do the smoothing, srtt and rttvar
2801 	 * will each average +1/2 tick of bias.  When we compute
2802 	 * the retransmit timer, we want 1/2 tick of rounding and
2803 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2804 	 * firing of the timer.  The bias will give us exactly the
2805 	 * 1.5 tick we need.  But, because the bias is
2806 	 * statistical, we have to test that we don't drop below
2807 	 * the minimum feasible timer (which is 2 ticks).
2808 	 */
2809 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2810 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2811 
2812 	/*
2813 	 * We received an ack for a packet that wasn't retransmitted;
2814 	 * it is probably safe to discard any error indications we've
2815 	 * received recently.  This isn't quite right, but close enough
2816 	 * for now (a route might have failed after we sent a segment,
2817 	 * and the return path might not be symmetrical).
2818 	 */
2819 	tp->t_softerror = 0;
2820 }
2821 
2822 /*
2823  * Determine a reasonable value for maxseg size.
2824  * If the route is known, check route for mtu.
2825  * If none, use an mss that can be handled on the outgoing
2826  * interface without forcing IP to fragment; if bigger than
2827  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2828  * to utilize large mbufs.  If no route is found, route has no mtu,
2829  * or the destination isn't local, use a default, hopefully conservative
2830  * size (usually 512 or the default IP max size, but no more than the mtu
2831  * of the interface), as we can't discover anything about intervening
2832  * gateways or networks.  We also initialize the congestion/slow start
2833  * window to be a single segment if the destination isn't local.
2834  * While looking at the routing entry, we also initialize other path-dependent
2835  * parameters from pre-set or cached values in the routing entry.
2836  *
2837  * Also take into account the space needed for options that we
2838  * send regularly.  Make maxseg shorter by that amount to assure
2839  * that we can send maxseg amount of data even when the options
2840  * are present.  Store the upper limit of the length of options plus
2841  * data in maxopd.
2842  *
2843  * NOTE that this routine is only called when we process an incoming
2844  * segment, for outgoing segments only tcp_mssopt is called.
2845  */
2846 void
2847 tcp_mss(struct tcpcb *tp, int offer)
2848 {
2849 	struct rtentry *rt;
2850 	struct ifnet *ifp;
2851 	int rtt, mss;
2852 	u_long bufsize;
2853 	struct inpcb *inp = tp->t_inpcb;
2854 	struct socket *so;
2855 #ifdef INET6
2856 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
2857 	size_t min_protoh = isipv6 ?
2858 			    sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
2859 			    sizeof(struct tcpiphdr);
2860 #else
2861 	const boolean_t isipv6 = FALSE;
2862 	const size_t min_protoh = sizeof(struct tcpiphdr);
2863 #endif
2864 
2865 	if (isipv6)
2866 		rt = tcp_rtlookup6(&inp->inp_inc);
2867 	else
2868 		rt = tcp_rtlookup(&inp->inp_inc);
2869 	if (rt == NULL) {
2870 		tp->t_maxopd = tp->t_maxseg =
2871 		    (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2872 		return;
2873 	}
2874 	ifp = rt->rt_ifp;
2875 	so = inp->inp_socket;
2876 
2877 	/*
2878 	 * Offer == 0 means that there was no MSS on the SYN segment,
2879 	 * in this case we use either the interface mtu or tcp_mssdflt.
2880 	 *
2881 	 * An offer which is too large will be cut down later.
2882 	 */
2883 	if (offer == 0) {
2884 		if (isipv6) {
2885 			if (in6_localaddr(&inp->in6p_faddr)) {
2886 				offer = ND_IFINFO(rt->rt_ifp)->linkmtu -
2887 					min_protoh;
2888 			} else {
2889 				offer = tcp_v6mssdflt;
2890 			}
2891 		} else {
2892 			if (in_localaddr(inp->inp_faddr))
2893 				offer = ifp->if_mtu - min_protoh;
2894 			else
2895 				offer = tcp_mssdflt;
2896 		}
2897 	}
2898 
2899 	/*
2900 	 * Prevent DoS attack with too small MSS. Round up
2901 	 * to at least minmss.
2902 	 *
2903 	 * Sanity check: make sure that maxopd will be large
2904 	 * enough to allow some data on segments even is the
2905 	 * all the option space is used (40bytes).  Otherwise
2906 	 * funny things may happen in tcp_output.
2907 	 */
2908 	offer = max(offer, tcp_minmss);
2909 	offer = max(offer, 64);
2910 
2911 	rt->rt_rmx.rmx_mssopt = offer;
2912 
2913 	/*
2914 	 * While we're here, check if there's an initial rtt
2915 	 * or rttvar.  Convert from the route-table units
2916 	 * to scaled multiples of the slow timeout timer.
2917 	 */
2918 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2919 		/*
2920 		 * XXX the lock bit for RTT indicates that the value
2921 		 * is also a minimum value; this is subject to time.
2922 		 */
2923 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2924 			tp->t_rttmin = rtt / (RTM_RTTUNIT / hz);
2925 		tp->t_srtt = rtt / (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
2926 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
2927 		tcpstat.tcps_usedrtt++;
2928 		if (rt->rt_rmx.rmx_rttvar) {
2929 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2930 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
2931 			tcpstat.tcps_usedrttvar++;
2932 		} else {
2933 			/* default variation is +- 1 rtt */
2934 			tp->t_rttvar =
2935 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2936 		}
2937 		TCPT_RANGESET(tp->t_rxtcur,
2938 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2939 			      tp->t_rttmin, TCPTV_REXMTMAX);
2940 	}
2941 
2942 	/*
2943 	 * if there's an mtu associated with the route, use it
2944 	 * else, use the link mtu.  Take the smaller of mss or offer
2945 	 * as our final mss.
2946 	 */
2947 	if (rt->rt_rmx.rmx_mtu) {
2948 		mss = rt->rt_rmx.rmx_mtu - min_protoh;
2949 	} else {
2950 		if (isipv6)
2951 			mss = ND_IFINFO(rt->rt_ifp)->linkmtu - min_protoh;
2952 		else
2953 			mss = ifp->if_mtu - min_protoh;
2954 	}
2955 	mss = min(mss, offer);
2956 
2957 	/*
2958 	 * maxopd stores the maximum length of data AND options
2959 	 * in a segment; maxseg is the amount of data in a normal
2960 	 * segment.  We need to store this value (maxopd) apart
2961 	 * from maxseg, because now every segment carries options
2962 	 * and thus we normally have somewhat less data in segments.
2963 	 */
2964 	tp->t_maxopd = mss;
2965 
2966 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP &&
2967 	    ((tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
2968 		mss -= TCPOLEN_TSTAMP_APPA;
2969 
2970 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
2971 		if (mss > MCLBYTES)
2972 			mss &= ~(MCLBYTES-1);
2973 #else
2974 		if (mss > MCLBYTES)
2975 			mss = mss / MCLBYTES * MCLBYTES;
2976 #endif
2977 	/*
2978 	 * If there's a pipesize, change the socket buffer
2979 	 * to that size.  Make the socket buffers an integral
2980 	 * number of mss units; if the mss is larger than
2981 	 * the socket buffer, decrease the mss.
2982 	 */
2983 #ifdef RTV_SPIPE
2984 	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
2985 #endif
2986 		bufsize = so->so_snd.ssb_hiwat;
2987 	if (bufsize < mss)
2988 		mss = bufsize;
2989 	else {
2990 		bufsize = roundup(bufsize, mss);
2991 		if (bufsize > sb_max)
2992 			bufsize = sb_max;
2993 		if (bufsize > so->so_snd.ssb_hiwat)
2994 			ssb_reserve(&so->so_snd, bufsize, so, NULL);
2995 	}
2996 	tp->t_maxseg = mss;
2997 
2998 #ifdef RTV_RPIPE
2999 	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
3000 #endif
3001 		bufsize = so->so_rcv.ssb_hiwat;
3002 	if (bufsize > mss) {
3003 		bufsize = roundup(bufsize, mss);
3004 		if (bufsize > sb_max)
3005 			bufsize = sb_max;
3006 		if (bufsize > so->so_rcv.ssb_hiwat)
3007 			ssb_reserve(&so->so_rcv, bufsize, so, NULL);
3008 	}
3009 
3010 	/*
3011 	 * Set the slow-start flight size depending on whether this
3012 	 * is a local network or not.
3013 	 */
3014 	if (tcp_do_rfc3390)
3015 		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
3016 	else
3017 		tp->snd_cwnd = mss;
3018 
3019 	if (rt->rt_rmx.rmx_ssthresh) {
3020 		/*
3021 		 * There's some sort of gateway or interface
3022 		 * buffer limit on the path.  Use this to set
3023 		 * the slow start threshhold, but set the
3024 		 * threshold to no less than 2*mss.
3025 		 */
3026 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
3027 		tcpstat.tcps_usedssthresh++;
3028 	}
3029 }
3030 
3031 /*
3032  * Determine the MSS option to send on an outgoing SYN.
3033  */
3034 int
3035 tcp_mssopt(struct tcpcb *tp)
3036 {
3037 	struct rtentry *rt;
3038 #ifdef INET6
3039 	boolean_t isipv6 =
3040 	    ((tp->t_inpcb->inp_vflag & INP_IPV6) ? TRUE : FALSE);
3041 	int min_protoh = isipv6 ?
3042 			     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
3043 			     sizeof(struct tcpiphdr);
3044 #else
3045 	const boolean_t isipv6 = FALSE;
3046 	const size_t min_protoh = sizeof(struct tcpiphdr);
3047 #endif
3048 
3049 	if (isipv6)
3050 		rt = tcp_rtlookup6(&tp->t_inpcb->inp_inc);
3051 	else
3052 		rt = tcp_rtlookup(&tp->t_inpcb->inp_inc);
3053 	if (rt == NULL)
3054 		return (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
3055 
3056 	return (rt->rt_ifp->if_mtu - min_protoh);
3057 }
3058 
3059 /*
3060  * When a partial ack arrives, force the retransmission of the
3061  * next unacknowledged segment.  Do not exit Fast Recovery.
3062  *
3063  * Implement the Slow-but-Steady variant of NewReno by restarting the
3064  * the retransmission timer.  Turn it off here so it can be restarted
3065  * later in tcp_output().
3066  */
3067 static void
3068 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th, int acked)
3069 {
3070 	tcp_seq old_snd_nxt = tp->snd_nxt;
3071 	u_long ocwnd = tp->snd_cwnd;
3072 
3073 	tcp_callout_stop(tp, tp->tt_rexmt);
3074 	tp->t_rtttime = 0;
3075 	tp->snd_nxt = th->th_ack;
3076 	/* Set snd_cwnd to one segment beyond acknowledged offset. */
3077 	tp->snd_cwnd = tp->t_maxseg;
3078 	tp->t_flags |= TF_ACKNOW;
3079 	tcp_output(tp);
3080 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3081 		tp->snd_nxt = old_snd_nxt;
3082 	/* partial window deflation */
3083 	if (ocwnd > acked)
3084 		tp->snd_cwnd = ocwnd - acked + tp->t_maxseg;
3085 	else
3086 		tp->snd_cwnd = tp->t_maxseg;
3087 }
3088 
3089 /*
3090  * In contrast to the Slow-but-Steady NewReno variant,
3091  * we do not reset the retransmission timer for SACK retransmissions,
3092  * except when retransmitting snd_una.
3093  */
3094 static void
3095 tcp_sack_rexmt(struct tcpcb *tp, struct tcphdr *th)
3096 {
3097 	uint32_t pipe, seglen;
3098 	tcp_seq nextrexmt;
3099 	boolean_t lostdup;
3100 	tcp_seq old_snd_nxt = tp->snd_nxt;
3101 	u_long ocwnd = tp->snd_cwnd;
3102 	int nseg = 0;		/* consecutive new segments */
3103 #define MAXBURST 4		/* limit burst of new packets on partial ack */
3104 
3105 	tp->t_rtttime = 0;
3106 	pipe = tcp_sack_compute_pipe(tp);
3107 	while ((tcp_seq_diff_t)(ocwnd - pipe) >= (tcp_seq_diff_t)tp->t_maxseg &&
3108 	    (!tcp_do_smartsack || nseg < MAXBURST) &&
3109 	    tcp_sack_nextseg(tp, &nextrexmt, &seglen, &lostdup)) {
3110 		uint32_t sent;
3111 		tcp_seq old_snd_max;
3112 		int error;
3113 
3114 		if (nextrexmt == tp->snd_max)
3115 			++nseg;
3116 		tp->snd_nxt = nextrexmt;
3117 		tp->snd_cwnd = nextrexmt - tp->snd_una + seglen;
3118 		old_snd_max = tp->snd_max;
3119 		if (nextrexmt == tp->snd_una)
3120 			tcp_callout_stop(tp, tp->tt_rexmt);
3121 		error = tcp_output(tp);
3122 		if (error != 0)
3123 			break;
3124 		sent = tp->snd_nxt - nextrexmt;
3125 		if (sent <= 0)
3126 			break;
3127 		if (!lostdup)
3128 			pipe += sent;
3129 		tcpstat.tcps_sndsackpack++;
3130 		tcpstat.tcps_sndsackbyte += sent;
3131 		if (SEQ_LT(nextrexmt, old_snd_max) &&
3132 		    SEQ_LT(tp->rexmt_high, tp->snd_nxt))
3133 			tp->rexmt_high = seq_min(tp->snd_nxt, old_snd_max);
3134 	}
3135 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3136 		tp->snd_nxt = old_snd_nxt;
3137 	tp->snd_cwnd = ocwnd;
3138 }
3139