xref: /dragonfly/sys/netinet/tcp_input.c (revision e8364298)
1 /*
2  * Copyright (c) 2002, 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2002, 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 2002, 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
36  *
37  * License terms: all terms for the DragonFly license above plus the following:
38  *
39  * 4. All advertising materials mentioning features or use of this software
40  *    must display the following acknowledgement:
41  *
42  *	This product includes software developed by Jeffrey M. Hsu
43  *	for the DragonFly Project.
44  *
45  *    This requirement may be waived with permission from Jeffrey Hsu.
46  *    This requirement will sunset and may be removed on July 8 2005,
47  *    after which the standard DragonFly license (as shown above) will
48  *    apply.
49  */
50 
51 /*
52  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
53  *	The Regents of the University of California.  All rights reserved.
54  *
55  * Redistribution and use in source and binary forms, with or without
56  * modification, are permitted provided that the following conditions
57  * are met:
58  * 1. Redistributions of source code must retain the above copyright
59  *    notice, this list of conditions and the following disclaimer.
60  * 2. Redistributions in binary form must reproduce the above copyright
61  *    notice, this list of conditions and the following disclaimer in the
62  *    documentation and/or other materials provided with the distribution.
63  * 3. All advertising materials mentioning features or use of this software
64  *    must display the following acknowledgement:
65  *	This product includes software developed by the University of
66  *	California, Berkeley and its contributors.
67  * 4. Neither the name of the University nor the names of its contributors
68  *    may be used to endorse or promote products derived from this software
69  *    without specific prior written permission.
70  *
71  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
72  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
75  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81  * SUCH DAMAGE.
82  *
83  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
84  * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.38 2003/05/21 04:46:41 cjc Exp $
85  * $DragonFly: src/sys/netinet/tcp_input.c,v 1.30 2004/07/08 22:07:35 hsu Exp $
86  */
87 
88 #include "opt_ipfw.h"		/* for ipfw_fwd		*/
89 #include "opt_inet6.h"
90 #include "opt_ipsec.h"
91 #include "opt_tcpdebug.h"
92 #include "opt_tcp_input.h"
93 
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/kernel.h>
97 #include <sys/sysctl.h>
98 #include <sys/malloc.h>
99 #include <sys/mbuf.h>
100 #include <sys/proc.h>		/* for proc0 declaration */
101 #include <sys/protosw.h>
102 #include <sys/socket.h>
103 #include <sys/socketvar.h>
104 #include <sys/syslog.h>
105 #include <sys/in_cksum.h>
106 
107 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
108 #include <machine/stdarg.h>
109 
110 #include <net/if.h>
111 #include <net/route.h>
112 
113 #include <netinet/in.h>
114 #include <netinet/in_systm.h>
115 #include <netinet/ip.h>
116 #include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM		*/
117 #include <netinet/in_var.h>
118 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM		*/
119 #include <netinet/in_pcb.h>
120 #include <netinet/ip_var.h>
121 #include <netinet/ip6.h>
122 #include <netinet/icmp6.h>
123 #include <netinet6/nd6.h>
124 #include <netinet6/ip6_var.h>
125 #include <netinet6/in6_pcb.h>
126 #include <netinet/tcp.h>
127 #include <netinet/tcp_fsm.h>
128 #include <netinet/tcp_seq.h>
129 #include <netinet/tcp_timer.h>
130 #include <netinet/tcp_var.h>
131 #include <netinet6/tcp6_var.h>
132 #include <netinet/tcpip.h>
133 #ifdef TCPDEBUG
134 #include <netinet/tcp_debug.h>
135 
136 u_char tcp_saveipgen[40]; /* the size must be of max ip header, now IPv6 */
137 struct tcphdr tcp_savetcp;
138 #endif /* TCPDEBUG */
139 
140 #ifdef FAST_IPSEC
141 #include <netipsec/ipsec.h>
142 #include <netipsec/ipsec6.h>
143 #endif
144 
145 #ifdef IPSEC
146 #include <netinet6/ipsec.h>
147 #include <netinet6/ipsec6.h>
148 #include <netproto/key/key.h>
149 #endif /*IPSEC*/
150 
151 MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
152 
153 static const int tcprexmtthresh = 3;
154 tcp_cc	tcp_ccgen;
155 static int log_in_vain = 0;
156 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
157     &log_in_vain, 0, "Log all incoming TCP connections");
158 
159 static int blackhole = 0;
160 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
161     &blackhole, 0, "Do not send RST when dropping refused connections");
162 
163 int tcp_delack_enabled = 1;
164 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
165     &tcp_delack_enabled, 0,
166     "Delay ACK to try and piggyback it onto a data packet");
167 
168 #ifdef TCP_DROP_SYNFIN
169 static int drop_synfin = 0;
170 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
171     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
172 #endif
173 
174 static int tcp_do_limitedtransmit = 1;
175 SYSCTL_INT(_net_inet_tcp, OID_AUTO, limitedtransmit, CTLFLAG_RW,
176     &tcp_do_limitedtransmit, 0, "Enable RFC 3042 (Limited Transmit)");
177 
178 static int tcp_do_early_retransmit = 0;
179 SYSCTL_INT(_net_inet_tcp, OID_AUTO, earlyretransmit, CTLFLAG_RW,
180     &tcp_do_early_retransmit, 0, "Early retransmit");
181 
182 static int tcp_do_rfc3390 = 1;
183 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
184     &tcp_do_rfc3390, 0,
185     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
186 
187 static int tcp_do_eifel_detect = 1;
188 SYSCTL_INT(_net_inet_tcp, OID_AUTO, eifel, CTLFLAG_RW,
189     &tcp_do_eifel_detect, 0, "Eifel detection algorithm (RFC 3522)");
190 
191 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
192     "TCP Segment Reassembly Queue");
193 
194 int tcp_reass_maxseg = 0;
195 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RD,
196     &tcp_reass_maxseg, 0,
197     "Global maximum number of TCP Segments in Reassembly Queue");
198 
199 int tcp_reass_qsize = 0;
200 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
201     &tcp_reass_qsize, 0,
202     "Global number of TCP Segments currently in Reassembly Queue");
203 
204 static int tcp_reass_overflows = 0;
205 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
206     &tcp_reass_overflows, 0,
207     "Global number of TCP Segment Reassembly Queue Overflows");
208 
209 struct inpcbinfo tcbinfo[MAXCPU];
210 
211 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
212 static void	 tcp_pulloutofband(struct socket *,
213 		     struct tcphdr *, struct mbuf *, int);
214 static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
215 		     struct mbuf *);
216 static void	 tcp_xmit_timer(struct tcpcb *, int);
217 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
218 
219 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
220 #ifdef INET6
221 #define ND6_HINT(tp) \
222 do { \
223 	if ((tp) && (tp)->t_inpcb && \
224 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0 && \
225 	    (tp)->t_inpcb->in6p_route.ro_rt) \
226 		nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
227 } while (0)
228 #else
229 #define ND6_HINT(tp)
230 #endif
231 
232 /*
233  * Indicate whether this ack should be delayed.  We can delay the ack if
234  *	- delayed acks are enabled and
235  *	- there is no delayed ack timer in progress and
236  *	- our last ack wasn't a 0-sized window.  We never want to delay
237  *	  the ack that opens up a 0-sized window.
238  */
239 #define DELAY_ACK(tp) \
240 	(tcp_delack_enabled && !callout_pending(tp->tt_delack) && \
241 	(tp->t_flags & TF_RXWIN0SENT) == 0)
242 
243 static int
244 tcp_reass(tp, th, tlenp, m)
245 	struct tcpcb *tp;
246 	struct tcphdr *th;
247 	int *tlenp;
248 	struct mbuf *m;
249 {
250 	struct tseg_qent *q;
251 	struct tseg_qent *p = NULL;
252 	struct tseg_qent *nq;
253 	struct tseg_qent *te;
254 	struct socket *so = tp->t_inpcb->inp_socket;
255 	int flags;
256 
257 	/*
258 	 * Call with th==0 after become established to
259 	 * force pre-ESTABLISHED data up to user socket.
260 	 */
261 	if (th == 0)
262 		goto present;
263 
264 	/*
265 	 * Limit the number of segments in the reassembly queue to prevent
266 	 * holding on to too many segments (and thus running out of mbufs).
267 	 * Make sure to let the missing segment through which caused this
268 	 * queue.  Always keep one global queue entry spare to be able to
269 	 * process the missing segment.
270 	 */
271 	if (th->th_seq != tp->rcv_nxt &&
272 	    tcp_reass_qsize + 1 >= tcp_reass_maxseg) {
273 		tcp_reass_overflows++;
274 		tcpstat.tcps_rcvmemdrop++;
275 		m_freem(m);
276 		return (0);
277 	}
278 
279 	/* Allocate a new queue entry. */
280 	MALLOC(te, struct tseg_qent *, sizeof(struct tseg_qent), M_TSEGQ,
281 	       M_INTWAIT | M_NULLOK);
282 	if (te == NULL) {
283 		tcpstat.tcps_rcvmemdrop++;
284 		m_freem(m);
285 		return (0);
286 	}
287 	tcp_reass_qsize++;
288 
289 	/*
290 	 * Find a segment which begins after this one does.
291 	 */
292 	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
293 		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
294 			break;
295 		p = q;
296 	}
297 
298 	/*
299 	 * If there is a preceding segment, it may provide some of
300 	 * our data already.  If so, drop the data from the incoming
301 	 * segment.  If it provides all of our data, drop us.
302 	 */
303 	if (p != NULL) {
304 		int i;
305 		/* conversion to int (in i) handles seq wraparound */
306 		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
307 		if (i > 0) {
308 			if (i >= *tlenp) {
309 				tcpstat.tcps_rcvduppack++;
310 				tcpstat.tcps_rcvdupbyte += *tlenp;
311 				m_freem(m);
312 				free(te, M_TSEGQ);
313 				tcp_reass_qsize--;
314 				/*
315 				 * Try to present any queued data
316 				 * at the left window edge to the user.
317 				 * This is needed after the 3-WHS
318 				 * completes.
319 				 */
320 				goto present;	/* ??? */
321 			}
322 			m_adj(m, i);
323 			*tlenp -= i;
324 			th->th_seq += i;
325 		}
326 	}
327 	tcpstat.tcps_rcvoopack++;
328 	tcpstat.tcps_rcvoobyte += *tlenp;
329 
330 	/*
331 	 * While we overlap succeeding segments trim them or,
332 	 * if they are completely covered, dequeue them.
333 	 */
334 	while (q) {
335 		int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
336 		if (i <= 0)
337 			break;
338 		if (i < q->tqe_len) {
339 			q->tqe_th->th_seq += i;
340 			q->tqe_len -= i;
341 			m_adj(q->tqe_m, i);
342 			break;
343 		}
344 
345 		nq = LIST_NEXT(q, tqe_q);
346 		LIST_REMOVE(q, tqe_q);
347 		m_freem(q->tqe_m);
348 		free(q, M_TSEGQ);
349 		tcp_reass_qsize--;
350 		q = nq;
351 	}
352 
353 	/* Insert the new segment queue entry into place. */
354 	te->tqe_m = m;
355 	te->tqe_th = th;
356 	te->tqe_len = *tlenp;
357 
358 	if (p == NULL) {
359 		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
360 	} else {
361 		LIST_INSERT_AFTER(p, te, tqe_q);
362 	}
363 
364 present:
365 	/*
366 	 * Present data to user, advancing rcv_nxt through
367 	 * completed sequence space.
368 	 */
369 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
370 		return (0);
371 	q = LIST_FIRST(&tp->t_segq);
372 	if (!q || q->tqe_th->th_seq != tp->rcv_nxt)
373 		return (0);
374 	do {
375 		tp->rcv_nxt += q->tqe_len;
376 		flags = q->tqe_th->th_flags & TH_FIN;
377 		nq = LIST_NEXT(q, tqe_q);
378 		LIST_REMOVE(q, tqe_q);
379 		if (so->so_state & SS_CANTRCVMORE)
380 			m_freem(q->tqe_m);
381 		else
382 			sbappend(&so->so_rcv, q->tqe_m);
383 		free(q, M_TSEGQ);
384 		tcp_reass_qsize--;
385 		q = nq;
386 	} while (q && q->tqe_th->th_seq == tp->rcv_nxt);
387 	ND6_HINT(tp);
388 	sorwakeup(so);
389 	return (flags);
390 }
391 
392 /*
393  * TCP input routine, follows pages 65-76 of the
394  * protocol specification dated September, 1981 very closely.
395  */
396 #ifdef INET6
397 int
398 tcp6_input(mp, offp, proto)
399 	struct mbuf **mp;
400 	int *offp, proto;
401 {
402 	struct mbuf *m = *mp;
403 	struct in6_ifaddr *ia6;
404 
405 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
406 
407 	/*
408 	 * draft-itojun-ipv6-tcp-to-anycast
409 	 * better place to put this in?
410 	 */
411 	ia6 = ip6_getdstifaddr(m);
412 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
413 		struct ip6_hdr *ip6;
414 
415 		ip6 = mtod(m, struct ip6_hdr *);
416 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
417 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
418 		return (IPPROTO_DONE);
419 	}
420 
421 	tcp_input(m, *offp, proto);
422 	return (IPPROTO_DONE);
423 }
424 #endif
425 
426 void
427 tcp_input(struct mbuf *m, ...)
428 {
429 	__va_list ap;
430 	int off0, proto;
431 	struct tcphdr *th;
432 	struct ip *ip = NULL;
433 	struct ipovly *ipov;
434 	struct inpcb *inp = NULL;
435 	u_char *optp = NULL;
436 	int optlen = 0;
437 	int len, tlen, off;
438 	int drop_hdrlen;
439 	struct tcpcb *tp = NULL;
440 	int thflags;
441 	struct socket *so = 0;
442 	int todrop, acked, ourfinisacked, needoutput = 0;
443 	u_long tiwin;
444 	struct tcpopt to;		/* options in this segment */
445 	struct rmxp_tao *taop;		/* pointer to our TAO cache entry */
446 	struct rmxp_tao	tao_noncached;	/* in case there's no cached entry */
447 	struct sockaddr_in *next_hop = NULL;
448 	int rstreason; /* For badport_bandlim accounting purposes */
449 	int cpu;
450 	struct ip6_hdr *ip6 = NULL;
451 #ifdef INET6
452 	boolean_t isipv6;
453 #else
454 	const boolean_t isipv6 = FALSE;
455 #endif
456 #ifdef TCPDEBUG
457 	short ostate = 0;
458 #endif
459 
460 	__va_start(ap, m);
461 	off0 = __va_arg(ap, int);
462 	proto = __va_arg(ap, int);
463 	__va_end(ap);
464 
465 	tcpstat.tcps_rcvtotal++;
466 
467 	/* Grab info from and strip MT_TAG mbufs prepended to the chain. */
468 	while  (m->m_type == MT_TAG) {
469 		if (m->_m_tag_id == PACKET_TAG_IPFORWARD)
470 			next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
471 		m = m->m_next;
472 	}
473 
474 #ifdef INET6
475 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? TRUE : FALSE;
476 #endif
477 
478 	if (isipv6) {
479 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
480 		ip6 = mtod(m, struct ip6_hdr *);
481 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
482 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
483 			tcpstat.tcps_rcvbadsum++;
484 			goto drop;
485 		}
486 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
487 
488 		/*
489 		 * Be proactive about unspecified IPv6 address in source.
490 		 * As we use all-zero to indicate unbounded/unconnected pcb,
491 		 * unspecified IPv6 address can be used to confuse us.
492 		 *
493 		 * Note that packets with unspecified IPv6 destination is
494 		 * already dropped in ip6_input.
495 		 */
496 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
497 			/* XXX stat */
498 			goto drop;
499 		}
500 	} else {
501 		/*
502 		 * Get IP and TCP header together in first mbuf.
503 		 * Note: IP leaves IP header in first mbuf.
504 		 */
505 		if (off0 > sizeof(struct ip)) {
506 			ip_stripoptions(m);
507 			off0 = sizeof(struct ip);
508 		}
509 		/* already checked and pulled up in ip_demux() */
510 		KASSERT(m->m_len >= sizeof(struct tcpiphdr),
511 		    ("TCP header not in one mbuf"));
512 		ip = mtod(m, struct ip *);
513 		ipov = (struct ipovly *)ip;
514 		th = (struct tcphdr *)((caddr_t)ip + off0);
515 		tlen = ip->ip_len;
516 
517 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
518 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
519 				th->th_sum = m->m_pkthdr.csum_data;
520 			else
521 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
522 						ip->ip_dst.s_addr,
523 						htonl(m->m_pkthdr.csum_data +
524 							ip->ip_len +
525 							IPPROTO_TCP));
526 			th->th_sum ^= 0xffff;
527 		} else {
528 			/*
529 			 * Checksum extended TCP header and data.
530 			 */
531 			len = sizeof(struct ip) + tlen;
532 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
533 			ipov->ih_len = (u_short)tlen;
534 			ipov->ih_len = htons(ipov->ih_len);
535 			th->th_sum = in_cksum(m, len);
536 		}
537 		if (th->th_sum) {
538 			tcpstat.tcps_rcvbadsum++;
539 			goto drop;
540 		}
541 #ifdef INET6
542 		/* Re-initialization for later version check */
543 		ip->ip_v = IPVERSION;
544 #endif
545 	}
546 
547 	/*
548 	 * Check that TCP offset makes sense,
549 	 * pull out TCP options and adjust length.		XXX
550 	 */
551 	off = th->th_off << 2;
552 	/* already checked and pulled up in ip_demux() */
553 	KASSERT(off >= sizeof(struct tcphdr) && off <= tlen,
554 	    ("bad TCP data offset"));
555 	tlen -= off;	/* tlen is used instead of ti->ti_len */
556 	if (off > sizeof(struct tcphdr)) {
557 		if (isipv6) {
558 			IP6_EXTHDR_CHECK(m, off0, off, );
559 			ip6 = mtod(m, struct ip6_hdr *);
560 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
561 		} else {
562 			/* already pulled up in ip_demux() */
563 			KASSERT(m->m_len >= sizeof(struct ip) + off,
564 			    ("TCP header and options not in one mbuf"));
565 		}
566 		optlen = off - sizeof(struct tcphdr);
567 		optp = (u_char *)(th + 1);
568 	}
569 	thflags = th->th_flags;
570 
571 #ifdef TCP_DROP_SYNFIN
572 	/*
573 	 * If the drop_synfin option is enabled, drop all packets with
574 	 * both the SYN and FIN bits set. This prevents e.g. nmap from
575 	 * identifying the TCP/IP stack.
576 	 *
577 	 * This is a violation of the TCP specification.
578 	 */
579 	if (drop_synfin && (thflags & (TH_SYN|TH_FIN)) == (TH_SYN|TH_FIN))
580 		goto drop;
581 #endif
582 
583 	/*
584 	 * Convert TCP protocol specific fields to host format.
585 	 */
586 	th->th_seq = ntohl(th->th_seq);
587 	th->th_ack = ntohl(th->th_ack);
588 	th->th_win = ntohs(th->th_win);
589 	th->th_urp = ntohs(th->th_urp);
590 
591 	/*
592 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
593 	 * until after ip6_savecontrol() is called and before other functions
594 	 * which don't want those proto headers.
595 	 * Because ip6_savecontrol() is going to parse the mbuf to
596 	 * search for data to be passed up to user-land, it wants mbuf
597 	 * parameters to be unchanged.
598 	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
599 	 * latest version of the advanced API (20020110).
600 	 */
601 	drop_hdrlen = off0 + off;
602 
603 	/*
604 	 * Locate pcb for segment.
605 	 */
606 findpcb:
607 	/* IPFIREWALL_FORWARD section */
608 	if (next_hop != NULL && !isipv6) {  /* IPv6 support is not there yet */
609 		/*
610 		 * Transparently forwarded. Pretend to be the destination.
611 		 * already got one like this?
612 		 */
613 		cpu = mycpu->gd_cpuid;
614 		inp = in_pcblookup_hash(&tcbinfo[cpu],
615 					ip->ip_src, th->th_sport,
616 					ip->ip_dst, th->th_dport,
617 					0, m->m_pkthdr.rcvif);
618 		if (!inp) {
619 			/*
620 			 * It's new.  Try to find the ambushing socket.
621 			 */
622 
623 			/*
624 			 * The rest of the ipfw code stores the port in
625 			 * host order.  XXX
626 			 * (The IP address is still in network order.)
627 			 */
628 			in_port_t dport = next_hop->sin_port ?
629 						htons(next_hop->sin_port) :
630 						th->th_dport;
631 
632 			cpu = tcp_addrcpu(ip->ip_src.s_addr, th->th_sport,
633 					  next_hop->sin_addr.s_addr, dport);
634 			inp = in_pcblookup_hash(&tcbinfo[cpu],
635 						ip->ip_src, th->th_sport,
636 						next_hop->sin_addr, dport,
637 						1, m->m_pkthdr.rcvif);
638 		}
639 	} else {
640 		if (isipv6) {
641 			inp = in6_pcblookup_hash(&tcbinfo[0],
642 						 &ip6->ip6_src, th->th_sport,
643 						 &ip6->ip6_dst, th->th_dport,
644 						 1, m->m_pkthdr.rcvif);
645 		} else {
646 			cpu = mycpu->gd_cpuid;
647 			inp = in_pcblookup_hash(&tcbinfo[cpu],
648 						ip->ip_src, th->th_sport,
649 						ip->ip_dst, th->th_dport,
650 						1, m->m_pkthdr.rcvif);
651 		}
652       }
653 
654 #ifdef IPSEC
655 	if (isipv6) {
656 		if (inp != NULL && ipsec6_in_reject_so(m, inp->inp_socket)) {
657 			ipsec6stat.in_polvio++;
658 			goto drop;
659 		}
660 	} else {
661 		if (inp != NULL && ipsec4_in_reject_so(m, inp->inp_socket)) {
662 			ipsecstat.in_polvio++;
663 			goto drop;
664 		}
665 	}
666 #endif
667 #ifdef FAST_IPSEC
668 	if (isipv6) {
669 		if (inp != NULL && ipsec6_in_reject(m, inp)) {
670 			goto drop;
671 		}
672 	} else {
673 		if (inp != NULL && ipsec4_in_reject(m, inp)) {
674 			goto drop;
675 		}
676 	}
677 #endif
678 
679 	/*
680 	 * If the state is CLOSED (i.e., TCB does not exist) then
681 	 * all data in the incoming segment is discarded.
682 	 * If the TCB exists but is in CLOSED state, it is embryonic,
683 	 * but should either do a listen or a connect soon.
684 	 */
685 	if (inp == NULL) {
686 		if (log_in_vain) {
687 #ifdef INET6
688 			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
689 #else
690 			char dbuf[4 * sizeof "123"], sbuf[4 * sizeof "123"];
691 #endif
692 			if (isipv6) {
693 				strcpy(dbuf, "[");
694 				strcpy(sbuf, "[");
695 				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
696 				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
697 				strcat(dbuf, "]");
698 				strcat(sbuf, "]");
699 			} else {
700 				strcpy(dbuf, inet_ntoa(ip->ip_dst));
701 				strcpy(sbuf, inet_ntoa(ip->ip_src));
702 			}
703 			switch (log_in_vain) {
704 			case 1:
705 				if ((thflags & TH_SYN) == 0)
706 					break;
707 			case 2:
708 				log(LOG_INFO,
709 				    "Connection attempt to TCP %s:%d "
710 				    "from %s:%d flags:0x%02x\n",
711 				    dbuf, ntohs(th->th_dport), sbuf,
712 				    ntohs(th->th_sport), thflags);
713 				break;
714 			default:
715 				break;
716 			}
717 		}
718 		if (blackhole) {
719 			switch (blackhole) {
720 			case 1:
721 				if (thflags & TH_SYN)
722 					goto drop;
723 				break;
724 			case 2:
725 				goto drop;
726 			default:
727 				goto drop;
728 			}
729 		}
730 		rstreason = BANDLIM_RST_CLOSEDPORT;
731 		goto dropwithreset;
732 	}
733 	tp = intotcpcb(inp);
734 	if (tp == NULL) {
735 		rstreason = BANDLIM_RST_CLOSEDPORT;
736 		goto dropwithreset;
737 	}
738 	if (tp->t_state == TCPS_CLOSED)
739 		goto drop;
740 
741 	/* Unscale the window into a 32-bit value. */
742 	if ((thflags & TH_SYN) == 0)
743 		tiwin = th->th_win << tp->snd_scale;
744 	else
745 		tiwin = th->th_win;
746 
747 	so = inp->inp_socket;
748 
749 #ifdef TCPDEBUG
750 	if (so->so_options & SO_DEBUG) {
751 		ostate = tp->t_state;
752 		if (isipv6)
753 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
754 		else
755 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
756 		tcp_savetcp = *th;
757 	}
758 #endif
759 
760 	bzero((char *)&to, sizeof(to));
761 
762 	if (so->so_options & SO_ACCEPTCONN) {
763 		struct in_conninfo inc;
764 
765 #ifdef INET6
766 		inc.inc_isipv6 = (isipv6 == TRUE);
767 #endif
768 		if (isipv6) {
769 			inc.inc6_faddr = ip6->ip6_src;
770 			inc.inc6_laddr = ip6->ip6_dst;
771 			inc.inc6_route.ro_rt = NULL;		/* XXX */
772 		} else {
773 			inc.inc_faddr = ip->ip_src;
774 			inc.inc_laddr = ip->ip_dst;
775 			inc.inc_route.ro_rt = NULL;		/* XXX */
776 		}
777 		inc.inc_fport = th->th_sport;
778 		inc.inc_lport = th->th_dport;
779 
780 	        /*
781 	         * If the state is LISTEN then ignore segment if it contains
782 		 * a RST.  If the segment contains an ACK then it is bad and
783 		 * send a RST.  If it does not contain a SYN then it is not
784 		 * interesting; drop it.
785 		 *
786 		 * If the state is SYN_RECEIVED (syncache) and seg contains
787 		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
788 		 * contains a RST, check the sequence number to see if it
789 		 * is a valid reset segment.
790 		 */
791 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
792 			if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
793 				if (!syncache_expand(&inc, th, &so, m)) {
794 					/*
795 					 * No syncache entry, or ACK was not
796 					 * for our SYN/ACK.  Send a RST.
797 					 */
798 					tcpstat.tcps_badsyn++;
799 					rstreason = BANDLIM_RST_OPENPORT;
800 					goto dropwithreset;
801 				}
802 				if (so == NULL)
803 					/*
804 					 * Could not complete 3-way handshake,
805 					 * connection is being closed down, and
806 					 * syncache will free mbuf.
807 					 */
808 					return;
809 				/*
810 				 * Socket is created in state SYN_RECEIVED.
811 				 * Continue processing segment.
812 				 */
813 				inp = sotoinpcb(so);
814 				tp = intotcpcb(inp);
815 				/*
816 				 * This is what would have happened in
817 				 * tcp_output() when the SYN,ACK was sent.
818 				 */
819 				tp->snd_up = tp->snd_una;
820 				tp->snd_max = tp->snd_nxt = tp->iss + 1;
821 				tp->last_ack_sent = tp->rcv_nxt;
822 /*
823  * XXX possible bug - it doesn't appear that tp->snd_wnd is unscaled
824  * until the _second_ ACK is received:
825  *    rcv SYN (set wscale opts)	 --> send SYN/ACK, set snd_wnd = window.
826  *    rcv ACK, calculate tiwin --> process SYN_RECEIVED, determine wscale,
827  *        move to ESTAB, set snd_wnd to tiwin.
828  */
829 				tp->snd_wnd = tiwin;	/* unscaled */
830 				goto after_listen;
831 			}
832 			if (thflags & TH_RST) {
833 				syncache_chkrst(&inc, th);
834 				goto drop;
835 			}
836 			if (thflags & TH_ACK) {
837 				syncache_badack(&inc);
838 				tcpstat.tcps_badsyn++;
839 				rstreason = BANDLIM_RST_OPENPORT;
840 				goto dropwithreset;
841 			}
842 			goto drop;
843 		}
844 
845 		/*
846 		 * Segment's flags are (SYN) or (SYN|FIN).
847 		 */
848 #ifdef INET6
849 		/*
850 		 * If deprecated address is forbidden,
851 		 * we do not accept SYN to deprecated interface
852 		 * address to prevent any new inbound connection from
853 		 * getting established.
854 		 * When we do not accept SYN, we send a TCP RST,
855 		 * with deprecated source address (instead of dropping
856 		 * it).  We compromise it as it is much better for peer
857 		 * to send a RST, and RST will be the final packet
858 		 * for the exchange.
859 		 *
860 		 * If we do not forbid deprecated addresses, we accept
861 		 * the SYN packet.  RFC2462 does not suggest dropping
862 		 * SYN in this case.
863 		 * If we decipher RFC2462 5.5.4, it says like this:
864 		 * 1. use of deprecated addr with existing
865 		 *    communication is okay - "SHOULD continue to be
866 		 *    used"
867 		 * 2. use of it with new communication:
868 		 *   (2a) "SHOULD NOT be used if alternate address
869 		 *        with sufficient scope is available"
870 		 *   (2b) nothing mentioned otherwise.
871 		 * Here we fall into (2b) case as we have no choice in
872 		 * our source address selection - we must obey the peer.
873 		 *
874 		 * The wording in RFC2462 is confusing, and there are
875 		 * multiple description text for deprecated address
876 		 * handling - worse, they are not exactly the same.
877 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
878 		 */
879 		if (isipv6 && !ip6_use_deprecated) {
880 			struct in6_ifaddr *ia6;
881 
882 			if ((ia6 = ip6_getdstifaddr(m)) &&
883 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
884 				tp = NULL;
885 				rstreason = BANDLIM_RST_OPENPORT;
886 				goto dropwithreset;
887 			}
888 		}
889 #endif
890 		/*
891 		 * If it is from this socket, drop it, it must be forged.
892 		 * Don't bother responding if the destination was a broadcast.
893 		 */
894 		if (th->th_dport == th->th_sport) {
895 			if (isipv6) {
896 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
897 						       &ip6->ip6_src))
898 					goto drop;
899 			} else {
900 				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
901 					goto drop;
902 			}
903 		}
904 		/*
905 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
906 		 *
907 		 * Note that it is quite possible to receive unicast
908 		 * link-layer packets with a broadcast IP address. Use
909 		 * in_broadcast() to find them.
910 		 */
911 		if (m->m_flags & (M_BCAST|M_MCAST))
912 			goto drop;
913 		if (isipv6) {
914 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
915 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
916 				goto drop;
917 		} else {
918 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
919 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
920 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
921 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
922 				goto drop;
923 		}
924 		/*
925 		 * SYN appears to be valid; create compressed TCP state
926 		 * for syncache, or perform t/tcp connection.
927 		 */
928 		if (so->so_qlen <= so->so_qlimit) {
929 			tcp_dooptions(&to, optp, optlen, 1);
930 			if (!syncache_add(&inc, &to, th, &so, m))
931 				goto drop;
932 			if (so == NULL)
933 				/*
934 				 * Entry added to syncache, mbuf used to
935 				 * send SYN,ACK packet.
936 				 */
937 				return;
938 			/*
939 			 * Segment passed TAO tests.
940 			 */
941 			inp = sotoinpcb(so);
942 			tp = intotcpcb(inp);
943 			tp->snd_wnd = tiwin;
944 			tp->t_starttime = ticks;
945 			tp->t_state = TCPS_ESTABLISHED;
946 
947 			/*
948 			 * If there is a FIN, or if there is data and the
949 			 * connection is local, then delay SYN,ACK(SYN) in
950 			 * the hope of piggy-backing it on a response
951 			 * segment.  Otherwise must send ACK now in case
952 			 * the other side is slow starting.
953 			 */
954 			if (DELAY_ACK(tp) &&
955 			    ((thflags & TH_FIN) ||
956 			     (tlen != 0 &&
957 			      ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
958 			       (!isipv6 && in_localaddr(inp->inp_faddr)))))) {
959 				callout_reset(tp->tt_delack, tcp_delacktime,
960 						tcp_timer_delack, tp);
961 				tp->t_flags |= TF_NEEDSYN;
962 			} else
963 				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
964 
965 			tcpstat.tcps_connects++;
966 			soisconnected(so);
967 			goto trimthenstep6;
968 		}
969 		goto drop;
970 	}
971 after_listen:
972 
973 /* XXX temp debugging */
974 	/* should not happen - syncache should pick up these connections */
975 	if (tp->t_state == TCPS_LISTEN)
976 		panic("tcp_input: TCPS_LISTEN");
977 
978 	/*
979 	 * Segment received on connection.
980 	 * Reset idle time and keep-alive timer.
981 	 */
982 	tp->t_rcvtime = ticks;
983 	if (TCPS_HAVEESTABLISHED(tp->t_state))
984 		callout_reset(tp->tt_keep, tcp_keepidle, tcp_timer_keep, tp);
985 
986 	/*
987 	 * Process options.
988 	 * XXX this is tradtitional behavior, may need to be cleaned up.
989 	 */
990 	tcp_dooptions(&to, optp, optlen, thflags & TH_SYN);
991 	if (thflags & TH_SYN) {
992 		if (to.to_flags & TOF_SCALE) {
993 			tp->t_flags |= TF_RCVD_SCALE;
994 			tp->requested_s_scale = to.to_requested_s_scale;
995 		}
996 		if (to.to_flags & TOF_TS) {
997 			tp->t_flags |= TF_RCVD_TSTMP;
998 			tp->ts_recent = to.to_tsval;
999 			tp->ts_recent_age = ticks;
1000 		}
1001 		if (to.to_flags & (TOF_CC|TOF_CCNEW))
1002 			tp->t_flags |= TF_RCVD_CC;
1003 		if (to.to_flags & TOF_MSS)
1004 			tcp_mss(tp, to.to_mss);
1005 	}
1006 
1007 	/*
1008 	 * Header prediction: check for the two common cases
1009 	 * of a uni-directional data xfer.  If the packet has
1010 	 * no control flags, is in-sequence, the window didn't
1011 	 * change and we're not retransmitting, it's a
1012 	 * candidate.  If the length is zero and the ack moved
1013 	 * forward, we're the sender side of the xfer.  Just
1014 	 * free the data acked & wake any higher level process
1015 	 * that was blocked waiting for space.  If the length
1016 	 * is non-zero and the ack didn't move, we're the
1017 	 * receiver side.  If we're getting packets in-order
1018 	 * (the reassembly queue is empty), add the data to
1019 	 * the socket buffer and note that we need a delayed ack.
1020 	 * Make sure that the hidden state-flags are also off.
1021 	 * Since we check for TCPS_ESTABLISHED above, it can only
1022 	 * be TH_NEEDSYN.
1023 	 */
1024 	if (tp->t_state == TCPS_ESTABLISHED &&
1025 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1026 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1027 	    ((to.to_flags & TOF_TS) == 0 ||
1028 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1029 	    /*
1030 	     * Using the CC option is compulsory if once started:
1031 	     *   the segment is OK if no T/TCP was negotiated or
1032 	     *   if the segment has a CC option equal to CCrecv
1033 	     */
1034 	    ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) != (TF_REQ_CC|TF_RCVD_CC) ||
1035 	     ((to.to_flags & TOF_CC) != 0 && to.to_cc == tp->cc_recv)) &&
1036 	    th->th_seq == tp->rcv_nxt &&
1037 	    tiwin && tiwin == tp->snd_wnd &&
1038 	    tp->snd_nxt == tp->snd_max) {
1039 
1040 		/*
1041 		 * If last ACK falls within this segment's sequence numbers,
1042 		 * record the timestamp.
1043 		 * NOTE that the test is modified according to the latest
1044 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1045 		 */
1046 		if ((to.to_flags & TOF_TS) != 0 &&
1047 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1048 			tp->ts_recent_age = ticks;
1049 			tp->ts_recent = to.to_tsval;
1050 		}
1051 
1052 		if (tlen == 0) {
1053 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1054 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1055 			    tp->snd_cwnd >= tp->snd_wnd &&
1056 			    ((!tcp_do_newreno &&
1057 			      tp->t_dupacks < tcprexmtthresh) ||
1058 			     (tcp_do_newreno && !IN_FASTRECOVERY(tp)))) {
1059 				/*
1060 				 * this is a pure ack for outstanding data.
1061 				 */
1062 				++tcpstat.tcps_predack;
1063 				/*
1064 				 * "bad retransmit" recovery
1065 				 *
1066 				 * If Eifel detection applies, then
1067 				 * it is deterministic, so use it
1068 				 * unconditionally over the old heuristic.
1069 				 * Otherwise, fall back to the old heuristic.
1070 				 */
1071 				if (tcp_do_eifel_detect &&
1072 				    (to.to_flags & TOF_TS) && to.to_tsecr &&
1073 				    (tp->t_flags & TF_FIRSTACCACK)) {
1074 					/* Eifel detection applicable. */
1075 					if (to.to_tsecr < tp->t_rexmtTS) {
1076 						tcp_revert_congestion_state(tp);
1077 						++tcpstat.tcps_eifeldetected;
1078 					}
1079 				} else if (tp->t_rxtshift == 1 &&
1080 					   ticks < tp->t_badrxtwin) {
1081 					tcp_revert_congestion_state(tp);
1082 					++tcpstat.tcps_rttdetected;
1083 				}
1084 				tp->t_flags &= ~(TF_FIRSTACCACK |
1085 						 TF_FASTREXMT | TF_EARLYREXMT);
1086 				/*
1087 				 * Recalculate the retransmit timer / rtt.
1088 				 *
1089 				 * Some machines (certain windows boxes)
1090 				 * send broken timestamp replies during the
1091 				 * SYN+ACK phase, ignore timestamps of 0.
1092 				 */
1093 				if ((to.to_flags & TOF_TS) != 0 &&
1094 				    to.to_tsecr) {
1095 					tcp_xmit_timer(tp,
1096 					    ticks - to.to_tsecr + 1);
1097 				} else if (tp->t_rtttime &&
1098 					    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1099 					tcp_xmit_timer(tp,
1100 						       ticks - tp->t_rtttime);
1101 				}
1102 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1103 				acked = th->th_ack - tp->snd_una;
1104 				tcpstat.tcps_rcvackpack++;
1105 				tcpstat.tcps_rcvackbyte += acked;
1106 				sbdrop(&so->so_snd, acked);
1107 				tp->snd_recover = th->th_ack - 1;
1108 				tp->snd_una = th->th_ack;
1109 				tp->t_dupacks = 0;
1110 				m_freem(m);
1111 				ND6_HINT(tp); /* some progress has been done */
1112 
1113 				/*
1114 				 * If all outstanding data are acked, stop
1115 				 * retransmit timer, otherwise restart timer
1116 				 * using current (possibly backed-off) value.
1117 				 * If process is waiting for space,
1118 				 * wakeup/selwakeup/signal.  If data
1119 				 * are ready to send, let tcp_output
1120 				 * decide between more output or persist.
1121 				 */
1122 				if (tp->snd_una == tp->snd_max)
1123 					callout_stop(tp->tt_rexmt);
1124 				else if (!callout_active(tp->tt_persist))
1125 					callout_reset(tp->tt_rexmt,
1126 						      tp->t_rxtcur,
1127 						      tcp_timer_rexmt, tp);
1128 
1129 				sowwakeup(so);
1130 				if (so->so_snd.sb_cc)
1131 					(void) tcp_output(tp);
1132 				return;
1133 			}
1134 		} else if (th->th_ack == tp->snd_una &&
1135 		    LIST_EMPTY(&tp->t_segq) &&
1136 		    tlen <= sbspace(&so->so_rcv)) {
1137 			/*
1138 			 * this is a pure, in-sequence data packet
1139 			 * with nothing on the reassembly queue and
1140 			 * we have enough buffer space to take it.
1141 			 */
1142 			++tcpstat.tcps_preddat;
1143 			tp->rcv_nxt += tlen;
1144 			tcpstat.tcps_rcvpack++;
1145 			tcpstat.tcps_rcvbyte += tlen;
1146 			ND6_HINT(tp);	/* some progress has been done */
1147 			/*
1148 			 * Add data to socket buffer.
1149 			 */
1150 			if (so->so_state & SS_CANTRCVMORE) {
1151 				m_freem(m);
1152 			} else {
1153 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1154 				sbappend(&so->so_rcv, m);
1155 			}
1156 			sorwakeup(so);
1157 			if (DELAY_ACK(tp)) {
1158 	                        callout_reset(tp->tt_delack, tcp_delacktime,
1159 	                            tcp_timer_delack, tp);
1160 			} else {
1161 				tp->t_flags |= TF_ACKNOW;
1162 				tcp_output(tp);
1163 			}
1164 			return;
1165 		}
1166 	}
1167 
1168 	/*
1169 	 * Calculate amount of space in receive window,
1170 	 * and then do TCP input processing.
1171 	 * Receive window is amount of space in rcv queue,
1172 	 * but not less than advertised window.
1173 	 */
1174 	{ int win;
1175 
1176 	win = sbspace(&so->so_rcv);
1177 	if (win < 0)
1178 		win = 0;
1179 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1180 	}
1181 
1182 	switch (tp->t_state) {
1183 
1184 	/*
1185 	 * If the state is SYN_RECEIVED:
1186 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1187 	 */
1188 	case TCPS_SYN_RECEIVED:
1189 		if ((thflags & TH_ACK) &&
1190 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1191 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1192 				rstreason = BANDLIM_RST_OPENPORT;
1193 				goto dropwithreset;
1194 		}
1195 		break;
1196 
1197 	/*
1198 	 * If the state is SYN_SENT:
1199 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1200 	 *	if seg contains a RST, then drop the connection.
1201 	 *	if seg does not contain SYN, then drop it.
1202 	 * Otherwise this is an acceptable SYN segment
1203 	 *	initialize tp->rcv_nxt and tp->irs
1204 	 *	if seg contains ack then advance tp->snd_una
1205 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1206 	 *	arrange for segment to be acked (eventually)
1207 	 *	continue processing rest of data/controls, beginning with URG
1208 	 */
1209 	case TCPS_SYN_SENT:
1210 		if ((taop = tcp_gettaocache(&inp->inp_inc)) == NULL) {
1211 			taop = &tao_noncached;
1212 			bzero(taop, sizeof(*taop));
1213 		}
1214 
1215 		if ((thflags & TH_ACK) &&
1216 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1217 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1218 			/*
1219 			 * If we have a cached CCsent for the remote host,
1220 			 * hence we haven't just crashed and restarted,
1221 			 * do not send a RST.  This may be a retransmission
1222 			 * from the other side after our earlier ACK was lost.
1223 			 * Our new SYN, when it arrives, will serve as the
1224 			 * needed ACK.
1225 			 */
1226 			if (taop->tao_ccsent != 0)
1227 				goto drop;
1228 			else {
1229 				rstreason = BANDLIM_UNLIMITED;
1230 				goto dropwithreset;
1231 			}
1232 		}
1233 		if (thflags & TH_RST) {
1234 			if (thflags & TH_ACK)
1235 				tp = tcp_drop(tp, ECONNREFUSED);
1236 			goto drop;
1237 		}
1238 		if ((thflags & TH_SYN) == 0)
1239 			goto drop;
1240 		tp->snd_wnd = th->th_win;	/* initial send window */
1241 		tp->cc_recv = to.to_cc;		/* foreign CC */
1242 
1243 		tp->irs = th->th_seq;
1244 		tcp_rcvseqinit(tp);
1245 		if (thflags & TH_ACK) {
1246 			/*
1247 			 * Our SYN was acked.  If segment contains CC.ECHO
1248 			 * option, check it to make sure this segment really
1249 			 * matches our SYN.  If not, just drop it as old
1250 			 * duplicate, but send an RST if we're still playing
1251 			 * by the old rules.  If no CC.ECHO option, make sure
1252 			 * we don't get fooled into using T/TCP.
1253 			 */
1254 			if (to.to_flags & TOF_CCECHO) {
1255 				if (tp->cc_send != to.to_ccecho) {
1256 					if (taop->tao_ccsent != 0)
1257 						goto drop;
1258 					else {
1259 						rstreason = BANDLIM_UNLIMITED;
1260 						goto dropwithreset;
1261 					}
1262 				}
1263 			} else
1264 				tp->t_flags &= ~TF_RCVD_CC;
1265 			tcpstat.tcps_connects++;
1266 			soisconnected(so);
1267 			/* Do window scaling on this connection? */
1268 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1269 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1270 				tp->snd_scale = tp->requested_s_scale;
1271 				tp->rcv_scale = tp->request_r_scale;
1272 			}
1273 			/* Segment is acceptable, update cache if undefined. */
1274 			if (taop->tao_ccsent == 0)
1275 				taop->tao_ccsent = to.to_ccecho;
1276 
1277 			tp->rcv_adv += tp->rcv_wnd;
1278 			tp->snd_una++;		/* SYN is acked */
1279 			/*
1280 			 * If there's data, delay ACK; if there's also a FIN
1281 			 * ACKNOW will be turned on later.
1282 			 */
1283 			if (DELAY_ACK(tp) && tlen != 0)
1284                                 callout_reset(tp->tt_delack, tcp_delacktime,
1285                                     tcp_timer_delack, tp);
1286 			else
1287 				tp->t_flags |= TF_ACKNOW;
1288 			/*
1289 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1290 			 * Transitions:
1291 			 *	SYN_SENT  --> ESTABLISHED
1292 			 *	SYN_SENT* --> FIN_WAIT_1
1293 			 */
1294 			tp->t_starttime = ticks;
1295 			if (tp->t_flags & TF_NEEDFIN) {
1296 				tp->t_state = TCPS_FIN_WAIT_1;
1297 				tp->t_flags &= ~TF_NEEDFIN;
1298 				thflags &= ~TH_SYN;
1299 			} else {
1300 				tp->t_state = TCPS_ESTABLISHED;
1301 				callout_reset(tp->tt_keep, tcp_keepidle,
1302 					      tcp_timer_keep, tp);
1303 			}
1304 		} else {
1305 			/*
1306 		 	 * Received initial SYN in SYN-SENT[*] state =>
1307 		 	 * simultaneous open.  If segment contains CC option
1308 		 	 * and there is a cached CC, apply TAO test.
1309 		 	 * If it succeeds, connection is * half-synchronized.
1310 		 	 * Otherwise, do 3-way handshake:
1311 		 	 *        SYN-SENT -> SYN-RECEIVED
1312 		 	 *        SYN-SENT* -> SYN-RECEIVED*
1313 		 	 * If there was no CC option, clear cached CC value.
1314 		 	 */
1315 			tp->t_flags |= TF_ACKNOW;
1316 			callout_stop(tp->tt_rexmt);
1317 			if (to.to_flags & TOF_CC) {
1318 				if (taop->tao_cc != 0 &&
1319 				    CC_GT(to.to_cc, taop->tao_cc)) {
1320 					/*
1321 					 * update cache and make transition:
1322 					 *        SYN-SENT -> ESTABLISHED*
1323 					 *        SYN-SENT* -> FIN-WAIT-1*
1324 					 */
1325 					taop->tao_cc = to.to_cc;
1326 					tp->t_starttime = ticks;
1327 					if (tp->t_flags & TF_NEEDFIN) {
1328 						tp->t_state = TCPS_FIN_WAIT_1;
1329 						tp->t_flags &= ~TF_NEEDFIN;
1330 					} else {
1331 						tp->t_state = TCPS_ESTABLISHED;
1332 						callout_reset(tp->tt_keep,
1333 							      tcp_keepidle,
1334 							      tcp_timer_keep,
1335 							      tp);
1336 					}
1337 					tp->t_flags |= TF_NEEDSYN;
1338 				} else
1339 					tp->t_state = TCPS_SYN_RECEIVED;
1340 			} else {
1341 				/* CC.NEW or no option => invalidate cache */
1342 				taop->tao_cc = 0;
1343 				tp->t_state = TCPS_SYN_RECEIVED;
1344 			}
1345 		}
1346 
1347 trimthenstep6:
1348 		/*
1349 		 * Advance th->th_seq to correspond to first data byte.
1350 		 * If data, trim to stay within window,
1351 		 * dropping FIN if necessary.
1352 		 */
1353 		th->th_seq++;
1354 		if (tlen > tp->rcv_wnd) {
1355 			todrop = tlen - tp->rcv_wnd;
1356 			m_adj(m, -todrop);
1357 			tlen = tp->rcv_wnd;
1358 			thflags &= ~TH_FIN;
1359 			tcpstat.tcps_rcvpackafterwin++;
1360 			tcpstat.tcps_rcvbyteafterwin += todrop;
1361 		}
1362 		tp->snd_wl1 = th->th_seq - 1;
1363 		tp->rcv_up = th->th_seq;
1364 		/*
1365 		 * Client side of transaction: already sent SYN and data.
1366 		 * If the remote host used T/TCP to validate the SYN,
1367 		 * our data will be ACK'd; if so, enter normal data segment
1368 		 * processing in the middle of step 5, ack processing.
1369 		 * Otherwise, goto step 6.
1370 		 */
1371  		if (thflags & TH_ACK)
1372 			goto process_ACK;
1373 
1374 		goto step6;
1375 
1376 	/*
1377 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1378 	 *	if segment contains a SYN and CC [not CC.NEW] option:
1379 	 *              if state == TIME_WAIT and connection duration > MSL,
1380 	 *                  drop packet and send RST;
1381 	 *
1382 	 *		if SEG.CC > CCrecv then is new SYN, and can implicitly
1383 	 *		    ack the FIN (and data) in retransmission queue.
1384 	 *                  Complete close and delete TCPCB.  Then reprocess
1385 	 *                  segment, hoping to find new TCPCB in LISTEN state;
1386 	 *
1387 	 *		else must be old SYN; drop it.
1388 	 *      else do normal processing.
1389 	 */
1390 	case TCPS_LAST_ACK:
1391 	case TCPS_CLOSING:
1392 	case TCPS_TIME_WAIT:
1393 		if ((thflags & TH_SYN) &&
1394 		    (to.to_flags & TOF_CC) && tp->cc_recv != 0) {
1395 			if (tp->t_state == TCPS_TIME_WAIT &&
1396 					(ticks - tp->t_starttime) > tcp_msl) {
1397 				rstreason = BANDLIM_UNLIMITED;
1398 				goto dropwithreset;
1399 			}
1400 			if (CC_GT(to.to_cc, tp->cc_recv)) {
1401 				tp = tcp_close(tp);
1402 				goto findpcb;
1403 			}
1404 			else
1405 				goto drop;
1406 		}
1407  		break;  /* continue normal processing */
1408 	}
1409 
1410 	/*
1411 	 * States other than LISTEN or SYN_SENT.
1412 	 * First check the RST flag and sequence number since reset segments
1413 	 * are exempt from the timestamp and connection count tests.  This
1414 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1415 	 * below which allowed reset segments in half the sequence space
1416 	 * to fall though and be processed (which gives forged reset
1417 	 * segments with a random sequence number a 50 percent chance of
1418 	 * killing a connection).
1419 	 * Then check timestamp, if present.
1420 	 * Then check the connection count, if present.
1421 	 * Then check that at least some bytes of segment are within
1422 	 * receive window.  If segment begins before rcv_nxt,
1423 	 * drop leading data (and SYN); if nothing left, just ack.
1424 	 *
1425 	 *
1426 	 * If the RST bit is set, check the sequence number to see
1427 	 * if this is a valid reset segment.
1428 	 * RFC 793 page 37:
1429 	 *   In all states except SYN-SENT, all reset (RST) segments
1430 	 *   are validated by checking their SEQ-fields.  A reset is
1431 	 *   valid if its sequence number is in the window.
1432 	 * Note: this does not take into account delayed ACKs, so
1433 	 *   we should test against last_ack_sent instead of rcv_nxt.
1434 	 *   The sequence number in the reset segment is normally an
1435 	 *   echo of our outgoing acknowlegement numbers, but some hosts
1436 	 *   send a reset with the sequence number at the rightmost edge
1437 	 *   of our receive window, and we have to handle this case.
1438 	 * If we have multiple segments in flight, the intial reset
1439 	 * segment sequence numbers will be to the left of last_ack_sent,
1440 	 * but they will eventually catch up.
1441 	 * In any case, it never made sense to trim reset segments to
1442 	 * fit the receive window since RFC 1122 says:
1443 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1444 	 *
1445 	 *    A TCP SHOULD allow a received RST segment to include data.
1446 	 *
1447 	 *    DISCUSSION
1448 	 *         It has been suggested that a RST segment could contain
1449 	 *         ASCII text that encoded and explained the cause of the
1450 	 *         RST.  No standard has yet been established for such
1451 	 *         data.
1452 	 *
1453 	 * If the reset segment passes the sequence number test examine
1454 	 * the state:
1455 	 *    SYN_RECEIVED STATE:
1456 	 *	If passive open, return to LISTEN state.
1457 	 *	If active open, inform user that connection was refused.
1458 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1459 	 *	Inform user that connection was reset, and close tcb.
1460 	 *    CLOSING, LAST_ACK STATES:
1461 	 *	Close the tcb.
1462 	 *    TIME_WAIT STATE:
1463 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1464 	 *      RFC 1337.
1465 	 */
1466 	if (thflags & TH_RST) {
1467 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1468 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1469 			switch (tp->t_state) {
1470 
1471 			case TCPS_SYN_RECEIVED:
1472 				so->so_error = ECONNREFUSED;
1473 				goto close;
1474 
1475 			case TCPS_ESTABLISHED:
1476 			case TCPS_FIN_WAIT_1:
1477 			case TCPS_FIN_WAIT_2:
1478 			case TCPS_CLOSE_WAIT:
1479 				so->so_error = ECONNRESET;
1480 			close:
1481 				tp->t_state = TCPS_CLOSED;
1482 				tcpstat.tcps_drops++;
1483 				tp = tcp_close(tp);
1484 				break;
1485 
1486 			case TCPS_CLOSING:
1487 			case TCPS_LAST_ACK:
1488 				tp = tcp_close(tp);
1489 				break;
1490 
1491 			case TCPS_TIME_WAIT:
1492 				break;
1493 			}
1494 		}
1495 		goto drop;
1496 	}
1497 
1498 	/*
1499 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1500 	 * and it's less than ts_recent, drop it.
1501 	 */
1502 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
1503 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1504 
1505 		/* Check to see if ts_recent is over 24 days old.  */
1506 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1507 			/*
1508 			 * Invalidate ts_recent.  If this segment updates
1509 			 * ts_recent, the age will be reset later and ts_recent
1510 			 * will get a valid value.  If it does not, setting
1511 			 * ts_recent to zero will at least satisfy the
1512 			 * requirement that zero be placed in the timestamp
1513 			 * echo reply when ts_recent isn't valid.  The
1514 			 * age isn't reset until we get a valid ts_recent
1515 			 * because we don't want out-of-order segments to be
1516 			 * dropped when ts_recent is old.
1517 			 */
1518 			tp->ts_recent = 0;
1519 		} else {
1520 			tcpstat.tcps_rcvduppack++;
1521 			tcpstat.tcps_rcvdupbyte += tlen;
1522 			tcpstat.tcps_pawsdrop++;
1523 			if (tlen)
1524 				goto dropafterack;
1525 			goto drop;
1526 		}
1527 	}
1528 
1529 	/*
1530 	 * T/TCP mechanism
1531 	 *   If T/TCP was negotiated and the segment doesn't have CC,
1532 	 *   or if its CC is wrong then drop the segment.
1533 	 *   RST segments do not have to comply with this.
1534 	 */
1535 	if ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) == (TF_REQ_CC|TF_RCVD_CC) &&
1536 	    ((to.to_flags & TOF_CC) == 0 || tp->cc_recv != to.to_cc))
1537  		goto dropafterack;
1538 
1539 	/*
1540 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1541 	 * this connection before trimming the data to fit the receive
1542 	 * window.  Check the sequence number versus IRS since we know
1543 	 * the sequence numbers haven't wrapped.  This is a partial fix
1544 	 * for the "LAND" DoS attack.
1545 	 */
1546 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1547 		rstreason = BANDLIM_RST_OPENPORT;
1548 		goto dropwithreset;
1549 	}
1550 
1551 	todrop = tp->rcv_nxt - th->th_seq;
1552 	if (todrop > 0) {
1553 		if (thflags & TH_SYN) {
1554 			thflags &= ~TH_SYN;
1555 			th->th_seq++;
1556 			if (th->th_urp > 1)
1557 				th->th_urp--;
1558 			else
1559 				thflags &= ~TH_URG;
1560 			todrop--;
1561 		}
1562 		/*
1563 		 * Following if statement from Stevens, vol. 2, p. 960.
1564 		 */
1565 		if (todrop > tlen
1566 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1567 			/*
1568 			 * Any valid FIN must be to the left of the window.
1569 			 * At this point the FIN must be a duplicate or out
1570 			 * of sequence; drop it.
1571 			 */
1572 			thflags &= ~TH_FIN;
1573 
1574 			/*
1575 			 * Send an ACK to resynchronize and drop any data.
1576 			 * But keep on processing for RST or ACK.
1577 			 */
1578 			tp->t_flags |= TF_ACKNOW;
1579 			todrop = tlen;
1580 			tcpstat.tcps_rcvduppack++;
1581 			tcpstat.tcps_rcvdupbyte += todrop;
1582 		} else {
1583 			tcpstat.tcps_rcvpartduppack++;
1584 			tcpstat.tcps_rcvpartdupbyte += todrop;
1585 		}
1586 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1587 		th->th_seq += todrop;
1588 		tlen -= todrop;
1589 		if (th->th_urp > todrop)
1590 			th->th_urp -= todrop;
1591 		else {
1592 			thflags &= ~TH_URG;
1593 			th->th_urp = 0;
1594 		}
1595 	}
1596 
1597 	/*
1598 	 * If new data are received on a connection after the
1599 	 * user processes are gone, then RST the other end.
1600 	 */
1601 	if ((so->so_state & SS_NOFDREF) &&
1602 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1603 		tp = tcp_close(tp);
1604 		tcpstat.tcps_rcvafterclose++;
1605 		rstreason = BANDLIM_UNLIMITED;
1606 		goto dropwithreset;
1607 	}
1608 
1609 	/*
1610 	 * If segment ends after window, drop trailing data
1611 	 * (and PUSH and FIN); if nothing left, just ACK.
1612 	 */
1613 	todrop = (th->th_seq+tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1614 	if (todrop > 0) {
1615 		tcpstat.tcps_rcvpackafterwin++;
1616 		if (todrop >= tlen) {
1617 			tcpstat.tcps_rcvbyteafterwin += tlen;
1618 			/*
1619 			 * If a new connection request is received
1620 			 * while in TIME_WAIT, drop the old connection
1621 			 * and start over if the sequence numbers
1622 			 * are above the previous ones.
1623 			 */
1624 			if (thflags & TH_SYN &&
1625 			    tp->t_state == TCPS_TIME_WAIT &&
1626 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1627 				tp = tcp_close(tp);
1628 				goto findpcb;
1629 			}
1630 			/*
1631 			 * If window is closed can only take segments at
1632 			 * window edge, and have to drop data and PUSH from
1633 			 * incoming segments.  Continue processing, but
1634 			 * remember to ack.  Otherwise, drop segment
1635 			 * and ack.
1636 			 */
1637 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1638 				tp->t_flags |= TF_ACKNOW;
1639 				tcpstat.tcps_rcvwinprobe++;
1640 			} else
1641 				goto dropafterack;
1642 		} else
1643 			tcpstat.tcps_rcvbyteafterwin += todrop;
1644 		m_adj(m, -todrop);
1645 		tlen -= todrop;
1646 		thflags &= ~(TH_PUSH|TH_FIN);
1647 	}
1648 
1649 	/*
1650 	 * If last ACK falls within this segment's sequence numbers,
1651 	 * record its timestamp.
1652 	 * NOTE that the test is modified according to the latest
1653 	 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1654 	 */
1655 	if ((to.to_flags & TOF_TS) != 0 &&
1656 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1657 		tp->ts_recent_age = ticks;
1658 		tp->ts_recent = to.to_tsval;
1659 	}
1660 
1661 	/*
1662 	 * If a SYN is in the window, then this is an
1663 	 * error and we send an RST and drop the connection.
1664 	 */
1665 	if (thflags & TH_SYN) {
1666 		tp = tcp_drop(tp, ECONNRESET);
1667 		rstreason = BANDLIM_UNLIMITED;
1668 		goto dropwithreset;
1669 	}
1670 
1671 	/*
1672 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1673 	 * flag is on (half-synchronized state), then queue data for
1674 	 * later processing; else drop segment and return.
1675 	 */
1676 	if ((thflags & TH_ACK) == 0) {
1677 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1678 		    (tp->t_flags & TF_NEEDSYN))
1679 			goto step6;
1680 		else
1681 			goto drop;
1682 	}
1683 
1684 	/*
1685 	 * Ack processing.
1686 	 */
1687 	switch (tp->t_state) {
1688 
1689 	/*
1690 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1691 	 * ESTABLISHED state and continue processing.
1692 	 * The ACK was checked above.
1693 	 */
1694 	case TCPS_SYN_RECEIVED:
1695 
1696 		tcpstat.tcps_connects++;
1697 		soisconnected(so);
1698 		/* Do window scaling? */
1699 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1700 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1701 			tp->snd_scale = tp->requested_s_scale;
1702 			tp->rcv_scale = tp->request_r_scale;
1703 		}
1704 		/*
1705 		 * Upon successful completion of 3-way handshake,
1706 		 * update cache.CC if it was undefined, pass any queued
1707 		 * data to the user, and advance state appropriately.
1708 		 */
1709 		if ((taop = tcp_gettaocache(&inp->inp_inc)) != NULL &&
1710 		    taop->tao_cc == 0)
1711 			taop->tao_cc = tp->cc_recv;
1712 
1713 		/*
1714 		 * Make transitions:
1715 		 *      SYN-RECEIVED  -> ESTABLISHED
1716 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1717 		 */
1718 		tp->t_starttime = ticks;
1719 		if (tp->t_flags & TF_NEEDFIN) {
1720 			tp->t_state = TCPS_FIN_WAIT_1;
1721 			tp->t_flags &= ~TF_NEEDFIN;
1722 		} else {
1723 			tp->t_state = TCPS_ESTABLISHED;
1724 			callout_reset(tp->tt_keep, tcp_keepidle,
1725 				      tcp_timer_keep, tp);
1726 		}
1727 		/*
1728 		 * If segment contains data or ACK, will call tcp_reass()
1729 		 * later; if not, do so now to pass queued data to user.
1730 		 */
1731 		if (tlen == 0 && (thflags & TH_FIN) == 0)
1732 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
1733 			    (struct mbuf *)0);
1734 		tp->snd_wl1 = th->th_seq - 1;
1735 		/* fall into ... */
1736 
1737 	/*
1738 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1739 	 * ACKs.  If the ack is in the range
1740 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1741 	 * then advance tp->snd_una to th->th_ack and drop
1742 	 * data from the retransmission queue.  If this ACK reflects
1743 	 * more up to date window information we update our window information.
1744 	 */
1745 	case TCPS_ESTABLISHED:
1746 	case TCPS_FIN_WAIT_1:
1747 	case TCPS_FIN_WAIT_2:
1748 	case TCPS_CLOSE_WAIT:
1749 	case TCPS_CLOSING:
1750 	case TCPS_LAST_ACK:
1751 	case TCPS_TIME_WAIT:
1752 
1753 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1754 			if (tlen == 0 && tiwin == tp->snd_wnd) {
1755 				tcpstat.tcps_rcvdupack++;
1756 				/*
1757 				 * If we have outstanding data (other than
1758 				 * a window probe), this is a completely
1759 				 * duplicate ack (ie, window info didn't
1760 				 * change), the ack is the biggest we've
1761 				 * seen and we've seen exactly our rexmt
1762 				 * threshhold of them, assume a packet
1763 				 * has been dropped and retransmit it.
1764 				 * Kludge snd_nxt & the congestion
1765 				 * window so we send only this one
1766 				 * packet.
1767 				 *
1768 				 * We know we're losing at the current
1769 				 * window size so do congestion avoidance
1770 				 * (set ssthresh to half the current window
1771 				 * and pull our congestion window back to
1772 				 * the new ssthresh).
1773 				 *
1774 				 * Dup acks mean that packets have left the
1775 				 * network (they're now cached at the receiver)
1776 				 * so bump cwnd by the amount in the receiver
1777 				 * to keep a constant cwnd packets in the
1778 				 * network.
1779 				 */
1780 				if (!callout_active(tp->tt_rexmt) ||
1781 				    th->th_ack != tp->snd_una)
1782 					tp->t_dupacks = 0;
1783 				else if (++tp->t_dupacks > tcprexmtthresh ||
1784 					 (tcp_do_newreno &&
1785 					  IN_FASTRECOVERY(tp))) {
1786 					tp->snd_cwnd += tp->t_maxseg;
1787 					(void) tcp_output(tp);
1788 					goto drop;
1789 				} else if (tp->t_dupacks == tcprexmtthresh) {
1790 					tcp_seq onxt;
1791 					u_int win;
1792 
1793 					if (tcp_do_newreno &&
1794 					    SEQ_LEQ(th->th_ack,
1795 					            tp->snd_recover)) {
1796 						tp->t_dupacks = 0;
1797 						break;
1798 					}
1799 fastretransmit:
1800 					if (tcp_do_eifel_detect &&
1801 					    (tp->t_flags & TF_RCVD_TSTMP)) {
1802 						tcp_save_congestion_state(tp);
1803 						tp->t_flags |= TF_FASTREXMT;
1804 					}
1805 					win = min(tp->snd_wnd, tp->snd_cwnd) /
1806 					    2 / tp->t_maxseg;
1807 					if (win < 2)
1808 						win = 2;
1809 					tp->snd_ssthresh = win * tp->t_maxseg;
1810 					ENTER_FASTRECOVERY(tp);
1811 					tp->snd_recover = tp->snd_max;
1812 					callout_stop(tp->tt_rexmt);
1813 					tp->t_rtttime = 0;
1814 					onxt = tp->snd_nxt;
1815 					tp->snd_nxt = th->th_ack;
1816 					tp->snd_cwnd = tp->t_maxseg;
1817 					(void) tcp_output(tp);
1818 					++tcpstat.tcps_sndfastrexmit;
1819 					KASSERT(tp->snd_limited <= 2,
1820 					    ("tp->snd_limited too big"));
1821 					tp->snd_cwnd = tp->snd_ssthresh +
1822 					    (tp->t_maxseg *
1823 					     (tp->t_dupacks - tp->snd_limited));
1824 					if (SEQ_GT(onxt, tp->snd_nxt))
1825 						tp->snd_nxt = onxt;
1826 					goto drop;
1827 				} else if (tcp_do_limitedtransmit) {
1828 					u_long oldcwnd = tp->snd_cwnd;
1829 					tcp_seq oldsndmax = tp->snd_max;
1830 					/* outstanding data */
1831 					uint32_t ownd =
1832 					    tp->snd_max - tp->snd_una;
1833 					u_int sent;
1834 
1835 #define	iceildiv(n, d)		(((n)+(d)-1) / (d))
1836 
1837 					KASSERT(tp->t_dupacks == 1 ||
1838 					    tp->t_dupacks == 2,
1839 					    ("dupacks not 1 or 2"));
1840 					if (tp->t_dupacks == 1)
1841 						tp->snd_limited = 0;
1842 					tp->snd_cwnd = ownd +
1843 					    (tp->t_dupacks - tp->snd_limited) *
1844 					    tp->t_maxseg;
1845 					(void) tcp_output(tp);
1846 					tp->snd_cwnd = oldcwnd;
1847 					sent = tp->snd_max - oldsndmax;
1848 					if (sent > tp->t_maxseg) {
1849 						KASSERT((tp->t_dupacks == 2 &&
1850 						    tp->snd_limited == 0) ||
1851 						   (sent == tp->t_maxseg + 1 &&
1852 						    tp->t_flags & TF_SENTFIN),
1853 						    ("sent too much"));
1854 						KASSERT(sent <=
1855 							tp->t_maxseg * 2,
1856 						    ("sent too many segments"));
1857 						tp->snd_limited = 2;
1858 						tcpstat.tcps_sndlimited += 2;
1859 					} else if (sent > 0) {
1860 						++tp->snd_limited;
1861 						++tcpstat.tcps_sndlimited;
1862 					} else if (tcp_do_early_retransmit &&
1863 					    (tcp_do_eifel_detect &&
1864 					     (tp->t_flags & TF_RCVD_TSTMP)) &&
1865 					    tcp_do_newreno &&
1866 					    tp->t_dupacks + 1 >=
1867 					      iceildiv(ownd, tp->t_maxseg)) {
1868 						++tcpstat.tcps_sndearlyrexmit;
1869 						tp->t_flags |= TF_EARLYREXMT;
1870 						goto fastretransmit;
1871 					}
1872 					goto drop;
1873 				}
1874 			} else
1875 				tp->t_dupacks = 0;
1876 			break;
1877 		}
1878 
1879 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
1880 
1881 		/*
1882 		 * If the congestion window was inflated to account
1883 		 * for the other side's cached packets, retract it.
1884 		 */
1885 		if (tcp_do_newreno) {
1886 			if (IN_FASTRECOVERY(tp)) {
1887 				if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1888 					tcp_newreno_partial_ack(tp, th);
1889 				} else {
1890 					/*
1891 					 * Window inflation should have left us
1892 					 * with approximately snd_ssthresh
1893 					 * outstanding data.
1894 					 * But in case we would be inclined to
1895 					 * send a burst, better to do it via
1896 					 * the slow start mechanism.
1897 					 */
1898 					if (SEQ_GT(th->th_ack +
1899 							tp->snd_ssthresh,
1900 						   tp->snd_max))
1901 						tp->snd_cwnd = tp->snd_max -
1902 								th->th_ack +
1903 								tp->t_maxseg;
1904 					else
1905 						tp->snd_cwnd = tp->snd_ssthresh;
1906 				}
1907 			}
1908                 } else {
1909                         if (tp->t_dupacks >= tcprexmtthresh &&
1910                             tp->snd_cwnd > tp->snd_ssthresh)
1911 				tp->snd_cwnd = tp->snd_ssthresh;
1912                 }
1913 		tp->t_dupacks = 0;
1914 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1915 			/*
1916 			 * Detected optimistic ACK attack.
1917 			 * Force slow-start to de-synchronize attack.
1918 			 */
1919 			tp->snd_cwnd = tp->t_maxseg;
1920 
1921 			tcpstat.tcps_rcvacktoomuch++;
1922 			goto dropafterack;
1923 		}
1924 		/*
1925 		 * If we reach this point, ACK is not a duplicate,
1926 		 *     i.e., it ACKs something we sent.
1927 		 */
1928 		if (tp->t_flags & TF_NEEDSYN) {
1929 			/*
1930 			 * T/TCP: Connection was half-synchronized, and our
1931 			 * SYN has been ACK'd (so connection is now fully
1932 			 * synchronized).  Go to non-starred state,
1933 			 * increment snd_una for ACK of SYN, and check if
1934 			 * we can do window scaling.
1935 			 */
1936 			tp->t_flags &= ~TF_NEEDSYN;
1937 			tp->snd_una++;
1938 			/* Do window scaling? */
1939 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1940 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1941 				tp->snd_scale = tp->requested_s_scale;
1942 				tp->rcv_scale = tp->request_r_scale;
1943 			}
1944 		}
1945 
1946 process_ACK:
1947 		acked = th->th_ack - tp->snd_una;
1948 		tcpstat.tcps_rcvackpack++;
1949 		tcpstat.tcps_rcvackbyte += acked;
1950 
1951 		/*
1952 		 * If we just performed our first retransmit, and the ACK
1953 		 * arrives within our recovery window, then it was a mistake
1954 		 * to do the retransmit in the first place.  Recover our
1955 		 * original cwnd and ssthresh, and proceed to transmit where
1956 		 * we left off.
1957 		 */
1958 		if (tcp_do_eifel_detect && acked &&
1959 		    (to.to_flags & TOF_TS) && to.to_tsecr &&
1960 		    (tp->t_flags & TF_FIRSTACCACK)) {
1961 			/* Eifel detection applicable. */
1962 			if (to.to_tsecr < tp->t_rexmtTS) {
1963 				++tcpstat.tcps_eifeldetected;
1964 				tcp_revert_congestion_state(tp);
1965 				if (tp->t_rxtshift == 1 &&
1966 				    ticks >= tp->t_badrxtwin)
1967 					++tcpstat.tcps_rttcantdetect;
1968 			}
1969 		} else if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
1970 			tcp_revert_congestion_state(tp);
1971 			++tcpstat.tcps_rttdetected;
1972 		}
1973 
1974 		/*
1975 		 * If we have a timestamp reply, update smoothed
1976 		 * round trip time.  If no timestamp is present but
1977 		 * transmit timer is running and timed sequence
1978 		 * number was acked, update smoothed round trip time.
1979 		 * Since we now have an rtt measurement, cancel the
1980 		 * timer backoff (cf., Phil Karn's retransmit alg.).
1981 		 * Recompute the initial retransmit timer.
1982 		 *
1983 		 * Some machines (certain windows boxes) send broken
1984 		 * timestamp replies during the SYN+ACK phase, ignore
1985 		 * timestamps of 0.
1986 		 */
1987 		if ((to.to_flags & TOF_TS) != 0 &&
1988 		    to.to_tsecr) {
1989 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
1990 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
1991 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
1992 		}
1993 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
1994 
1995 		/*
1996 		 * If all outstanding data is acked, stop retransmit
1997 		 * timer and remember to restart (more output or persist).
1998 		 * If there is more data to be acked, restart retransmit
1999 		 * timer, using current (possibly backed-off) value.
2000 		 */
2001 		if (th->th_ack == tp->snd_max) {
2002 			callout_stop(tp->tt_rexmt);
2003 			needoutput = 1;
2004 		} else if (!callout_active(tp->tt_persist))
2005 			callout_reset(tp->tt_rexmt, tp->t_rxtcur,
2006 				      tcp_timer_rexmt, tp);
2007 
2008 		/*
2009 		 * If no data (only SYN) was ACK'd,
2010 		 *    skip rest of ACK processing.
2011 		 */
2012 		if (acked == 0)
2013 			goto step6;
2014 
2015 		/* Stop looking for an acceptable ACK since one was received. */
2016 		tp->t_flags &= ~(TF_FIRSTACCACK | TF_FASTREXMT | TF_EARLYREXMT);
2017 
2018 		/*
2019 		 * When new data is acked, open the congestion window.
2020 		 * If the window gives us less than ssthresh packets
2021 		 * in flight, open exponentially (maxseg per packet).
2022 		 * Otherwise open linearly: maxseg per window
2023 		 * (maxseg^2 / cwnd per packet).
2024 		 */
2025 		if (!tcp_do_newreno || !IN_FASTRECOVERY(tp)) {
2026 			u_int cw = tp->snd_cwnd;
2027 			u_int incr = tp->t_maxseg;
2028 			if (cw > tp->snd_ssthresh)
2029 				incr = incr * incr / cw;
2030 			tp->snd_cwnd = min(cw+incr, TCP_MAXWIN<<tp->snd_scale);
2031 		}
2032 		if (acked > so->so_snd.sb_cc) {
2033 			tp->snd_wnd -= so->so_snd.sb_cc;
2034 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2035 			ourfinisacked = 1;
2036 		} else {
2037 			sbdrop(&so->so_snd, acked);
2038 			tp->snd_wnd -= acked;
2039 			ourfinisacked = 0;
2040 		}
2041 		sowwakeup(so);
2042 		if (tcp_do_newreno) {
2043 			if (IN_FASTRECOVERY(tp)) {
2044 				if (SEQ_GEQ(th->th_ack, tp->snd_recover))
2045 					EXIT_FASTRECOVERY(tp);
2046 			} else {
2047 				tp->snd_recover = th->th_ack - 1;
2048 			}
2049 		}
2050 		tp->snd_una = th->th_ack;
2051 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2052 			tp->snd_nxt = tp->snd_una;
2053 
2054 		switch (tp->t_state) {
2055 
2056 		/*
2057 		 * In FIN_WAIT_1 STATE in addition to the processing
2058 		 * for the ESTABLISHED state if our FIN is now acknowledged
2059 		 * then enter FIN_WAIT_2.
2060 		 */
2061 		case TCPS_FIN_WAIT_1:
2062 			if (ourfinisacked) {
2063 				/*
2064 				 * If we can't receive any more
2065 				 * data, then closing user can proceed.
2066 				 * Starting the timer is contrary to the
2067 				 * specification, but if we don't get a FIN
2068 				 * we'll hang forever.
2069 				 */
2070 				if (so->so_state & SS_CANTRCVMORE) {
2071 					soisdisconnected(so);
2072 					callout_reset(tp->tt_2msl, tcp_maxidle,
2073 						      tcp_timer_2msl, tp);
2074 				}
2075 				tp->t_state = TCPS_FIN_WAIT_2;
2076 			}
2077 			break;
2078 
2079 	 	/*
2080 		 * In CLOSING STATE in addition to the processing for
2081 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2082 		 * then enter the TIME-WAIT state, otherwise ignore
2083 		 * the segment.
2084 		 */
2085 		case TCPS_CLOSING:
2086 			if (ourfinisacked) {
2087 				tp->t_state = TCPS_TIME_WAIT;
2088 				tcp_canceltimers(tp);
2089 				/* Shorten TIME_WAIT [RFC-1644, p.28] */
2090 				if (tp->cc_recv != 0 &&
2091 				    (ticks - tp->t_starttime) < tcp_msl)
2092 					callout_reset(tp->tt_2msl,
2093 						      tp->t_rxtcur *
2094 						      TCPTV_TWTRUNC,
2095 						      tcp_timer_2msl, tp);
2096 				else
2097 					callout_reset(tp->tt_2msl, 2 * tcp_msl,
2098 						      tcp_timer_2msl, tp);
2099 				soisdisconnected(so);
2100 			}
2101 			break;
2102 
2103 		/*
2104 		 * In LAST_ACK, we may still be waiting for data to drain
2105 		 * and/or to be acked, as well as for the ack of our FIN.
2106 		 * If our FIN is now acknowledged, delete the TCB,
2107 		 * enter the closed state and return.
2108 		 */
2109 		case TCPS_LAST_ACK:
2110 			if (ourfinisacked) {
2111 				tp = tcp_close(tp);
2112 				goto drop;
2113 			}
2114 			break;
2115 
2116 		/*
2117 		 * In TIME_WAIT state the only thing that should arrive
2118 		 * is a retransmission of the remote FIN.  Acknowledge
2119 		 * it and restart the finack timer.
2120 		 */
2121 		case TCPS_TIME_WAIT:
2122 			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2123 				      tcp_timer_2msl, tp);
2124 			goto dropafterack;
2125 		}
2126 	}
2127 
2128 step6:
2129 	/*
2130 	 * Update window information.
2131 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2132 	 */
2133 	if ((thflags & TH_ACK) &&
2134 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2135 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2136 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2137 		/* keep track of pure window updates */
2138 		if (tlen == 0 &&
2139 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2140 			tcpstat.tcps_rcvwinupd++;
2141 		tp->snd_wnd = tiwin;
2142 		tp->snd_wl1 = th->th_seq;
2143 		tp->snd_wl2 = th->th_ack;
2144 		if (tp->snd_wnd > tp->max_sndwnd)
2145 			tp->max_sndwnd = tp->snd_wnd;
2146 		needoutput = 1;
2147 	}
2148 
2149 	/*
2150 	 * Process segments with URG.
2151 	 */
2152 	if ((thflags & TH_URG) && th->th_urp &&
2153 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2154 		/*
2155 		 * This is a kludge, but if we receive and accept
2156 		 * random urgent pointers, we'll crash in
2157 		 * soreceive.  It's hard to imagine someone
2158 		 * actually wanting to send this much urgent data.
2159 		 */
2160 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2161 			th->th_urp = 0;			/* XXX */
2162 			thflags &= ~TH_URG;		/* XXX */
2163 			goto dodata;			/* XXX */
2164 		}
2165 		/*
2166 		 * If this segment advances the known urgent pointer,
2167 		 * then mark the data stream.  This should not happen
2168 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2169 		 * a FIN has been received from the remote side.
2170 		 * In these states we ignore the URG.
2171 		 *
2172 		 * According to RFC961 (Assigned Protocols),
2173 		 * the urgent pointer points to the last octet
2174 		 * of urgent data.  We continue, however,
2175 		 * to consider it to indicate the first octet
2176 		 * of data past the urgent section as the original
2177 		 * spec states (in one of two places).
2178 		 */
2179 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2180 			tp->rcv_up = th->th_seq + th->th_urp;
2181 			so->so_oobmark = so->so_rcv.sb_cc +
2182 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2183 			if (so->so_oobmark == 0)
2184 				so->so_state |= SS_RCVATMARK;
2185 			sohasoutofband(so);
2186 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2187 		}
2188 		/*
2189 		 * Remove out of band data so doesn't get presented to user.
2190 		 * This can happen independent of advancing the URG pointer,
2191 		 * but if two URG's are pending at once, some out-of-band
2192 		 * data may creep in... ick.
2193 		 */
2194 		if (th->th_urp <= (u_long)tlen
2195 #ifdef SO_OOBINLINE
2196 		     && (so->so_options & SO_OOBINLINE) == 0
2197 #endif
2198 		     )
2199 			tcp_pulloutofband(so, th, m,
2200 				drop_hdrlen);	/* hdr drop is delayed */
2201 	} else {
2202 		/*
2203 		 * If no out of band data is expected,
2204 		 * pull receive urgent pointer along
2205 		 * with the receive window.
2206 		 */
2207 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2208 			tp->rcv_up = tp->rcv_nxt;
2209 	}
2210 dodata:							/* XXX */
2211 
2212 	/*
2213 	 * Process the segment text, merging it into the TCP sequencing queue,
2214 	 * and arranging for acknowledgment of receipt if necessary.
2215 	 * This process logically involves adjusting tp->rcv_wnd as data
2216 	 * is presented to the user (this happens in tcp_usrreq.c,
2217 	 * case PRU_RCVD).  If a FIN has already been received on this
2218 	 * connection then we just ignore the text.
2219 	 */
2220 	if ((tlen || (thflags & TH_FIN)) &&
2221 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2222 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2223 		/*
2224 		 * Insert segment which includes th into TCP reassembly queue
2225 		 * with control block tp.  Set thflags to whether reassembly now
2226 		 * includes a segment with FIN.  This handles the common case
2227 		 * inline (segment is the next to be received on an established
2228 		 * connection, and the queue is empty), avoiding linkage into
2229 		 * and removal from the queue and repetition of various
2230 		 * conversions.
2231 		 * Set DELACK for segments received in order, but ack
2232 		 * immediately when segments are out of order (so
2233 		 * fast retransmit can work).
2234 		 */
2235 		if (th->th_seq == tp->rcv_nxt &&
2236 		    LIST_EMPTY(&tp->t_segq) &&
2237 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2238 			if (DELAY_ACK(tp))
2239 				callout_reset(tp->tt_delack, tcp_delacktime,
2240 					      tcp_timer_delack, tp);
2241 			else
2242 				tp->t_flags |= TF_ACKNOW;
2243 			tp->rcv_nxt += tlen;
2244 			thflags = th->th_flags & TH_FIN;
2245 			tcpstat.tcps_rcvpack++;
2246 			tcpstat.tcps_rcvbyte += tlen;
2247 			ND6_HINT(tp);
2248 			if (so->so_state & SS_CANTRCVMORE)
2249 				m_freem(m);
2250 			else
2251 				sbappend(&so->so_rcv, m);
2252 			sorwakeup(so);
2253 		} else {
2254 			thflags = tcp_reass(tp, th, &tlen, m);
2255 			tp->t_flags |= TF_ACKNOW;
2256 		}
2257 
2258 		/*
2259 		 * Note the amount of data that peer has sent into
2260 		 * our window, in order to estimate the sender's
2261 		 * buffer size.
2262 		 */
2263 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2264 	} else {
2265 		m_freem(m);
2266 		thflags &= ~TH_FIN;
2267 	}
2268 
2269 	/*
2270 	 * If FIN is received ACK the FIN and let the user know
2271 	 * that the connection is closing.
2272 	 */
2273 	if (thflags & TH_FIN) {
2274 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2275 			socantrcvmore(so);
2276 			/*
2277 			 * If connection is half-synchronized
2278 			 * (ie NEEDSYN flag on) then delay ACK,
2279 			 * so it may be piggybacked when SYN is sent.
2280 			 * Otherwise, since we received a FIN then no
2281 			 * more input can be expected, send ACK now.
2282 			 */
2283 			if (DELAY_ACK(tp) && (tp->t_flags & TF_NEEDSYN))
2284                                 callout_reset(tp->tt_delack, tcp_delacktime,
2285                                     tcp_timer_delack, tp);
2286 			else
2287 				tp->t_flags |= TF_ACKNOW;
2288 			tp->rcv_nxt++;
2289 		}
2290 		switch (tp->t_state) {
2291 
2292 	 	/*
2293 		 * In SYN_RECEIVED and ESTABLISHED STATES
2294 		 * enter the CLOSE_WAIT state.
2295 		 */
2296 		case TCPS_SYN_RECEIVED:
2297 			tp->t_starttime = ticks;
2298 			/*FALLTHROUGH*/
2299 		case TCPS_ESTABLISHED:
2300 			tp->t_state = TCPS_CLOSE_WAIT;
2301 			break;
2302 
2303 	 	/*
2304 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2305 		 * enter the CLOSING state.
2306 		 */
2307 		case TCPS_FIN_WAIT_1:
2308 			tp->t_state = TCPS_CLOSING;
2309 			break;
2310 
2311 	 	/*
2312 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2313 		 * starting the time-wait timer, turning off the other
2314 		 * standard timers.
2315 		 */
2316 		case TCPS_FIN_WAIT_2:
2317 			tp->t_state = TCPS_TIME_WAIT;
2318 			tcp_canceltimers(tp);
2319 			/* Shorten TIME_WAIT [RFC-1644, p.28] */
2320 			if (tp->cc_recv != 0 &&
2321 			    (ticks - tp->t_starttime) < tcp_msl) {
2322 				callout_reset(tp->tt_2msl,
2323 					      tp->t_rxtcur * TCPTV_TWTRUNC,
2324 					      tcp_timer_2msl, tp);
2325 				/* For transaction client, force ACK now. */
2326 				tp->t_flags |= TF_ACKNOW;
2327 			}
2328 			else
2329 				callout_reset(tp->tt_2msl, 2 * tcp_msl,
2330 					      tcp_timer_2msl, tp);
2331 			soisdisconnected(so);
2332 			break;
2333 
2334 		/*
2335 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2336 		 */
2337 		case TCPS_TIME_WAIT:
2338 			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2339 				      tcp_timer_2msl, tp);
2340 			break;
2341 		}
2342 	}
2343 #ifdef TCPDEBUG
2344 	if (so->so_options & SO_DEBUG)
2345 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2346 			  &tcp_savetcp, 0);
2347 #endif
2348 
2349 	/*
2350 	 * Return any desired output.
2351 	 */
2352 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2353 		(void) tcp_output(tp);
2354 	return;
2355 
2356 dropafterack:
2357 	/*
2358 	 * Generate an ACK dropping incoming segment if it occupies
2359 	 * sequence space, where the ACK reflects our state.
2360 	 *
2361 	 * We can now skip the test for the RST flag since all
2362 	 * paths to this code happen after packets containing
2363 	 * RST have been dropped.
2364 	 *
2365 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2366 	 * segment we received passes the SYN-RECEIVED ACK test.
2367 	 * If it fails send a RST.  This breaks the loop in the
2368 	 * "LAND" DoS attack, and also prevents an ACK storm
2369 	 * between two listening ports that have been sent forged
2370 	 * SYN segments, each with the source address of the other.
2371 	 */
2372 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2373 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2374 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2375 		rstreason = BANDLIM_RST_OPENPORT;
2376 		goto dropwithreset;
2377 	}
2378 #ifdef TCPDEBUG
2379 	if (so->so_options & SO_DEBUG)
2380 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2381 			  &tcp_savetcp, 0);
2382 #endif
2383 	m_freem(m);
2384 	tp->t_flags |= TF_ACKNOW;
2385 	(void) tcp_output(tp);
2386 	return;
2387 
2388 dropwithreset:
2389 	/*
2390 	 * Generate a RST, dropping incoming segment.
2391 	 * Make ACK acceptable to originator of segment.
2392 	 * Don't bother to respond if destination was broadcast/multicast.
2393 	 */
2394 	if ((thflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2395 		goto drop;
2396 	if (isipv6) {
2397 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2398 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2399 			goto drop;
2400 	} else {
2401 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2402 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2403 	    	    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2404 	    	    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2405 			goto drop;
2406 	}
2407 	/* IPv6 anycast check is done at tcp6_input() */
2408 
2409 	/*
2410 	 * Perform bandwidth limiting.
2411 	 */
2412 #ifdef ICMP_BANDLIM
2413 	if (badport_bandlim(rstreason) < 0)
2414 		goto drop;
2415 #endif
2416 
2417 #ifdef TCPDEBUG
2418 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2419 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2420 			  &tcp_savetcp, 0);
2421 #endif
2422 	if (thflags & TH_ACK)
2423 		/* mtod() below is safe as long as hdr dropping is delayed */
2424 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2425 			    TH_RST);
2426 	else {
2427 		if (thflags & TH_SYN)
2428 			tlen++;
2429 		/* mtod() below is safe as long as hdr dropping is delayed */
2430 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
2431 			    (tcp_seq)0, TH_RST|TH_ACK);
2432 	}
2433 	return;
2434 
2435 drop:
2436 	/*
2437 	 * Drop space held by incoming segment and return.
2438 	 */
2439 #ifdef TCPDEBUG
2440 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2441 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2442 			  &tcp_savetcp, 0);
2443 #endif
2444 	m_freem(m);
2445 	return;
2446 }
2447 
2448 /*
2449  * Parse TCP options and place in tcpopt.
2450  */
2451 static void
2452 tcp_dooptions(to, cp, cnt, is_syn)
2453 	struct tcpopt *to;
2454 	u_char *cp;
2455 	int cnt;
2456 {
2457 	int opt, optlen;
2458 
2459 	to->to_flags = 0;
2460 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2461 		opt = cp[0];
2462 		if (opt == TCPOPT_EOL)
2463 			break;
2464 		if (opt == TCPOPT_NOP)
2465 			optlen = 1;
2466 		else {
2467 			if (cnt < 2)
2468 				break;
2469 			optlen = cp[1];
2470 			if (optlen < 2 || optlen > cnt)
2471 				break;
2472 		}
2473 		switch (opt) {
2474 		case TCPOPT_MAXSEG:
2475 			if (optlen != TCPOLEN_MAXSEG)
2476 				continue;
2477 			if (!is_syn)
2478 				continue;
2479 			to->to_flags |= TOF_MSS;
2480 			bcopy((char *)cp + 2,
2481 			    (char *)&to->to_mss, sizeof(to->to_mss));
2482 			to->to_mss = ntohs(to->to_mss);
2483 			break;
2484 		case TCPOPT_WINDOW:
2485 			if (optlen != TCPOLEN_WINDOW)
2486 				continue;
2487 			if (! is_syn)
2488 				continue;
2489 			to->to_flags |= TOF_SCALE;
2490 			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2491 			break;
2492 		case TCPOPT_TIMESTAMP:
2493 			if (optlen != TCPOLEN_TIMESTAMP)
2494 				continue;
2495 			to->to_flags |= TOF_TS;
2496 			bcopy((char *)cp + 2,
2497 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
2498 			to->to_tsval = ntohl(to->to_tsval);
2499 			bcopy((char *)cp + 6,
2500 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
2501 			to->to_tsecr = ntohl(to->to_tsecr);
2502 			break;
2503 		case TCPOPT_CC:
2504 			if (optlen != TCPOLEN_CC)
2505 				continue;
2506 			to->to_flags |= TOF_CC;
2507 			bcopy((char *)cp + 2,
2508 			    (char *)&to->to_cc, sizeof(to->to_cc));
2509 			to->to_cc = ntohl(to->to_cc);
2510 			break;
2511 		case TCPOPT_CCNEW:
2512 			if (optlen != TCPOLEN_CC)
2513 				continue;
2514 			if (!is_syn)
2515 				continue;
2516 			to->to_flags |= TOF_CCNEW;
2517 			bcopy((char *)cp + 2,
2518 			    (char *)&to->to_cc, sizeof(to->to_cc));
2519 			to->to_cc = ntohl(to->to_cc);
2520 			break;
2521 		case TCPOPT_CCECHO:
2522 			if (optlen != TCPOLEN_CC)
2523 				continue;
2524 			if (!is_syn)
2525 				continue;
2526 			to->to_flags |= TOF_CCECHO;
2527 			bcopy((char *)cp + 2,
2528 			    (char *)&to->to_ccecho, sizeof(to->to_ccecho));
2529 			to->to_ccecho = ntohl(to->to_ccecho);
2530 			break;
2531 		default:
2532 			continue;
2533 		}
2534 	}
2535 }
2536 
2537 /*
2538  * Pull out of band byte out of a segment so
2539  * it doesn't appear in the user's data queue.
2540  * It is still reflected in the segment length for
2541  * sequencing purposes.
2542  */
2543 static void
2544 tcp_pulloutofband(so, th, m, off)
2545 	struct socket *so;
2546 	struct tcphdr *th;
2547 	struct mbuf *m;
2548 	int off;		/* delayed to be droped hdrlen */
2549 {
2550 	int cnt = off + th->th_urp - 1;
2551 
2552 	while (cnt >= 0) {
2553 		if (m->m_len > cnt) {
2554 			char *cp = mtod(m, caddr_t) + cnt;
2555 			struct tcpcb *tp = sototcpcb(so);
2556 
2557 			tp->t_iobc = *cp;
2558 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2559 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2560 			m->m_len--;
2561 			if (m->m_flags & M_PKTHDR)
2562 				m->m_pkthdr.len--;
2563 			return;
2564 		}
2565 		cnt -= m->m_len;
2566 		m = m->m_next;
2567 		if (m == 0)
2568 			break;
2569 	}
2570 	panic("tcp_pulloutofband");
2571 }
2572 
2573 /*
2574  * Collect new round-trip time estimate
2575  * and update averages and current timeout.
2576  */
2577 static void
2578 tcp_xmit_timer(tp, rtt)
2579 	struct tcpcb *tp;
2580 	int rtt;
2581 {
2582 	int delta;
2583 
2584 	tcpstat.tcps_rttupdated++;
2585 	tp->t_rttupdated++;
2586 	if (tp->t_srtt != 0) {
2587 		/*
2588 		 * srtt is stored as fixed point with 5 bits after the
2589 		 * binary point (i.e., scaled by 8).  The following magic
2590 		 * is equivalent to the smoothing algorithm in rfc793 with
2591 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2592 		 * point).  Adjust rtt to origin 0.
2593 		 */
2594 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2595 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2596 
2597 		if ((tp->t_srtt += delta) <= 0)
2598 			tp->t_srtt = 1;
2599 
2600 		/*
2601 		 * We accumulate a smoothed rtt variance (actually, a
2602 		 * smoothed mean difference), then set the retransmit
2603 		 * timer to smoothed rtt + 4 times the smoothed variance.
2604 		 * rttvar is stored as fixed point with 4 bits after the
2605 		 * binary point (scaled by 16).  The following is
2606 		 * equivalent to rfc793 smoothing with an alpha of .75
2607 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2608 		 * rfc793's wired-in beta.
2609 		 */
2610 		if (delta < 0)
2611 			delta = -delta;
2612 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2613 		if ((tp->t_rttvar += delta) <= 0)
2614 			tp->t_rttvar = 1;
2615 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2616 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2617 	} else {
2618 		/*
2619 		 * No rtt measurement yet - use the unsmoothed rtt.
2620 		 * Set the variance to half the rtt (so our first
2621 		 * retransmit happens at 3*rtt).
2622 		 */
2623 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2624 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2625 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2626 	}
2627 	tp->t_rtttime = 0;
2628 	tp->t_rxtshift = 0;
2629 
2630 	/*
2631 	 * the retransmit should happen at rtt + 4 * rttvar.
2632 	 * Because of the way we do the smoothing, srtt and rttvar
2633 	 * will each average +1/2 tick of bias.  When we compute
2634 	 * the retransmit timer, we want 1/2 tick of rounding and
2635 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2636 	 * firing of the timer.  The bias will give us exactly the
2637 	 * 1.5 tick we need.  But, because the bias is
2638 	 * statistical, we have to test that we don't drop below
2639 	 * the minimum feasible timer (which is 2 ticks).
2640 	 */
2641 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2642 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2643 
2644 	/*
2645 	 * We received an ack for a packet that wasn't retransmitted;
2646 	 * it is probably safe to discard any error indications we've
2647 	 * received recently.  This isn't quite right, but close enough
2648 	 * for now (a route might have failed after we sent a segment,
2649 	 * and the return path might not be symmetrical).
2650 	 */
2651 	tp->t_softerror = 0;
2652 }
2653 
2654 /*
2655  * Determine a reasonable value for maxseg size.
2656  * If the route is known, check route for mtu.
2657  * If none, use an mss that can be handled on the outgoing
2658  * interface without forcing IP to fragment; if bigger than
2659  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2660  * to utilize large mbufs.  If no route is found, route has no mtu,
2661  * or the destination isn't local, use a default, hopefully conservative
2662  * size (usually 512 or the default IP max size, but no more than the mtu
2663  * of the interface), as we can't discover anything about intervening
2664  * gateways or networks.  We also initialize the congestion/slow start
2665  * window to be a single segment if the destination isn't local.
2666  * While looking at the routing entry, we also initialize other path-dependent
2667  * parameters from pre-set or cached values in the routing entry.
2668  *
2669  * Also take into account the space needed for options that we
2670  * send regularly.  Make maxseg shorter by that amount to assure
2671  * that we can send maxseg amount of data even when the options
2672  * are present.  Store the upper limit of the length of options plus
2673  * data in maxopd.
2674  *
2675  * NOTE that this routine is only called when we process an incoming
2676  * segment, for outgoing segments only tcp_mssopt is called.
2677  *
2678  * In case of T/TCP, we call this routine during implicit connection
2679  * setup as well (offer = -1), to initialize maxseg from the cached
2680  * MSS of our peer.
2681  */
2682 void
2683 tcp_mss(tp, offer)
2684 	struct tcpcb *tp;
2685 	int offer;
2686 {
2687 	struct rtentry *rt;
2688 	struct ifnet *ifp;
2689 	int rtt, mss;
2690 	u_long bufsize;
2691 	struct inpcb *inp = tp->t_inpcb;
2692 	struct socket *so;
2693 	struct rmxp_tao *taop;
2694 	int origoffer = offer;
2695 #ifdef INET6
2696 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
2697 	size_t min_protoh = isipv6 ?
2698 			    sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
2699 			    sizeof(struct tcpiphdr);
2700 #else
2701 	const boolean_t isipv6 = FALSE;
2702 	const size_t min_protoh = sizeof(struct tcpiphdr);
2703 #endif
2704 
2705 	if (isipv6)
2706 		rt = tcp_rtlookup6(&inp->inp_inc);
2707 	else
2708 		rt = tcp_rtlookup(&inp->inp_inc);
2709 	if (rt == NULL) {
2710 		tp->t_maxopd = tp->t_maxseg =
2711 		    (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2712 		return;
2713 	}
2714 	ifp = rt->rt_ifp;
2715 	so = inp->inp_socket;
2716 
2717 	taop = rmx_taop(rt->rt_rmx);
2718 	/*
2719 	 * Offer == -1 means that we didn't receive SYN yet,
2720 	 * use cached value in that case;
2721 	 */
2722 	if (offer == -1)
2723 		offer = taop->tao_mssopt;
2724 	/*
2725 	 * Offer == 0 means that there was no MSS on the SYN segment,
2726 	 * in this case we use tcp_mssdflt.
2727 	 */
2728 	if (offer == 0)
2729 		offer = (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2730 	else
2731 		/*
2732 		 * Sanity check: make sure that maxopd will be large
2733 		 * enough to allow some data on segments even is the
2734 		 * all the option space is used (40bytes).  Otherwise
2735 		 * funny things may happen in tcp_output.
2736 		 */
2737 		offer = max(offer, 64);
2738 	taop->tao_mssopt = offer;
2739 
2740 	/*
2741 	 * While we're here, check if there's an initial rtt
2742 	 * or rttvar.  Convert from the route-table units
2743 	 * to scaled multiples of the slow timeout timer.
2744 	 */
2745 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2746 		/*
2747 		 * XXX the lock bit for RTT indicates that the value
2748 		 * is also a minimum value; this is subject to time.
2749 		 */
2750 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2751 			tp->t_rttmin = rtt / (RTM_RTTUNIT / hz);
2752 		tp->t_srtt = rtt / (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
2753 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
2754 		tcpstat.tcps_usedrtt++;
2755 		if (rt->rt_rmx.rmx_rttvar) {
2756 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2757 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
2758 			tcpstat.tcps_usedrttvar++;
2759 		} else {
2760 			/* default variation is +- 1 rtt */
2761 			tp->t_rttvar =
2762 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2763 		}
2764 		TCPT_RANGESET(tp->t_rxtcur,
2765 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2766 			      tp->t_rttmin, TCPTV_REXMTMAX);
2767 	}
2768 	/*
2769 	 * if there's an mtu associated with the route, use it
2770 	 * else, use the link mtu.
2771 	 */
2772 	if (rt->rt_rmx.rmx_mtu)
2773 		mss = rt->rt_rmx.rmx_mtu - min_protoh;
2774 	else {
2775 		if (isipv6) {
2776 			mss = nd_ifinfo[rt->rt_ifp->if_index].linkmtu -
2777 				min_protoh;
2778 			if (!in6_localaddr(&inp->in6p_faddr))
2779 				mss = min(mss, tcp_v6mssdflt);
2780 		} else {
2781 			mss = ifp->if_mtu - min_protoh;
2782 			if (!in_localaddr(inp->inp_faddr))
2783 				mss = min(mss, tcp_mssdflt);
2784 		}
2785 	}
2786 	mss = min(mss, offer);
2787 	/*
2788 	 * maxopd stores the maximum length of data AND options
2789 	 * in a segment; maxseg is the amount of data in a normal
2790 	 * segment.  We need to store this value (maxopd) apart
2791 	 * from maxseg, because now every segment carries options
2792 	 * and thus we normally have somewhat less data in segments.
2793 	 */
2794 	tp->t_maxopd = mss;
2795 
2796 	/*
2797 	 * In case of T/TCP, origoffer==-1 indicates, that no segments
2798 	 * were received yet.  In this case we just guess, otherwise
2799 	 * we do the same as before T/TCP.
2800 	 */
2801  	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2802 	    (origoffer == -1 ||
2803 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
2804 		mss -= TCPOLEN_TSTAMP_APPA;
2805  	if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
2806 	    (origoffer == -1 ||
2807 	     (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC))
2808 		mss -= TCPOLEN_CC_APPA;
2809 
2810 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
2811 		if (mss > MCLBYTES)
2812 			mss &= ~(MCLBYTES-1);
2813 #else
2814 		if (mss > MCLBYTES)
2815 			mss = mss / MCLBYTES * MCLBYTES;
2816 #endif
2817 	/*
2818 	 * If there's a pipesize, change the socket buffer
2819 	 * to that size.  Make the socket buffers an integral
2820 	 * number of mss units; if the mss is larger than
2821 	 * the socket buffer, decrease the mss.
2822 	 */
2823 #ifdef RTV_SPIPE
2824 	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
2825 #endif
2826 		bufsize = so->so_snd.sb_hiwat;
2827 	if (bufsize < mss)
2828 		mss = bufsize;
2829 	else {
2830 		bufsize = roundup(bufsize, mss);
2831 		if (bufsize > sb_max)
2832 			bufsize = sb_max;
2833 		if (bufsize > so->so_snd.sb_hiwat)
2834 			(void)sbreserve(&so->so_snd, bufsize, so, NULL);
2835 	}
2836 	tp->t_maxseg = mss;
2837 
2838 #ifdef RTV_RPIPE
2839 	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
2840 #endif
2841 		bufsize = so->so_rcv.sb_hiwat;
2842 	if (bufsize > mss) {
2843 		bufsize = roundup(bufsize, mss);
2844 		if (bufsize > sb_max)
2845 			bufsize = sb_max;
2846 		if (bufsize > so->so_rcv.sb_hiwat)
2847 			(void)sbreserve(&so->so_rcv, bufsize, so, NULL);
2848 	}
2849 
2850 	/*
2851 	 * Set the slow-start flight size depending on whether this
2852 	 * is a local network or not.
2853 	 */
2854 	if (tcp_do_rfc3390)
2855 		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
2856 	else if ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
2857 		 (!isipv6 && in_localaddr(inp->inp_faddr)))
2858 		tp->snd_cwnd = mss * ss_fltsz_local;
2859 	else
2860 		tp->snd_cwnd = mss * ss_fltsz;
2861 
2862 	if (rt->rt_rmx.rmx_ssthresh) {
2863 		/*
2864 		 * There's some sort of gateway or interface
2865 		 * buffer limit on the path.  Use this to set
2866 		 * the slow start threshhold, but set the
2867 		 * threshold to no less than 2*mss.
2868 		 */
2869 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
2870 		tcpstat.tcps_usedssthresh++;
2871 	}
2872 }
2873 
2874 /*
2875  * Determine the MSS option to send on an outgoing SYN.
2876  */
2877 int
2878 tcp_mssopt(tp)
2879 	struct tcpcb *tp;
2880 {
2881 	struct rtentry *rt;
2882 #ifdef INET6
2883 	boolean_t isipv6 =
2884 	    ((tp->t_inpcb->inp_vflag & INP_IPV6) ? TRUE : FALSE);
2885 	int min_protoh = isipv6 ?
2886 			     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
2887 			     sizeof(struct tcpiphdr);
2888 #else
2889 	const boolean_t isipv6 = FALSE;
2890 	const size_t min_protoh = sizeof(struct tcpiphdr);
2891 #endif
2892 
2893 	if (isipv6)
2894 		rt = tcp_rtlookup6(&tp->t_inpcb->inp_inc);
2895 	else
2896 		rt = tcp_rtlookup(&tp->t_inpcb->inp_inc);
2897 	if (rt == NULL)
2898 		return (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2899 
2900 	return (rt->rt_ifp->if_mtu - min_protoh);
2901 }
2902 
2903 
2904 /*
2905  * When a partial ack arrives, force the retransmission of the
2906  * next unacknowledged segment.  Do not clear tp->t_dupacks.
2907  * By setting snd_nxt to ti_ack, this forces retransmission timer to
2908  * be started again.
2909  */
2910 static void
2911 tcp_newreno_partial_ack(tp, th)
2912 	struct tcpcb *tp;
2913 	struct tcphdr *th;
2914 {
2915 	tcp_seq onxt = tp->snd_nxt;
2916 	u_long  ocwnd = tp->snd_cwnd;
2917 
2918 	callout_stop(tp->tt_rexmt);
2919 	tp->t_rtttime = 0;
2920 	tp->snd_nxt = th->th_ack;
2921 	/*
2922 	 * Set snd_cwnd to one segment beyond acknowledged offset
2923 	 * (tp->snd_una has not yet been updated when this function is called.)
2924 	 */
2925 	tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
2926 	tp->t_flags |= TF_ACKNOW;
2927 	(void) tcp_output(tp);
2928 	tp->snd_cwnd = ocwnd;
2929 	if (SEQ_GT(onxt, tp->snd_nxt))
2930 		tp->snd_nxt = onxt;
2931 	/*
2932 	 * Partial window deflation.  Relies on fact that tp->snd_una
2933 	 * not updated yet.
2934 	 */
2935 	tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_maxseg);
2936 }
2937