xref: /dragonfly/sys/netinet/tcp_input.c (revision e8c03636)
1 /*
2  * Copyright (c) 2002, 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2002, 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. Neither the name of the University nor the names of its contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  *
62  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
63  * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.38 2003/05/21 04:46:41 cjc Exp $
64  */
65 
66 #include "opt_inet.h"
67 #include "opt_inet6.h"
68 #include "opt_ipsec.h"
69 #include "opt_tcpdebug.h"
70 #include "opt_tcp_input.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/kernel.h>
75 #include <sys/sysctl.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/proc.h>		/* for proc0 declaration */
79 #include <sys/protosw.h>
80 #include <sys/socket.h>
81 #include <sys/socketvar.h>
82 #include <sys/syslog.h>
83 #include <sys/in_cksum.h>
84 
85 #include <sys/socketvar2.h>
86 
87 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
88 #include <machine/stdarg.h>
89 
90 #include <net/if.h>
91 #include <net/route.h>
92 
93 #include <netinet/in.h>
94 #include <netinet/in_systm.h>
95 #include <netinet/ip.h>
96 #include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM */
97 #include <netinet/in_var.h>
98 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
99 #include <netinet/in_pcb.h>
100 #include <netinet/ip_var.h>
101 #include <netinet/ip6.h>
102 #include <netinet/icmp6.h>
103 #include <netinet6/nd6.h>
104 #include <netinet6/ip6_var.h>
105 #include <netinet6/in6_pcb.h>
106 #include <netinet/tcp.h>
107 #include <netinet/tcp_fsm.h>
108 #include <netinet/tcp_seq.h>
109 #include <netinet/tcp_timer.h>
110 #include <netinet/tcp_timer2.h>
111 #include <netinet/tcp_var.h>
112 #include <netinet6/tcp6_var.h>
113 #include <netinet/tcpip.h>
114 
115 #ifdef TCPDEBUG
116 #include <netinet/tcp_debug.h>
117 
118 u_char tcp_saveipgen[40];    /* the size must be of max ip header, now IPv6 */
119 struct tcphdr tcp_savetcp;
120 #endif
121 
122 #ifdef FAST_IPSEC
123 #include <netproto/ipsec/ipsec.h>
124 #include <netproto/ipsec/ipsec6.h>
125 #endif
126 
127 #ifdef IPSEC
128 #include <netinet6/ipsec.h>
129 #include <netinet6/ipsec6.h>
130 #include <netproto/key/key.h>
131 #endif
132 
133 /*
134  * Limit burst of new packets during SACK based fast recovery
135  * or extended limited transmit.
136  */
137 #define TCP_SACK_MAXBURST	4
138 
139 MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
140 
141 static int log_in_vain = 0;
142 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
143     &log_in_vain, 0, "Log all incoming TCP connections");
144 
145 static int blackhole = 0;
146 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
147     &blackhole, 0, "Do not send RST when dropping refused connections");
148 
149 int tcp_delack_enabled = 1;
150 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
151     &tcp_delack_enabled, 0,
152     "Delay ACK to try and piggyback it onto a data packet");
153 
154 #ifdef TCP_DROP_SYNFIN
155 static int drop_synfin = 0;
156 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
157     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
158 #endif
159 
160 static int tcp_do_limitedtransmit = 1;
161 SYSCTL_INT(_net_inet_tcp, OID_AUTO, limitedtransmit, CTLFLAG_RW,
162     &tcp_do_limitedtransmit, 0, "Enable RFC 3042 (Limited Transmit)");
163 
164 static int tcp_do_early_retransmit = 1;
165 SYSCTL_INT(_net_inet_tcp, OID_AUTO, earlyretransmit, CTLFLAG_RW,
166     &tcp_do_early_retransmit, 0, "Early retransmit");
167 
168 int tcp_aggregate_acks = 1;
169 SYSCTL_INT(_net_inet_tcp, OID_AUTO, aggregate_acks, CTLFLAG_RW,
170     &tcp_aggregate_acks, 0, "Aggregate built-up acks into one ack");
171 
172 static int tcp_do_eifel_detect = 1;
173 SYSCTL_INT(_net_inet_tcp, OID_AUTO, eifel, CTLFLAG_RW,
174     &tcp_do_eifel_detect, 0, "Eifel detection algorithm (RFC 3522)");
175 
176 static int tcp_do_abc = 1;
177 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc, CTLFLAG_RW,
178     &tcp_do_abc, 0,
179     "TCP Appropriate Byte Counting (RFC 3465)");
180 
181 /*
182  * The following value actually takes range [25ms, 250ms],
183  * given that most modern systems use 1ms ~ 10ms as the unit
184  * of timestamp option.
185  */
186 static u_int tcp_paws_tolerance = 25;
187 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, paws_tolerance, CTLFLAG_RW,
188     &tcp_paws_tolerance, 0, "RFC1323 PAWS tolerance");
189 
190 /*
191  * Define as tunable for easy testing with SACK on and off.
192  * Warning:  do not change setting in the middle of an existing active TCP flow,
193  *   else strange things might happen to that flow.
194  */
195 int tcp_do_sack = 1;
196 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW,
197     &tcp_do_sack, 0, "Enable SACK Algorithms");
198 
199 int tcp_do_smartsack = 1;
200 SYSCTL_INT(_net_inet_tcp, OID_AUTO, smartsack, CTLFLAG_RW,
201     &tcp_do_smartsack, 0, "Enable Smart SACK Algorithms");
202 
203 int tcp_do_rescuesack = 1;
204 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rescuesack, CTLFLAG_RW,
205     &tcp_do_rescuesack, 0, "Rescue retransmission for SACK");
206 
207 int tcp_aggressive_rescuesack = 0;
208 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rescuesack_agg, CTLFLAG_RW,
209     &tcp_aggressive_rescuesack, 0, "Aggressive rescue retransmission for SACK");
210 
211 static int tcp_force_sackrxt = 1;
212 SYSCTL_INT(_net_inet_tcp, OID_AUTO, force_sackrxt, CTLFLAG_RW,
213     &tcp_force_sackrxt, 0, "Allowed forced SACK retransmit burst");
214 
215 int tcp_do_rfc6675 = 1;
216 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc6675, CTLFLAG_RW,
217     &tcp_do_rfc6675, 0, "Enable RFC6675");
218 
219 int tcp_rfc6675_rxt = 0;
220 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc6675_rxt, CTLFLAG_RW,
221     &tcp_rfc6675_rxt, 0, "Enable RFC6675 retransmit");
222 
223 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
224     "TCP Segment Reassembly Queue");
225 
226 int tcp_reass_maxseg = 0;
227 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RD,
228     &tcp_reass_maxseg, 0,
229     "Global maximum number of TCP Segments in Reassembly Queue");
230 
231 int tcp_reass_qsize = 0;
232 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
233     &tcp_reass_qsize, 0,
234     "Global number of TCP Segments currently in Reassembly Queue");
235 
236 static int tcp_reass_overflows = 0;
237 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
238     &tcp_reass_overflows, 0,
239     "Global number of TCP Segment Reassembly Queue Overflows");
240 
241 int tcp_do_autorcvbuf = 1;
242 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
243     &tcp_do_autorcvbuf, 0, "Enable automatic receive buffer sizing");
244 
245 int tcp_autorcvbuf_inc = 16*1024;
246 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
247     &tcp_autorcvbuf_inc, 0,
248     "Incrementor step size of automatic receive buffer");
249 
250 int tcp_autorcvbuf_max = 2*1024*1024;
251 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
252     &tcp_autorcvbuf_max, 0, "Max size of automatic receive buffer");
253 
254 int tcp_sosend_agglim = 3;
255 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sosend_agglim, CTLFLAG_RW,
256     &tcp_sosend_agglim, 0, "TCP sosend mbuf aggregation limit");
257 
258 int tcp_sosend_async = 1;
259 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sosend_async, CTLFLAG_RW,
260     &tcp_sosend_async, 0, "TCP asynchronized pru_send");
261 
262 static int tcp_ignore_redun_dsack = 1;
263 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ignore_redun_dsack, CTLFLAG_RW,
264     &tcp_ignore_redun_dsack, 0, "Ignore redundant DSACK");
265 
266 static int tcp_reuseport_ext = 1;
267 SYSCTL_INT(_net_inet_tcp, OID_AUTO, reuseport_ext, CTLFLAG_RW,
268     &tcp_reuseport_ext, 0, "SO_REUSEPORT extension");
269 
270 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, boolean_t,
271 		    tcp_seq);
272 static void	 tcp_pulloutofband(struct socket *,
273 		     struct tcphdr *, struct mbuf *, int);
274 static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
275 		     struct mbuf *);
276 static void	 tcp_xmit_timer(struct tcpcb *, int, tcp_seq);
277 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *, int);
278 static void	 tcp_sack_rexmt(struct tcpcb *, boolean_t);
279 static boolean_t tcp_sack_limitedxmit(struct tcpcb *);
280 static int	 tcp_rmx_msl(const struct tcpcb *);
281 static void	 tcp_established(struct tcpcb *);
282 static boolean_t tcp_recv_dupack(struct tcpcb *, tcp_seq, u_int);
283 
284 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
285 #ifdef INET6
286 #define ND6_HINT(tp) \
287 do { \
288 	if ((tp) && (tp)->t_inpcb && \
289 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) && \
290 	    (tp)->t_inpcb->in6p_route.ro_rt) \
291 		nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
292 } while (0)
293 #else
294 #define ND6_HINT(tp)
295 #endif
296 
297 /*
298  * Indicate whether this ack should be delayed.  We can delay the ack if
299  *	- delayed acks are enabled and
300  *	- there is no delayed ack timer in progress and
301  *	- our last ack wasn't a 0-sized window.  We never want to delay
302  *	  the ack that opens up a 0-sized window.
303  */
304 #define DELAY_ACK(tp) \
305 	(tcp_delack_enabled && !tcp_callout_pending(tp, tp->tt_delack) && \
306 	!(tp->t_flags & TF_RXWIN0SENT))
307 
308 #define acceptable_window_update(tp, th, tiwin)				\
309     (SEQ_LT(tp->snd_wl1, th->th_seq) ||					\
310      (tp->snd_wl1 == th->th_seq &&					\
311       (SEQ_LT(tp->snd_wl2, th->th_ack) ||				\
312        (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))
313 
314 #define	iceildiv(n, d)		(((n)+(d)-1) / (d))
315 #define need_early_retransmit(tp, ownd) \
316     (tcp_do_early_retransmit && \
317      (tcp_do_eifel_detect && (tp->t_flags & TF_RCVD_TSTMP)) && \
318      ownd < ((tp->t_rxtthresh + 1) * tp->t_maxseg) && \
319      tp->t_dupacks + 1 >= iceildiv(ownd, tp->t_maxseg) && \
320      (!TCP_DO_SACK(tp) || ownd <= tp->t_maxseg || \
321       tcp_sack_has_sacked(&tp->scb, ownd - tp->t_maxseg)))
322 
323 /*
324  * Returns TRUE, if this segment can be merged with the last
325  * pending segment in the reassemble queue and this segment
326  * does not overlap with the pending segment immediately
327  * preceeding the last pending segment.
328  */
329 static __inline boolean_t
330 tcp_paws_canreasslast(const struct tcpcb *tp, const struct tcphdr *th, int tlen)
331 {
332 	const struct tseg_qent *last, *prev;
333 
334 	last = TAILQ_LAST(&tp->t_segq, tsegqe_head);
335 	if (last == NULL)
336 		return FALSE;
337 
338 	/* This segment comes immediately after the last pending segment */
339 	if (last->tqe_th->th_seq + last->tqe_len == th->th_seq) {
340 		if (last->tqe_th->th_flags & TH_FIN) {
341 			/* No segments should follow segment w/ FIN */
342 			return FALSE;
343 		}
344 		return TRUE;
345 	}
346 
347 	if (th->th_seq + tlen != last->tqe_th->th_seq)
348 		return FALSE;
349 	/* This segment comes immediately before the last pending segment */
350 
351 	prev = TAILQ_PREV(last, tsegqe_head, tqe_q);
352 	if (prev == NULL) {
353 		/*
354 		 * No pending preceeding segment, we assume this segment
355 		 * could be reassembled.
356 		 */
357 		return TRUE;
358 	}
359 
360 	/* This segment does not overlap with the preceeding segment */
361 	if (SEQ_GEQ(th->th_seq, prev->tqe_th->th_seq + prev->tqe_len))
362 		return TRUE;
363 
364 	return FALSE;
365 }
366 
367 static __inline void
368 tcp_ncr_update_rxtthresh(struct tcpcb *tp)
369 {
370 	int old_rxtthresh = tp->t_rxtthresh;
371 	uint32_t ownd = tp->snd_max - tp->snd_una;
372 
373 	tp->t_rxtthresh = max(tcprexmtthresh, ((ownd / tp->t_maxseg) >> 1));
374 	if (tp->t_rxtthresh != old_rxtthresh) {
375 		tcp_sack_update_lostseq(&tp->scb, tp->snd_una,
376 		    tp->t_maxseg, tp->t_rxtthresh);
377 	}
378 }
379 
380 static int
381 tcp_reass(struct tcpcb *tp, struct tcphdr *th, int *tlenp, struct mbuf *m)
382 {
383 	struct tseg_qent *q;
384 	struct tseg_qent *p = NULL;
385 	struct tseg_qent *te;
386 	struct socket *so = tp->t_inpcb->inp_socket;
387 	int flags;
388 
389 	/*
390 	 * Call with th == NULL after become established to
391 	 * force pre-ESTABLISHED data up to user socket.
392 	 */
393 	if (th == NULL)
394 		goto present;
395 
396 	/*
397 	 * Limit the number of segments in the reassembly queue to prevent
398 	 * holding on to too many segments (and thus running out of mbufs).
399 	 * Make sure to let the missing segment through which caused this
400 	 * queue.  Always keep one global queue entry spare to be able to
401 	 * process the missing segment.
402 	 */
403 	if (th->th_seq != tp->rcv_nxt &&
404 	    tcp_reass_qsize + 1 >= tcp_reass_maxseg) {
405 		tcp_reass_overflows++;
406 		tcpstat.tcps_rcvmemdrop++;
407 		m_freem(m);
408 		/* no SACK block to report */
409 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
410 		return (0);
411 	}
412 
413 	/* Allocate a new queue entry. */
414 	te = kmalloc(sizeof(struct tseg_qent), M_TSEGQ, M_INTWAIT | M_NULLOK);
415 	if (te == NULL) {
416 		tcpstat.tcps_rcvmemdrop++;
417 		m_freem(m);
418 		/* no SACK block to report */
419 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
420 		return (0);
421 	}
422 	atomic_add_int(&tcp_reass_qsize, 1);
423 
424 	if (th->th_flags & TH_FIN)
425 		tp->t_flags |= TF_QUEDFIN;
426 
427 	/*
428 	 * Find a segment which begins after this one does.
429 	 */
430 	TAILQ_FOREACH(q, &tp->t_segq, tqe_q) {
431 		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
432 			break;
433 		p = q;
434 	}
435 
436 	/*
437 	 * If there is a preceding segment, it may provide some of
438 	 * our data already.  If so, drop the data from the incoming
439 	 * segment.  If it provides all of our data, drop us.
440 	 */
441 	if (p != NULL) {
442 		tcp_seq_diff_t i;
443 
444 		/* conversion to int (in i) handles seq wraparound */
445 		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
446 		if (i > 0) {		/* overlaps preceding segment */
447 			tp->sack_flags |=
448 			    (TSACK_F_DUPSEG | TSACK_F_ENCLOSESEG);
449 			/* enclosing block starts w/ preceding segment */
450 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
451 			if (i >= *tlenp) {
452 				if (th->th_flags & TH_FIN)
453 					p->tqe_th->th_flags |= TH_FIN;
454 
455 				/* preceding encloses incoming segment */
456 				tp->encloseblk.rblk_end = TCP_SACK_BLKEND(
457 				    p->tqe_th->th_seq + p->tqe_len,
458 				    p->tqe_th->th_flags);
459 				tcpstat.tcps_rcvduppack++;
460 				tcpstat.tcps_rcvdupbyte += *tlenp;
461 				m_freem(m);
462 				kfree(te, M_TSEGQ);
463 				atomic_add_int(&tcp_reass_qsize, -1);
464 				/*
465 				 * Try to present any queued data
466 				 * at the left window edge to the user.
467 				 * This is needed after the 3-WHS
468 				 * completes.
469 				 */
470 				goto present;	/* ??? */
471 			}
472 			m_adj(m, i);
473 			*tlenp -= i;
474 			th->th_seq += i;
475 			/* incoming segment end is enclosing block end */
476 			tp->encloseblk.rblk_end = TCP_SACK_BLKEND(
477 			    th->th_seq + *tlenp, th->th_flags);
478 			/* trim end of reported D-SACK block */
479 			tp->reportblk.rblk_end = th->th_seq;
480 		}
481 	}
482 	tcpstat.tcps_rcvoopack++;
483 	tcpstat.tcps_rcvoobyte += *tlenp;
484 
485 	/*
486 	 * While we overlap succeeding segments trim them or,
487 	 * if they are completely covered, dequeue them.
488 	 */
489 	while (q) {
490 		tcp_seq_diff_t i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
491 		tcp_seq qend = q->tqe_th->th_seq + q->tqe_len;
492 		tcp_seq qend_sack = TCP_SACK_BLKEND(qend, q->tqe_th->th_flags);
493 		struct tseg_qent *nq;
494 
495 		if (i <= 0)
496 			break;
497 		if (!(tp->sack_flags & TSACK_F_DUPSEG)) {
498 			/* first time through */
499 			tp->sack_flags |= (TSACK_F_DUPSEG | TSACK_F_ENCLOSESEG);
500 			tp->encloseblk = tp->reportblk;
501 			/* report trailing duplicate D-SACK segment */
502 			tp->reportblk.rblk_start = q->tqe_th->th_seq;
503 		}
504 		if ((tp->sack_flags & TSACK_F_ENCLOSESEG) &&
505 		    SEQ_GT(qend_sack, tp->encloseblk.rblk_end)) {
506 			/* extend enclosing block if one exists */
507 			tp->encloseblk.rblk_end = qend_sack;
508 		}
509 		if (i < q->tqe_len) {
510 			q->tqe_th->th_seq += i;
511 			q->tqe_len -= i;
512 			m_adj(q->tqe_m, i);
513 			break;
514 		}
515 
516 		if (q->tqe_th->th_flags & TH_FIN)
517 			th->th_flags |= TH_FIN;
518 
519 		nq = TAILQ_NEXT(q, tqe_q);
520 		TAILQ_REMOVE(&tp->t_segq, q, tqe_q);
521 		m_freem(q->tqe_m);
522 		kfree(q, M_TSEGQ);
523 		atomic_add_int(&tcp_reass_qsize, -1);
524 		q = nq;
525 	}
526 
527 	/* Insert the new segment queue entry into place. */
528 	te->tqe_m = m;
529 	te->tqe_th = th;
530 	te->tqe_len = *tlenp;
531 
532 	/* check if can coalesce with following segment */
533 	if (q != NULL && (th->th_seq + *tlenp == q->tqe_th->th_seq)) {
534 		tcp_seq tend_sack;
535 
536 		te->tqe_len += q->tqe_len;
537 		if (q->tqe_th->th_flags & TH_FIN)
538 			te->tqe_th->th_flags |= TH_FIN;
539 		tend_sack = TCP_SACK_BLKEND(te->tqe_th->th_seq + te->tqe_len,
540 		    te->tqe_th->th_flags);
541 
542 		m_cat(te->tqe_m, q->tqe_m);
543 		tp->encloseblk.rblk_end = tend_sack;
544 		/*
545 		 * When not reporting a duplicate segment, use
546 		 * the larger enclosing block as the SACK block.
547 		 */
548 		if (!(tp->sack_flags & TSACK_F_DUPSEG))
549 			tp->reportblk.rblk_end = tend_sack;
550 		TAILQ_REMOVE(&tp->t_segq, q, tqe_q);
551 		kfree(q, M_TSEGQ);
552 		atomic_add_int(&tcp_reass_qsize, -1);
553 	}
554 
555 	if (p == NULL) {
556 		TAILQ_INSERT_HEAD(&tp->t_segq, te, tqe_q);
557 	} else {
558 		/* check if can coalesce with preceding segment */
559 		if (p->tqe_th->th_seq + p->tqe_len == th->th_seq) {
560 			if (te->tqe_th->th_flags & TH_FIN)
561 				p->tqe_th->th_flags |= TH_FIN;
562 			p->tqe_len += te->tqe_len;
563 			m_cat(p->tqe_m, te->tqe_m);
564 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
565 			/*
566 			 * When not reporting a duplicate segment, use
567 			 * the larger enclosing block as the SACK block.
568 			 */
569 			if (!(tp->sack_flags & TSACK_F_DUPSEG))
570 				tp->reportblk.rblk_start = p->tqe_th->th_seq;
571 			kfree(te, M_TSEGQ);
572 			atomic_add_int(&tcp_reass_qsize, -1);
573 		} else {
574 			TAILQ_INSERT_AFTER(&tp->t_segq, p, te, tqe_q);
575 		}
576 	}
577 
578 present:
579 	/*
580 	 * Present data to user, advancing rcv_nxt through
581 	 * completed sequence space.
582 	 */
583 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
584 		return (0);
585 	q = TAILQ_FIRST(&tp->t_segq);
586 	if (q == NULL || q->tqe_th->th_seq != tp->rcv_nxt)
587 		return (0);
588 	tp->rcv_nxt += q->tqe_len;
589 	if (!(tp->sack_flags & TSACK_F_DUPSEG))	{
590 		/* no SACK block to report since ACK advanced */
591 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
592 	}
593 	/* no enclosing block to report since ACK advanced */
594 	tp->sack_flags &= ~TSACK_F_ENCLOSESEG;
595 	flags = q->tqe_th->th_flags & TH_FIN;
596 	TAILQ_REMOVE(&tp->t_segq, q, tqe_q);
597 	KASSERT(TAILQ_EMPTY(&tp->t_segq) ||
598 		TAILQ_FIRST(&tp->t_segq)->tqe_th->th_seq != tp->rcv_nxt,
599 		("segment not coalesced"));
600 	if (so->so_state & SS_CANTRCVMORE) {
601 		m_freem(q->tqe_m);
602 	} else {
603 		lwkt_gettoken(&so->so_rcv.ssb_token);
604 		ssb_appendstream(&so->so_rcv, q->tqe_m);
605 		lwkt_reltoken(&so->so_rcv.ssb_token);
606 	}
607 	kfree(q, M_TSEGQ);
608 	atomic_add_int(&tcp_reass_qsize, -1);
609 	ND6_HINT(tp);
610 	sorwakeup(so);
611 	return (flags);
612 }
613 
614 /*
615  * TCP input routine, follows pages 65-76 of the
616  * protocol specification dated September, 1981 very closely.
617  */
618 #ifdef INET6
619 int
620 tcp6_input(struct mbuf **mp, int *offp, int proto)
621 {
622 	struct mbuf *m = *mp;
623 	struct in6_ifaddr *ia6;
624 
625 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
626 
627 	/*
628 	 * draft-itojun-ipv6-tcp-to-anycast
629 	 * better place to put this in?
630 	 */
631 	ia6 = ip6_getdstifaddr(m);
632 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
633 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
634 			    offsetof(struct ip6_hdr, ip6_dst));
635 		return (IPPROTO_DONE);
636 	}
637 
638 	tcp_input(mp, offp, proto);
639 	return (IPPROTO_DONE);
640 }
641 #endif
642 
643 int
644 tcp_input(struct mbuf **mp, int *offp, int proto)
645 {
646 	int off0;
647 	struct tcphdr *th;
648 	struct ip *ip = NULL;
649 	struct ipovly *ipov;
650 	struct inpcb *inp = NULL;
651 	u_char *optp = NULL;
652 	int optlen = 0;
653 	int tlen, off;
654 	int len = 0;
655 	int drop_hdrlen;
656 	struct tcpcb *tp = NULL;
657 	int thflags;
658 	struct socket *so = NULL;
659 	int todrop, acked;
660 	boolean_t ourfinisacked, needoutput = FALSE, delayed_dupack = FALSE;
661 	tcp_seq th_dupack = 0; /* XXX gcc warning */
662 	u_int to_flags = 0; /* XXX gcc warning */
663 	u_long tiwin;
664 	int recvwin;
665 	struct tcpopt to;		/* options in this segment */
666 	struct sockaddr_in *next_hop = NULL;
667 	int rstreason; /* For badport_bandlim accounting purposes */
668 	int cpu;
669 	struct ip6_hdr *ip6 = NULL;
670 	struct mbuf *m;
671 #ifdef INET6
672 	boolean_t isipv6;
673 #else
674 	const boolean_t isipv6 = FALSE;
675 #endif
676 #ifdef TCPDEBUG
677 	short ostate = 0;
678 #endif
679 
680 	off0 = *offp;
681 	m = *mp;
682 	*mp = NULL;
683 
684 	tcpstat.tcps_rcvtotal++;
685 
686 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
687 		struct m_tag *mtag;
688 
689 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
690 		KKASSERT(mtag != NULL);
691 		next_hop = m_tag_data(mtag);
692 	}
693 
694 #ifdef INET6
695 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? TRUE : FALSE;
696 #endif
697 
698 	if (isipv6) {
699 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
700 		ip6 = mtod(m, struct ip6_hdr *);
701 		tlen = (sizeof *ip6) + ntohs(ip6->ip6_plen) - off0;
702 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
703 			tcpstat.tcps_rcvbadsum++;
704 			goto drop;
705 		}
706 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
707 
708 		/*
709 		 * Be proactive about unspecified IPv6 address in source.
710 		 * As we use all-zero to indicate unbounded/unconnected pcb,
711 		 * unspecified IPv6 address can be used to confuse us.
712 		 *
713 		 * Note that packets with unspecified IPv6 destination is
714 		 * already dropped in ip6_input.
715 		 */
716 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
717 			/* XXX stat */
718 			goto drop;
719 		}
720 	} else {
721 		/*
722 		 * Get IP and TCP header together in first mbuf.
723 		 * Note: IP leaves IP header in first mbuf.
724 		 */
725 		if (off0 > sizeof(struct ip)) {
726 			ip_stripoptions(m);
727 			off0 = sizeof(struct ip);
728 		}
729 		/* already checked and pulled up in ip_demux() */
730 		KASSERT(m->m_len >= sizeof(struct tcpiphdr),
731 		    ("TCP header not in one mbuf: m->m_len %d", m->m_len));
732 		ip = mtod(m, struct ip *);
733 		ipov = (struct ipovly *)ip;
734 		th = (struct tcphdr *)((caddr_t)ip + off0);
735 		tlen = ip->ip_len;
736 
737 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
738 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
739 				th->th_sum = m->m_pkthdr.csum_data;
740 			else
741 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
742 						ip->ip_dst.s_addr,
743 						htonl(m->m_pkthdr.csum_data +
744 							ip->ip_len +
745 							IPPROTO_TCP));
746 			th->th_sum ^= 0xffff;
747 		} else {
748 			/*
749 			 * Checksum extended TCP header and data.
750 			 */
751 			len = sizeof(struct ip) + tlen;
752 			bzero(ipov->ih_x1, sizeof ipov->ih_x1);
753 			ipov->ih_len = (u_short)tlen;
754 			ipov->ih_len = htons(ipov->ih_len);
755 			th->th_sum = in_cksum(m, len);
756 		}
757 		if (th->th_sum) {
758 			tcpstat.tcps_rcvbadsum++;
759 			goto drop;
760 		}
761 #ifdef INET6
762 		/* Re-initialization for later version check */
763 		ip->ip_v = IPVERSION;
764 #endif
765 	}
766 
767 	/*
768 	 * Check that TCP offset makes sense,
769 	 * pull out TCP options and adjust length.		XXX
770 	 */
771 	off = th->th_off << 2;
772 	/* already checked and pulled up in ip_demux() */
773 	KASSERT(off >= sizeof(struct tcphdr) && off <= tlen,
774 	    ("bad TCP data offset %d (tlen %d)", off, tlen));
775 	tlen -= off;	/* tlen is used instead of ti->ti_len */
776 	if (off > sizeof(struct tcphdr)) {
777 		if (isipv6) {
778 			IP6_EXTHDR_CHECK(m, off0, off, IPPROTO_DONE);
779 			ip6 = mtod(m, struct ip6_hdr *);
780 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
781 		} else {
782 			/* already pulled up in ip_demux() */
783 			KASSERT(m->m_len >= sizeof(struct ip) + off,
784 			    ("TCP header and options not in one mbuf: "
785 			     "m_len %d, off %d", m->m_len, off));
786 		}
787 		optlen = off - sizeof(struct tcphdr);
788 		optp = (u_char *)(th + 1);
789 	}
790 	thflags = th->th_flags;
791 
792 #ifdef TCP_DROP_SYNFIN
793 	/*
794 	 * If the drop_synfin option is enabled, drop all packets with
795 	 * both the SYN and FIN bits set. This prevents e.g. nmap from
796 	 * identifying the TCP/IP stack.
797 	 *
798 	 * This is a violation of the TCP specification.
799 	 */
800 	if (drop_synfin && (thflags & (TH_SYN | TH_FIN)) == (TH_SYN | TH_FIN))
801 		goto drop;
802 #endif
803 
804 	/*
805 	 * Convert TCP protocol specific fields to host format.
806 	 */
807 	th->th_seq = ntohl(th->th_seq);
808 	th->th_ack = ntohl(th->th_ack);
809 	th->th_win = ntohs(th->th_win);
810 	th->th_urp = ntohs(th->th_urp);
811 
812 	/*
813 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
814 	 * until after ip6_savecontrol() is called and before other functions
815 	 * which don't want those proto headers.
816 	 * Because ip6_savecontrol() is going to parse the mbuf to
817 	 * search for data to be passed up to user-land, it wants mbuf
818 	 * parameters to be unchanged.
819 	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
820 	 * latest version of the advanced API (20020110).
821 	 */
822 	drop_hdrlen = off0 + off;
823 
824 	/*
825 	 * Locate pcb for segment.
826 	 */
827 findpcb:
828 	/* IPFIREWALL_FORWARD section */
829 	if (next_hop != NULL && !isipv6) {  /* IPv6 support is not there yet */
830 		/*
831 		 * Transparently forwarded. Pretend to be the destination.
832 		 * already got one like this?
833 		 */
834 		cpu = mycpu->gd_cpuid;
835 		inp = in_pcblookup_hash(&tcbinfo[cpu],
836 					ip->ip_src, th->th_sport,
837 					ip->ip_dst, th->th_dport,
838 					0, m->m_pkthdr.rcvif);
839 		if (!inp) {
840 			/*
841 			 * It's new.  Try to find the ambushing socket.
842 			 */
843 
844 			/*
845 			 * The rest of the ipfw code stores the port in
846 			 * host order.  XXX
847 			 * (The IP address is still in network order.)
848 			 */
849 			in_port_t dport = next_hop->sin_port ?
850 						htons(next_hop->sin_port) :
851 						th->th_dport;
852 
853 			cpu = tcp_addrcpu(ip->ip_src.s_addr, th->th_sport,
854 					  next_hop->sin_addr.s_addr, dport);
855 			inp = in_pcblookup_hash(&tcbinfo[cpu],
856 						ip->ip_src, th->th_sport,
857 						next_hop->sin_addr, dport,
858 						1, m->m_pkthdr.rcvif);
859 		}
860 	} else {
861 		if (isipv6) {
862 			inp = in6_pcblookup_hash(&tcbinfo[0],
863 						 &ip6->ip6_src, th->th_sport,
864 						 &ip6->ip6_dst, th->th_dport,
865 						 1, m->m_pkthdr.rcvif);
866 		} else {
867 			cpu = mycpu->gd_cpuid;
868 			inp = in_pcblookup_pkthash(&tcbinfo[cpu],
869 			    ip->ip_src, th->th_sport,
870 			    ip->ip_dst, th->th_dport,
871 			    1, m->m_pkthdr.rcvif,
872 			    tcp_reuseport_ext ? m : NULL);
873 		}
874 	}
875 
876 	/*
877 	 * If the state is CLOSED (i.e., TCB does not exist) then
878 	 * all data in the incoming segment is discarded.
879 	 * If the TCB exists but is in CLOSED state, it is embryonic,
880 	 * but should either do a listen or a connect soon.
881 	 */
882 	if (inp == NULL) {
883 		if (log_in_vain) {
884 #ifdef INET6
885 			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
886 #else
887 			char dbuf[sizeof "aaa.bbb.ccc.ddd"];
888 			char sbuf[sizeof "aaa.bbb.ccc.ddd"];
889 #endif
890 			if (isipv6) {
891 				strcpy(dbuf, "[");
892 				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
893 				strcat(dbuf, "]");
894 				strcpy(sbuf, "[");
895 				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
896 				strcat(sbuf, "]");
897 			} else {
898 				strcpy(dbuf, inet_ntoa(ip->ip_dst));
899 				strcpy(sbuf, inet_ntoa(ip->ip_src));
900 			}
901 			switch (log_in_vain) {
902 			case 1:
903 				if (!(thflags & TH_SYN))
904 					break;
905 			case 2:
906 				log(LOG_INFO,
907 				    "Connection attempt to TCP %s:%d "
908 				    "from %s:%d flags:0x%02x\n",
909 				    dbuf, ntohs(th->th_dport), sbuf,
910 				    ntohs(th->th_sport), thflags);
911 				break;
912 			default:
913 				break;
914 			}
915 		}
916 		if (blackhole) {
917 			switch (blackhole) {
918 			case 1:
919 				if (thflags & TH_SYN)
920 					goto drop;
921 				break;
922 			case 2:
923 				goto drop;
924 			default:
925 				goto drop;
926 			}
927 		}
928 		rstreason = BANDLIM_RST_CLOSEDPORT;
929 		goto dropwithreset;
930 	}
931 
932 #ifdef IPSEC
933 	if (isipv6) {
934 		if (ipsec6_in_reject_so(m, inp->inp_socket)) {
935 			ipsec6stat.in_polvio++;
936 			goto drop;
937 		}
938 	} else {
939 		if (ipsec4_in_reject_so(m, inp->inp_socket)) {
940 			ipsecstat.in_polvio++;
941 			goto drop;
942 		}
943 	}
944 #endif
945 #ifdef FAST_IPSEC
946 	if (isipv6) {
947 		if (ipsec6_in_reject(m, inp))
948 			goto drop;
949 	} else {
950 		if (ipsec4_in_reject(m, inp))
951 			goto drop;
952 	}
953 #endif
954 	/* Check the minimum TTL for socket. */
955 #ifdef INET6
956 	if ((isipv6 ? ip6->ip6_hlim : ip->ip_ttl) < inp->inp_ip_minttl)
957 		goto drop;
958 #endif
959 
960 	tp = intotcpcb(inp);
961 	if (tp == NULL) {
962 		rstreason = BANDLIM_RST_CLOSEDPORT;
963 		goto dropwithreset;
964 	}
965 	if (tp->t_state <= TCPS_CLOSED)
966 		goto drop;
967 
968 	so = inp->inp_socket;
969 
970 #ifdef TCPDEBUG
971 	if (so->so_options & SO_DEBUG) {
972 		ostate = tp->t_state;
973 		if (isipv6)
974 			bcopy(ip6, tcp_saveipgen, sizeof(*ip6));
975 		else
976 			bcopy(ip, tcp_saveipgen, sizeof(*ip));
977 		tcp_savetcp = *th;
978 	}
979 #endif
980 
981 	bzero(&to, sizeof to);
982 
983 	if (so->so_options & SO_ACCEPTCONN) {
984 		struct in_conninfo inc;
985 
986 #ifdef INET6
987 		inc.inc_isipv6 = (isipv6 == TRUE);
988 #endif
989 		if (isipv6) {
990 			inc.inc6_faddr = ip6->ip6_src;
991 			inc.inc6_laddr = ip6->ip6_dst;
992 			inc.inc6_route.ro_rt = NULL;		/* XXX */
993 		} else {
994 			inc.inc_faddr = ip->ip_src;
995 			inc.inc_laddr = ip->ip_dst;
996 			inc.inc_route.ro_rt = NULL;		/* XXX */
997 		}
998 		inc.inc_fport = th->th_sport;
999 		inc.inc_lport = th->th_dport;
1000 
1001 		/*
1002 		 * If the state is LISTEN then ignore segment if it contains
1003 		 * a RST.  If the segment contains an ACK then it is bad and
1004 		 * send a RST.  If it does not contain a SYN then it is not
1005 		 * interesting; drop it.
1006 		 *
1007 		 * If the state is SYN_RECEIVED (syncache) and seg contains
1008 		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
1009 		 * contains a RST, check the sequence number to see if it
1010 		 * is a valid reset segment.
1011 		 */
1012 		if ((thflags & (TH_RST | TH_ACK | TH_SYN)) != TH_SYN) {
1013 			if ((thflags & (TH_RST | TH_ACK | TH_SYN)) == TH_ACK) {
1014 				if (!syncache_expand(&inc, th, &so, m)) {
1015 					/*
1016 					 * No syncache entry, or ACK was not
1017 					 * for our SYN/ACK.  Send a RST.
1018 					 */
1019 					tcpstat.tcps_badsyn++;
1020 					rstreason = BANDLIM_RST_OPENPORT;
1021 					goto dropwithreset;
1022 				}
1023 
1024 				/*
1025 				 * Could not complete 3-way handshake,
1026 				 * connection is being closed down, and
1027 				 * syncache will free mbuf.
1028 				 */
1029 				if (so == NULL)
1030 					return(IPPROTO_DONE);
1031 
1032 				/*
1033 				 * We must be in the correct protocol thread
1034 				 * for this connection.
1035 				 */
1036 				KKASSERT(so->so_port == &curthread->td_msgport);
1037 
1038 				/*
1039 				 * Socket is created in state SYN_RECEIVED.
1040 				 * Continue processing segment.
1041 				 */
1042 				inp = so->so_pcb;
1043 				tp = intotcpcb(inp);
1044 				/*
1045 				 * This is what would have happened in
1046 				 * tcp_output() when the SYN,ACK was sent.
1047 				 */
1048 				tp->snd_up = tp->snd_una;
1049 				tp->snd_max = tp->snd_nxt = tp->iss + 1;
1050 				tp->last_ack_sent = tp->rcv_nxt;
1051 
1052 				goto after_listen;
1053 			}
1054 			if (thflags & TH_RST) {
1055 				syncache_chkrst(&inc, th);
1056 				goto drop;
1057 			}
1058 			if (thflags & TH_ACK) {
1059 				syncache_badack(&inc);
1060 				tcpstat.tcps_badsyn++;
1061 				rstreason = BANDLIM_RST_OPENPORT;
1062 				goto dropwithreset;
1063 			}
1064 			goto drop;
1065 		}
1066 
1067 		/*
1068 		 * Segment's flags are (SYN) or (SYN | FIN).
1069 		 */
1070 #ifdef INET6
1071 		/*
1072 		 * If deprecated address is forbidden,
1073 		 * we do not accept SYN to deprecated interface
1074 		 * address to prevent any new inbound connection from
1075 		 * getting established.
1076 		 * When we do not accept SYN, we send a TCP RST,
1077 		 * with deprecated source address (instead of dropping
1078 		 * it).  We compromise it as it is much better for peer
1079 		 * to send a RST, and RST will be the final packet
1080 		 * for the exchange.
1081 		 *
1082 		 * If we do not forbid deprecated addresses, we accept
1083 		 * the SYN packet.  RFC2462 does not suggest dropping
1084 		 * SYN in this case.
1085 		 * If we decipher RFC2462 5.5.4, it says like this:
1086 		 * 1. use of deprecated addr with existing
1087 		 *    communication is okay - "SHOULD continue to be
1088 		 *    used"
1089 		 * 2. use of it with new communication:
1090 		 *   (2a) "SHOULD NOT be used if alternate address
1091 		 *	  with sufficient scope is available"
1092 		 *   (2b) nothing mentioned otherwise.
1093 		 * Here we fall into (2b) case as we have no choice in
1094 		 * our source address selection - we must obey the peer.
1095 		 *
1096 		 * The wording in RFC2462 is confusing, and there are
1097 		 * multiple description text for deprecated address
1098 		 * handling - worse, they are not exactly the same.
1099 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1100 		 */
1101 		if (isipv6 && !ip6_use_deprecated) {
1102 			struct in6_ifaddr *ia6;
1103 
1104 			if ((ia6 = ip6_getdstifaddr(m)) &&
1105 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1106 				tp = NULL;
1107 				rstreason = BANDLIM_RST_OPENPORT;
1108 				goto dropwithreset;
1109 			}
1110 		}
1111 #endif
1112 		/*
1113 		 * If it is from this socket, drop it, it must be forged.
1114 		 * Don't bother responding if the destination was a broadcast.
1115 		 */
1116 		if (th->th_dport == th->th_sport) {
1117 			if (isipv6) {
1118 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
1119 						       &ip6->ip6_src))
1120 					goto drop;
1121 			} else {
1122 				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
1123 					goto drop;
1124 			}
1125 		}
1126 		/*
1127 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1128 		 *
1129 		 * Note that it is quite possible to receive unicast
1130 		 * link-layer packets with a broadcast IP address. Use
1131 		 * in_broadcast() to find them.
1132 		 */
1133 		if (m->m_flags & (M_BCAST | M_MCAST))
1134 			goto drop;
1135 		if (isipv6) {
1136 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1137 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
1138 				goto drop;
1139 		} else {
1140 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1141 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1142 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1143 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1144 				goto drop;
1145 		}
1146 		/*
1147 		 * SYN appears to be valid; create compressed TCP state
1148 		 * for syncache, or perform t/tcp connection.
1149 		 */
1150 		if (so->so_qlen <= so->so_qlimit) {
1151 			tcp_dooptions(&to, optp, optlen, TRUE, th->th_ack);
1152 			if (!syncache_add(&inc, &to, th, so, m))
1153 				goto drop;
1154 
1155 			/*
1156 			 * Entry added to syncache, mbuf used to
1157 			 * send SYN,ACK packet.
1158 			 */
1159 			return(IPPROTO_DONE);
1160 		}
1161 		goto drop;
1162 	}
1163 
1164 after_listen:
1165 	/*
1166 	 * Should not happen - syncache should pick up these connections.
1167 	 *
1168 	 * Once we are past handling listen sockets we must be in the
1169 	 * correct protocol processing thread.
1170 	 */
1171 	KASSERT(tp->t_state != TCPS_LISTEN, ("tcp_input: TCPS_LISTEN state"));
1172 	KKASSERT(so->so_port == &curthread->td_msgport);
1173 
1174 	/* Unscale the window into a 32-bit value. */
1175 	if (!(thflags & TH_SYN))
1176 		tiwin = th->th_win << tp->snd_scale;
1177 	else
1178 		tiwin = th->th_win;
1179 
1180 	/*
1181 	 * This is the second part of the MSS DoS prevention code (after
1182 	 * minmss on the sending side) and it deals with too many too small
1183 	 * tcp packets in a too short timeframe (1 second).
1184 	 *
1185 	 * XXX Removed.  This code was crap.  It does not scale to network
1186 	 *     speed, and default values break NFS.  Gone.
1187 	 */
1188 	/* REMOVED */
1189 
1190 	/*
1191 	 * Segment received on connection.
1192 	 *
1193 	 * Reset idle time and keep-alive timer.  Don't waste time if less
1194 	 * then a second has elapsed.
1195 	 */
1196 	if ((int)(ticks - tp->t_rcvtime) > hz)
1197 		tcp_timer_keep_activity(tp, thflags);
1198 
1199 	/*
1200 	 * Process options.
1201 	 * XXX this is tradtitional behavior, may need to be cleaned up.
1202 	 */
1203 	tcp_dooptions(&to, optp, optlen, (thflags & TH_SYN) != 0, th->th_ack);
1204 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1205 		if ((to.to_flags & TOF_SCALE) && (tp->t_flags & TF_REQ_SCALE)) {
1206 			tp->t_flags |= TF_RCVD_SCALE;
1207 			tp->snd_scale = to.to_requested_s_scale;
1208 		}
1209 
1210 		/*
1211 		 * Initial send window; will be updated upon next ACK
1212 		 */
1213 		tp->snd_wnd = th->th_win;
1214 
1215 		if (to.to_flags & TOF_TS) {
1216 			tp->t_flags |= TF_RCVD_TSTMP;
1217 			tp->ts_recent = to.to_tsval;
1218 			tp->ts_recent_age = ticks;
1219 		}
1220 		if (!(to.to_flags & TOF_MSS))
1221 			to.to_mss = 0;
1222 		tcp_mss(tp, to.to_mss);
1223 		/*
1224 		 * Only set the TF_SACK_PERMITTED per-connection flag
1225 		 * if we got a SACK_PERMITTED option from the other side
1226 		 * and the global tcp_do_sack variable is true.
1227 		 */
1228 		if (tcp_do_sack && (to.to_flags & TOF_SACK_PERMITTED))
1229 			tp->t_flags |= TF_SACK_PERMITTED;
1230 	}
1231 
1232 	/*
1233 	 * Header prediction: check for the two common cases
1234 	 * of a uni-directional data xfer.  If the packet has
1235 	 * no control flags, is in-sequence, the window didn't
1236 	 * change and we're not retransmitting, it's a
1237 	 * candidate.  If the length is zero and the ack moved
1238 	 * forward, we're the sender side of the xfer.  Just
1239 	 * free the data acked & wake any higher level process
1240 	 * that was blocked waiting for space.  If the length
1241 	 * is non-zero and the ack didn't move, we're the
1242 	 * receiver side.  If we're getting packets in-order
1243 	 * (the reassembly queue is empty), add the data to
1244 	 * the socket buffer and note that we need a delayed ack.
1245 	 * Make sure that the hidden state-flags are also off.
1246 	 * Since we check for TCPS_ESTABLISHED above, it can only
1247 	 * be TH_NEEDSYN.
1248 	 */
1249 	if (tp->t_state == TCPS_ESTABLISHED &&
1250 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1251 	    !(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)) &&
1252 	    (!(to.to_flags & TOF_TS) ||
1253 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1254 	    th->th_seq == tp->rcv_nxt &&
1255 	    tp->snd_nxt == tp->snd_max) {
1256 
1257 		/*
1258 		 * If last ACK falls within this segment's sequence numbers,
1259 		 * record the timestamp.
1260 		 * NOTE that the test is modified according to the latest
1261 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1262 		 */
1263 		if ((to.to_flags & TOF_TS) &&
1264 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1265 			tp->ts_recent_age = ticks;
1266 			tp->ts_recent = to.to_tsval;
1267 		}
1268 
1269 		if (tlen == 0) {
1270 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1271 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1272 			    tp->snd_cwnd >= tp->snd_wnd &&
1273 			    !IN_FASTRECOVERY(tp)) {
1274 				/*
1275 				 * This is a pure ack for outstanding data.
1276 				 */
1277 				++tcpstat.tcps_predack;
1278 				/*
1279 				 * "bad retransmit" recovery
1280 				 *
1281 				 * If Eifel detection applies, then
1282 				 * it is deterministic, so use it
1283 				 * unconditionally over the old heuristic.
1284 				 * Otherwise, fall back to the old heuristic.
1285 				 */
1286 				if (tcp_do_eifel_detect &&
1287 				    (to.to_flags & TOF_TS) && to.to_tsecr &&
1288 				    (tp->rxt_flags & TRXT_F_FIRSTACCACK)) {
1289 					/* Eifel detection applicable. */
1290 					if (to.to_tsecr < tp->t_rexmtTS) {
1291 						tcp_revert_congestion_state(tp);
1292 						++tcpstat.tcps_eifeldetected;
1293 						if (tp->t_rxtshift != 1 ||
1294 						    ticks >= tp->t_badrxtwin)
1295 							++tcpstat.tcps_rttcantdetect;
1296 					}
1297 				} else if (tp->t_rxtshift == 1 &&
1298 					   ticks < tp->t_badrxtwin) {
1299 					tcp_revert_congestion_state(tp);
1300 					++tcpstat.tcps_rttdetected;
1301 				}
1302 				tp->rxt_flags &= ~(TRXT_F_FIRSTACCACK |
1303 				    TRXT_F_FASTREXMT | TRXT_F_EARLYREXMT);
1304 				/*
1305 				 * Recalculate the retransmit timer / rtt.
1306 				 *
1307 				 * Some machines (certain windows boxes)
1308 				 * send broken timestamp replies during the
1309 				 * SYN+ACK phase, ignore timestamps of 0.
1310 				 */
1311 				if ((to.to_flags & TOF_TS) && to.to_tsecr) {
1312 					tcp_xmit_timer(tp,
1313 					    ticks - to.to_tsecr + 1,
1314 					    th->th_ack);
1315 				} else if (tp->t_rtttime &&
1316 					   SEQ_GT(th->th_ack, tp->t_rtseq)) {
1317 					tcp_xmit_timer(tp,
1318 					    ticks - tp->t_rtttime,
1319 					    th->th_ack);
1320 				}
1321 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1322 				acked = th->th_ack - tp->snd_una;
1323 				tcpstat.tcps_rcvackpack++;
1324 				tcpstat.tcps_rcvackbyte += acked;
1325 				sbdrop(&so->so_snd.sb, acked);
1326 				tp->snd_recover = th->th_ack - 1;
1327 				tp->snd_una = th->th_ack;
1328 				tp->t_dupacks = 0;
1329 				/*
1330 				 * Update window information.
1331 				 */
1332 				if (tiwin != tp->snd_wnd &&
1333 				    acceptable_window_update(tp, th, tiwin)) {
1334 					/* keep track of pure window updates */
1335 					if (tp->snd_wl2 == th->th_ack &&
1336 					    tiwin > tp->snd_wnd)
1337 						tcpstat.tcps_rcvwinupd++;
1338 					tp->snd_wnd = tiwin;
1339 					tp->snd_wl1 = th->th_seq;
1340 					tp->snd_wl2 = th->th_ack;
1341 					if (tp->snd_wnd > tp->max_sndwnd)
1342 						tp->max_sndwnd = tp->snd_wnd;
1343 				}
1344 				m_freem(m);
1345 				ND6_HINT(tp); /* some progress has been done */
1346 				/*
1347 				 * If all outstanding data are acked, stop
1348 				 * retransmit timer, otherwise restart timer
1349 				 * using current (possibly backed-off) value.
1350 				 * If process is waiting for space,
1351 				 * wakeup/selwakeup/signal.  If data
1352 				 * are ready to send, let tcp_output
1353 				 * decide between more output or persist.
1354 				 */
1355 				if (tp->snd_una == tp->snd_max) {
1356 					tcp_callout_stop(tp, tp->tt_rexmt);
1357 				} else if (!tcp_callout_active(tp,
1358 					    tp->tt_persist)) {
1359 					tcp_callout_reset(tp, tp->tt_rexmt,
1360 					    tp->t_rxtcur, tcp_timer_rexmt);
1361 				}
1362 				sowwakeup(so);
1363 				if (so->so_snd.ssb_cc > 0 &&
1364 				    !tcp_output_pending(tp))
1365 					tcp_output_fair(tp);
1366 				return(IPPROTO_DONE);
1367 			}
1368 		} else if (tiwin == tp->snd_wnd &&
1369 		    th->th_ack == tp->snd_una &&
1370 		    TAILQ_EMPTY(&tp->t_segq) &&
1371 		    tlen <= ssb_space(&so->so_rcv)) {
1372 			u_long newsize = 0;	/* automatic sockbuf scaling */
1373 			/*
1374 			 * This is a pure, in-sequence data packet
1375 			 * with nothing on the reassembly queue and
1376 			 * we have enough buffer space to take it.
1377 			 */
1378 			++tcpstat.tcps_preddat;
1379 			tp->rcv_nxt += tlen;
1380 			tcpstat.tcps_rcvpack++;
1381 			tcpstat.tcps_rcvbyte += tlen;
1382 			ND6_HINT(tp);	/* some progress has been done */
1383 		/*
1384 		 * Automatic sizing of receive socket buffer.  Often the send
1385 		 * buffer size is not optimally adjusted to the actual network
1386 		 * conditions at hand (delay bandwidth product).  Setting the
1387 		 * buffer size too small limits throughput on links with high
1388 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1389 		 *
1390 		 * On the receive side the socket buffer memory is only rarely
1391 		 * used to any significant extent.  This allows us to be much
1392 		 * more aggressive in scaling the receive socket buffer.  For
1393 		 * the case that the buffer space is actually used to a large
1394 		 * extent and we run out of kernel memory we can simply drop
1395 		 * the new segments; TCP on the sender will just retransmit it
1396 		 * later.  Setting the buffer size too big may only consume too
1397 		 * much kernel memory if the application doesn't read() from
1398 		 * the socket or packet loss or reordering makes use of the
1399 		 * reassembly queue.
1400 		 *
1401 		 * The criteria to step up the receive buffer one notch are:
1402 		 *  1. the number of bytes received during the time it takes
1403 		 *     one timestamp to be reflected back to us (the RTT);
1404 		 *  2. received bytes per RTT is within seven eighth of the
1405 		 *     current socket buffer size;
1406 		 *  3. receive buffer size has not hit maximal automatic size;
1407 		 *
1408 		 * This algorithm does one step per RTT at most and only if
1409 		 * we receive a bulk stream w/o packet losses or reorderings.
1410 		 * Shrinking the buffer during idle times is not necessary as
1411 		 * it doesn't consume any memory when idle.
1412 		 *
1413 		 * TODO: Only step up if the application is actually serving
1414 		 * the buffer to better manage the socket buffer resources.
1415 		 */
1416 			if (tcp_do_autorcvbuf &&
1417 			    to.to_tsecr &&
1418 			    (so->so_rcv.ssb_flags & SSB_AUTOSIZE)) {
1419 				if (to.to_tsecr > tp->rfbuf_ts &&
1420 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1421 					if (tp->rfbuf_cnt >
1422 					    (so->so_rcv.ssb_hiwat / 8 * 7) &&
1423 					    so->so_rcv.ssb_hiwat <
1424 					    tcp_autorcvbuf_max) {
1425 						newsize =
1426 						    ulmin(so->so_rcv.ssb_hiwat +
1427 							  tcp_autorcvbuf_inc,
1428 							  tcp_autorcvbuf_max);
1429 					}
1430 					/* Start over with next RTT. */
1431 					tp->rfbuf_ts = 0;
1432 					tp->rfbuf_cnt = 0;
1433 				} else
1434 					tp->rfbuf_cnt += tlen;	/* add up */
1435 			}
1436 			/*
1437 			 * Add data to socket buffer.
1438 			 */
1439 			if (so->so_state & SS_CANTRCVMORE) {
1440 				m_freem(m);
1441 			} else {
1442 				/*
1443 				 * Set new socket buffer size, give up when
1444 				 * limit is reached.
1445 				 *
1446 				 * Adjusting the size can mess up ACK
1447 				 * sequencing when pure window updates are
1448 				 * being avoided (which is the default),
1449 				 * so force an ack.
1450 				 */
1451 				lwkt_gettoken(&so->so_rcv.ssb_token);
1452 				if (newsize) {
1453 					tp->t_flags |= TF_RXRESIZED;
1454 					if (!ssb_reserve(&so->so_rcv, newsize,
1455 							 so, NULL)) {
1456 						atomic_clear_int(&so->so_rcv.ssb_flags, SSB_AUTOSIZE);
1457 					}
1458 					if (newsize >=
1459 					    (TCP_MAXWIN << tp->rcv_scale)) {
1460 						atomic_clear_int(&so->so_rcv.ssb_flags, SSB_AUTOSIZE);
1461 					}
1462 				}
1463 				m_adj(m, drop_hdrlen); /* delayed header drop */
1464 				ssb_appendstream(&so->so_rcv, m);
1465 				lwkt_reltoken(&so->so_rcv.ssb_token);
1466 			}
1467 			sorwakeup(so);
1468 			/*
1469 			 * This code is responsible for most of the ACKs
1470 			 * the TCP stack sends back after receiving a data
1471 			 * packet.  Note that the DELAY_ACK check fails if
1472 			 * the delack timer is already running, which results
1473 			 * in an ack being sent every other packet (which is
1474 			 * what we want).
1475 			 *
1476 			 * We then further aggregate acks by not actually
1477 			 * sending one until the protocol thread has completed
1478 			 * processing the current backlog of packets.  This
1479 			 * does not delay the ack any further, but allows us
1480 			 * to take advantage of the packet aggregation that
1481 			 * high speed NICs do (usually blocks of 8-10 packets)
1482 			 * to send a single ack rather then four or five acks,
1483 			 * greatly reducing the ack rate, the return channel
1484 			 * bandwidth, and the protocol overhead on both ends.
1485 			 *
1486 			 * Since this also has the effect of slowing down
1487 			 * the exponential slow-start ramp-up, systems with
1488 			 * very large bandwidth-delay products might want
1489 			 * to turn the feature off.
1490 			 */
1491 			if (DELAY_ACK(tp)) {
1492 				tcp_callout_reset(tp, tp->tt_delack,
1493 				    tcp_delacktime, tcp_timer_delack);
1494 			} else if (tcp_aggregate_acks) {
1495 				tp->t_flags |= TF_ACKNOW;
1496 				if (!(tp->t_flags & TF_ONOUTPUTQ)) {
1497 					tp->t_flags |= TF_ONOUTPUTQ;
1498 					tp->tt_cpu = mycpu->gd_cpuid;
1499 					TAILQ_INSERT_TAIL(
1500 					    &tcpcbackq[tp->tt_cpu],
1501 					    tp, t_outputq);
1502 				}
1503 			} else {
1504 				tp->t_flags |= TF_ACKNOW;
1505 				tcp_output(tp);
1506 			}
1507 			return(IPPROTO_DONE);
1508 		}
1509 	}
1510 
1511 	/*
1512 	 * Calculate amount of space in receive window,
1513 	 * and then do TCP input processing.
1514 	 * Receive window is amount of space in rcv queue,
1515 	 * but not less than advertised window.
1516 	 */
1517 	recvwin = ssb_space(&so->so_rcv);
1518 	if (recvwin < 0)
1519 		recvwin = 0;
1520 	tp->rcv_wnd = imax(recvwin, (int)(tp->rcv_adv - tp->rcv_nxt));
1521 
1522 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1523 	tp->rfbuf_ts = 0;
1524 	tp->rfbuf_cnt = 0;
1525 
1526 	switch (tp->t_state) {
1527 	/*
1528 	 * If the state is SYN_RECEIVED:
1529 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1530 	 */
1531 	case TCPS_SYN_RECEIVED:
1532 		if ((thflags & TH_ACK) &&
1533 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1534 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1535 				rstreason = BANDLIM_RST_OPENPORT;
1536 				goto dropwithreset;
1537 		}
1538 		break;
1539 
1540 	/*
1541 	 * If the state is SYN_SENT:
1542 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1543 	 *	if seg contains a RST, then drop the connection.
1544 	 *	if seg does not contain SYN, then drop it.
1545 	 * Otherwise this is an acceptable SYN segment
1546 	 *	initialize tp->rcv_nxt and tp->irs
1547 	 *	if seg contains ack then advance tp->snd_una
1548 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1549 	 *	arrange for segment to be acked (eventually)
1550 	 *	continue processing rest of data/controls, beginning with URG
1551 	 */
1552 	case TCPS_SYN_SENT:
1553 		if ((thflags & TH_ACK) &&
1554 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1555 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1556 			rstreason = BANDLIM_UNLIMITED;
1557 			goto dropwithreset;
1558 		}
1559 		if (thflags & TH_RST) {
1560 			if (thflags & TH_ACK)
1561 				tp = tcp_drop(tp, ECONNREFUSED);
1562 			goto drop;
1563 		}
1564 		if (!(thflags & TH_SYN))
1565 			goto drop;
1566 
1567 		tp->irs = th->th_seq;
1568 		tcp_rcvseqinit(tp);
1569 		if (thflags & TH_ACK) {
1570 			/* Our SYN was acked. */
1571 			tcpstat.tcps_connects++;
1572 			soisconnected(so);
1573 			/* Do window scaling on this connection? */
1574 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1575 			    (TF_RCVD_SCALE | TF_REQ_SCALE))
1576 				tp->rcv_scale = tp->request_r_scale;
1577 			tp->rcv_adv += tp->rcv_wnd;
1578 			tp->snd_una++;		/* SYN is acked */
1579 			tcp_callout_stop(tp, tp->tt_rexmt);
1580 			/*
1581 			 * If there's data, delay ACK; if there's also a FIN
1582 			 * ACKNOW will be turned on later.
1583 			 */
1584 			if (DELAY_ACK(tp) && tlen != 0) {
1585 				tcp_callout_reset(tp, tp->tt_delack,
1586 				    tcp_delacktime, tcp_timer_delack);
1587 			} else {
1588 				tp->t_flags |= TF_ACKNOW;
1589 			}
1590 			/*
1591 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1592 			 * Transitions:
1593 			 *	SYN_SENT  --> ESTABLISHED
1594 			 *	SYN_SENT* --> FIN_WAIT_1
1595 			 */
1596 			tp->t_starttime = ticks;
1597 			if (tp->t_flags & TF_NEEDFIN) {
1598 				tp->t_state = TCPS_FIN_WAIT_1;
1599 				tp->t_flags &= ~TF_NEEDFIN;
1600 				thflags &= ~TH_SYN;
1601 			} else {
1602 				tcp_established(tp);
1603 			}
1604 		} else {
1605 			/*
1606 			 * Received initial SYN in SYN-SENT[*] state =>
1607 			 * simultaneous open.
1608 			 * Do 3-way handshake:
1609 			 *	  SYN-SENT -> SYN-RECEIVED
1610 			 *	  SYN-SENT* -> SYN-RECEIVED*
1611 			 */
1612 			tp->t_flags |= TF_ACKNOW;
1613 			tcp_callout_stop(tp, tp->tt_rexmt);
1614 			tp->t_state = TCPS_SYN_RECEIVED;
1615 		}
1616 
1617 		/*
1618 		 * Advance th->th_seq to correspond to first data byte.
1619 		 * If data, trim to stay within window,
1620 		 * dropping FIN if necessary.
1621 		 */
1622 		th->th_seq++;
1623 		if (tlen > tp->rcv_wnd) {
1624 			todrop = tlen - tp->rcv_wnd;
1625 			m_adj(m, -todrop);
1626 			tlen = tp->rcv_wnd;
1627 			thflags &= ~TH_FIN;
1628 			tcpstat.tcps_rcvpackafterwin++;
1629 			tcpstat.tcps_rcvbyteafterwin += todrop;
1630 		}
1631 		tp->snd_wl1 = th->th_seq - 1;
1632 		tp->rcv_up = th->th_seq;
1633 		/*
1634 		 * Client side of transaction: already sent SYN and data.
1635 		 * If the remote host used T/TCP to validate the SYN,
1636 		 * our data will be ACK'd; if so, enter normal data segment
1637 		 * processing in the middle of step 5, ack processing.
1638 		 * Otherwise, goto step 6.
1639 		 */
1640 		if (thflags & TH_ACK)
1641 			goto process_ACK;
1642 
1643 		goto step6;
1644 
1645 	/*
1646 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1647 	 *	do normal processing (we no longer bother with T/TCP).
1648 	 */
1649 	case TCPS_LAST_ACK:
1650 	case TCPS_CLOSING:
1651 	case TCPS_TIME_WAIT:
1652 		break;  /* continue normal processing */
1653 	}
1654 
1655 	/*
1656 	 * States other than LISTEN or SYN_SENT.
1657 	 * First check the RST flag and sequence number since reset segments
1658 	 * are exempt from the timestamp and connection count tests.  This
1659 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1660 	 * below which allowed reset segments in half the sequence space
1661 	 * to fall though and be processed (which gives forged reset
1662 	 * segments with a random sequence number a 50 percent chance of
1663 	 * killing a connection).
1664 	 * Then check timestamp, if present.
1665 	 * Then check the connection count, if present.
1666 	 * Then check that at least some bytes of segment are within
1667 	 * receive window.  If segment begins before rcv_nxt,
1668 	 * drop leading data (and SYN); if nothing left, just ack.
1669 	 *
1670 	 *
1671 	 * If the RST bit is set, check the sequence number to see
1672 	 * if this is a valid reset segment.
1673 	 * RFC 793 page 37:
1674 	 *   In all states except SYN-SENT, all reset (RST) segments
1675 	 *   are validated by checking their SEQ-fields.  A reset is
1676 	 *   valid if its sequence number is in the window.
1677 	 * Note: this does not take into account delayed ACKs, so
1678 	 *   we should test against last_ack_sent instead of rcv_nxt.
1679 	 *   The sequence number in the reset segment is normally an
1680 	 *   echo of our outgoing acknowledgement numbers, but some hosts
1681 	 *   send a reset with the sequence number at the rightmost edge
1682 	 *   of our receive window, and we have to handle this case.
1683 	 * If we have multiple segments in flight, the intial reset
1684 	 * segment sequence numbers will be to the left of last_ack_sent,
1685 	 * but they will eventually catch up.
1686 	 * In any case, it never made sense to trim reset segments to
1687 	 * fit the receive window since RFC 1122 says:
1688 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1689 	 *
1690 	 *    A TCP SHOULD allow a received RST segment to include data.
1691 	 *
1692 	 *    DISCUSSION
1693 	 *	   It has been suggested that a RST segment could contain
1694 	 *	   ASCII text that encoded and explained the cause of the
1695 	 *	   RST.  No standard has yet been established for such
1696 	 *	   data.
1697 	 *
1698 	 * If the reset segment passes the sequence number test examine
1699 	 * the state:
1700 	 *    SYN_RECEIVED STATE:
1701 	 *	If passive open, return to LISTEN state.
1702 	 *	If active open, inform user that connection was refused.
1703 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1704 	 *	Inform user that connection was reset, and close tcb.
1705 	 *    CLOSING, LAST_ACK STATES:
1706 	 *	Close the tcb.
1707 	 *    TIME_WAIT STATE:
1708 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1709 	 *	RFC 1337.
1710 	 */
1711 	if (thflags & TH_RST) {
1712 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1713 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1714 			switch (tp->t_state) {
1715 
1716 			case TCPS_SYN_RECEIVED:
1717 				so->so_error = ECONNREFUSED;
1718 				goto close;
1719 
1720 			case TCPS_ESTABLISHED:
1721 			case TCPS_FIN_WAIT_1:
1722 			case TCPS_FIN_WAIT_2:
1723 			case TCPS_CLOSE_WAIT:
1724 				so->so_error = ECONNRESET;
1725 			close:
1726 				tp->t_state = TCPS_CLOSED;
1727 				tcpstat.tcps_drops++;
1728 				tp = tcp_close(tp);
1729 				break;
1730 
1731 			case TCPS_CLOSING:
1732 			case TCPS_LAST_ACK:
1733 				tp = tcp_close(tp);
1734 				break;
1735 
1736 			case TCPS_TIME_WAIT:
1737 				break;
1738 			}
1739 		}
1740 		goto drop;
1741 	}
1742 
1743 	/*
1744 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1745 	 * and it's less than ts_recent, drop it.
1746 	 */
1747 	if ((to.to_flags & TOF_TS) && tp->ts_recent != 0 &&
1748 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1749 		/* Check to see if ts_recent is over 24 days old.  */
1750 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1751 			/*
1752 			 * Invalidate ts_recent.  If this segment updates
1753 			 * ts_recent, the age will be reset later and ts_recent
1754 			 * will get a valid value.  If it does not, setting
1755 			 * ts_recent to zero will at least satisfy the
1756 			 * requirement that zero be placed in the timestamp
1757 			 * echo reply when ts_recent isn't valid.  The
1758 			 * age isn't reset until we get a valid ts_recent
1759 			 * because we don't want out-of-order segments to be
1760 			 * dropped when ts_recent is old.
1761 			 */
1762 			tp->ts_recent = 0;
1763 		} else if (tcp_paws_tolerance && tlen != 0 &&
1764 		    tp->t_state == TCPS_ESTABLISHED &&
1765 		    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK&&
1766 		    !(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)) &&
1767 		    th->th_ack == tp->snd_una &&
1768 		    tiwin == tp->snd_wnd &&
1769 		    TSTMP_GEQ(to.to_tsval + tcp_paws_tolerance, tp->ts_recent)&&
1770 		    (th->th_seq == tp->rcv_nxt ||
1771 		     (SEQ_GT(th->th_seq, tp->rcv_nxt) &&
1772 		      tcp_paws_canreasslast(tp, th, tlen)))) {
1773 			/*
1774 			 * This tends to prevent valid new segments from being
1775 			 * dropped by the reordered segments sent by the fast
1776 			 * retransmission algorithm on the sending side, i.e.
1777 			 * the fast retransmitted segment w/ larger timestamp
1778 			 * arrives earlier than the previously sent new segments
1779 			 * w/ smaller timestamp.
1780 			 *
1781 			 * If following conditions are met, the segment is
1782 			 * accepted:
1783 			 * - The segment contains data
1784 			 * - The connection is established
1785 			 * - The header does not contain important flags
1786 			 * - SYN or FIN is not needed
1787 			 * - It does not acknowledge new data
1788 			 * - Receive window is not changed
1789 			 * - The timestamp is within "acceptable" range
1790 			 * - The new segment is what we are expecting or
1791 			 *   the new segment could be merged w/ the last
1792 			 *   pending segment on the reassemble queue
1793 			 */
1794 			tcpstat.tcps_pawsaccept++;
1795 			tcpstat.tcps_pawsdrop++;
1796 		} else {
1797 			tcpstat.tcps_rcvduppack++;
1798 			tcpstat.tcps_rcvdupbyte += tlen;
1799 			tcpstat.tcps_pawsdrop++;
1800 			if (tlen)
1801 				goto dropafterack;
1802 			goto drop;
1803 		}
1804 	}
1805 
1806 	/*
1807 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1808 	 * this connection before trimming the data to fit the receive
1809 	 * window.  Check the sequence number versus IRS since we know
1810 	 * the sequence numbers haven't wrapped.  This is a partial fix
1811 	 * for the "LAND" DoS attack.
1812 	 */
1813 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1814 		rstreason = BANDLIM_RST_OPENPORT;
1815 		goto dropwithreset;
1816 	}
1817 
1818 	todrop = tp->rcv_nxt - th->th_seq;
1819 	if (todrop > 0) {
1820 		if (TCP_DO_SACK(tp)) {
1821 			/* Report duplicate segment at head of packet. */
1822 			tp->reportblk.rblk_start = th->th_seq;
1823 			tp->reportblk.rblk_end = TCP_SACK_BLKEND(
1824 			    th->th_seq + tlen, thflags);
1825 			if (SEQ_GT(tp->reportblk.rblk_end, tp->rcv_nxt))
1826 				tp->reportblk.rblk_end = tp->rcv_nxt;
1827 			tp->sack_flags |= (TSACK_F_DUPSEG | TSACK_F_SACKLEFT);
1828 			tp->t_flags |= TF_ACKNOW;
1829 		}
1830 		if (thflags & TH_SYN) {
1831 			thflags &= ~TH_SYN;
1832 			th->th_seq++;
1833 			if (th->th_urp > 1)
1834 				th->th_urp--;
1835 			else
1836 				thflags &= ~TH_URG;
1837 			todrop--;
1838 		}
1839 		/*
1840 		 * Following if statement from Stevens, vol. 2, p. 960.
1841 		 */
1842 		if (todrop > tlen ||
1843 		    (todrop == tlen && !(thflags & TH_FIN))) {
1844 			/*
1845 			 * Any valid FIN must be to the left of the window.
1846 			 * At this point the FIN must be a duplicate or out
1847 			 * of sequence; drop it.
1848 			 */
1849 			thflags &= ~TH_FIN;
1850 
1851 			/*
1852 			 * Send an ACK to resynchronize and drop any data.
1853 			 * But keep on processing for RST or ACK.
1854 			 */
1855 			tp->t_flags |= TF_ACKNOW;
1856 			todrop = tlen;
1857 			tcpstat.tcps_rcvduppack++;
1858 			tcpstat.tcps_rcvdupbyte += todrop;
1859 		} else {
1860 			tcpstat.tcps_rcvpartduppack++;
1861 			tcpstat.tcps_rcvpartdupbyte += todrop;
1862 		}
1863 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1864 		th->th_seq += todrop;
1865 		tlen -= todrop;
1866 		if (th->th_urp > todrop)
1867 			th->th_urp -= todrop;
1868 		else {
1869 			thflags &= ~TH_URG;
1870 			th->th_urp = 0;
1871 		}
1872 	}
1873 
1874 	/*
1875 	 * If new data are received on a connection after the
1876 	 * user processes are gone, then RST the other end.
1877 	 */
1878 	if ((so->so_state & SS_NOFDREF) &&
1879 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1880 		tp = tcp_close(tp);
1881 		tcpstat.tcps_rcvafterclose++;
1882 		rstreason = BANDLIM_UNLIMITED;
1883 		goto dropwithreset;
1884 	}
1885 
1886 	/*
1887 	 * If segment ends after window, drop trailing data
1888 	 * (and PUSH and FIN); if nothing left, just ACK.
1889 	 */
1890 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1891 	if (todrop > 0) {
1892 		tcpstat.tcps_rcvpackafterwin++;
1893 		if (todrop >= tlen) {
1894 			tcpstat.tcps_rcvbyteafterwin += tlen;
1895 			/*
1896 			 * If a new connection request is received
1897 			 * while in TIME_WAIT, drop the old connection
1898 			 * and start over if the sequence numbers
1899 			 * are above the previous ones.
1900 			 */
1901 			if (thflags & TH_SYN &&
1902 			    tp->t_state == TCPS_TIME_WAIT &&
1903 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1904 				tp = tcp_close(tp);
1905 				goto findpcb;
1906 			}
1907 			/*
1908 			 * If window is closed can only take segments at
1909 			 * window edge, and have to drop data and PUSH from
1910 			 * incoming segments.  Continue processing, but
1911 			 * remember to ack.  Otherwise, drop segment
1912 			 * and ack.
1913 			 */
1914 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1915 				tp->t_flags |= TF_ACKNOW;
1916 				tcpstat.tcps_rcvwinprobe++;
1917 			} else
1918 				goto dropafterack;
1919 		} else
1920 			tcpstat.tcps_rcvbyteafterwin += todrop;
1921 		m_adj(m, -todrop);
1922 		tlen -= todrop;
1923 		thflags &= ~(TH_PUSH | TH_FIN);
1924 	}
1925 
1926 	/*
1927 	 * If last ACK falls within this segment's sequence numbers,
1928 	 * record its timestamp.
1929 	 * NOTE:
1930 	 * 1) That the test incorporates suggestions from the latest
1931 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1932 	 * 2) That updating only on newer timestamps interferes with
1933 	 *    our earlier PAWS tests, so this check should be solely
1934 	 *    predicated on the sequence space of this segment.
1935 	 * 3) That we modify the segment boundary check to be
1936 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.LEN
1937 	 *    instead of RFC1323's
1938 	 *        Last.ACK.Sent < SEG.SEQ + SEG.LEN,
1939 	 *    This modified check allows us to overcome RFC1323's
1940 	 *    limitations as described in Stevens TCP/IP Illustrated
1941 	 *    Vol. 2 p.869. In such cases, we can still calculate the
1942 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1943 	 */
1944 	if ((to.to_flags & TOF_TS) && SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1945 	    SEQ_LEQ(tp->last_ack_sent, (th->th_seq + tlen
1946 					+ ((thflags & TH_SYN) != 0)
1947 					+ ((thflags & TH_FIN) != 0)))) {
1948 		tp->ts_recent_age = ticks;
1949 		tp->ts_recent = to.to_tsval;
1950 	}
1951 
1952 	/*
1953 	 * If a SYN is in the window, then this is an
1954 	 * error and we send an RST and drop the connection.
1955 	 */
1956 	if (thflags & TH_SYN) {
1957 		tp = tcp_drop(tp, ECONNRESET);
1958 		rstreason = BANDLIM_UNLIMITED;
1959 		goto dropwithreset;
1960 	}
1961 
1962 	/*
1963 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1964 	 * flag is on (half-synchronized state), then queue data for
1965 	 * later processing; else drop segment and return.
1966 	 */
1967 	if (!(thflags & TH_ACK)) {
1968 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1969 		    (tp->t_flags & TF_NEEDSYN))
1970 			goto step6;
1971 		else
1972 			goto drop;
1973 	}
1974 
1975 	/*
1976 	 * Ack processing.
1977 	 */
1978 	switch (tp->t_state) {
1979 	/*
1980 	 * In SYN_RECEIVED state, the ACK acknowledges our SYN, so enter
1981 	 * ESTABLISHED state and continue processing.
1982 	 * The ACK was checked above.
1983 	 */
1984 	case TCPS_SYN_RECEIVED:
1985 
1986 		tcpstat.tcps_connects++;
1987 		soisconnected(so);
1988 		/* Do window scaling? */
1989 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1990 		    (TF_RCVD_SCALE | TF_REQ_SCALE))
1991 			tp->rcv_scale = tp->request_r_scale;
1992 		/*
1993 		 * Make transitions:
1994 		 *      SYN-RECEIVED  -> ESTABLISHED
1995 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1996 		 */
1997 		tp->t_starttime = ticks;
1998 		if (tp->t_flags & TF_NEEDFIN) {
1999 			tp->t_state = TCPS_FIN_WAIT_1;
2000 			tp->t_flags &= ~TF_NEEDFIN;
2001 		} else {
2002 			tcp_established(tp);
2003 		}
2004 		/*
2005 		 * If segment contains data or ACK, will call tcp_reass()
2006 		 * later; if not, do so now to pass queued data to user.
2007 		 */
2008 		if (tlen == 0 && !(thflags & TH_FIN))
2009 			tcp_reass(tp, NULL, NULL, NULL);
2010 		/* fall into ... */
2011 
2012 	/*
2013 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2014 	 * ACKs.  If the ack is in the range
2015 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2016 	 * then advance tp->snd_una to th->th_ack and drop
2017 	 * data from the retransmission queue.  If this ACK reflects
2018 	 * more up to date window information we update our window information.
2019 	 */
2020 	case TCPS_ESTABLISHED:
2021 	case TCPS_FIN_WAIT_1:
2022 	case TCPS_FIN_WAIT_2:
2023 	case TCPS_CLOSE_WAIT:
2024 	case TCPS_CLOSING:
2025 	case TCPS_LAST_ACK:
2026 	case TCPS_TIME_WAIT:
2027 
2028 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2029 			boolean_t maynotdup = FALSE;
2030 
2031 			if (TCP_DO_SACK(tp))
2032 				tcp_sack_update_scoreboard(tp, &to);
2033 
2034 			if (tlen != 0 || tiwin != tp->snd_wnd ||
2035 			    ((thflags & TH_FIN) && !(tp->t_flags & TF_SAWFIN)))
2036 				maynotdup = TRUE;
2037 
2038 			if (!tcp_callout_active(tp, tp->tt_rexmt) ||
2039 			    th->th_ack != tp->snd_una) {
2040 				if (!maynotdup)
2041 					tcpstat.tcps_rcvdupack++;
2042 				tp->t_dupacks = 0;
2043 				break;
2044 			}
2045 
2046 #define DELAY_DUPACK \
2047 do { \
2048 	delayed_dupack = TRUE; \
2049 	th_dupack = th->th_ack; \
2050 	to_flags = to.to_flags; \
2051 } while (0)
2052 			if (maynotdup) {
2053 				if (!tcp_do_rfc6675 ||
2054 				    !TCP_DO_SACK(tp) ||
2055 				    (to.to_flags &
2056 				     (TOF_SACK | TOF_SACK_REDUNDANT))
2057 				     != TOF_SACK) {
2058 					tp->t_dupacks = 0;
2059 				} else {
2060 					DELAY_DUPACK;
2061 				}
2062 				break;
2063 			}
2064 			if ((thflags & TH_FIN) && !(tp->t_flags & TF_QUEDFIN)) {
2065 				/*
2066 				 * This could happen, if the reassemable
2067 				 * queue overflew or was drained.  Don't
2068 				 * drop this FIN here; defer the duplicated
2069 				 * ACK processing until this FIN gets queued.
2070 				 */
2071 				DELAY_DUPACK;
2072 				break;
2073 			}
2074 #undef DELAY_DUPACK
2075 
2076 			if (tcp_recv_dupack(tp, th->th_ack, to.to_flags))
2077 				goto drop;
2078 			else
2079 				break;
2080 		}
2081 
2082 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
2083 		tp->t_dupacks = 0;
2084 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2085 			/*
2086 			 * Detected optimistic ACK attack.
2087 			 * Force slow-start to de-synchronize attack.
2088 			 */
2089 			tp->snd_cwnd = tp->t_maxseg;
2090 			tp->snd_wacked = 0;
2091 
2092 			tcpstat.tcps_rcvacktoomuch++;
2093 			goto dropafterack;
2094 		}
2095 		/*
2096 		 * If we reach this point, ACK is not a duplicate,
2097 		 *     i.e., it ACKs something we sent.
2098 		 */
2099 		if (tp->t_flags & TF_NEEDSYN) {
2100 			/*
2101 			 * T/TCP: Connection was half-synchronized, and our
2102 			 * SYN has been ACK'd (so connection is now fully
2103 			 * synchronized).  Go to non-starred state,
2104 			 * increment snd_una for ACK of SYN, and check if
2105 			 * we can do window scaling.
2106 			 */
2107 			tp->t_flags &= ~TF_NEEDSYN;
2108 			tp->snd_una++;
2109 			/* Do window scaling? */
2110 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
2111 			    (TF_RCVD_SCALE | TF_REQ_SCALE))
2112 				tp->rcv_scale = tp->request_r_scale;
2113 		}
2114 
2115 process_ACK:
2116 		acked = th->th_ack - tp->snd_una;
2117 		tcpstat.tcps_rcvackpack++;
2118 		tcpstat.tcps_rcvackbyte += acked;
2119 
2120 		if (tcp_do_eifel_detect && acked > 0 &&
2121 		    (to.to_flags & TOF_TS) && (to.to_tsecr != 0) &&
2122 		    (tp->rxt_flags & TRXT_F_FIRSTACCACK)) {
2123 			/* Eifel detection applicable. */
2124 			if (to.to_tsecr < tp->t_rexmtTS) {
2125 				++tcpstat.tcps_eifeldetected;
2126 				tcp_revert_congestion_state(tp);
2127 				if (tp->t_rxtshift != 1 ||
2128 				    ticks >= tp->t_badrxtwin)
2129 					++tcpstat.tcps_rttcantdetect;
2130 			}
2131 		} else if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
2132 			/*
2133 			 * If we just performed our first retransmit,
2134 			 * and the ACK arrives within our recovery window,
2135 			 * then it was a mistake to do the retransmit
2136 			 * in the first place.  Recover our original cwnd
2137 			 * and ssthresh, and proceed to transmit where we
2138 			 * left off.
2139 			 */
2140 			tcp_revert_congestion_state(tp);
2141 			++tcpstat.tcps_rttdetected;
2142 		}
2143 
2144 		/*
2145 		 * If we have a timestamp reply, update smoothed
2146 		 * round trip time.  If no timestamp is present but
2147 		 * transmit timer is running and timed sequence
2148 		 * number was acked, update smoothed round trip time.
2149 		 * Since we now have an rtt measurement, cancel the
2150 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2151 		 * Recompute the initial retransmit timer.
2152 		 *
2153 		 * Some machines (certain windows boxes) send broken
2154 		 * timestamp replies during the SYN+ACK phase, ignore
2155 		 * timestamps of 0.
2156 		 */
2157 		if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0))
2158 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1, th->th_ack);
2159 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2160 			tcp_xmit_timer(tp, ticks - tp->t_rtttime, th->th_ack);
2161 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2162 
2163 		/*
2164 		 * If no data (only SYN) was ACK'd,
2165 		 *    skip rest of ACK processing.
2166 		 */
2167 		if (acked == 0)
2168 			goto step6;
2169 
2170 		/* Stop looking for an acceptable ACK since one was received. */
2171 		tp->rxt_flags &= ~(TRXT_F_FIRSTACCACK |
2172 		    TRXT_F_FASTREXMT | TRXT_F_EARLYREXMT);
2173 
2174 		if (acked > so->so_snd.ssb_cc) {
2175 			tp->snd_wnd -= so->so_snd.ssb_cc;
2176 			sbdrop(&so->so_snd.sb, (int)so->so_snd.ssb_cc);
2177 			ourfinisacked = TRUE;
2178 		} else {
2179 			sbdrop(&so->so_snd.sb, acked);
2180 			tp->snd_wnd -= acked;
2181 			ourfinisacked = FALSE;
2182 		}
2183 		sowwakeup(so);
2184 
2185 		/*
2186 		 * Update window information.
2187 		 */
2188 		if (acceptable_window_update(tp, th, tiwin)) {
2189 			/* keep track of pure window updates */
2190 			if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2191 			    tiwin > tp->snd_wnd)
2192 				tcpstat.tcps_rcvwinupd++;
2193 			tp->snd_wnd = tiwin;
2194 			tp->snd_wl1 = th->th_seq;
2195 			tp->snd_wl2 = th->th_ack;
2196 			if (tp->snd_wnd > tp->max_sndwnd)
2197 				tp->max_sndwnd = tp->snd_wnd;
2198 			needoutput = TRUE;
2199 		}
2200 
2201 		tp->snd_una = th->th_ack;
2202 		if (TCP_DO_SACK(tp))
2203 			tcp_sack_update_scoreboard(tp, &to);
2204 		if (IN_FASTRECOVERY(tp)) {
2205 			if (SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2206 				EXIT_FASTRECOVERY(tp);
2207 				needoutput = TRUE;
2208 				/*
2209 				 * If the congestion window was inflated
2210 				 * to account for the other side's
2211 				 * cached packets, retract it.
2212 				 */
2213 				if (!TCP_DO_SACK(tp))
2214 					tp->snd_cwnd = tp->snd_ssthresh;
2215 
2216 				/*
2217 				 * Window inflation should have left us
2218 				 * with approximately snd_ssthresh outstanding
2219 				 * data.  But, in case we would be inclined
2220 				 * to send a burst, better do it using
2221 				 * slow start.
2222 				 */
2223 				if (SEQ_GT(th->th_ack + tp->snd_cwnd,
2224 					   tp->snd_max + 2 * tp->t_maxseg))
2225 					tp->snd_cwnd =
2226 					    (tp->snd_max - tp->snd_una) +
2227 					    2 * tp->t_maxseg;
2228 
2229 				tp->snd_wacked = 0;
2230 			} else {
2231 				if (TCP_DO_SACK(tp)) {
2232 					tp->snd_max_rexmt = tp->snd_max;
2233 					tcp_sack_rexmt(tp,
2234 					    tp->snd_una == tp->rexmt_high);
2235 				} else {
2236 					tcp_newreno_partial_ack(tp, th, acked);
2237 				}
2238 				needoutput = FALSE;
2239 			}
2240 		} else {
2241 			/*
2242 			 * Open the congestion window.  When in slow-start,
2243 			 * open exponentially: maxseg per packet.  Otherwise,
2244 			 * open linearly: maxseg per window.
2245 			 */
2246 			if (tp->snd_cwnd <= tp->snd_ssthresh) {
2247 				u_int abc_sslimit =
2248 				    (SEQ_LT(tp->snd_nxt, tp->snd_max) ?
2249 				     tp->t_maxseg : 2 * tp->t_maxseg);
2250 
2251 				/* slow-start */
2252 				tp->snd_cwnd += tcp_do_abc ?
2253 				    min(acked, abc_sslimit) : tp->t_maxseg;
2254 			} else {
2255 				/* linear increase */
2256 				tp->snd_wacked += tcp_do_abc ? acked :
2257 				    tp->t_maxseg;
2258 				if (tp->snd_wacked >= tp->snd_cwnd) {
2259 					tp->snd_wacked -= tp->snd_cwnd;
2260 					tp->snd_cwnd += tp->t_maxseg;
2261 				}
2262 			}
2263 			tp->snd_cwnd = min(tp->snd_cwnd,
2264 					   TCP_MAXWIN << tp->snd_scale);
2265 			tp->snd_recover = th->th_ack - 1;
2266 		}
2267 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2268 			tp->snd_nxt = tp->snd_una;
2269 
2270 		/*
2271 		 * If all outstanding data is acked, stop retransmit
2272 		 * timer and remember to restart (more output or persist).
2273 		 * If there is more data to be acked, restart retransmit
2274 		 * timer, using current (possibly backed-off) value.
2275 		 */
2276 		if (th->th_ack == tp->snd_max) {
2277 			tcp_callout_stop(tp, tp->tt_rexmt);
2278 			needoutput = TRUE;
2279 		} else if (!tcp_callout_active(tp, tp->tt_persist)) {
2280 			tcp_callout_reset(tp, tp->tt_rexmt, tp->t_rxtcur,
2281 			    tcp_timer_rexmt);
2282 		}
2283 
2284 		switch (tp->t_state) {
2285 		/*
2286 		 * In FIN_WAIT_1 STATE in addition to the processing
2287 		 * for the ESTABLISHED state if our FIN is now acknowledged
2288 		 * then enter FIN_WAIT_2.
2289 		 */
2290 		case TCPS_FIN_WAIT_1:
2291 			if (ourfinisacked) {
2292 				/*
2293 				 * If we can't receive any more
2294 				 * data, then closing user can proceed.
2295 				 * Starting the timer is contrary to the
2296 				 * specification, but if we don't get a FIN
2297 				 * we'll hang forever.
2298 				 */
2299 				if (so->so_state & SS_CANTRCVMORE) {
2300 					soisdisconnected(so);
2301 					tcp_callout_reset(tp, tp->tt_2msl,
2302 					    tp->t_maxidle, tcp_timer_2msl);
2303 				}
2304 				tp->t_state = TCPS_FIN_WAIT_2;
2305 			}
2306 			break;
2307 
2308 		/*
2309 		 * In CLOSING STATE in addition to the processing for
2310 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2311 		 * then enter the TIME-WAIT state, otherwise ignore
2312 		 * the segment.
2313 		 */
2314 		case TCPS_CLOSING:
2315 			if (ourfinisacked) {
2316 				tp->t_state = TCPS_TIME_WAIT;
2317 				tcp_canceltimers(tp);
2318 				tcp_callout_reset(tp, tp->tt_2msl,
2319 					    2 * tcp_rmx_msl(tp),
2320 					    tcp_timer_2msl);
2321 				soisdisconnected(so);
2322 			}
2323 			break;
2324 
2325 		/*
2326 		 * In LAST_ACK, we may still be waiting for data to drain
2327 		 * and/or to be acked, as well as for the ack of our FIN.
2328 		 * If our FIN is now acknowledged, delete the TCB,
2329 		 * enter the closed state and return.
2330 		 */
2331 		case TCPS_LAST_ACK:
2332 			if (ourfinisacked) {
2333 				tp = tcp_close(tp);
2334 				goto drop;
2335 			}
2336 			break;
2337 
2338 		/*
2339 		 * In TIME_WAIT state the only thing that should arrive
2340 		 * is a retransmission of the remote FIN.  Acknowledge
2341 		 * it and restart the finack timer.
2342 		 */
2343 		case TCPS_TIME_WAIT:
2344 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_rmx_msl(tp),
2345 			    tcp_timer_2msl);
2346 			goto dropafterack;
2347 		}
2348 	}
2349 
2350 step6:
2351 	/*
2352 	 * Update window information.
2353 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2354 	 */
2355 	if ((thflags & TH_ACK) &&
2356 	    acceptable_window_update(tp, th, tiwin)) {
2357 		/* keep track of pure window updates */
2358 		if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2359 		    tiwin > tp->snd_wnd)
2360 			tcpstat.tcps_rcvwinupd++;
2361 		tp->snd_wnd = tiwin;
2362 		tp->snd_wl1 = th->th_seq;
2363 		tp->snd_wl2 = th->th_ack;
2364 		if (tp->snd_wnd > tp->max_sndwnd)
2365 			tp->max_sndwnd = tp->snd_wnd;
2366 		needoutput = TRUE;
2367 	}
2368 
2369 	/*
2370 	 * Process segments with URG.
2371 	 */
2372 	if ((thflags & TH_URG) && th->th_urp &&
2373 	    !TCPS_HAVERCVDFIN(tp->t_state)) {
2374 		/*
2375 		 * This is a kludge, but if we receive and accept
2376 		 * random urgent pointers, we'll crash in
2377 		 * soreceive.  It's hard to imagine someone
2378 		 * actually wanting to send this much urgent data.
2379 		 */
2380 		if (th->th_urp + so->so_rcv.ssb_cc > sb_max) {
2381 			th->th_urp = 0;			/* XXX */
2382 			thflags &= ~TH_URG;		/* XXX */
2383 			goto dodata;			/* XXX */
2384 		}
2385 		/*
2386 		 * If this segment advances the known urgent pointer,
2387 		 * then mark the data stream.  This should not happen
2388 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2389 		 * a FIN has been received from the remote side.
2390 		 * In these states we ignore the URG.
2391 		 *
2392 		 * According to RFC961 (Assigned Protocols),
2393 		 * the urgent pointer points to the last octet
2394 		 * of urgent data.  We continue, however,
2395 		 * to consider it to indicate the first octet
2396 		 * of data past the urgent section as the original
2397 		 * spec states (in one of two places).
2398 		 */
2399 		if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) {
2400 			tp->rcv_up = th->th_seq + th->th_urp;
2401 			so->so_oobmark = so->so_rcv.ssb_cc +
2402 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2403 			if (so->so_oobmark == 0)
2404 				sosetstate(so, SS_RCVATMARK);
2405 			sohasoutofband(so);
2406 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2407 		}
2408 		/*
2409 		 * Remove out of band data so doesn't get presented to user.
2410 		 * This can happen independent of advancing the URG pointer,
2411 		 * but if two URG's are pending at once, some out-of-band
2412 		 * data may creep in... ick.
2413 		 */
2414 		if (th->th_urp <= (u_long)tlen &&
2415 		    !(so->so_options & SO_OOBINLINE)) {
2416 			/* hdr drop is delayed */
2417 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2418 		}
2419 	} else {
2420 		/*
2421 		 * If no out of band data is expected,
2422 		 * pull receive urgent pointer along
2423 		 * with the receive window.
2424 		 */
2425 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2426 			tp->rcv_up = tp->rcv_nxt;
2427 	}
2428 
2429 dodata:							/* XXX */
2430 	/*
2431 	 * Process the segment text, merging it into the TCP sequencing queue,
2432 	 * and arranging for acknowledgment of receipt if necessary.
2433 	 * This process logically involves adjusting tp->rcv_wnd as data
2434 	 * is presented to the user (this happens in tcp_usrreq.c,
2435 	 * case PRU_RCVD).  If a FIN has already been received on this
2436 	 * connection then we just ignore the text.
2437 	 */
2438 	if ((tlen || (thflags & TH_FIN)) && !TCPS_HAVERCVDFIN(tp->t_state)) {
2439 		if (thflags & TH_FIN)
2440 			tp->t_flags |= TF_SAWFIN;
2441 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2442 		/*
2443 		 * Insert segment which includes th into TCP reassembly queue
2444 		 * with control block tp.  Set thflags to whether reassembly now
2445 		 * includes a segment with FIN.  This handles the common case
2446 		 * inline (segment is the next to be received on an established
2447 		 * connection, and the queue is empty), avoiding linkage into
2448 		 * and removal from the queue and repetition of various
2449 		 * conversions.
2450 		 * Set DELACK for segments received in order, but ack
2451 		 * immediately when segments are out of order (so
2452 		 * fast retransmit can work).
2453 		 */
2454 		if (th->th_seq == tp->rcv_nxt &&
2455 		    TAILQ_EMPTY(&tp->t_segq) &&
2456 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2457 			if (thflags & TH_FIN)
2458 				tp->t_flags |= TF_QUEDFIN;
2459 			if (DELAY_ACK(tp)) {
2460 				tcp_callout_reset(tp, tp->tt_delack,
2461 				    tcp_delacktime, tcp_timer_delack);
2462 			} else {
2463 				tp->t_flags |= TF_ACKNOW;
2464 			}
2465 			tp->rcv_nxt += tlen;
2466 			thflags = th->th_flags & TH_FIN;
2467 			tcpstat.tcps_rcvpack++;
2468 			tcpstat.tcps_rcvbyte += tlen;
2469 			ND6_HINT(tp);
2470 			if (so->so_state & SS_CANTRCVMORE) {
2471 				m_freem(m);
2472 			} else {
2473 				lwkt_gettoken(&so->so_rcv.ssb_token);
2474 				ssb_appendstream(&so->so_rcv, m);
2475 				lwkt_reltoken(&so->so_rcv.ssb_token);
2476 			}
2477 			sorwakeup(so);
2478 		} else {
2479 			if (!(tp->sack_flags & TSACK_F_DUPSEG)) {
2480 				/* Initialize SACK report block. */
2481 				tp->reportblk.rblk_start = th->th_seq;
2482 				tp->reportblk.rblk_end = TCP_SACK_BLKEND(
2483 				    th->th_seq + tlen, thflags);
2484 			}
2485 			thflags = tcp_reass(tp, th, &tlen, m);
2486 			tp->t_flags |= TF_ACKNOW;
2487 		}
2488 
2489 		/*
2490 		 * Note the amount of data that peer has sent into
2491 		 * our window, in order to estimate the sender's
2492 		 * buffer size.
2493 		 */
2494 		len = so->so_rcv.ssb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2495 	} else {
2496 		m_freem(m);
2497 		thflags &= ~TH_FIN;
2498 	}
2499 
2500 	/*
2501 	 * If FIN is received ACK the FIN and let the user know
2502 	 * that the connection is closing.
2503 	 */
2504 	if (thflags & TH_FIN) {
2505 		if (!TCPS_HAVERCVDFIN(tp->t_state)) {
2506 			socantrcvmore(so);
2507 			/*
2508 			 * If connection is half-synchronized
2509 			 * (ie NEEDSYN flag on) then delay ACK,
2510 			 * so it may be piggybacked when SYN is sent.
2511 			 * Otherwise, since we received a FIN then no
2512 			 * more input can be expected, send ACK now.
2513 			 */
2514 			if (DELAY_ACK(tp) && (tp->t_flags & TF_NEEDSYN)) {
2515 				tcp_callout_reset(tp, tp->tt_delack,
2516 				    tcp_delacktime, tcp_timer_delack);
2517 			} else {
2518 				tp->t_flags |= TF_ACKNOW;
2519 			}
2520 			tp->rcv_nxt++;
2521 		}
2522 
2523 		switch (tp->t_state) {
2524 		/*
2525 		 * In SYN_RECEIVED and ESTABLISHED STATES
2526 		 * enter the CLOSE_WAIT state.
2527 		 */
2528 		case TCPS_SYN_RECEIVED:
2529 			tp->t_starttime = ticks;
2530 			/*FALLTHROUGH*/
2531 		case TCPS_ESTABLISHED:
2532 			tp->t_state = TCPS_CLOSE_WAIT;
2533 			break;
2534 
2535 		/*
2536 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2537 		 * enter the CLOSING state.
2538 		 */
2539 		case TCPS_FIN_WAIT_1:
2540 			tp->t_state = TCPS_CLOSING;
2541 			break;
2542 
2543 		/*
2544 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2545 		 * starting the time-wait timer, turning off the other
2546 		 * standard timers.
2547 		 */
2548 		case TCPS_FIN_WAIT_2:
2549 			tp->t_state = TCPS_TIME_WAIT;
2550 			tcp_canceltimers(tp);
2551 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_rmx_msl(tp),
2552 				    tcp_timer_2msl);
2553 			soisdisconnected(so);
2554 			break;
2555 
2556 		/*
2557 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2558 		 */
2559 		case TCPS_TIME_WAIT:
2560 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_rmx_msl(tp),
2561 			    tcp_timer_2msl);
2562 			break;
2563 		}
2564 	}
2565 
2566 #ifdef TCPDEBUG
2567 	if (so->so_options & SO_DEBUG)
2568 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2569 #endif
2570 
2571 	/*
2572 	 * Delayed duplicated ACK processing
2573 	 */
2574 	if (delayed_dupack && tcp_recv_dupack(tp, th_dupack, to_flags))
2575 		needoutput = FALSE;
2576 
2577 	/*
2578 	 * Return any desired output.
2579 	 */
2580 	if ((tp->t_flags & TF_ACKNOW) ||
2581 	    (needoutput && tcp_sack_report_needed(tp))) {
2582 		tcp_output_cancel(tp);
2583 		tcp_output_fair(tp);
2584 	} else if (needoutput && !tcp_output_pending(tp)) {
2585 		tcp_output_fair(tp);
2586 	}
2587 	tcp_sack_report_cleanup(tp);
2588 	return(IPPROTO_DONE);
2589 
2590 dropafterack:
2591 	/*
2592 	 * Generate an ACK dropping incoming segment if it occupies
2593 	 * sequence space, where the ACK reflects our state.
2594 	 *
2595 	 * We can now skip the test for the RST flag since all
2596 	 * paths to this code happen after packets containing
2597 	 * RST have been dropped.
2598 	 *
2599 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2600 	 * segment we received passes the SYN-RECEIVED ACK test.
2601 	 * If it fails send a RST.  This breaks the loop in the
2602 	 * "LAND" DoS attack, and also prevents an ACK storm
2603 	 * between two listening ports that have been sent forged
2604 	 * SYN segments, each with the source address of the other.
2605 	 */
2606 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2607 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2608 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2609 		rstreason = BANDLIM_RST_OPENPORT;
2610 		goto dropwithreset;
2611 	}
2612 #ifdef TCPDEBUG
2613 	if (so->so_options & SO_DEBUG)
2614 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2615 #endif
2616 	m_freem(m);
2617 	tp->t_flags |= TF_ACKNOW;
2618 	tcp_output(tp);
2619 	tcp_sack_report_cleanup(tp);
2620 	return(IPPROTO_DONE);
2621 
2622 dropwithreset:
2623 	/*
2624 	 * Generate a RST, dropping incoming segment.
2625 	 * Make ACK acceptable to originator of segment.
2626 	 * Don't bother to respond if destination was broadcast/multicast.
2627 	 */
2628 	if ((thflags & TH_RST) || m->m_flags & (M_BCAST | M_MCAST))
2629 		goto drop;
2630 	if (isipv6) {
2631 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2632 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2633 			goto drop;
2634 	} else {
2635 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2636 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2637 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2638 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2639 			goto drop;
2640 	}
2641 	/* IPv6 anycast check is done at tcp6_input() */
2642 
2643 	/*
2644 	 * Perform bandwidth limiting.
2645 	 */
2646 #ifdef ICMP_BANDLIM
2647 	if (badport_bandlim(rstreason) < 0)
2648 		goto drop;
2649 #endif
2650 
2651 #ifdef TCPDEBUG
2652 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2653 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2654 #endif
2655 	if (thflags & TH_ACK)
2656 		/* mtod() below is safe as long as hdr dropping is delayed */
2657 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2658 			    TH_RST);
2659 	else {
2660 		if (thflags & TH_SYN)
2661 			tlen++;
2662 		/* mtod() below is safe as long as hdr dropping is delayed */
2663 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq + tlen,
2664 			    (tcp_seq)0, TH_RST | TH_ACK);
2665 	}
2666 	if (tp != NULL)
2667 		tcp_sack_report_cleanup(tp);
2668 	return(IPPROTO_DONE);
2669 
2670 drop:
2671 	/*
2672 	 * Drop space held by incoming segment and return.
2673 	 */
2674 #ifdef TCPDEBUG
2675 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2676 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2677 #endif
2678 	m_freem(m);
2679 	if (tp != NULL)
2680 		tcp_sack_report_cleanup(tp);
2681 	return(IPPROTO_DONE);
2682 }
2683 
2684 /*
2685  * Parse TCP options and place in tcpopt.
2686  */
2687 static void
2688 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, boolean_t is_syn,
2689     tcp_seq ack)
2690 {
2691 	int opt, optlen, i;
2692 
2693 	to->to_flags = 0;
2694 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2695 		opt = cp[0];
2696 		if (opt == TCPOPT_EOL)
2697 			break;
2698 		if (opt == TCPOPT_NOP)
2699 			optlen = 1;
2700 		else {
2701 			if (cnt < 2)
2702 				break;
2703 			optlen = cp[1];
2704 			if (optlen < 2 || optlen > cnt)
2705 				break;
2706 		}
2707 		switch (opt) {
2708 		case TCPOPT_MAXSEG:
2709 			if (optlen != TCPOLEN_MAXSEG)
2710 				continue;
2711 			if (!is_syn)
2712 				continue;
2713 			to->to_flags |= TOF_MSS;
2714 			bcopy(cp + 2, &to->to_mss, sizeof to->to_mss);
2715 			to->to_mss = ntohs(to->to_mss);
2716 			break;
2717 		case TCPOPT_WINDOW:
2718 			if (optlen != TCPOLEN_WINDOW)
2719 				continue;
2720 			if (!is_syn)
2721 				continue;
2722 			to->to_flags |= TOF_SCALE;
2723 			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2724 			break;
2725 		case TCPOPT_TIMESTAMP:
2726 			if (optlen != TCPOLEN_TIMESTAMP)
2727 				continue;
2728 			to->to_flags |= TOF_TS;
2729 			bcopy(cp + 2, &to->to_tsval, sizeof to->to_tsval);
2730 			to->to_tsval = ntohl(to->to_tsval);
2731 			bcopy(cp + 6, &to->to_tsecr, sizeof to->to_tsecr);
2732 			to->to_tsecr = ntohl(to->to_tsecr);
2733 			/*
2734 			 * If echoed timestamp is later than the current time,
2735 			 * fall back to non RFC1323 RTT calculation.
2736 			 */
2737 			if (to->to_tsecr != 0 && TSTMP_GT(to->to_tsecr, ticks))
2738 				to->to_tsecr = 0;
2739 			break;
2740 		case TCPOPT_SACK_PERMITTED:
2741 			if (optlen != TCPOLEN_SACK_PERMITTED)
2742 				continue;
2743 			if (!is_syn)
2744 				continue;
2745 			to->to_flags |= TOF_SACK_PERMITTED;
2746 			break;
2747 		case TCPOPT_SACK:
2748 			if ((optlen - 2) & 0x07)	/* not multiple of 8 */
2749 				continue;
2750 			to->to_nsackblocks = (optlen - 2) / 8;
2751 			to->to_sackblocks = (struct raw_sackblock *) (cp + 2);
2752 			to->to_flags |= TOF_SACK;
2753 			for (i = 0; i < to->to_nsackblocks; i++) {
2754 				struct raw_sackblock *r = &to->to_sackblocks[i];
2755 
2756 				r->rblk_start = ntohl(r->rblk_start);
2757 				r->rblk_end = ntohl(r->rblk_end);
2758 
2759 				if (SEQ_LEQ(r->rblk_end, r->rblk_start)) {
2760 					/*
2761 					 * Invalid SACK block; discard all
2762 					 * SACK blocks
2763 					 */
2764 					tcpstat.tcps_rcvbadsackopt++;
2765 					to->to_nsackblocks = 0;
2766 					to->to_sackblocks = NULL;
2767 					to->to_flags &= ~TOF_SACK;
2768 					break;
2769 				}
2770 			}
2771 			if ((to->to_flags & TOF_SACK) &&
2772 			    tcp_sack_ndsack_blocks(to->to_sackblocks,
2773 			    to->to_nsackblocks, ack))
2774 				to->to_flags |= TOF_DSACK;
2775 			break;
2776 #ifdef TCP_SIGNATURE
2777 		/*
2778 		 * XXX In order to reply to a host which has set the
2779 		 * TCP_SIGNATURE option in its initial SYN, we have to
2780 		 * record the fact that the option was observed here
2781 		 * for the syncache code to perform the correct response.
2782 		 */
2783 		case TCPOPT_SIGNATURE:
2784 			if (optlen != TCPOLEN_SIGNATURE)
2785 				continue;
2786 			to->to_flags |= (TOF_SIGNATURE | TOF_SIGLEN);
2787 			break;
2788 #endif /* TCP_SIGNATURE */
2789 		default:
2790 			continue;
2791 		}
2792 	}
2793 }
2794 
2795 /*
2796  * Pull out of band byte out of a segment so
2797  * it doesn't appear in the user's data queue.
2798  * It is still reflected in the segment length for
2799  * sequencing purposes.
2800  * "off" is the delayed to be dropped hdrlen.
2801  */
2802 static void
2803 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m, int off)
2804 {
2805 	int cnt = off + th->th_urp - 1;
2806 
2807 	while (cnt >= 0) {
2808 		if (m->m_len > cnt) {
2809 			char *cp = mtod(m, caddr_t) + cnt;
2810 			struct tcpcb *tp = sototcpcb(so);
2811 
2812 			tp->t_iobc = *cp;
2813 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2814 			bcopy(cp + 1, cp, m->m_len - cnt - 1);
2815 			m->m_len--;
2816 			if (m->m_flags & M_PKTHDR)
2817 				m->m_pkthdr.len--;
2818 			return;
2819 		}
2820 		cnt -= m->m_len;
2821 		m = m->m_next;
2822 		if (m == NULL)
2823 			break;
2824 	}
2825 	panic("tcp_pulloutofband");
2826 }
2827 
2828 /*
2829  * Collect new round-trip time estimate
2830  * and update averages and current timeout.
2831  */
2832 static void
2833 tcp_xmit_timer(struct tcpcb *tp, int rtt, tcp_seq ack)
2834 {
2835 	int rebaserto = 0;
2836 
2837 	tcpstat.tcps_rttupdated++;
2838 	tp->t_rttupdated++;
2839 	if ((tp->rxt_flags & TRXT_F_REBASERTO) &&
2840 	    SEQ_GT(ack, tp->snd_max_prev)) {
2841 #ifdef DEBUG_EIFEL_RESPONSE
2842 		kprintf("srtt/rttvar, prev %d/%d, cur %d/%d, ",
2843 		    tp->t_srtt_prev, tp->t_rttvar_prev,
2844 		    tp->t_srtt, tp->t_rttvar);
2845 #endif
2846 
2847 		tcpstat.tcps_eifelresponse++;
2848 		rebaserto = 1;
2849 		tp->rxt_flags &= ~TRXT_F_REBASERTO;
2850 		tp->t_srtt = max(tp->t_srtt_prev, (rtt << TCP_RTT_SHIFT));
2851 		tp->t_rttvar = max(tp->t_rttvar_prev,
2852 		    (rtt << (TCP_RTTVAR_SHIFT - 1)));
2853 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2854 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2855 
2856 #ifdef DEBUG_EIFEL_RESPONSE
2857 		kprintf("new %d/%d ", tp->t_srtt, tp->t_rttvar);
2858 #endif
2859 	} else if (tp->t_srtt != 0) {
2860 		int delta;
2861 
2862 		/*
2863 		 * srtt is stored as fixed point with 5 bits after the
2864 		 * binary point (i.e., scaled by 8).  The following magic
2865 		 * is equivalent to the smoothing algorithm in rfc793 with
2866 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2867 		 * point).  Adjust rtt to origin 0.
2868 		 */
2869 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2870 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2871 
2872 		if ((tp->t_srtt += delta) <= 0)
2873 			tp->t_srtt = 1;
2874 
2875 		/*
2876 		 * We accumulate a smoothed rtt variance (actually, a
2877 		 * smoothed mean difference), then set the retransmit
2878 		 * timer to smoothed rtt + 4 times the smoothed variance.
2879 		 * rttvar is stored as fixed point with 4 bits after the
2880 		 * binary point (scaled by 16).  The following is
2881 		 * equivalent to rfc793 smoothing with an alpha of .75
2882 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2883 		 * rfc793's wired-in beta.
2884 		 */
2885 		if (delta < 0)
2886 			delta = -delta;
2887 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2888 		if ((tp->t_rttvar += delta) <= 0)
2889 			tp->t_rttvar = 1;
2890 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2891 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2892 	} else {
2893 		/*
2894 		 * No rtt measurement yet - use the unsmoothed rtt.
2895 		 * Set the variance to half the rtt (so our first
2896 		 * retransmit happens at 3*rtt).
2897 		 */
2898 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2899 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2900 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2901 	}
2902 	tp->t_rtttime = 0;
2903 	tp->t_rxtshift = 0;
2904 
2905 #ifdef DEBUG_EIFEL_RESPONSE
2906 	if (rebaserto) {
2907 		kprintf("| rxtcur prev %d, old %d, ",
2908 		    tp->t_rxtcur_prev, tp->t_rxtcur);
2909 	}
2910 #endif
2911 
2912 	/*
2913 	 * the retransmit should happen at rtt + 4 * rttvar.
2914 	 * Because of the way we do the smoothing, srtt and rttvar
2915 	 * will each average +1/2 tick of bias.  When we compute
2916 	 * the retransmit timer, we want 1/2 tick of rounding and
2917 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2918 	 * firing of the timer.  The bias will give us exactly the
2919 	 * 1.5 tick we need.  But, because the bias is
2920 	 * statistical, we have to test that we don't drop below
2921 	 * the minimum feasible timer (which is 2 ticks).
2922 	 */
2923 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2924 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2925 
2926 	if (rebaserto) {
2927 		if (tp->t_rxtcur < tp->t_rxtcur_prev + tcp_eifel_rtoinc) {
2928 			/*
2929 			 * RFC4015 requires that the new RTO is at least
2930 			 * 2*G (tcp_eifel_rtoinc) greater then the RTO
2931 			 * (t_rxtcur_prev) when the spurious retransmit
2932 			 * timeout happens.
2933 			 *
2934 			 * The above condition could be true, if the SRTT
2935 			 * and RTTVAR used to calculate t_rxtcur_prev
2936 			 * resulted in a value less than t_rttmin.  So
2937 			 * simply increasing SRTT by tcp_eifel_rtoinc when
2938 			 * preparing for the Eifel response could not ensure
2939 			 * that the new RTO will be tcp_eifel_rtoinc greater
2940 			 * t_rxtcur_prev.
2941 			 */
2942 			tp->t_rxtcur = tp->t_rxtcur_prev + tcp_eifel_rtoinc;
2943 		}
2944 #ifdef DEBUG_EIFEL_RESPONSE
2945 		kprintf("new %d\n", tp->t_rxtcur);
2946 #endif
2947 	}
2948 
2949 	/*
2950 	 * We received an ack for a packet that wasn't retransmitted;
2951 	 * it is probably safe to discard any error indications we've
2952 	 * received recently.  This isn't quite right, but close enough
2953 	 * for now (a route might have failed after we sent a segment,
2954 	 * and the return path might not be symmetrical).
2955 	 */
2956 	tp->t_softerror = 0;
2957 }
2958 
2959 /*
2960  * Determine a reasonable value for maxseg size.
2961  * If the route is known, check route for mtu.
2962  * If none, use an mss that can be handled on the outgoing
2963  * interface without forcing IP to fragment; if bigger than
2964  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2965  * to utilize large mbufs.  If no route is found, route has no mtu,
2966  * or the destination isn't local, use a default, hopefully conservative
2967  * size (usually 512 or the default IP max size, but no more than the mtu
2968  * of the interface), as we can't discover anything about intervening
2969  * gateways or networks.  We also initialize the congestion/slow start
2970  * window to be a single segment if the destination isn't local.
2971  * While looking at the routing entry, we also initialize other path-dependent
2972  * parameters from pre-set or cached values in the routing entry.
2973  *
2974  * Also take into account the space needed for options that we
2975  * send regularly.  Make maxseg shorter by that amount to assure
2976  * that we can send maxseg amount of data even when the options
2977  * are present.  Store the upper limit of the length of options plus
2978  * data in maxopd.
2979  *
2980  * NOTE that this routine is only called when we process an incoming
2981  * segment, for outgoing segments only tcp_mssopt is called.
2982  */
2983 void
2984 tcp_mss(struct tcpcb *tp, int offer)
2985 {
2986 	struct rtentry *rt;
2987 	struct ifnet *ifp;
2988 	int rtt, mss;
2989 	u_long bufsize;
2990 	struct inpcb *inp = tp->t_inpcb;
2991 	struct socket *so;
2992 #ifdef INET6
2993 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
2994 	size_t min_protoh = isipv6 ?
2995 			    sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
2996 			    sizeof(struct tcpiphdr);
2997 #else
2998 	const boolean_t isipv6 = FALSE;
2999 	const size_t min_protoh = sizeof(struct tcpiphdr);
3000 #endif
3001 
3002 	if (isipv6)
3003 		rt = tcp_rtlookup6(&inp->inp_inc);
3004 	else
3005 		rt = tcp_rtlookup(&inp->inp_inc);
3006 	if (rt == NULL) {
3007 		tp->t_maxopd = tp->t_maxseg =
3008 		    (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
3009 		return;
3010 	}
3011 	ifp = rt->rt_ifp;
3012 	so = inp->inp_socket;
3013 
3014 	/*
3015 	 * Offer == 0 means that there was no MSS on the SYN segment,
3016 	 * in this case we use either the interface mtu or tcp_mssdflt.
3017 	 *
3018 	 * An offer which is too large will be cut down later.
3019 	 */
3020 	if (offer == 0) {
3021 		if (isipv6) {
3022 			if (in6_localaddr(&inp->in6p_faddr)) {
3023 				offer = ND_IFINFO(rt->rt_ifp)->linkmtu -
3024 					min_protoh;
3025 			} else {
3026 				offer = tcp_v6mssdflt;
3027 			}
3028 		} else {
3029 			if (in_localaddr(inp->inp_faddr))
3030 				offer = ifp->if_mtu - min_protoh;
3031 			else
3032 				offer = tcp_mssdflt;
3033 		}
3034 	}
3035 
3036 	/*
3037 	 * Prevent DoS attack with too small MSS. Round up
3038 	 * to at least minmss.
3039 	 *
3040 	 * Sanity check: make sure that maxopd will be large
3041 	 * enough to allow some data on segments even is the
3042 	 * all the option space is used (40bytes).  Otherwise
3043 	 * funny things may happen in tcp_output.
3044 	 */
3045 	offer = max(offer, tcp_minmss);
3046 	offer = max(offer, 64);
3047 
3048 	rt->rt_rmx.rmx_mssopt = offer;
3049 
3050 	/*
3051 	 * While we're here, check if there's an initial rtt
3052 	 * or rttvar.  Convert from the route-table units
3053 	 * to scaled multiples of the slow timeout timer.
3054 	 */
3055 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
3056 		/*
3057 		 * XXX the lock bit for RTT indicates that the value
3058 		 * is also a minimum value; this is subject to time.
3059 		 */
3060 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
3061 			tp->t_rttmin = rtt / (RTM_RTTUNIT / hz);
3062 		tp->t_srtt = rtt / (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
3063 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
3064 		tcpstat.tcps_usedrtt++;
3065 		if (rt->rt_rmx.rmx_rttvar) {
3066 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
3067 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
3068 			tcpstat.tcps_usedrttvar++;
3069 		} else {
3070 			/* default variation is +- 1 rtt */
3071 			tp->t_rttvar =
3072 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
3073 		}
3074 		TCPT_RANGESET(tp->t_rxtcur,
3075 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
3076 			      tp->t_rttmin, TCPTV_REXMTMAX);
3077 	}
3078 
3079 	/*
3080 	 * if there's an mtu associated with the route, use it
3081 	 * else, use the link mtu.  Take the smaller of mss or offer
3082 	 * as our final mss.
3083 	 */
3084 	if (rt->rt_rmx.rmx_mtu) {
3085 		mss = rt->rt_rmx.rmx_mtu - min_protoh;
3086 	} else {
3087 		if (isipv6)
3088 			mss = ND_IFINFO(rt->rt_ifp)->linkmtu - min_protoh;
3089 		else
3090 			mss = ifp->if_mtu - min_protoh;
3091 	}
3092 	mss = min(mss, offer);
3093 
3094 	/*
3095 	 * maxopd stores the maximum length of data AND options
3096 	 * in a segment; maxseg is the amount of data in a normal
3097 	 * segment.  We need to store this value (maxopd) apart
3098 	 * from maxseg, because now every segment carries options
3099 	 * and thus we normally have somewhat less data in segments.
3100 	 */
3101 	tp->t_maxopd = mss;
3102 
3103 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP &&
3104 	    ((tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3105 		mss -= TCPOLEN_TSTAMP_APPA;
3106 
3107 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
3108 	if (mss > MCLBYTES)
3109 		mss &= ~(MCLBYTES-1);
3110 #else
3111 	if (mss > MCLBYTES)
3112 		mss = mss / MCLBYTES * MCLBYTES;
3113 #endif
3114 	/*
3115 	 * If there's a pipesize, change the socket buffer
3116 	 * to that size.  Make the socket buffers an integral
3117 	 * number of mss units; if the mss is larger than
3118 	 * the socket buffer, decrease the mss.
3119 	 */
3120 #ifdef RTV_SPIPE
3121 	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
3122 #endif
3123 		bufsize = so->so_snd.ssb_hiwat;
3124 	if (bufsize < mss)
3125 		mss = bufsize;
3126 	else {
3127 		bufsize = roundup(bufsize, mss);
3128 		if (bufsize > sb_max)
3129 			bufsize = sb_max;
3130 		if (bufsize > so->so_snd.ssb_hiwat)
3131 			ssb_reserve(&so->so_snd, bufsize, so, NULL);
3132 	}
3133 	tp->t_maxseg = mss;
3134 
3135 #ifdef RTV_RPIPE
3136 	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
3137 #endif
3138 		bufsize = so->so_rcv.ssb_hiwat;
3139 	if (bufsize > mss) {
3140 		bufsize = roundup(bufsize, mss);
3141 		if (bufsize > sb_max)
3142 			bufsize = sb_max;
3143 		if (bufsize > so->so_rcv.ssb_hiwat) {
3144 			lwkt_gettoken(&so->so_rcv.ssb_token);
3145 			ssb_reserve(&so->so_rcv, bufsize, so, NULL);
3146 			lwkt_reltoken(&so->so_rcv.ssb_token);
3147 		}
3148 	}
3149 
3150 	/*
3151 	 * Set the slow-start flight size
3152 	 *
3153 	 * NOTE: t_maxseg must have been configured!
3154 	 */
3155 	tp->snd_cwnd = tcp_initial_window(tp);
3156 
3157 	if (rt->rt_rmx.rmx_ssthresh) {
3158 		/*
3159 		 * There's some sort of gateway or interface
3160 		 * buffer limit on the path.  Use this to set
3161 		 * the slow start threshhold, but set the
3162 		 * threshold to no less than 2*mss.
3163 		 */
3164 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
3165 		tcpstat.tcps_usedssthresh++;
3166 	}
3167 }
3168 
3169 /*
3170  * Determine the MSS option to send on an outgoing SYN.
3171  */
3172 int
3173 tcp_mssopt(struct tcpcb *tp)
3174 {
3175 	struct rtentry *rt;
3176 #ifdef INET6
3177 	boolean_t isipv6 =
3178 	    ((tp->t_inpcb->inp_vflag & INP_IPV6) ? TRUE : FALSE);
3179 	int min_protoh = isipv6 ?
3180 			     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
3181 			     sizeof(struct tcpiphdr);
3182 #else
3183 	const boolean_t isipv6 = FALSE;
3184 	const size_t min_protoh = sizeof(struct tcpiphdr);
3185 #endif
3186 
3187 	if (isipv6)
3188 		rt = tcp_rtlookup6(&tp->t_inpcb->inp_inc);
3189 	else
3190 		rt = tcp_rtlookup(&tp->t_inpcb->inp_inc);
3191 	if (rt == NULL)
3192 		return (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
3193 
3194 	return (rt->rt_ifp->if_mtu - min_protoh);
3195 }
3196 
3197 /*
3198  * When a partial ack arrives, force the retransmission of the
3199  * next unacknowledged segment.  Do not exit Fast Recovery.
3200  *
3201  * Implement the Slow-but-Steady variant of NewReno by restarting the
3202  * the retransmission timer.  Turn it off here so it can be restarted
3203  * later in tcp_output().
3204  */
3205 static void
3206 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th, int acked)
3207 {
3208 	tcp_seq old_snd_nxt = tp->snd_nxt;
3209 	u_long ocwnd = tp->snd_cwnd;
3210 
3211 	tcp_callout_stop(tp, tp->tt_rexmt);
3212 	tp->t_rtttime = 0;
3213 	tp->snd_nxt = th->th_ack;
3214 	/* Set snd_cwnd to one segment beyond acknowledged offset. */
3215 	tp->snd_cwnd = tp->t_maxseg;
3216 	tp->t_flags |= TF_ACKNOW;
3217 	tcp_output(tp);
3218 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3219 		tp->snd_nxt = old_snd_nxt;
3220 	/* partial window deflation */
3221 	if (ocwnd > acked)
3222 		tp->snd_cwnd = ocwnd - acked + tp->t_maxseg;
3223 	else
3224 		tp->snd_cwnd = tp->t_maxseg;
3225 }
3226 
3227 /*
3228  * In contrast to the Slow-but-Steady NewReno variant,
3229  * we do not reset the retransmission timer for SACK retransmissions,
3230  * except when retransmitting snd_una.
3231  */
3232 static void
3233 tcp_sack_rexmt(struct tcpcb *tp, boolean_t force)
3234 {
3235 	tcp_seq old_snd_nxt = tp->snd_nxt;
3236 	u_long ocwnd = tp->snd_cwnd;
3237 	uint32_t pipe;
3238 	int nseg = 0;		/* consecutive new segments */
3239 	int nseg_rexmt = 0;	/* retransmitted segments */
3240 	int maxrexmt = 0;
3241 
3242 	if (force) {
3243 		uint32_t unsacked = tcp_sack_first_unsacked_len(tp);
3244 
3245 		/*
3246 		 * Try to fill the first hole in the receiver's
3247 		 * reassemble queue.
3248 		 */
3249 		maxrexmt = howmany(unsacked, tp->t_maxseg);
3250 		if (maxrexmt > tcp_force_sackrxt)
3251 			maxrexmt = tcp_force_sackrxt;
3252 	}
3253 
3254 	tp->t_rtttime = 0;
3255 	pipe = tcp_sack_compute_pipe(tp);
3256 	while (((tcp_seq_diff_t)(ocwnd - pipe) >= (tcp_seq_diff_t)tp->t_maxseg
3257 	        || (force && nseg_rexmt < maxrexmt && nseg == 0)) &&
3258 	    (!tcp_do_smartsack || nseg < TCP_SACK_MAXBURST)) {
3259 		tcp_seq old_snd_max, old_rexmt_high, nextrexmt;
3260 		uint32_t sent, seglen;
3261 		boolean_t rescue;
3262 		int error;
3263 
3264 		old_rexmt_high = tp->rexmt_high;
3265 		if (!tcp_sack_nextseg(tp, &nextrexmt, &seglen, &rescue)) {
3266 			tp->rexmt_high = old_rexmt_high;
3267 			break;
3268 		}
3269 
3270 		/*
3271 		 * If the next tranmission is a rescue retranmission,
3272 		 * we check whether we have already sent some data
3273 		 * (either new segments or retransmitted segments)
3274 		 * into the the network or not.  Since the idea of rescue
3275 		 * retransmission is to sustain ACK clock, as long as
3276 		 * some segments are in the network, ACK clock will be
3277 		 * kept ticking.
3278 		 */
3279 		if (rescue && (nseg_rexmt > 0 || nseg > 0)) {
3280 			tp->rexmt_high = old_rexmt_high;
3281 			break;
3282 		}
3283 
3284 		if (nextrexmt == tp->snd_max)
3285 			++nseg;
3286 		else
3287 			++nseg_rexmt;
3288 		tp->snd_nxt = nextrexmt;
3289 		tp->snd_cwnd = nextrexmt - tp->snd_una + seglen;
3290 		old_snd_max = tp->snd_max;
3291 		if (nextrexmt == tp->snd_una)
3292 			tcp_callout_stop(tp, tp->tt_rexmt);
3293 		tp->t_flags |= TF_XMITNOW;
3294 		error = tcp_output(tp);
3295 		if (error != 0) {
3296 			tp->rexmt_high = old_rexmt_high;
3297 			break;
3298 		}
3299 		sent = tp->snd_nxt - nextrexmt;
3300 		if (sent <= 0) {
3301 			tp->rexmt_high = old_rexmt_high;
3302 			break;
3303 		}
3304 		pipe += sent;
3305 		tcpstat.tcps_sndsackpack++;
3306 		tcpstat.tcps_sndsackbyte += sent;
3307 
3308 		if (rescue) {
3309 			tcpstat.tcps_sackrescue++;
3310 			tp->rexmt_rescue = tp->snd_nxt;
3311 			tp->sack_flags |= TSACK_F_SACKRESCUED;
3312 			break;
3313 		}
3314 		if (SEQ_LT(nextrexmt, old_snd_max) &&
3315 		    SEQ_LT(tp->rexmt_high, tp->snd_nxt)) {
3316 			tp->rexmt_high = seq_min(tp->snd_nxt, old_snd_max);
3317 			if (tcp_aggressive_rescuesack &&
3318 			    (tp->sack_flags & TSACK_F_SACKRESCUED) &&
3319 			    SEQ_LT(tp->rexmt_rescue, tp->rexmt_high)) {
3320 				/* Drag RescueRxt along with HighRxt */
3321 				tp->rexmt_rescue = tp->rexmt_high;
3322 			}
3323 		}
3324 	}
3325 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3326 		tp->snd_nxt = old_snd_nxt;
3327 	tp->snd_cwnd = ocwnd;
3328 }
3329 
3330 /*
3331  * Return TRUE, if some new segments are sent
3332  */
3333 static boolean_t
3334 tcp_sack_limitedxmit(struct tcpcb *tp)
3335 {
3336 	tcp_seq oldsndnxt = tp->snd_nxt;
3337 	tcp_seq oldsndmax = tp->snd_max;
3338 	u_long ocwnd = tp->snd_cwnd;
3339 	uint32_t pipe, sent;
3340 	boolean_t ret = FALSE;
3341 	tcp_seq_diff_t cwnd_left;
3342 	tcp_seq next;
3343 
3344 	tp->rexmt_high = tp->snd_una - 1;
3345 	pipe = tcp_sack_compute_pipe(tp);
3346 	cwnd_left = (tcp_seq_diff_t)(ocwnd - pipe);
3347 	if (cwnd_left < (tcp_seq_diff_t)tp->t_maxseg)
3348 		return FALSE;
3349 
3350 	if (tcp_do_smartsack)
3351 		cwnd_left = ulmin(cwnd_left, tp->t_maxseg * TCP_SACK_MAXBURST);
3352 
3353 	next = tp->snd_nxt = tp->snd_max;
3354 	tp->snd_cwnd = tp->snd_nxt - tp->snd_una +
3355 	    rounddown(cwnd_left, tp->t_maxseg);
3356 
3357 	tp->t_flags |= TF_XMITNOW;
3358 	tcp_output(tp);
3359 
3360 	sent = tp->snd_nxt - next;
3361 	if (sent > 0) {
3362 		tcpstat.tcps_sndlimited += howmany(sent, tp->t_maxseg);
3363 		ret = TRUE;
3364 	}
3365 
3366 	if (SEQ_LT(oldsndnxt, oldsndmax)) {
3367 		KASSERT(SEQ_GEQ(oldsndnxt, tp->snd_una),
3368 		    ("snd_una moved in other threads"));
3369 		tp->snd_nxt = oldsndnxt;
3370 	}
3371 	tp->snd_cwnd = ocwnd;
3372 
3373 	if (ret && TCP_DO_NCR(tp))
3374 		tcp_ncr_update_rxtthresh(tp);
3375 
3376 	return ret;
3377 }
3378 
3379 /*
3380  * Reset idle time and keep-alive timer, typically called when a valid
3381  * tcp packet is received but may also be called when FASTKEEP is set
3382  * to prevent the previous long-timeout from calculating to a drop.
3383  *
3384  * Only update t_rcvtime for non-SYN packets.
3385  *
3386  * Handle the case where one side thinks the connection is established
3387  * but the other side has, say, rebooted without cleaning out the
3388  * connection.   The SYNs could be construed as an attack and wind
3389  * up ignored, but in case it isn't an attack we can validate the
3390  * connection by forcing a keepalive.
3391  */
3392 void
3393 tcp_timer_keep_activity(struct tcpcb *tp, int thflags)
3394 {
3395 	if (TCPS_HAVEESTABLISHED(tp->t_state)) {
3396 		if ((thflags & (TH_SYN | TH_ACK)) == TH_SYN) {
3397 			tp->t_flags |= TF_KEEPALIVE;
3398 			tcp_callout_reset(tp, tp->tt_keep, hz / 2,
3399 					  tcp_timer_keep);
3400 		} else {
3401 			tp->t_rcvtime = ticks;
3402 			tp->t_flags &= ~TF_KEEPALIVE;
3403 			tcp_callout_reset(tp, tp->tt_keep,
3404 					  tp->t_keepidle,
3405 					  tcp_timer_keep);
3406 		}
3407 	}
3408 }
3409 
3410 static int
3411 tcp_rmx_msl(const struct tcpcb *tp)
3412 {
3413 	struct rtentry *rt;
3414 	struct inpcb *inp = tp->t_inpcb;
3415 	int msl;
3416 #ifdef INET6
3417 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
3418 #else
3419 	const boolean_t isipv6 = FALSE;
3420 #endif
3421 
3422 	if (isipv6)
3423 		rt = tcp_rtlookup6(&inp->inp_inc);
3424 	else
3425 		rt = tcp_rtlookup(&inp->inp_inc);
3426 	if (rt == NULL || rt->rt_rmx.rmx_msl == 0)
3427 		return tcp_msl;
3428 
3429 	msl = (rt->rt_rmx.rmx_msl * hz) / 1000;
3430 	if (msl == 0)
3431 		msl = 1;
3432 
3433 	return msl;
3434 }
3435 
3436 static void
3437 tcp_established(struct tcpcb *tp)
3438 {
3439 	tp->t_state = TCPS_ESTABLISHED;
3440 	tcp_callout_reset(tp, tp->tt_keep, tp->t_keepidle, tcp_timer_keep);
3441 
3442 	if (tp->t_rxtsyn > 0) {
3443 		/*
3444 		 * RFC6298:
3445 		 * "If the timer expires awaiting the ACK of a SYN segment
3446 		 *  and the TCP implementation is using an RTO less than 3
3447 		 *  seconds, the RTO MUST be re-initialized to 3 seconds
3448 		 *  when data transmission begins"
3449 		 */
3450 		if (tp->t_rxtcur < TCPTV_RTOBASE3)
3451 			tp->t_rxtcur = TCPTV_RTOBASE3;
3452 	}
3453 }
3454 
3455 /*
3456  * Returns TRUE, if the ACK should be dropped
3457  */
3458 static boolean_t
3459 tcp_recv_dupack(struct tcpcb *tp, tcp_seq th_ack, u_int to_flags)
3460 {
3461 	boolean_t fast_sack_rexmt = TRUE;
3462 
3463 	tcpstat.tcps_rcvdupack++;
3464 
3465 	/*
3466 	 * We have outstanding data (other than a window probe),
3467 	 * this is a completely duplicate ack (ie, window info
3468 	 * didn't change), the ack is the biggest we've seen and
3469 	 * we've seen exactly our rexmt threshhold of them, so
3470 	 * assume a packet has been dropped and retransmit it.
3471 	 * Kludge snd_nxt & the congestion window so we send only
3472 	 * this one packet.
3473 	 */
3474 	if (IN_FASTRECOVERY(tp)) {
3475 		if (TCP_DO_SACK(tp)) {
3476 			boolean_t force = FALSE;
3477 
3478 			if (tp->snd_una == tp->rexmt_high &&
3479 			    (to_flags & (TOF_SACK | TOF_SACK_REDUNDANT)) ==
3480 			    TOF_SACK) {
3481 				/*
3482 				 * New segments got SACKed and
3483 				 * no retransmit yet.
3484 				 */
3485 				force = TRUE;
3486 			}
3487 
3488 			/* No artifical cwnd inflation. */
3489 			tcp_sack_rexmt(tp, force);
3490 		} else {
3491 			/*
3492 			 * Dup acks mean that packets have left
3493 			 * the network (they're now cached at the
3494 			 * receiver) so bump cwnd by the amount in
3495 			 * the receiver to keep a constant cwnd
3496 			 * packets in the network.
3497 			 */
3498 			tp->snd_cwnd += tp->t_maxseg;
3499 			tcp_output(tp);
3500 		}
3501 		return TRUE;
3502 	} else if (SEQ_LT(th_ack, tp->snd_recover)) {
3503 		tp->t_dupacks = 0;
3504 		return FALSE;
3505 	} else if (tcp_ignore_redun_dsack && TCP_DO_SACK(tp) &&
3506 	    (to_flags & (TOF_DSACK | TOF_SACK_REDUNDANT)) ==
3507 	    (TOF_DSACK | TOF_SACK_REDUNDANT)) {
3508 		/*
3509 		 * If the ACK carries DSACK and other SACK blocks
3510 		 * carry information that we have already known,
3511 		 * don't count this ACK as duplicate ACK.  This
3512 		 * prevents spurious early retransmit and fast
3513 		 * retransmit.  This also meets the requirement of
3514 		 * RFC3042 that new segments should not be sent if
3515 		 * the SACK blocks do not contain new information
3516 		 * (XXX we actually loosen the requirment that only
3517 		 * DSACK is checked here).
3518 		 *
3519 		 * This kind of ACKs are usually sent after spurious
3520 		 * retransmit.
3521 		 */
3522 		/* Do nothing; don't change t_dupacks */
3523 		return TRUE;
3524 	} else if (tp->t_dupacks == 0 && TCP_DO_NCR(tp)) {
3525 		tcp_ncr_update_rxtthresh(tp);
3526 	}
3527 
3528 	if (++tp->t_dupacks == tp->t_rxtthresh) {
3529 		tcp_seq old_snd_nxt;
3530 		u_int win;
3531 
3532 fastretransmit:
3533 		if (tcp_do_eifel_detect && (tp->t_flags & TF_RCVD_TSTMP)) {
3534 			tcp_save_congestion_state(tp);
3535 			tp->rxt_flags |= TRXT_F_FASTREXMT;
3536 		}
3537 		/*
3538 		 * We know we're losing at the current window size,
3539 		 * so do congestion avoidance: set ssthresh to half
3540 		 * the current window and pull our congestion window
3541 		 * back to the new ssthresh.
3542 		 */
3543 		win = min(tp->snd_wnd, tp->snd_cwnd) / 2 / tp->t_maxseg;
3544 		if (win < 2)
3545 			win = 2;
3546 		tp->snd_ssthresh = win * tp->t_maxseg;
3547 		ENTER_FASTRECOVERY(tp);
3548 		tp->snd_recover = tp->snd_max;
3549 		tcp_callout_stop(tp, tp->tt_rexmt);
3550 		tp->t_rtttime = 0;
3551 		old_snd_nxt = tp->snd_nxt;
3552 		tp->snd_nxt = th_ack;
3553 		if (TCP_DO_SACK(tp)) {
3554 			uint32_t rxtlen;
3555 
3556 			rxtlen = tcp_sack_first_unsacked_len(tp);
3557 			if (rxtlen > tp->t_maxseg)
3558 				rxtlen = tp->t_maxseg;
3559 			tp->snd_cwnd = rxtlen;
3560 		} else {
3561 			tp->snd_cwnd = tp->t_maxseg;
3562 		}
3563 		tcp_output(tp);
3564 		++tcpstat.tcps_sndfastrexmit;
3565 		tp->snd_cwnd = tp->snd_ssthresh;
3566 		tp->rexmt_high = tp->snd_nxt;
3567 		tp->sack_flags &= ~TSACK_F_SACKRESCUED;
3568 		if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3569 			tp->snd_nxt = old_snd_nxt;
3570 		KASSERT(tp->snd_limited <= 2, ("tp->snd_limited too big"));
3571 		if (TCP_DO_SACK(tp)) {
3572 			if (fast_sack_rexmt)
3573 				tcp_sack_rexmt(tp, FALSE);
3574 		} else {
3575 			tp->snd_cwnd += tp->t_maxseg *
3576 			    (tp->t_dupacks - tp->snd_limited);
3577 		}
3578 	} else if ((tcp_do_rfc6675 && TCP_DO_SACK(tp)) || TCP_DO_NCR(tp)) {
3579 		/*
3580 		 * The RFC6675 recommends to reduce the byte threshold,
3581 		 * and enter fast retransmit if IsLost(snd_una).  However,
3582 		 * if we use IsLost(snd_una) based fast retransmit here,
3583 		 * segments reordering will cause spurious retransmit.  So
3584 		 * we defer the IsLost(snd_una) based fast retransmit until
3585 		 * the extended limited transmit can't send any segments and
3586 		 * early retransmit can't be done.
3587 		 */
3588 		if (tcp_rfc6675_rxt && tcp_do_rfc6675 &&
3589 		    tcp_sack_islost(&tp->scb, tp->snd_una))
3590 			goto fastretransmit;
3591 
3592 		if (tcp_do_limitedtransmit || TCP_DO_NCR(tp)) {
3593 			if (!tcp_sack_limitedxmit(tp)) {
3594 				/* outstanding data */
3595 				uint32_t ownd = tp->snd_max - tp->snd_una;
3596 
3597 				if (need_early_retransmit(tp, ownd)) {
3598 					++tcpstat.tcps_sndearlyrexmit;
3599 					tp->rxt_flags |= TRXT_F_EARLYREXMT;
3600 					goto fastretransmit;
3601 				} else if (tcp_do_rfc6675 &&
3602 				    tcp_sack_islost(&tp->scb, tp->snd_una)) {
3603 					fast_sack_rexmt = FALSE;
3604 					goto fastretransmit;
3605 				}
3606 			}
3607 		}
3608 	} else if (tcp_do_limitedtransmit) {
3609 		u_long oldcwnd = tp->snd_cwnd;
3610 		tcp_seq oldsndmax = tp->snd_max;
3611 		tcp_seq oldsndnxt = tp->snd_nxt;
3612 		/* outstanding data */
3613 		uint32_t ownd = tp->snd_max - tp->snd_una;
3614 		u_int sent;
3615 
3616 		KASSERT(tp->t_dupacks == 1 || tp->t_dupacks == 2,
3617 		    ("dupacks not 1 or 2"));
3618 		if (tp->t_dupacks == 1)
3619 			tp->snd_limited = 0;
3620 		tp->snd_nxt = tp->snd_max;
3621 		tp->snd_cwnd = ownd +
3622 		    (tp->t_dupacks - tp->snd_limited) * tp->t_maxseg;
3623 		tp->t_flags |= TF_XMITNOW;
3624 		tcp_output(tp);
3625 
3626 		if (SEQ_LT(oldsndnxt, oldsndmax)) {
3627 			KASSERT(SEQ_GEQ(oldsndnxt, tp->snd_una),
3628 			    ("snd_una moved in other threads"));
3629 			tp->snd_nxt = oldsndnxt;
3630 		}
3631 		tp->snd_cwnd = oldcwnd;
3632 		sent = tp->snd_max - oldsndmax;
3633 		if (sent > tp->t_maxseg) {
3634 			KASSERT((tp->t_dupacks == 2 && tp->snd_limited == 0) ||
3635 			    (sent == tp->t_maxseg + 1 &&
3636 			     (tp->t_flags & TF_SENTFIN)),
3637 			    ("sent too much"));
3638 			KASSERT(sent <= tp->t_maxseg * 2,
3639 			    ("sent too many segments"));
3640 			tp->snd_limited = 2;
3641 			tcpstat.tcps_sndlimited += 2;
3642 		} else if (sent > 0) {
3643 			++tp->snd_limited;
3644 			++tcpstat.tcps_sndlimited;
3645 		} else if (need_early_retransmit(tp, ownd)) {
3646 			++tcpstat.tcps_sndearlyrexmit;
3647 			tp->rxt_flags |= TRXT_F_EARLYREXMT;
3648 			goto fastretransmit;
3649 		}
3650 	}
3651 	return TRUE;
3652 }
3653