xref: /dragonfly/sys/netinet/tcp_subr.c (revision 0dace59e)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. Neither the name of the University nor the names of its contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  *
62  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
63  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
64  */
65 
66 #include "opt_compat.h"
67 #include "opt_inet.h"
68 #include "opt_inet6.h"
69 #include "opt_ipsec.h"
70 #include "opt_tcpdebug.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/callout.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/malloc.h>
78 #include <sys/mpipe.h>
79 #include <sys/mbuf.h>
80 #ifdef INET6
81 #include <sys/domain.h>
82 #endif
83 #include <sys/proc.h>
84 #include <sys/priv.h>
85 #include <sys/socket.h>
86 #include <sys/socketops.h>
87 #include <sys/socketvar.h>
88 #include <sys/protosw.h>
89 #include <sys/random.h>
90 #include <sys/in_cksum.h>
91 #include <sys/ktr.h>
92 
93 #include <net/route.h>
94 #include <net/if.h>
95 #include <net/netisr2.h>
96 
97 #define	_IP_VHL
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/ip.h>
101 #include <netinet/ip6.h>
102 #include <netinet/in_pcb.h>
103 #include <netinet6/in6_pcb.h>
104 #include <netinet/in_var.h>
105 #include <netinet/ip_var.h>
106 #include <netinet6/ip6_var.h>
107 #include <netinet/ip_icmp.h>
108 #ifdef INET6
109 #include <netinet/icmp6.h>
110 #endif
111 #include <netinet/tcp.h>
112 #include <netinet/tcp_fsm.h>
113 #include <netinet/tcp_seq.h>
114 #include <netinet/tcp_timer.h>
115 #include <netinet/tcp_timer2.h>
116 #include <netinet/tcp_var.h>
117 #include <netinet6/tcp6_var.h>
118 #include <netinet/tcpip.h>
119 #ifdef TCPDEBUG
120 #include <netinet/tcp_debug.h>
121 #endif
122 #include <netinet6/ip6protosw.h>
123 
124 #ifdef IPSEC
125 #include <netinet6/ipsec.h>
126 #include <netproto/key/key.h>
127 #ifdef INET6
128 #include <netinet6/ipsec6.h>
129 #endif
130 #endif
131 
132 #ifdef FAST_IPSEC
133 #include <netproto/ipsec/ipsec.h>
134 #ifdef INET6
135 #include <netproto/ipsec/ipsec6.h>
136 #endif
137 #define	IPSEC
138 #endif
139 
140 #include <sys/md5.h>
141 #include <machine/smp.h>
142 
143 #include <sys/msgport2.h>
144 #include <sys/mplock2.h>
145 #include <net/netmsg2.h>
146 
147 #if !defined(KTR_TCP)
148 #define KTR_TCP		KTR_ALL
149 #endif
150 /*
151 KTR_INFO_MASTER(tcp);
152 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
153 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
154 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
155 #define logtcp(name)	KTR_LOG(tcp_ ## name)
156 */
157 
158 #define TCP_IW_MAXSEGS_DFLT	4
159 #define TCP_IW_CAPSEGS_DFLT	3
160 
161 struct inpcbinfo tcbinfo[MAXCPU];
162 struct tcpcbackqhead tcpcbackq[MAXCPU];
163 
164 static struct lwkt_token tcp_port_token =
165 		LWKT_TOKEN_INITIALIZER(tcp_port_token);
166 
167 int tcp_mssdflt = TCP_MSS;
168 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
169     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
170 
171 #ifdef INET6
172 int tcp_v6mssdflt = TCP6_MSS;
173 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
174     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
175 #endif
176 
177 /*
178  * Minimum MSS we accept and use. This prevents DoS attacks where
179  * we are forced to a ridiculous low MSS like 20 and send hundreds
180  * of packets instead of one. The effect scales with the available
181  * bandwidth and quickly saturates the CPU and network interface
182  * with packet generation and sending. Set to zero to disable MINMSS
183  * checking. This setting prevents us from sending too small packets.
184  */
185 int tcp_minmss = TCP_MINMSS;
186 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
187     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
188 
189 #if 0
190 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
191 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
192     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
193 #endif
194 
195 int tcp_do_rfc1323 = 1;
196 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
197     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
198 
199 static int tcp_tcbhashsize = 0;
200 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
201      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
202 
203 static int do_tcpdrain = 1;
204 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
205      "Enable tcp_drain routine for extra help when low on mbufs");
206 
207 static int icmp_may_rst = 1;
208 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
209     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
210 
211 static int tcp_isn_reseed_interval = 0;
212 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
213     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
214 
215 /*
216  * TCP bandwidth limiting sysctls.  The inflight limiter is now turned on
217  * by default, but with generous values which should allow maximal
218  * bandwidth.  In particular, the slop defaults to 50 (5 packets).
219  *
220  * The reason for doing this is that the limiter is the only mechanism we
221  * have which seems to do a really good job preventing receiver RX rings
222  * on network interfaces from getting blown out.  Even though GigE/10GigE
223  * is supposed to flow control it looks like either it doesn't actually
224  * do it or Open Source drivers do not properly enable it.
225  *
226  * People using the limiter to reduce bottlenecks on slower WAN connections
227  * should set the slop to 20 (2 packets).
228  */
229 static int tcp_inflight_enable = 1;
230 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
231     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
232 
233 static int tcp_inflight_debug = 0;
234 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
235     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
236 
237 static int tcp_inflight_min = 6144;
238 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
239     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
240 
241 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
242 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
243     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
244 
245 static int tcp_inflight_stab = 50;
246 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
247     &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 3 packets)");
248 
249 static int tcp_do_rfc3390 = 1;
250 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
251     &tcp_do_rfc3390, 0,
252     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
253 
254 static u_long tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
255 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwmaxsegs, CTLFLAG_RW,
256     &tcp_iw_maxsegs, 0, "TCP IW segments max");
257 
258 static u_long tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
259 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwcapsegs, CTLFLAG_RW,
260     &tcp_iw_capsegs, 0, "TCP IW segments");
261 
262 int tcp_low_rtobase = 1;
263 SYSCTL_INT(_net_inet_tcp, OID_AUTO, low_rtobase, CTLFLAG_RW,
264     &tcp_low_rtobase, 0, "Lowering the Initial RTO (RFC 6298)");
265 
266 static int tcp_do_ncr = 1;
267 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr, CTLFLAG_RW,
268     &tcp_do_ncr, 0, "Non-Congestion Robustness (RFC 4653)");
269 
270 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
271 static struct malloc_pipe tcptemp_mpipe;
272 
273 static void tcp_willblock(void);
274 static void tcp_notify (struct inpcb *, int);
275 
276 struct tcp_stats tcpstats_percpu[MAXCPU] __cachealign;
277 
278 static int
279 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
280 {
281 	int cpu, error = 0;
282 
283 	for (cpu = 0; cpu < ncpus; ++cpu) {
284 		if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
285 					sizeof(struct tcp_stats))))
286 			break;
287 		if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
288 				       sizeof(struct tcp_stats))))
289 			break;
290 	}
291 
292 	return (error);
293 }
294 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
295     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
296 
297 /*
298  * Target size of TCP PCB hash tables. Must be a power of two.
299  *
300  * Note that this can be overridden by the kernel environment
301  * variable net.inet.tcp.tcbhashsize
302  */
303 #ifndef TCBHASHSIZE
304 #define	TCBHASHSIZE	512
305 #endif
306 
307 /*
308  * This is the actual shape of what we allocate using the zone
309  * allocator.  Doing it this way allows us to protect both structures
310  * using the same generation count, and also eliminates the overhead
311  * of allocating tcpcbs separately.  By hiding the structure here,
312  * we avoid changing most of the rest of the code (although it needs
313  * to be changed, eventually, for greater efficiency).
314  */
315 #define	ALIGNMENT	32
316 #define	ALIGNM1		(ALIGNMENT - 1)
317 struct	inp_tp {
318 	union {
319 		struct	inpcb inp;
320 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
321 	} inp_tp_u;
322 	struct	tcpcb tcb;
323 	struct	tcp_callout inp_tp_rexmt;
324 	struct	tcp_callout inp_tp_persist;
325 	struct	tcp_callout inp_tp_keep;
326 	struct	tcp_callout inp_tp_2msl;
327 	struct	tcp_callout inp_tp_delack;
328 	struct	netmsg_tcp_timer inp_tp_timermsg;
329 	struct	netmsg_base inp_tp_sndmore;
330 };
331 #undef ALIGNMENT
332 #undef ALIGNM1
333 
334 /*
335  * Tcp initialization
336  */
337 void
338 tcp_init(void)
339 {
340 	struct inpcbporthead *porthashbase;
341 	struct inpcbinfo *ticb;
342 	u_long porthashmask;
343 	int hashsize = TCBHASHSIZE;
344 	int cpu;
345 
346 	/*
347 	 * note: tcptemp is used for keepalives, and it is ok for an
348 	 * allocation to fail so do not specify MPF_INT.
349 	 */
350 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
351 		    25, -1, 0, NULL, NULL, NULL);
352 
353 	tcp_delacktime = TCPTV_DELACK;
354 	tcp_keepinit = TCPTV_KEEP_INIT;
355 	tcp_keepidle = TCPTV_KEEP_IDLE;
356 	tcp_keepintvl = TCPTV_KEEPINTVL;
357 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
358 	tcp_msl = TCPTV_MSL;
359 	tcp_rexmit_min = TCPTV_MIN;
360 	tcp_rexmit_slop = TCPTV_CPU_VAR;
361 
362 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
363 	if (!powerof2(hashsize)) {
364 		kprintf("WARNING: TCB hash size not a power of 2\n");
365 		hashsize = 512; /* safe default */
366 	}
367 	tcp_tcbhashsize = hashsize;
368 	porthashbase = hashinit(hashsize, M_PCB, &porthashmask);
369 
370 	for (cpu = 0; cpu < ncpus2; cpu++) {
371 		ticb = &tcbinfo[cpu];
372 		in_pcbinfo_init(ticb);
373 		ticb->cpu = cpu;
374 		ticb->hashbase = hashinit(hashsize, M_PCB,
375 					  &ticb->hashmask);
376 		ticb->porthashbase = porthashbase;
377 		ticb->porthashmask = porthashmask;
378 		ticb->porttoken = &tcp_port_token;
379 #if 0
380 		ticb->porthashbase = hashinit(hashsize, M_PCB,
381 					      &ticb->porthashmask);
382 #endif
383 		ticb->wildcardhashbase = hashinit(hashsize, M_PCB,
384 						  &ticb->wildcardhashmask);
385 		ticb->localgrphashbase = hashinit(hashsize, M_PCB,
386 						  &ticb->localgrphashmask);
387 		ticb->ipi_size = sizeof(struct inp_tp);
388 		TAILQ_INIT(&tcpcbackq[cpu]);
389 	}
390 
391 	tcp_reass_maxseg = nmbclusters / 16;
392 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
393 
394 #ifdef INET6
395 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
396 #else
397 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
398 #endif
399 	if (max_protohdr < TCP_MINPROTOHDR)
400 		max_protohdr = TCP_MINPROTOHDR;
401 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
402 		panic("tcp_init");
403 #undef TCP_MINPROTOHDR
404 
405 	/*
406 	 * Initialize TCP statistics counters for each CPU.
407 	 */
408 	for (cpu = 0; cpu < ncpus; ++cpu) {
409 		bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
410 	}
411 
412 	syncache_init();
413 	netisr_register_rollup(tcp_willblock, NETISR_ROLLUP_PRIO_TCP);
414 }
415 
416 static void
417 tcp_willblock(void)
418 {
419 	struct tcpcb *tp;
420 	int cpu = mycpu->gd_cpuid;
421 
422 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
423 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
424 		tp->t_flags &= ~TF_ONOUTPUTQ;
425 		TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
426 		tcp_output(tp);
427 	}
428 }
429 
430 /*
431  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
432  * tcp_template used to store this data in mbufs, but we now recopy it out
433  * of the tcpcb each time to conserve mbufs.
434  */
435 void
436 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr, boolean_t tso)
437 {
438 	struct inpcb *inp = tp->t_inpcb;
439 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
440 
441 #ifdef INET6
442 	if (inp->inp_vflag & INP_IPV6) {
443 		struct ip6_hdr *ip6;
444 
445 		ip6 = (struct ip6_hdr *)ip_ptr;
446 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
447 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
448 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
449 			(IPV6_VERSION & IPV6_VERSION_MASK);
450 		ip6->ip6_nxt = IPPROTO_TCP;
451 		ip6->ip6_plen = sizeof(struct tcphdr);
452 		ip6->ip6_src = inp->in6p_laddr;
453 		ip6->ip6_dst = inp->in6p_faddr;
454 		tcp_hdr->th_sum = 0;
455 	} else
456 #endif
457 	{
458 		struct ip *ip = (struct ip *) ip_ptr;
459 		u_int plen;
460 
461 		ip->ip_vhl = IP_VHL_BORING;
462 		ip->ip_tos = 0;
463 		ip->ip_len = 0;
464 		ip->ip_id = 0;
465 		ip->ip_off = 0;
466 		ip->ip_ttl = 0;
467 		ip->ip_sum = 0;
468 		ip->ip_p = IPPROTO_TCP;
469 		ip->ip_src = inp->inp_laddr;
470 		ip->ip_dst = inp->inp_faddr;
471 
472 		if (tso)
473 			plen = htons(IPPROTO_TCP);
474 		else
475 			plen = htons(sizeof(struct tcphdr) + IPPROTO_TCP);
476 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
477 		    ip->ip_dst.s_addr, plen);
478 	}
479 
480 	tcp_hdr->th_sport = inp->inp_lport;
481 	tcp_hdr->th_dport = inp->inp_fport;
482 	tcp_hdr->th_seq = 0;
483 	tcp_hdr->th_ack = 0;
484 	tcp_hdr->th_x2 = 0;
485 	tcp_hdr->th_off = 5;
486 	tcp_hdr->th_flags = 0;
487 	tcp_hdr->th_win = 0;
488 	tcp_hdr->th_urp = 0;
489 }
490 
491 /*
492  * Create template to be used to send tcp packets on a connection.
493  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
494  * use for this function is in keepalives, which use tcp_respond.
495  */
496 struct tcptemp *
497 tcp_maketemplate(struct tcpcb *tp)
498 {
499 	struct tcptemp *tmp;
500 
501 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
502 		return (NULL);
503 	tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t, FALSE);
504 	return (tmp);
505 }
506 
507 void
508 tcp_freetemplate(struct tcptemp *tmp)
509 {
510 	mpipe_free(&tcptemp_mpipe, tmp);
511 }
512 
513 /*
514  * Send a single message to the TCP at address specified by
515  * the given TCP/IP header.  If m == NULL, then we make a copy
516  * of the tcpiphdr at ti and send directly to the addressed host.
517  * This is used to force keep alive messages out using the TCP
518  * template for a connection.  If flags are given then we send
519  * a message back to the TCP which originated the * segment ti,
520  * and discard the mbuf containing it and any other attached mbufs.
521  *
522  * In any case the ack and sequence number of the transmitted
523  * segment are as specified by the parameters.
524  *
525  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
526  */
527 void
528 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
529 	    tcp_seq ack, tcp_seq seq, int flags)
530 {
531 	int tlen;
532 	int win = 0;
533 	struct route *ro = NULL;
534 	struct route sro;
535 	struct ip *ip = ipgen;
536 	struct tcphdr *nth;
537 	int ipflags = 0;
538 	struct route_in6 *ro6 = NULL;
539 	struct route_in6 sro6;
540 	struct ip6_hdr *ip6 = ipgen;
541 	boolean_t use_tmpro = TRUE;
542 #ifdef INET6
543 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
544 #else
545 	const boolean_t isipv6 = FALSE;
546 #endif
547 
548 	if (tp != NULL) {
549 		if (!(flags & TH_RST)) {
550 			win = ssb_space(&tp->t_inpcb->inp_socket->so_rcv);
551 			if (win < 0)
552 				win = 0;
553 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
554 				win = (long)TCP_MAXWIN << tp->rcv_scale;
555 		}
556 		/*
557 		 * Don't use the route cache of a listen socket,
558 		 * it is not MPSAFE; use temporary route cache.
559 		 */
560 		if (tp->t_state != TCPS_LISTEN) {
561 			if (isipv6)
562 				ro6 = &tp->t_inpcb->in6p_route;
563 			else
564 				ro = &tp->t_inpcb->inp_route;
565 			use_tmpro = FALSE;
566 		}
567 	}
568 	if (use_tmpro) {
569 		if (isipv6) {
570 			ro6 = &sro6;
571 			bzero(ro6, sizeof *ro6);
572 		} else {
573 			ro = &sro;
574 			bzero(ro, sizeof *ro);
575 		}
576 	}
577 	if (m == NULL) {
578 		m = m_gethdr(MB_DONTWAIT, MT_HEADER);
579 		if (m == NULL)
580 			return;
581 		tlen = 0;
582 		m->m_data += max_linkhdr;
583 		if (isipv6) {
584 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
585 			ip6 = mtod(m, struct ip6_hdr *);
586 			nth = (struct tcphdr *)(ip6 + 1);
587 		} else {
588 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
589 			ip = mtod(m, struct ip *);
590 			nth = (struct tcphdr *)(ip + 1);
591 		}
592 		bcopy(th, nth, sizeof(struct tcphdr));
593 		flags = TH_ACK;
594 	} else {
595 		m_freem(m->m_next);
596 		m->m_next = NULL;
597 		m->m_data = (caddr_t)ipgen;
598 		/* m_len is set later */
599 		tlen = 0;
600 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
601 		if (isipv6) {
602 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
603 			nth = (struct tcphdr *)(ip6 + 1);
604 		} else {
605 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
606 			nth = (struct tcphdr *)(ip + 1);
607 		}
608 		if (th != nth) {
609 			/*
610 			 * this is usually a case when an extension header
611 			 * exists between the IPv6 header and the
612 			 * TCP header.
613 			 */
614 			nth->th_sport = th->th_sport;
615 			nth->th_dport = th->th_dport;
616 		}
617 		xchg(nth->th_dport, nth->th_sport, n_short);
618 #undef xchg
619 	}
620 	if (isipv6) {
621 		ip6->ip6_flow = 0;
622 		ip6->ip6_vfc = IPV6_VERSION;
623 		ip6->ip6_nxt = IPPROTO_TCP;
624 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
625 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
626 	} else {
627 		tlen += sizeof(struct tcpiphdr);
628 		ip->ip_len = tlen;
629 		ip->ip_ttl = ip_defttl;
630 	}
631 	m->m_len = tlen;
632 	m->m_pkthdr.len = tlen;
633 	m->m_pkthdr.rcvif = NULL;
634 	nth->th_seq = htonl(seq);
635 	nth->th_ack = htonl(ack);
636 	nth->th_x2 = 0;
637 	nth->th_off = sizeof(struct tcphdr) >> 2;
638 	nth->th_flags = flags;
639 	if (tp != NULL)
640 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
641 	else
642 		nth->th_win = htons((u_short)win);
643 	nth->th_urp = 0;
644 	if (isipv6) {
645 		nth->th_sum = 0;
646 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
647 					sizeof(struct ip6_hdr),
648 					tlen - sizeof(struct ip6_hdr));
649 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
650 					       (ro6 && ro6->ro_rt) ?
651 						ro6->ro_rt->rt_ifp : NULL);
652 	} else {
653 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
654 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
655 		m->m_pkthdr.csum_flags = CSUM_TCP;
656 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
657 		m->m_pkthdr.csum_thlen = sizeof(struct tcphdr);
658 	}
659 #ifdef TCPDEBUG
660 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
661 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
662 #endif
663 	if (isipv6) {
664 		ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
665 			   tp ? tp->t_inpcb : NULL);
666 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
667 			RTFREE(ro6->ro_rt);
668 			ro6->ro_rt = NULL;
669 		}
670 	} else {
671 		ipflags |= IP_DEBUGROUTE;
672 		ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
673 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
674 			RTFREE(ro->ro_rt);
675 			ro->ro_rt = NULL;
676 		}
677 	}
678 }
679 
680 /*
681  * Create a new TCP control block, making an
682  * empty reassembly queue and hooking it to the argument
683  * protocol control block.  The `inp' parameter must have
684  * come from the zone allocator set up in tcp_init().
685  */
686 struct tcpcb *
687 tcp_newtcpcb(struct inpcb *inp)
688 {
689 	struct inp_tp *it;
690 	struct tcpcb *tp;
691 #ifdef INET6
692 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
693 #else
694 	const boolean_t isipv6 = FALSE;
695 #endif
696 
697 	it = (struct inp_tp *)inp;
698 	tp = &it->tcb;
699 	bzero(tp, sizeof(struct tcpcb));
700 	TAILQ_INIT(&tp->t_segq);
701 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
702 	tp->t_rxtthresh = tcprexmtthresh;
703 
704 	/* Set up our timeouts. */
705 	tp->tt_rexmt = &it->inp_tp_rexmt;
706 	tp->tt_persist = &it->inp_tp_persist;
707 	tp->tt_keep = &it->inp_tp_keep;
708 	tp->tt_2msl = &it->inp_tp_2msl;
709 	tp->tt_delack = &it->inp_tp_delack;
710 	tcp_inittimers(tp);
711 
712 	/*
713 	 * Zero out timer message.  We don't create it here,
714 	 * since the current CPU may not be the owner of this
715 	 * inpcb.
716 	 */
717 	tp->tt_msg = &it->inp_tp_timermsg;
718 	bzero(tp->tt_msg, sizeof(*tp->tt_msg));
719 
720 	tp->t_keepinit = tcp_keepinit;
721 	tp->t_keepidle = tcp_keepidle;
722 	tp->t_keepintvl = tcp_keepintvl;
723 	tp->t_keepcnt = tcp_keepcnt;
724 	tp->t_maxidle = tp->t_keepintvl * tp->t_keepcnt;
725 
726 	if (tcp_do_ncr)
727 		tp->t_flags |= TF_NCR;
728 	if (tcp_do_rfc1323)
729 		tp->t_flags |= (TF_REQ_SCALE | TF_REQ_TSTMP);
730 
731 	tp->t_inpcb = inp;	/* XXX */
732 	tp->t_state = TCPS_CLOSED;
733 	/*
734 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
735 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
736 	 * reasonable initial retransmit time.
737 	 */
738 	tp->t_srtt = TCPTV_SRTTBASE;
739 	tp->t_rttvar =
740 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
741 	tp->t_rttmin = tcp_rexmit_min;
742 	tp->t_rxtcur = TCPTV_RTOBASE;
743 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
744 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
745 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
746 	tp->snd_last = ticks;
747 	tp->t_rcvtime = ticks;
748 	/*
749 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
750 	 * because the socket may be bound to an IPv6 wildcard address,
751 	 * which may match an IPv4-mapped IPv6 address.
752 	 */
753 	inp->inp_ip_ttl = ip_defttl;
754 	inp->inp_ppcb = tp;
755 	tcp_sack_tcpcb_init(tp);
756 
757 	tp->tt_sndmore = &it->inp_tp_sndmore;
758 	tcp_output_init(tp);
759 
760 	return (tp);		/* XXX */
761 }
762 
763 /*
764  * Drop a TCP connection, reporting the specified error.
765  * If connection is synchronized, then send a RST to peer.
766  */
767 struct tcpcb *
768 tcp_drop(struct tcpcb *tp, int error)
769 {
770 	struct socket *so = tp->t_inpcb->inp_socket;
771 
772 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
773 		tp->t_state = TCPS_CLOSED;
774 		tcp_output(tp);
775 		tcpstat.tcps_drops++;
776 	} else
777 		tcpstat.tcps_conndrops++;
778 	if (error == ETIMEDOUT && tp->t_softerror)
779 		error = tp->t_softerror;
780 	so->so_error = error;
781 	return (tcp_close(tp));
782 }
783 
784 struct netmsg_listen_detach {
785 	struct netmsg_base	base;
786 	struct tcpcb		*nm_tp;
787 	struct tcpcb		*nm_tp_inh;
788 };
789 
790 static void
791 tcp_listen_detach_handler(netmsg_t msg)
792 {
793 	struct netmsg_listen_detach *nmsg = (struct netmsg_listen_detach *)msg;
794 	struct tcpcb *tp = nmsg->nm_tp;
795 	int cpu = mycpuid, nextcpu;
796 
797 	if (tp->t_flags & TF_LISTEN)
798 		syncache_destroy(tp, nmsg->nm_tp_inh);
799 
800 	in_pcbremwildcardhash_oncpu(tp->t_inpcb, &tcbinfo[cpu]);
801 
802 	nextcpu = cpu + 1;
803 	if (nextcpu < ncpus2)
804 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &nmsg->base.lmsg);
805 	else
806 		lwkt_replymsg(&nmsg->base.lmsg, 0);
807 }
808 
809 /*
810  * Close a TCP control block:
811  *	discard all space held by the tcp
812  *	discard internet protocol block
813  *	wake up any sleepers
814  */
815 struct tcpcb *
816 tcp_close(struct tcpcb *tp)
817 {
818 	struct tseg_qent *q;
819 	struct inpcb *inp = tp->t_inpcb;
820 	struct inpcb *inp_inh = NULL;
821 	struct tcpcb *tp_inh = NULL;
822 	struct socket *so = inp->inp_socket;
823 	struct rtentry *rt;
824 	boolean_t dosavessthresh;
825 #ifdef INET6
826 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
827 	boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
828 #else
829 	const boolean_t isipv6 = FALSE;
830 #endif
831 
832 	if (tp->t_flags & TF_LISTEN) {
833 		/*
834 		 * Pending socket/syncache inheritance
835 		 *
836 		 * If this is a listen(2) socket, find another listen(2)
837 		 * socket in the same local group, which could inherit
838 		 * the syncache and sockets pending on the completion
839 		 * and incompletion queues.
840 		 *
841 		 * NOTE:
842 		 * Currently the inheritance could only happen on the
843 		 * listen(2) sockets w/ SO_REUSEPORT set.
844 		 */
845 		KASSERT(&curthread->td_msgport == netisr_cpuport(0),
846 		    ("listen socket close not in netisr0"));
847 		inp_inh = in_pcblocalgroup_last(&tcbinfo[0], inp);
848 		if (inp_inh != NULL)
849 			tp_inh = intotcpcb(inp_inh);
850 	}
851 
852 	/*
853 	 * INP_WILDCARD_MP indicates that listen(2) has been called on
854 	 * this socket.  This implies:
855 	 * - A wildcard inp's hash is replicated for each protocol thread.
856 	 * - Syncache for this inp grows independently in each protocol
857 	 *   thread.
858 	 * - There is more than one cpu
859 	 *
860 	 * We have to chain a message to the rest of the protocol threads
861 	 * to cleanup the wildcard hash and the syncache.  The cleanup
862 	 * in the current protocol thread is defered till the end of this
863 	 * function.
864 	 *
865 	 * NOTE:
866 	 * After cleanup the inp's hash and syncache entries, this inp will
867 	 * no longer be available to the rest of the protocol threads, so we
868 	 * are safe to whack the inp in the following code.
869 	 */
870 	if (inp->inp_flags & INP_WILDCARD_MP) {
871 		struct netmsg_listen_detach nmsg;
872 
873 		KKASSERT(so->so_port == netisr_cpuport(0));
874 		KKASSERT(&curthread->td_msgport == netisr_cpuport(0));
875 		KKASSERT(inp->inp_pcbinfo == &tcbinfo[0]);
876 
877 		netmsg_init(&nmsg.base, NULL, &curthread->td_msgport,
878 			    MSGF_PRIORITY, tcp_listen_detach_handler);
879 		nmsg.nm_tp = tp;
880 		nmsg.nm_tp_inh = tp_inh;
881 		lwkt_domsg(netisr_cpuport(1), &nmsg.base.lmsg, 0);
882 
883 		inp->inp_flags &= ~INP_WILDCARD_MP;
884 	}
885 
886 	KKASSERT(tp->t_state != TCPS_TERMINATING);
887 	tp->t_state = TCPS_TERMINATING;
888 
889 	/*
890 	 * Make sure that all of our timers are stopped before we
891 	 * delete the PCB.  For listen TCP socket (tp->tt_msg == NULL),
892 	 * timers are never used.  If timer message is never created
893 	 * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
894 	 */
895 	if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
896 		tcp_callout_stop(tp, tp->tt_rexmt);
897 		tcp_callout_stop(tp, tp->tt_persist);
898 		tcp_callout_stop(tp, tp->tt_keep);
899 		tcp_callout_stop(tp, tp->tt_2msl);
900 		tcp_callout_stop(tp, tp->tt_delack);
901 	}
902 
903 	if (tp->t_flags & TF_ONOUTPUTQ) {
904 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
905 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
906 		tp->t_flags &= ~TF_ONOUTPUTQ;
907 	}
908 
909 	/*
910 	 * If we got enough samples through the srtt filter,
911 	 * save the rtt and rttvar in the routing entry.
912 	 * 'Enough' is arbitrarily defined as the 16 samples.
913 	 * 16 samples is enough for the srtt filter to converge
914 	 * to within 5% of the correct value; fewer samples and
915 	 * we could save a very bogus rtt.
916 	 *
917 	 * Don't update the default route's characteristics and don't
918 	 * update anything that the user "locked".
919 	 */
920 	if (tp->t_rttupdated >= 16) {
921 		u_long i = 0;
922 
923 		if (isipv6) {
924 			struct sockaddr_in6 *sin6;
925 
926 			if ((rt = inp->in6p_route.ro_rt) == NULL)
927 				goto no_valid_rt;
928 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
929 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
930 				goto no_valid_rt;
931 		} else
932 			if ((rt = inp->inp_route.ro_rt) == NULL ||
933 			    ((struct sockaddr_in *)rt_key(rt))->
934 			     sin_addr.s_addr == INADDR_ANY)
935 				goto no_valid_rt;
936 
937 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
938 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
939 			if (rt->rt_rmx.rmx_rtt && i)
940 				/*
941 				 * filter this update to half the old & half
942 				 * the new values, converting scale.
943 				 * See route.h and tcp_var.h for a
944 				 * description of the scaling constants.
945 				 */
946 				rt->rt_rmx.rmx_rtt =
947 				    (rt->rt_rmx.rmx_rtt + i) / 2;
948 			else
949 				rt->rt_rmx.rmx_rtt = i;
950 			tcpstat.tcps_cachedrtt++;
951 		}
952 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
953 			i = tp->t_rttvar *
954 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
955 			if (rt->rt_rmx.rmx_rttvar && i)
956 				rt->rt_rmx.rmx_rttvar =
957 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
958 			else
959 				rt->rt_rmx.rmx_rttvar = i;
960 			tcpstat.tcps_cachedrttvar++;
961 		}
962 		/*
963 		 * The old comment here said:
964 		 * update the pipelimit (ssthresh) if it has been updated
965 		 * already or if a pipesize was specified & the threshhold
966 		 * got below half the pipesize.  I.e., wait for bad news
967 		 * before we start updating, then update on both good
968 		 * and bad news.
969 		 *
970 		 * But we want to save the ssthresh even if no pipesize is
971 		 * specified explicitly in the route, because such
972 		 * connections still have an implicit pipesize specified
973 		 * by the global tcp_sendspace.  In the absence of a reliable
974 		 * way to calculate the pipesize, it will have to do.
975 		 */
976 		i = tp->snd_ssthresh;
977 		if (rt->rt_rmx.rmx_sendpipe != 0)
978 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
979 		else
980 			dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
981 		if (dosavessthresh ||
982 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
983 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
984 			/*
985 			 * convert the limit from user data bytes to
986 			 * packets then to packet data bytes.
987 			 */
988 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
989 			if (i < 2)
990 				i = 2;
991 			i *= tp->t_maxseg +
992 			     (isipv6 ?
993 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
994 			      sizeof(struct tcpiphdr));
995 			if (rt->rt_rmx.rmx_ssthresh)
996 				rt->rt_rmx.rmx_ssthresh =
997 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
998 			else
999 				rt->rt_rmx.rmx_ssthresh = i;
1000 			tcpstat.tcps_cachedssthresh++;
1001 		}
1002 	}
1003 
1004 no_valid_rt:
1005 	/* free the reassembly queue, if any */
1006 	while((q = TAILQ_FIRST(&tp->t_segq)) != NULL) {
1007 		TAILQ_REMOVE(&tp->t_segq, q, tqe_q);
1008 		m_freem(q->tqe_m);
1009 		kfree(q, M_TSEGQ);
1010 		atomic_add_int(&tcp_reass_qsize, -1);
1011 	}
1012 	/* throw away SACK blocks in scoreboard*/
1013 	if (TCP_DO_SACK(tp))
1014 		tcp_sack_destroy(&tp->scb);
1015 
1016 	inp->inp_ppcb = NULL;
1017 	soisdisconnected(so);
1018 	/* note: pcb detached later on */
1019 
1020 	tcp_destroy_timermsg(tp);
1021 	tcp_output_cancel(tp);
1022 
1023 	if (tp->t_flags & TF_LISTEN) {
1024 		syncache_destroy(tp, tp_inh);
1025 		if (inp_inh != NULL && inp_inh->inp_socket != NULL) {
1026 			/*
1027 			 * Pending sockets inheritance only needs
1028 			 * to be done once in the current thread,
1029 			 * i.e. netisr0.
1030 			 */
1031 			soinherit(so, inp_inh->inp_socket);
1032 		}
1033 	}
1034 
1035 	so_async_rcvd_drop(so);
1036 	/* Drop the reference for the asynchronized pru_rcvd */
1037 	sofree(so);
1038 
1039 	/*
1040 	 * NOTE:
1041 	 * pcbdetach removes any wildcard hash entry on the current CPU.
1042 	 */
1043 #ifdef INET6
1044 	if (isafinet6)
1045 		in6_pcbdetach(inp);
1046 	else
1047 #endif
1048 		in_pcbdetach(inp);
1049 
1050 	tcpstat.tcps_closed++;
1051 	return (NULL);
1052 }
1053 
1054 static __inline void
1055 tcp_drain_oncpu(struct inpcbhead *head)
1056 {
1057 	struct inpcb *marker;
1058 	struct inpcb *inpb;
1059 	struct tcpcb *tcpb;
1060 	struct tseg_qent *te;
1061 
1062 	/*
1063 	 * Allows us to block while running the list
1064 	 */
1065 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1066 	marker->inp_flags |= INP_PLACEMARKER;
1067 	LIST_INSERT_HEAD(head, marker, inp_list);
1068 
1069 	while ((inpb = LIST_NEXT(marker, inp_list)) != NULL) {
1070 		if ((inpb->inp_flags & INP_PLACEMARKER) == 0 &&
1071 		    (tcpb = intotcpcb(inpb)) != NULL &&
1072 		    (te = TAILQ_FIRST(&tcpb->t_segq)) != NULL) {
1073 			TAILQ_REMOVE(&tcpb->t_segq, te, tqe_q);
1074 			if (te->tqe_th->th_flags & TH_FIN)
1075 				tcpb->t_flags &= ~TF_QUEDFIN;
1076 			m_freem(te->tqe_m);
1077 			kfree(te, M_TSEGQ);
1078 			atomic_add_int(&tcp_reass_qsize, -1);
1079 			/* retry */
1080 		} else {
1081 			LIST_REMOVE(marker, inp_list);
1082 			LIST_INSERT_AFTER(inpb, marker, inp_list);
1083 		}
1084 	}
1085 	LIST_REMOVE(marker, inp_list);
1086 	kfree(marker, M_TEMP);
1087 }
1088 
1089 struct netmsg_tcp_drain {
1090 	struct netmsg_base	base;
1091 	struct inpcbhead	*nm_head;
1092 };
1093 
1094 static void
1095 tcp_drain_handler(netmsg_t msg)
1096 {
1097 	struct netmsg_tcp_drain *nm = (void *)msg;
1098 
1099 	tcp_drain_oncpu(nm->nm_head);
1100 	lwkt_replymsg(&nm->base.lmsg, 0);
1101 }
1102 
1103 void
1104 tcp_drain(void)
1105 {
1106 	int cpu;
1107 
1108 	if (!do_tcpdrain)
1109 		return;
1110 
1111 	/*
1112 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1113 	 * if there is one...
1114 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1115 	 *	reassembly queue should be flushed, but in a situation
1116 	 *	where we're really low on mbufs, this is potentially
1117 	 *	useful.
1118 	 */
1119 	for (cpu = 0; cpu < ncpus2; cpu++) {
1120 		struct netmsg_tcp_drain *nm;
1121 
1122 		if (cpu == mycpu->gd_cpuid) {
1123 			tcp_drain_oncpu(&tcbinfo[cpu].pcblisthead);
1124 		} else {
1125 			nm = kmalloc(sizeof(struct netmsg_tcp_drain),
1126 				     M_LWKTMSG, M_NOWAIT);
1127 			if (nm == NULL)
1128 				continue;
1129 			netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1130 				    0, tcp_drain_handler);
1131 			nm->nm_head = &tcbinfo[cpu].pcblisthead;
1132 			lwkt_sendmsg(netisr_cpuport(cpu), &nm->base.lmsg);
1133 		}
1134 	}
1135 }
1136 
1137 /*
1138  * Notify a tcp user of an asynchronous error;
1139  * store error as soft error, but wake up user
1140  * (for now, won't do anything until can select for soft error).
1141  *
1142  * Do not wake up user since there currently is no mechanism for
1143  * reporting soft errors (yet - a kqueue filter may be added).
1144  */
1145 static void
1146 tcp_notify(struct inpcb *inp, int error)
1147 {
1148 	struct tcpcb *tp = intotcpcb(inp);
1149 
1150 	/*
1151 	 * Ignore some errors if we are hooked up.
1152 	 * If connection hasn't completed, has retransmitted several times,
1153 	 * and receives a second error, give up now.  This is better
1154 	 * than waiting a long time to establish a connection that
1155 	 * can never complete.
1156 	 */
1157 	if (tp->t_state == TCPS_ESTABLISHED &&
1158 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1159 	      error == EHOSTDOWN)) {
1160 		return;
1161 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1162 	    tp->t_softerror)
1163 		tcp_drop(tp, error);
1164 	else
1165 		tp->t_softerror = error;
1166 #if 0
1167 	wakeup(&so->so_timeo);
1168 	sorwakeup(so);
1169 	sowwakeup(so);
1170 #endif
1171 }
1172 
1173 static int
1174 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1175 {
1176 	int error, i, n;
1177 	struct inpcb *marker;
1178 	struct inpcb *inp;
1179 	globaldata_t gd;
1180 	int origcpu, ccpu;
1181 
1182 	error = 0;
1183 	n = 0;
1184 
1185 	/*
1186 	 * The process of preparing the TCB list is too time-consuming and
1187 	 * resource-intensive to repeat twice on every request.
1188 	 */
1189 	if (req->oldptr == NULL) {
1190 		for (ccpu = 0; ccpu < ncpus; ++ccpu) {
1191 			gd = globaldata_find(ccpu);
1192 			n += tcbinfo[gd->gd_cpuid].ipi_count;
1193 		}
1194 		req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1195 		return (0);
1196 	}
1197 
1198 	if (req->newptr != NULL)
1199 		return (EPERM);
1200 
1201 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1202 	marker->inp_flags |= INP_PLACEMARKER;
1203 
1204 	/*
1205 	 * OK, now we're committed to doing something.  Run the inpcb list
1206 	 * for each cpu in the system and construct the output.  Use a
1207 	 * list placemarker to deal with list changes occuring during
1208 	 * copyout blockages (but otherwise depend on being on the correct
1209 	 * cpu to avoid races).
1210 	 */
1211 	origcpu = mycpu->gd_cpuid;
1212 	for (ccpu = 1; ccpu <= ncpus && error == 0; ++ccpu) {
1213 		globaldata_t rgd;
1214 		caddr_t inp_ppcb;
1215 		struct xtcpcb xt;
1216 		int cpu_id;
1217 
1218 		cpu_id = (origcpu + ccpu) % ncpus;
1219 		if ((smp_active_mask & CPUMASK(cpu_id)) == 0)
1220 			continue;
1221 		rgd = globaldata_find(cpu_id);
1222 		lwkt_setcpu_self(rgd);
1223 
1224 		n = tcbinfo[cpu_id].ipi_count;
1225 
1226 		LIST_INSERT_HEAD(&tcbinfo[cpu_id].pcblisthead, marker, inp_list);
1227 		i = 0;
1228 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1229 			/*
1230 			 * process a snapshot of pcbs, ignoring placemarkers
1231 			 * and using our own to allow SYSCTL_OUT to block.
1232 			 */
1233 			LIST_REMOVE(marker, inp_list);
1234 			LIST_INSERT_AFTER(inp, marker, inp_list);
1235 
1236 			if (inp->inp_flags & INP_PLACEMARKER)
1237 				continue;
1238 			if (prison_xinpcb(req->td, inp))
1239 				continue;
1240 
1241 			xt.xt_len = sizeof xt;
1242 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1243 			inp_ppcb = inp->inp_ppcb;
1244 			if (inp_ppcb != NULL)
1245 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1246 			else
1247 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1248 			if (inp->inp_socket)
1249 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1250 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1251 				break;
1252 			++i;
1253 		}
1254 		LIST_REMOVE(marker, inp_list);
1255 		if (error == 0 && i < n) {
1256 			bzero(&xt, sizeof xt);
1257 			xt.xt_len = sizeof xt;
1258 			while (i < n) {
1259 				error = SYSCTL_OUT(req, &xt, sizeof xt);
1260 				if (error)
1261 					break;
1262 				++i;
1263 			}
1264 		}
1265 	}
1266 
1267 	/*
1268 	 * Make sure we are on the same cpu we were on originally, since
1269 	 * higher level callers expect this.  Also don't pollute caches with
1270 	 * migrated userland data by (eventually) returning to userland
1271 	 * on a different cpu.
1272 	 */
1273 	lwkt_setcpu_self(globaldata_find(origcpu));
1274 	kfree(marker, M_TEMP);
1275 	return (error);
1276 }
1277 
1278 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1279 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1280 
1281 static int
1282 tcp_getcred(SYSCTL_HANDLER_ARGS)
1283 {
1284 	struct sockaddr_in addrs[2];
1285 	struct inpcb *inp;
1286 	int cpu;
1287 	int error;
1288 
1289 	error = priv_check(req->td, PRIV_ROOT);
1290 	if (error != 0)
1291 		return (error);
1292 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1293 	if (error != 0)
1294 		return (error);
1295 	crit_enter();
1296 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1297 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1298 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1299 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1300 	if (inp == NULL || inp->inp_socket == NULL) {
1301 		error = ENOENT;
1302 		goto out;
1303 	}
1304 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1305 out:
1306 	crit_exit();
1307 	return (error);
1308 }
1309 
1310 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1311     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1312 
1313 #ifdef INET6
1314 static int
1315 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1316 {
1317 	struct sockaddr_in6 addrs[2];
1318 	struct inpcb *inp;
1319 	int error;
1320 	boolean_t mapped = FALSE;
1321 
1322 	error = priv_check(req->td, PRIV_ROOT);
1323 	if (error != 0)
1324 		return (error);
1325 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1326 	if (error != 0)
1327 		return (error);
1328 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1329 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1330 			mapped = TRUE;
1331 		else
1332 			return (EINVAL);
1333 	}
1334 	crit_enter();
1335 	if (mapped) {
1336 		inp = in_pcblookup_hash(&tcbinfo[0],
1337 		    *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1338 		    addrs[1].sin6_port,
1339 		    *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1340 		    addrs[0].sin6_port,
1341 		    0, NULL);
1342 	} else {
1343 		inp = in6_pcblookup_hash(&tcbinfo[0],
1344 		    &addrs[1].sin6_addr, addrs[1].sin6_port,
1345 		    &addrs[0].sin6_addr, addrs[0].sin6_port,
1346 		    0, NULL);
1347 	}
1348 	if (inp == NULL || inp->inp_socket == NULL) {
1349 		error = ENOENT;
1350 		goto out;
1351 	}
1352 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1353 out:
1354 	crit_exit();
1355 	return (error);
1356 }
1357 
1358 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1359 	    0, 0,
1360 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1361 #endif
1362 
1363 struct netmsg_tcp_notify {
1364 	struct netmsg_base base;
1365 	void		(*nm_notify)(struct inpcb *, int);
1366 	struct in_addr	nm_faddr;
1367 	int		nm_arg;
1368 };
1369 
1370 static void
1371 tcp_notifyall_oncpu(netmsg_t msg)
1372 {
1373 	struct netmsg_tcp_notify *nm = (struct netmsg_tcp_notify *)msg;
1374 	int nextcpu;
1375 
1376 	in_pcbnotifyall(&tcbinfo[mycpuid].pcblisthead, nm->nm_faddr,
1377 			nm->nm_arg, nm->nm_notify);
1378 
1379 	nextcpu = mycpuid + 1;
1380 	if (nextcpu < ncpus2)
1381 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &nm->base.lmsg);
1382 	else
1383 		lwkt_replymsg(&nm->base.lmsg, 0);
1384 }
1385 
1386 void
1387 tcp_ctlinput(netmsg_t msg)
1388 {
1389 	int cmd = msg->ctlinput.nm_cmd;
1390 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1391 	struct ip *ip = msg->ctlinput.nm_extra;
1392 	struct tcphdr *th;
1393 	struct in_addr faddr;
1394 	struct inpcb *inp;
1395 	struct tcpcb *tp;
1396 	void (*notify)(struct inpcb *, int) = tcp_notify;
1397 	tcp_seq icmpseq;
1398 	int arg, cpu;
1399 
1400 	if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1401 		goto done;
1402 	}
1403 
1404 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1405 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1406 		goto done;
1407 
1408 	arg = inetctlerrmap[cmd];
1409 	if (cmd == PRC_QUENCH) {
1410 		notify = tcp_quench;
1411 	} else if (icmp_may_rst &&
1412 		   (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1413 		    cmd == PRC_UNREACH_PORT ||
1414 		    cmd == PRC_TIMXCEED_INTRANS) &&
1415 		   ip != NULL) {
1416 		notify = tcp_drop_syn_sent;
1417 	} else if (cmd == PRC_MSGSIZE) {
1418 		struct icmp *icmp = (struct icmp *)
1419 		    ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1420 
1421 		arg = ntohs(icmp->icmp_nextmtu);
1422 		notify = tcp_mtudisc;
1423 	} else if (PRC_IS_REDIRECT(cmd)) {
1424 		ip = NULL;
1425 		notify = in_rtchange;
1426 	} else if (cmd == PRC_HOSTDEAD) {
1427 		ip = NULL;
1428 	}
1429 
1430 	if (ip != NULL) {
1431 		crit_enter();
1432 		th = (struct tcphdr *)((caddr_t)ip +
1433 				       (IP_VHL_HL(ip->ip_vhl) << 2));
1434 		cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
1435 				  ip->ip_src.s_addr, th->th_sport);
1436 		inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
1437 					ip->ip_src, th->th_sport, 0, NULL);
1438 		if ((inp != NULL) && (inp->inp_socket != NULL)) {
1439 			icmpseq = htonl(th->th_seq);
1440 			tp = intotcpcb(inp);
1441 			if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1442 			    SEQ_LT(icmpseq, tp->snd_max))
1443 				(*notify)(inp, arg);
1444 		} else {
1445 			struct in_conninfo inc;
1446 
1447 			inc.inc_fport = th->th_dport;
1448 			inc.inc_lport = th->th_sport;
1449 			inc.inc_faddr = faddr;
1450 			inc.inc_laddr = ip->ip_src;
1451 #ifdef INET6
1452 			inc.inc_isipv6 = 0;
1453 #endif
1454 			syncache_unreach(&inc, th);
1455 		}
1456 		crit_exit();
1457 	} else {
1458 		struct netmsg_tcp_notify *nm;
1459 
1460 		KKASSERT(&curthread->td_msgport == netisr_cpuport(0));
1461 		nm = kmalloc(sizeof(*nm), M_LWKTMSG, M_INTWAIT);
1462 		netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1463 			    0, tcp_notifyall_oncpu);
1464 		nm->nm_faddr = faddr;
1465 		nm->nm_arg = arg;
1466 		nm->nm_notify = notify;
1467 
1468 		lwkt_sendmsg(netisr_cpuport(0), &nm->base.lmsg);
1469 	}
1470 done:
1471 	lwkt_replymsg(&msg->lmsg, 0);
1472 }
1473 
1474 #ifdef INET6
1475 
1476 void
1477 tcp6_ctlinput(netmsg_t msg)
1478 {
1479 	int cmd = msg->ctlinput.nm_cmd;
1480 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1481 	void *d = msg->ctlinput.nm_extra;
1482 	struct tcphdr th;
1483 	void (*notify) (struct inpcb *, int) = tcp_notify;
1484 	struct ip6_hdr *ip6;
1485 	struct mbuf *m;
1486 	struct ip6ctlparam *ip6cp = NULL;
1487 	const struct sockaddr_in6 *sa6_src = NULL;
1488 	int off;
1489 	struct tcp_portonly {
1490 		u_int16_t th_sport;
1491 		u_int16_t th_dport;
1492 	} *thp;
1493 	int arg;
1494 
1495 	if (sa->sa_family != AF_INET6 ||
1496 	    sa->sa_len != sizeof(struct sockaddr_in6)) {
1497 		goto out;
1498 	}
1499 
1500 	arg = 0;
1501 	if (cmd == PRC_QUENCH)
1502 		notify = tcp_quench;
1503 	else if (cmd == PRC_MSGSIZE) {
1504 		struct ip6ctlparam *ip6cp = d;
1505 		struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1506 
1507 		arg = ntohl(icmp6->icmp6_mtu);
1508 		notify = tcp_mtudisc;
1509 	} else if (!PRC_IS_REDIRECT(cmd) &&
1510 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1511 		goto out;
1512 	}
1513 
1514 	/* if the parameter is from icmp6, decode it. */
1515 	if (d != NULL) {
1516 		ip6cp = (struct ip6ctlparam *)d;
1517 		m = ip6cp->ip6c_m;
1518 		ip6 = ip6cp->ip6c_ip6;
1519 		off = ip6cp->ip6c_off;
1520 		sa6_src = ip6cp->ip6c_src;
1521 	} else {
1522 		m = NULL;
1523 		ip6 = NULL;
1524 		off = 0;	/* fool gcc */
1525 		sa6_src = &sa6_any;
1526 	}
1527 
1528 	if (ip6 != NULL) {
1529 		struct in_conninfo inc;
1530 		/*
1531 		 * XXX: We assume that when IPV6 is non NULL,
1532 		 * M and OFF are valid.
1533 		 */
1534 
1535 		/* check if we can safely examine src and dst ports */
1536 		if (m->m_pkthdr.len < off + sizeof *thp)
1537 			goto out;
1538 
1539 		bzero(&th, sizeof th);
1540 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1541 
1542 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, th.th_dport,
1543 		    (struct sockaddr *)ip6cp->ip6c_src,
1544 		    th.th_sport, cmd, arg, notify);
1545 
1546 		inc.inc_fport = th.th_dport;
1547 		inc.inc_lport = th.th_sport;
1548 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1549 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1550 		inc.inc_isipv6 = 1;
1551 		syncache_unreach(&inc, &th);
1552 	} else {
1553 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, 0,
1554 		    (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1555 	}
1556 out:
1557 	lwkt_replymsg(&msg->ctlinput.base.lmsg, 0);
1558 }
1559 
1560 #endif
1561 
1562 /*
1563  * Following is where TCP initial sequence number generation occurs.
1564  *
1565  * There are two places where we must use initial sequence numbers:
1566  * 1.  In SYN-ACK packets.
1567  * 2.  In SYN packets.
1568  *
1569  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1570  * tcp_syncache.c for details.
1571  *
1572  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1573  * depends on this property.  In addition, these ISNs should be
1574  * unguessable so as to prevent connection hijacking.  To satisfy
1575  * the requirements of this situation, the algorithm outlined in
1576  * RFC 1948 is used to generate sequence numbers.
1577  *
1578  * Implementation details:
1579  *
1580  * Time is based off the system timer, and is corrected so that it
1581  * increases by one megabyte per second.  This allows for proper
1582  * recycling on high speed LANs while still leaving over an hour
1583  * before rollover.
1584  *
1585  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1586  * between seeding of isn_secret.  This is normally set to zero,
1587  * as reseeding should not be necessary.
1588  *
1589  */
1590 
1591 #define	ISN_BYTES_PER_SECOND 1048576
1592 
1593 u_char isn_secret[32];
1594 int isn_last_reseed;
1595 MD5_CTX isn_ctx;
1596 
1597 tcp_seq
1598 tcp_new_isn(struct tcpcb *tp)
1599 {
1600 	u_int32_t md5_buffer[4];
1601 	tcp_seq new_isn;
1602 
1603 	/* Seed if this is the first use, reseed if requested. */
1604 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1605 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1606 		< (u_int)ticks))) {
1607 		read_random_unlimited(&isn_secret, sizeof isn_secret);
1608 		isn_last_reseed = ticks;
1609 	}
1610 
1611 	/* Compute the md5 hash and return the ISN. */
1612 	MD5Init(&isn_ctx);
1613 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1614 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1615 #ifdef INET6
1616 	if (tp->t_inpcb->inp_vflag & INP_IPV6) {
1617 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1618 			  sizeof(struct in6_addr));
1619 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1620 			  sizeof(struct in6_addr));
1621 	} else
1622 #endif
1623 	{
1624 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1625 			  sizeof(struct in_addr));
1626 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1627 			  sizeof(struct in_addr));
1628 	}
1629 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1630 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1631 	new_isn = (tcp_seq) md5_buffer[0];
1632 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1633 	return (new_isn);
1634 }
1635 
1636 /*
1637  * When a source quench is received, close congestion window
1638  * to one segment.  We will gradually open it again as we proceed.
1639  */
1640 void
1641 tcp_quench(struct inpcb *inp, int error)
1642 {
1643 	struct tcpcb *tp = intotcpcb(inp);
1644 
1645 	if (tp != NULL) {
1646 		tp->snd_cwnd = tp->t_maxseg;
1647 		tp->snd_wacked = 0;
1648 	}
1649 }
1650 
1651 /*
1652  * When a specific ICMP unreachable message is received and the
1653  * connection state is SYN-SENT, drop the connection.  This behavior
1654  * is controlled by the icmp_may_rst sysctl.
1655  */
1656 void
1657 tcp_drop_syn_sent(struct inpcb *inp, int error)
1658 {
1659 	struct tcpcb *tp = intotcpcb(inp);
1660 
1661 	if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
1662 		tcp_drop(tp, error);
1663 }
1664 
1665 /*
1666  * When a `need fragmentation' ICMP is received, update our idea of the MSS
1667  * based on the new value in the route.  Also nudge TCP to send something,
1668  * since we know the packet we just sent was dropped.
1669  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1670  */
1671 void
1672 tcp_mtudisc(struct inpcb *inp, int mtu)
1673 {
1674 	struct tcpcb *tp = intotcpcb(inp);
1675 	struct rtentry *rt;
1676 	struct socket *so = inp->inp_socket;
1677 	int maxopd, mss;
1678 #ifdef INET6
1679 	boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1680 #else
1681 	const boolean_t isipv6 = FALSE;
1682 #endif
1683 
1684 	if (tp == NULL)
1685 		return;
1686 
1687 	/*
1688 	 * If no MTU is provided in the ICMP message, use the
1689 	 * next lower likely value, as specified in RFC 1191.
1690 	 */
1691 	if (mtu == 0) {
1692 		int oldmtu;
1693 
1694 		oldmtu = tp->t_maxopd +
1695 		    (isipv6 ?
1696 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1697 		     sizeof(struct tcpiphdr));
1698 		mtu = ip_next_mtu(oldmtu, 0);
1699 	}
1700 
1701 	if (isipv6)
1702 		rt = tcp_rtlookup6(&inp->inp_inc);
1703 	else
1704 		rt = tcp_rtlookup(&inp->inp_inc);
1705 	if (rt != NULL) {
1706 		if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1707 			mtu = rt->rt_rmx.rmx_mtu;
1708 
1709 		maxopd = mtu -
1710 		    (isipv6 ?
1711 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1712 		     sizeof(struct tcpiphdr));
1713 
1714 		/*
1715 		 * XXX - The following conditional probably violates the TCP
1716 		 * spec.  The problem is that, since we don't know the
1717 		 * other end's MSS, we are supposed to use a conservative
1718 		 * default.  But, if we do that, then MTU discovery will
1719 		 * never actually take place, because the conservative
1720 		 * default is much less than the MTUs typically seen
1721 		 * on the Internet today.  For the moment, we'll sweep
1722 		 * this under the carpet.
1723 		 *
1724 		 * The conservative default might not actually be a problem
1725 		 * if the only case this occurs is when sending an initial
1726 		 * SYN with options and data to a host we've never talked
1727 		 * to before.  Then, they will reply with an MSS value which
1728 		 * will get recorded and the new parameters should get
1729 		 * recomputed.  For Further Study.
1730 		 */
1731 		if (rt->rt_rmx.rmx_mssopt  && rt->rt_rmx.rmx_mssopt < maxopd)
1732 			maxopd = rt->rt_rmx.rmx_mssopt;
1733 	} else
1734 		maxopd = mtu -
1735 		    (isipv6 ?
1736 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1737 		     sizeof(struct tcpiphdr));
1738 
1739 	if (tp->t_maxopd <= maxopd)
1740 		return;
1741 	tp->t_maxopd = maxopd;
1742 
1743 	mss = maxopd;
1744 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1745 			   (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1746 		mss -= TCPOLEN_TSTAMP_APPA;
1747 
1748 	/* round down to multiple of MCLBYTES */
1749 #if	(MCLBYTES & (MCLBYTES - 1)) == 0    /* test if MCLBYTES power of 2 */
1750 	if (mss > MCLBYTES)
1751 		mss &= ~(MCLBYTES - 1);
1752 #else
1753 	if (mss > MCLBYTES)
1754 		mss = (mss / MCLBYTES) * MCLBYTES;
1755 #endif
1756 
1757 	if (so->so_snd.ssb_hiwat < mss)
1758 		mss = so->so_snd.ssb_hiwat;
1759 
1760 	tp->t_maxseg = mss;
1761 	tp->t_rtttime = 0;
1762 	tp->snd_nxt = tp->snd_una;
1763 	tcp_output(tp);
1764 	tcpstat.tcps_mturesent++;
1765 }
1766 
1767 /*
1768  * Look-up the routing entry to the peer of this inpcb.  If no route
1769  * is found and it cannot be allocated the return NULL.  This routine
1770  * is called by TCP routines that access the rmx structure and by tcp_mss
1771  * to get the interface MTU.
1772  */
1773 struct rtentry *
1774 tcp_rtlookup(struct in_conninfo *inc)
1775 {
1776 	struct route *ro = &inc->inc_route;
1777 
1778 	if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1779 		/* No route yet, so try to acquire one */
1780 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1781 			/*
1782 			 * unused portions of the structure MUST be zero'd
1783 			 * out because rtalloc() treats it as opaque data
1784 			 */
1785 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1786 			ro->ro_dst.sa_family = AF_INET;
1787 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1788 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1789 			    inc->inc_faddr;
1790 			rtalloc(ro);
1791 		}
1792 	}
1793 	return (ro->ro_rt);
1794 }
1795 
1796 #ifdef INET6
1797 struct rtentry *
1798 tcp_rtlookup6(struct in_conninfo *inc)
1799 {
1800 	struct route_in6 *ro6 = &inc->inc6_route;
1801 
1802 	if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1803 		/* No route yet, so try to acquire one */
1804 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1805 			/*
1806 			 * unused portions of the structure MUST be zero'd
1807 			 * out because rtalloc() treats it as opaque data
1808 			 */
1809 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1810 			ro6->ro_dst.sin6_family = AF_INET6;
1811 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1812 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1813 			rtalloc((struct route *)ro6);
1814 		}
1815 	}
1816 	return (ro6->ro_rt);
1817 }
1818 #endif
1819 
1820 #ifdef IPSEC
1821 /* compute ESP/AH header size for TCP, including outer IP header. */
1822 size_t
1823 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1824 {
1825 	struct inpcb *inp;
1826 	struct mbuf *m;
1827 	size_t hdrsiz;
1828 	struct ip *ip;
1829 	struct tcphdr *th;
1830 
1831 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1832 		return (0);
1833 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1834 	if (!m)
1835 		return (0);
1836 
1837 #ifdef INET6
1838 	if (inp->inp_vflag & INP_IPV6) {
1839 		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1840 
1841 		th = (struct tcphdr *)(ip6 + 1);
1842 		m->m_pkthdr.len = m->m_len =
1843 		    sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1844 		tcp_fillheaders(tp, ip6, th, FALSE);
1845 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1846 	} else
1847 #endif
1848 	{
1849 		ip = mtod(m, struct ip *);
1850 		th = (struct tcphdr *)(ip + 1);
1851 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1852 		tcp_fillheaders(tp, ip, th, FALSE);
1853 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1854 	}
1855 
1856 	m_free(m);
1857 	return (hdrsiz);
1858 }
1859 #endif
1860 
1861 /*
1862  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1863  *
1864  * This code attempts to calculate the bandwidth-delay product as a
1865  * means of determining the optimal window size to maximize bandwidth,
1866  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1867  * routers.  This code also does a fairly good job keeping RTTs in check
1868  * across slow links like modems.  We implement an algorithm which is very
1869  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1870  * transmitter side of a TCP connection and so only effects the transmit
1871  * side of the connection.
1872  *
1873  * BACKGROUND:  TCP makes no provision for the management of buffer space
1874  * at the end points or at the intermediate routers and switches.  A TCP
1875  * stream, whether using NewReno or not, will eventually buffer as
1876  * many packets as it is able and the only reason this typically works is
1877  * due to the fairly small default buffers made available for a connection
1878  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1879  * scaling it is now fairly easy for even a single TCP connection to blow-out
1880  * all available buffer space not only on the local interface, but on
1881  * intermediate routers and switches as well.  NewReno makes a misguided
1882  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1883  * then backing off, then steadily increasing the window again until another
1884  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1885  * is only made worse as network loads increase and the idea of intentionally
1886  * blowing out network buffers is, frankly, a terrible way to manage network
1887  * resources.
1888  *
1889  * It is far better to limit the transmit window prior to the failure
1890  * condition being achieved.  There are two general ways to do this:  First
1891  * you can 'scan' through different transmit window sizes and locate the
1892  * point where the RTT stops increasing, indicating that you have filled the
1893  * pipe, then scan backwards until you note that RTT stops decreasing, then
1894  * repeat ad-infinitum.  This method works in principle but has severe
1895  * implementation issues due to RTT variances, timer granularity, and
1896  * instability in the algorithm which can lead to many false positives and
1897  * create oscillations as well as interact badly with other TCP streams
1898  * implementing the same algorithm.
1899  *
1900  * The second method is to limit the window to the bandwidth delay product
1901  * of the link.  This is the method we implement.  RTT variances and our
1902  * own manipulation of the congestion window, bwnd, can potentially
1903  * destabilize the algorithm.  For this reason we have to stabilize the
1904  * elements used to calculate the window.  We do this by using the minimum
1905  * observed RTT, the long term average of the observed bandwidth, and
1906  * by adding two segments worth of slop.  It isn't perfect but it is able
1907  * to react to changing conditions and gives us a very stable basis on
1908  * which to extend the algorithm.
1909  */
1910 void
1911 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1912 {
1913 	u_long bw;
1914 	u_long bwnd;
1915 	int save_ticks;
1916 	int delta_ticks;
1917 
1918 	/*
1919 	 * If inflight_enable is disabled in the middle of a tcp connection,
1920 	 * make sure snd_bwnd is effectively disabled.
1921 	 */
1922 	if (!tcp_inflight_enable) {
1923 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1924 		tp->snd_bandwidth = 0;
1925 		return;
1926 	}
1927 
1928 	/*
1929 	 * Validate the delta time.  If a connection is new or has been idle
1930 	 * a long time we have to reset the bandwidth calculator.
1931 	 */
1932 	save_ticks = ticks;
1933 	delta_ticks = save_ticks - tp->t_bw_rtttime;
1934 	if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1935 		tp->t_bw_rtttime = ticks;
1936 		tp->t_bw_rtseq = ack_seq;
1937 		if (tp->snd_bandwidth == 0)
1938 			tp->snd_bandwidth = tcp_inflight_min;
1939 		return;
1940 	}
1941 	if (delta_ticks == 0)
1942 		return;
1943 
1944 	/*
1945 	 * Sanity check, plus ignore pure window update acks.
1946 	 */
1947 	if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1948 		return;
1949 
1950 	/*
1951 	 * Figure out the bandwidth.  Due to the tick granularity this
1952 	 * is a very rough number and it MUST be averaged over a fairly
1953 	 * long period of time.  XXX we need to take into account a link
1954 	 * that is not using all available bandwidth, but for now our
1955 	 * slop will ramp us up if this case occurs and the bandwidth later
1956 	 * increases.
1957 	 */
1958 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
1959 	tp->t_bw_rtttime = save_ticks;
1960 	tp->t_bw_rtseq = ack_seq;
1961 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1962 
1963 	tp->snd_bandwidth = bw;
1964 
1965 	/*
1966 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1967 	 * segments.  The additional slop puts us squarely in the sweet
1968 	 * spot and also handles the bandwidth run-up case.  Without the
1969 	 * slop we could be locking ourselves into a lower bandwidth.
1970 	 *
1971 	 * Situations Handled:
1972 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1973 	 *	    high speed LANs, allowing larger TCP buffers to be
1974 	 *	    specified, and also does a good job preventing
1975 	 *	    over-queueing of packets over choke points like modems
1976 	 *	    (at least for the transmit side).
1977 	 *
1978 	 *	(2) Is able to handle changing network loads (bandwidth
1979 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1980 	 *	    increases).
1981 	 *
1982 	 *	(3) Theoretically should stabilize in the face of multiple
1983 	 *	    connections implementing the same algorithm (this may need
1984 	 *	    a little work).
1985 	 *
1986 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1987 	 *	    be adjusted with a sysctl but typically only needs to be on
1988 	 *	    very slow connections.  A value no smaller then 5 should
1989 	 *	    be used, but only reduce this default if you have no other
1990 	 *	    choice.
1991 	 */
1992 
1993 #define	USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1994 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
1995 	       tcp_inflight_stab * (int)tp->t_maxseg / 10;
1996 #undef USERTT
1997 
1998 	if (tcp_inflight_debug > 0) {
1999 		static int ltime;
2000 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2001 			ltime = ticks;
2002 			kprintf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
2003 				tp, bw, tp->t_rttbest, tp->t_srtt, bwnd);
2004 		}
2005 	}
2006 	if ((long)bwnd < tcp_inflight_min)
2007 		bwnd = tcp_inflight_min;
2008 	if (bwnd > tcp_inflight_max)
2009 		bwnd = tcp_inflight_max;
2010 	if ((long)bwnd < tp->t_maxseg * 2)
2011 		bwnd = tp->t_maxseg * 2;
2012 	tp->snd_bwnd = bwnd;
2013 }
2014 
2015 static void
2016 tcp_rmx_iwsegs(struct tcpcb *tp, u_long *maxsegs, u_long *capsegs)
2017 {
2018 	struct rtentry *rt;
2019 	struct inpcb *inp = tp->t_inpcb;
2020 #ifdef INET6
2021 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
2022 #else
2023 	const boolean_t isipv6 = FALSE;
2024 #endif
2025 
2026 	/* XXX */
2027 	if (tcp_iw_maxsegs < TCP_IW_MAXSEGS_DFLT)
2028 		tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
2029 	if (tcp_iw_capsegs < TCP_IW_CAPSEGS_DFLT)
2030 		tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
2031 
2032 	if (isipv6)
2033 		rt = tcp_rtlookup6(&inp->inp_inc);
2034 	else
2035 		rt = tcp_rtlookup(&inp->inp_inc);
2036 	if (rt == NULL ||
2037 	    rt->rt_rmx.rmx_iwmaxsegs < TCP_IW_MAXSEGS_DFLT ||
2038 	    rt->rt_rmx.rmx_iwcapsegs < TCP_IW_CAPSEGS_DFLT) {
2039 		*maxsegs = tcp_iw_maxsegs;
2040 		*capsegs = tcp_iw_capsegs;
2041 		return;
2042 	}
2043 	*maxsegs = rt->rt_rmx.rmx_iwmaxsegs;
2044 	*capsegs = rt->rt_rmx.rmx_iwcapsegs;
2045 }
2046 
2047 u_long
2048 tcp_initial_window(struct tcpcb *tp)
2049 {
2050 	if (tcp_do_rfc3390) {
2051 		/*
2052 		 * RFC3390:
2053 		 * "If the SYN or SYN/ACK is lost, the initial window
2054 		 *  used by a sender after a correctly transmitted SYN
2055 		 *  MUST be one segment consisting of MSS bytes."
2056 		 *
2057 		 * However, we do something a little bit more aggressive
2058 		 * then RFC3390 here:
2059 		 * - Only if time spent in the SYN or SYN|ACK retransmition
2060 		 *   >= 3 seconds, the IW is reduced.  We do this mainly
2061 		 *   because when RFC3390 is published, the initial RTO is
2062 		 *   still 3 seconds (the threshold we test here), while
2063 		 *   after RFC6298, the initial RTO is 1 second.  This
2064 		 *   behaviour probably still falls within the spirit of
2065 		 *   RFC3390.
2066 		 * - When IW is reduced, 2*MSS is used instead of 1*MSS.
2067 		 *   Mainly to avoid sender and receiver deadlock until
2068 		 *   delayed ACK timer expires.  And even RFC2581 does not
2069 		 *   try to reduce IW upon SYN or SYN|ACK retransmition
2070 		 *   timeout.
2071 		 *
2072 		 * See also:
2073 		 * http://tools.ietf.org/html/draft-ietf-tcpm-initcwnd-03
2074 		 */
2075 		if (tp->t_rxtsyn >= TCPTV_RTOBASE3) {
2076 			return (2 * tp->t_maxseg);
2077 		} else {
2078 			u_long maxsegs, capsegs;
2079 
2080 			tcp_rmx_iwsegs(tp, &maxsegs, &capsegs);
2081 			return min(maxsegs * tp->t_maxseg,
2082 				   max(2 * tp->t_maxseg, capsegs * 1460));
2083 		}
2084 	} else {
2085 		/*
2086 		 * Even RFC2581 (back to 1999) allows 2*SMSS IW.
2087 		 *
2088 		 * Mainly to avoid sender and receiver deadlock
2089 		 * until delayed ACK timer expires.
2090 		 */
2091 		return (2 * tp->t_maxseg);
2092 	}
2093 }
2094 
2095 #ifdef TCP_SIGNATURE
2096 /*
2097  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2098  *
2099  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2100  * When called from tcp_input(), we can be sure that th_sum has been
2101  * zeroed out and verified already.
2102  *
2103  * Return 0 if successful, otherwise return -1.
2104  *
2105  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2106  * search with the destination IP address, and a 'magic SPI' to be
2107  * determined by the application. This is hardcoded elsewhere to 1179
2108  * right now. Another branch of this code exists which uses the SPD to
2109  * specify per-application flows but it is unstable.
2110  */
2111 int
2112 tcpsignature_compute(
2113 	struct mbuf *m,		/* mbuf chain */
2114 	int len,		/* length of TCP data */
2115 	int optlen,		/* length of TCP options */
2116 	u_char *buf,		/* storage for MD5 digest */
2117 	u_int direction)	/* direction of flow */
2118 {
2119 	struct ippseudo ippseudo;
2120 	MD5_CTX ctx;
2121 	int doff;
2122 	struct ip *ip;
2123 	struct ipovly *ipovly;
2124 	struct secasvar *sav;
2125 	struct tcphdr *th;
2126 #ifdef INET6
2127 	struct ip6_hdr *ip6;
2128 	struct in6_addr in6;
2129 	uint32_t plen;
2130 	uint16_t nhdr;
2131 #endif /* INET6 */
2132 	u_short savecsum;
2133 
2134 	KASSERT(m != NULL, ("passed NULL mbuf. Game over."));
2135 	KASSERT(buf != NULL, ("passed NULL storage pointer for MD5 signature"));
2136 	/*
2137 	 * Extract the destination from the IP header in the mbuf.
2138 	 */
2139 	ip = mtod(m, struct ip *);
2140 #ifdef INET6
2141 	ip6 = NULL;     /* Make the compiler happy. */
2142 #endif /* INET6 */
2143 	/*
2144 	 * Look up an SADB entry which matches the address found in
2145 	 * the segment.
2146 	 */
2147 	switch (IP_VHL_V(ip->ip_vhl)) {
2148 	case IPVERSION:
2149 		sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src, (caddr_t)&ip->ip_dst,
2150 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2151 		break;
2152 #ifdef INET6
2153 	case (IPV6_VERSION >> 4):
2154 		ip6 = mtod(m, struct ip6_hdr *);
2155 		sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src, (caddr_t)&ip6->ip6_dst,
2156 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2157 		break;
2158 #endif /* INET6 */
2159 	default:
2160 		return (EINVAL);
2161 		/* NOTREACHED */
2162 		break;
2163 	}
2164 	if (sav == NULL) {
2165 		kprintf("%s: SADB lookup failed\n", __func__);
2166 		return (EINVAL);
2167 	}
2168 	MD5Init(&ctx);
2169 
2170 	/*
2171 	 * Step 1: Update MD5 hash with IP pseudo-header.
2172 	 *
2173 	 * XXX The ippseudo header MUST be digested in network byte order,
2174 	 * or else we'll fail the regression test. Assume all fields we've
2175 	 * been doing arithmetic on have been in host byte order.
2176 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2177 	 * tcp_output(), the underlying ip_len member has not yet been set.
2178 	 */
2179 	switch (IP_VHL_V(ip->ip_vhl)) {
2180 	case IPVERSION:
2181 		ipovly = (struct ipovly *)ip;
2182 		ippseudo.ippseudo_src = ipovly->ih_src;
2183 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2184 		ippseudo.ippseudo_pad = 0;
2185 		ippseudo.ippseudo_p = IPPROTO_TCP;
2186 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2187 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2188 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2189 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2190 		break;
2191 #ifdef INET6
2192 	/*
2193 	 * RFC 2385, 2.0  Proposal
2194 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2195 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2196 	 * extended next header value (to form 32 bits), and 32-bit segment
2197 	 * length.
2198 	 * Note: Upper-Layer Packet Length comes before Next Header.
2199 	 */
2200 	case (IPV6_VERSION >> 4):
2201 		in6 = ip6->ip6_src;
2202 		in6_clearscope(&in6);
2203 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2204 		in6 = ip6->ip6_dst;
2205 		in6_clearscope(&in6);
2206 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2207 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2208 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2209 		nhdr = 0;
2210 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2211 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2212 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2213 		nhdr = IPPROTO_TCP;
2214 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2215 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2216 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2217 		break;
2218 #endif /* INET6 */
2219 	default:
2220 		return (EINVAL);
2221 		/* NOTREACHED */
2222 		break;
2223 	}
2224 	/*
2225 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2226 	 * The TCP checksum must be set to zero.
2227 	 */
2228 	savecsum = th->th_sum;
2229 	th->th_sum = 0;
2230 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2231 	th->th_sum = savecsum;
2232 	/*
2233 	 * Step 3: Update MD5 hash with TCP segment data.
2234 	 *         Use m_apply() to avoid an early m_pullup().
2235 	 */
2236 	if (len > 0)
2237 		m_apply(m, doff, len, tcpsignature_apply, &ctx);
2238 	/*
2239 	 * Step 4: Update MD5 hash with shared secret.
2240 	 */
2241 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2242 	MD5Final(buf, &ctx);
2243 	key_sa_recordxfer(sav, m);
2244 	key_freesav(sav);
2245 	return (0);
2246 }
2247 
2248 int
2249 tcpsignature_apply(void *fstate, void *data, unsigned int len)
2250 {
2251 
2252 	MD5Update((MD5_CTX *)fstate, (unsigned char *)data, len);
2253 	return (0);
2254 }
2255 #endif /* TCP_SIGNATURE */
2256