xref: /dragonfly/sys/netinet/tcp_subr.c (revision 279dd846)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. Neither the name of the University nor the names of its contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  *
62  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
63  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
64  */
65 
66 #include "opt_compat.h"
67 #include "opt_inet.h"
68 #include "opt_inet6.h"
69 #include "opt_ipsec.h"
70 #include "opt_tcpdebug.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/callout.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/malloc.h>
78 #include <sys/mpipe.h>
79 #include <sys/mbuf.h>
80 #ifdef INET6
81 #include <sys/domain.h>
82 #endif
83 #include <sys/proc.h>
84 #include <sys/priv.h>
85 #include <sys/socket.h>
86 #include <sys/socketops.h>
87 #include <sys/socketvar.h>
88 #include <sys/protosw.h>
89 #include <sys/random.h>
90 #include <sys/in_cksum.h>
91 #include <sys/ktr.h>
92 
93 #include <net/route.h>
94 #include <net/if.h>
95 #include <net/netisr2.h>
96 
97 #define	_IP_VHL
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/ip.h>
101 #include <netinet/ip6.h>
102 #include <netinet/in_pcb.h>
103 #include <netinet6/in6_pcb.h>
104 #include <netinet/in_var.h>
105 #include <netinet/ip_var.h>
106 #include <netinet6/ip6_var.h>
107 #include <netinet/ip_icmp.h>
108 #ifdef INET6
109 #include <netinet/icmp6.h>
110 #endif
111 #include <netinet/tcp.h>
112 #include <netinet/tcp_fsm.h>
113 #include <netinet/tcp_seq.h>
114 #include <netinet/tcp_timer.h>
115 #include <netinet/tcp_timer2.h>
116 #include <netinet/tcp_var.h>
117 #include <netinet6/tcp6_var.h>
118 #include <netinet/tcpip.h>
119 #ifdef TCPDEBUG
120 #include <netinet/tcp_debug.h>
121 #endif
122 #include <netinet6/ip6protosw.h>
123 
124 #ifdef IPSEC
125 #include <netinet6/ipsec.h>
126 #include <netproto/key/key.h>
127 #ifdef INET6
128 #include <netinet6/ipsec6.h>
129 #endif
130 #endif
131 
132 #ifdef FAST_IPSEC
133 #include <netproto/ipsec/ipsec.h>
134 #ifdef INET6
135 #include <netproto/ipsec/ipsec6.h>
136 #endif
137 #define	IPSEC
138 #endif
139 
140 #include <sys/md5.h>
141 #include <machine/smp.h>
142 
143 #include <sys/msgport2.h>
144 #include <sys/mplock2.h>
145 #include <net/netmsg2.h>
146 
147 #if !defined(KTR_TCP)
148 #define KTR_TCP		KTR_ALL
149 #endif
150 /*
151 KTR_INFO_MASTER(tcp);
152 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
153 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
154 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
155 #define logtcp(name)	KTR_LOG(tcp_ ## name)
156 */
157 
158 #define TCP_IW_MAXSEGS_DFLT	4
159 #define TCP_IW_CAPSEGS_DFLT	4
160 
161 struct inpcbinfo tcbinfo[MAXCPU];
162 struct tcpcbackqhead tcpcbackq[MAXCPU];
163 
164 int tcp_mssdflt = TCP_MSS;
165 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
166     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
167 
168 #ifdef INET6
169 int tcp_v6mssdflt = TCP6_MSS;
170 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
171     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
172 #endif
173 
174 /*
175  * Minimum MSS we accept and use. This prevents DoS attacks where
176  * we are forced to a ridiculous low MSS like 20 and send hundreds
177  * of packets instead of one. The effect scales with the available
178  * bandwidth and quickly saturates the CPU and network interface
179  * with packet generation and sending. Set to zero to disable MINMSS
180  * checking. This setting prevents us from sending too small packets.
181  */
182 int tcp_minmss = TCP_MINMSS;
183 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
184     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
185 
186 #if 0
187 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
188 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
189     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
190 #endif
191 
192 int tcp_do_rfc1323 = 1;
193 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
194     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
195 
196 static int tcp_tcbhashsize = 0;
197 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
198      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
199 
200 static int do_tcpdrain = 1;
201 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
202      "Enable tcp_drain routine for extra help when low on mbufs");
203 
204 static int icmp_may_rst = 1;
205 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
206     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
207 
208 static int tcp_isn_reseed_interval = 0;
209 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
210     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
211 
212 /*
213  * TCP bandwidth limiting sysctls.  The inflight limiter is now turned on
214  * by default, but with generous values which should allow maximal
215  * bandwidth.  In particular, the slop defaults to 50 (5 packets).
216  *
217  * The reason for doing this is that the limiter is the only mechanism we
218  * have which seems to do a really good job preventing receiver RX rings
219  * on network interfaces from getting blown out.  Even though GigE/10GigE
220  * is supposed to flow control it looks like either it doesn't actually
221  * do it or Open Source drivers do not properly enable it.
222  *
223  * People using the limiter to reduce bottlenecks on slower WAN connections
224  * should set the slop to 20 (2 packets).
225  */
226 static int tcp_inflight_enable = 1;
227 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
228     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
229 
230 static int tcp_inflight_debug = 0;
231 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
232     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
233 
234 static int tcp_inflight_min = 6144;
235 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
236     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
237 
238 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
239 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
240     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
241 
242 static int tcp_inflight_stab = 50;
243 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
244     &tcp_inflight_stab, 0, "Fudge bw 1/10% (50=5%)");
245 
246 static int tcp_inflight_adjrtt = 2;
247 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_adjrtt, CTLFLAG_RW,
248     &tcp_inflight_adjrtt, 0, "Slop for rtt 1/(hz*32)");
249 
250 static int tcp_do_rfc3390 = 1;
251 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
252     &tcp_do_rfc3390, 0,
253     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
254 
255 static u_long tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
256 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwmaxsegs, CTLFLAG_RW,
257     &tcp_iw_maxsegs, 0, "TCP IW segments max");
258 
259 static u_long tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
260 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwcapsegs, CTLFLAG_RW,
261     &tcp_iw_capsegs, 0, "TCP IW segments");
262 
263 int tcp_low_rtobase = 1;
264 SYSCTL_INT(_net_inet_tcp, OID_AUTO, low_rtobase, CTLFLAG_RW,
265     &tcp_low_rtobase, 0, "Lowering the Initial RTO (RFC 6298)");
266 
267 static int tcp_do_ncr = 1;
268 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr, CTLFLAG_RW,
269     &tcp_do_ncr, 0, "Non-Congestion Robustness (RFC 4653)");
270 
271 int tcp_ncr_rxtthresh_max = 16;
272 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr_rxtthresh_max, CTLFLAG_RW,
273     &tcp_ncr_rxtthresh_max, 0,
274     "Non-Congestion Robustness (RFC 4653), DupThresh upper limit");
275 
276 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
277 static struct malloc_pipe tcptemp_mpipe;
278 
279 static void tcp_willblock(void);
280 static void tcp_notify (struct inpcb *, int);
281 
282 struct tcp_stats tcpstats_percpu[MAXCPU] __cachealign;
283 
284 static struct netmsg_base tcp_drain_netmsg[MAXCPU];
285 static void	tcp_drain_dispatch(netmsg_t nmsg);
286 
287 static int
288 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
289 {
290 	int cpu, error = 0;
291 
292 	for (cpu = 0; cpu < ncpus2; ++cpu) {
293 		if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
294 					sizeof(struct tcp_stats))))
295 			break;
296 		if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
297 				       sizeof(struct tcp_stats))))
298 			break;
299 	}
300 
301 	return (error);
302 }
303 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
304     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
305 
306 /*
307  * Target size of TCP PCB hash tables. Must be a power of two.
308  *
309  * Note that this can be overridden by the kernel environment
310  * variable net.inet.tcp.tcbhashsize
311  */
312 #ifndef TCBHASHSIZE
313 #define	TCBHASHSIZE	512
314 #endif
315 
316 /*
317  * This is the actual shape of what we allocate using the zone
318  * allocator.  Doing it this way allows us to protect both structures
319  * using the same generation count, and also eliminates the overhead
320  * of allocating tcpcbs separately.  By hiding the structure here,
321  * we avoid changing most of the rest of the code (although it needs
322  * to be changed, eventually, for greater efficiency).
323  */
324 #define	ALIGNMENT	32
325 #define	ALIGNM1		(ALIGNMENT - 1)
326 struct	inp_tp {
327 	union {
328 		struct	inpcb inp;
329 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
330 	} inp_tp_u;
331 	struct	tcpcb tcb;
332 	struct	tcp_callout inp_tp_rexmt;
333 	struct	tcp_callout inp_tp_persist;
334 	struct	tcp_callout inp_tp_keep;
335 	struct	tcp_callout inp_tp_2msl;
336 	struct	tcp_callout inp_tp_delack;
337 	struct	netmsg_tcp_timer inp_tp_timermsg;
338 	struct	netmsg_base inp_tp_sndmore;
339 };
340 #undef ALIGNMENT
341 #undef ALIGNM1
342 
343 /*
344  * Tcp initialization
345  */
346 void
347 tcp_init(void)
348 {
349 	struct inpcbportinfo *portinfo;
350 	struct inpcbinfo *ticb;
351 	int hashsize = TCBHASHSIZE;
352 	int cpu;
353 
354 	/*
355 	 * note: tcptemp is used for keepalives, and it is ok for an
356 	 * allocation to fail so do not specify MPF_INT.
357 	 */
358 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
359 		    25, -1, 0, NULL, NULL, NULL);
360 
361 	tcp_delacktime = TCPTV_DELACK;
362 	tcp_keepinit = TCPTV_KEEP_INIT;
363 	tcp_keepidle = TCPTV_KEEP_IDLE;
364 	tcp_keepintvl = TCPTV_KEEPINTVL;
365 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
366 	tcp_msl = TCPTV_MSL;
367 	tcp_rexmit_min = TCPTV_MIN;
368 	tcp_rexmit_slop = TCPTV_CPU_VAR;
369 
370 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
371 	if (!powerof2(hashsize)) {
372 		kprintf("WARNING: TCB hash size not a power of 2\n");
373 		hashsize = 512; /* safe default */
374 	}
375 	tcp_tcbhashsize = hashsize;
376 
377 	portinfo = kmalloc_cachealign(sizeof(*portinfo) * ncpus2, M_PCB,
378 	    M_WAITOK);
379 
380 	for (cpu = 0; cpu < ncpus2; cpu++) {
381 		ticb = &tcbinfo[cpu];
382 		in_pcbinfo_init(ticb, cpu, FALSE);
383 		ticb->hashbase = hashinit(hashsize, M_PCB,
384 					  &ticb->hashmask);
385 		in_pcbportinfo_init(&portinfo[cpu], hashsize, TRUE, cpu);
386 		ticb->portinfo = portinfo;
387 		ticb->portinfo_mask = ncpus2_mask;
388 		ticb->wildcardhashbase = hashinit(hashsize, M_PCB,
389 						  &ticb->wildcardhashmask);
390 		ticb->localgrphashbase = hashinit(hashsize, M_PCB,
391 						  &ticb->localgrphashmask);
392 		ticb->ipi_size = sizeof(struct inp_tp);
393 		TAILQ_INIT(&tcpcbackq[cpu]);
394 	}
395 
396 	tcp_reass_maxseg = nmbclusters / 16;
397 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
398 
399 #ifdef INET6
400 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
401 #else
402 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
403 #endif
404 	if (max_protohdr < TCP_MINPROTOHDR)
405 		max_protohdr = TCP_MINPROTOHDR;
406 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
407 		panic("tcp_init");
408 #undef TCP_MINPROTOHDR
409 
410 	/*
411 	 * Initialize TCP statistics counters for each CPU.
412 	 */
413 	for (cpu = 0; cpu < ncpus2; ++cpu)
414 		bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
415 
416 	/*
417 	 * Initialize netmsgs for TCP drain
418 	 */
419 	for (cpu = 0; cpu < ncpus2; ++cpu) {
420 		netmsg_init(&tcp_drain_netmsg[cpu], NULL, &netisr_adone_rport,
421 		    MSGF_PRIORITY, tcp_drain_dispatch);
422 	}
423 
424 	syncache_init();
425 	netisr_register_rollup(tcp_willblock, NETISR_ROLLUP_PRIO_TCP);
426 }
427 
428 static void
429 tcp_willblock(void)
430 {
431 	struct tcpcb *tp;
432 	int cpu = mycpu->gd_cpuid;
433 
434 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
435 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
436 		tp->t_flags &= ~TF_ONOUTPUTQ;
437 		TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
438 		tcp_output(tp);
439 	}
440 }
441 
442 /*
443  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
444  * tcp_template used to store this data in mbufs, but we now recopy it out
445  * of the tcpcb each time to conserve mbufs.
446  */
447 void
448 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr, boolean_t tso)
449 {
450 	struct inpcb *inp = tp->t_inpcb;
451 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
452 
453 #ifdef INET6
454 	if (INP_ISIPV6(inp)) {
455 		struct ip6_hdr *ip6;
456 
457 		ip6 = (struct ip6_hdr *)ip_ptr;
458 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
459 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
460 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
461 			(IPV6_VERSION & IPV6_VERSION_MASK);
462 		ip6->ip6_nxt = IPPROTO_TCP;
463 		ip6->ip6_plen = sizeof(struct tcphdr);
464 		ip6->ip6_src = inp->in6p_laddr;
465 		ip6->ip6_dst = inp->in6p_faddr;
466 		tcp_hdr->th_sum = 0;
467 	} else
468 #endif
469 	{
470 		struct ip *ip = (struct ip *) ip_ptr;
471 		u_int plen;
472 
473 		ip->ip_vhl = IP_VHL_BORING;
474 		ip->ip_tos = 0;
475 		ip->ip_len = 0;
476 		ip->ip_id = 0;
477 		ip->ip_off = 0;
478 		ip->ip_ttl = 0;
479 		ip->ip_sum = 0;
480 		ip->ip_p = IPPROTO_TCP;
481 		ip->ip_src = inp->inp_laddr;
482 		ip->ip_dst = inp->inp_faddr;
483 
484 		if (tso)
485 			plen = htons(IPPROTO_TCP);
486 		else
487 			plen = htons(sizeof(struct tcphdr) + IPPROTO_TCP);
488 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
489 		    ip->ip_dst.s_addr, plen);
490 	}
491 
492 	tcp_hdr->th_sport = inp->inp_lport;
493 	tcp_hdr->th_dport = inp->inp_fport;
494 	tcp_hdr->th_seq = 0;
495 	tcp_hdr->th_ack = 0;
496 	tcp_hdr->th_x2 = 0;
497 	tcp_hdr->th_off = 5;
498 	tcp_hdr->th_flags = 0;
499 	tcp_hdr->th_win = 0;
500 	tcp_hdr->th_urp = 0;
501 }
502 
503 /*
504  * Create template to be used to send tcp packets on a connection.
505  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
506  * use for this function is in keepalives, which use tcp_respond.
507  */
508 struct tcptemp *
509 tcp_maketemplate(struct tcpcb *tp)
510 {
511 	struct tcptemp *tmp;
512 
513 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
514 		return (NULL);
515 	tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t, FALSE);
516 	return (tmp);
517 }
518 
519 void
520 tcp_freetemplate(struct tcptemp *tmp)
521 {
522 	mpipe_free(&tcptemp_mpipe, tmp);
523 }
524 
525 /*
526  * Send a single message to the TCP at address specified by
527  * the given TCP/IP header.  If m == NULL, then we make a copy
528  * of the tcpiphdr at ti and send directly to the addressed host.
529  * This is used to force keep alive messages out using the TCP
530  * template for a connection.  If flags are given then we send
531  * a message back to the TCP which originated the * segment ti,
532  * and discard the mbuf containing it and any other attached mbufs.
533  *
534  * In any case the ack and sequence number of the transmitted
535  * segment are as specified by the parameters.
536  *
537  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
538  */
539 void
540 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
541 	    tcp_seq ack, tcp_seq seq, int flags)
542 {
543 	int tlen;
544 	long win = 0;
545 	struct route *ro = NULL;
546 	struct route sro;
547 	struct ip *ip = ipgen;
548 	struct tcphdr *nth;
549 	int ipflags = 0;
550 	struct route_in6 *ro6 = NULL;
551 	struct route_in6 sro6;
552 	struct ip6_hdr *ip6 = ipgen;
553 	boolean_t use_tmpro = TRUE;
554 #ifdef INET6
555 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
556 #else
557 	const boolean_t isipv6 = FALSE;
558 #endif
559 
560 	if (tp != NULL) {
561 		if (!(flags & TH_RST)) {
562 			win = ssb_space(&tp->t_inpcb->inp_socket->so_rcv);
563 			if (win < 0)
564 				win = 0;
565 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
566 				win = (long)TCP_MAXWIN << tp->rcv_scale;
567 		}
568 		/*
569 		 * Don't use the route cache of a listen socket,
570 		 * it is not MPSAFE; use temporary route cache.
571 		 */
572 		if (tp->t_state != TCPS_LISTEN) {
573 			if (isipv6)
574 				ro6 = &tp->t_inpcb->in6p_route;
575 			else
576 				ro = &tp->t_inpcb->inp_route;
577 			use_tmpro = FALSE;
578 		}
579 	}
580 	if (use_tmpro) {
581 		if (isipv6) {
582 			ro6 = &sro6;
583 			bzero(ro6, sizeof *ro6);
584 		} else {
585 			ro = &sro;
586 			bzero(ro, sizeof *ro);
587 		}
588 	}
589 	if (m == NULL) {
590 		m = m_gethdr(M_NOWAIT, MT_HEADER);
591 		if (m == NULL)
592 			return;
593 		tlen = 0;
594 		m->m_data += max_linkhdr;
595 		if (isipv6) {
596 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
597 			ip6 = mtod(m, struct ip6_hdr *);
598 			nth = (struct tcphdr *)(ip6 + 1);
599 		} else {
600 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
601 			ip = mtod(m, struct ip *);
602 			nth = (struct tcphdr *)(ip + 1);
603 		}
604 		bcopy(th, nth, sizeof(struct tcphdr));
605 		flags = TH_ACK;
606 	} else {
607 		m_freem(m->m_next);
608 		m->m_next = NULL;
609 		m->m_data = (caddr_t)ipgen;
610 		/* m_len is set later */
611 		tlen = 0;
612 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
613 		if (isipv6) {
614 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
615 			nth = (struct tcphdr *)(ip6 + 1);
616 		} else {
617 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
618 			nth = (struct tcphdr *)(ip + 1);
619 		}
620 		if (th != nth) {
621 			/*
622 			 * this is usually a case when an extension header
623 			 * exists between the IPv6 header and the
624 			 * TCP header.
625 			 */
626 			nth->th_sport = th->th_sport;
627 			nth->th_dport = th->th_dport;
628 		}
629 		xchg(nth->th_dport, nth->th_sport, n_short);
630 #undef xchg
631 	}
632 	if (isipv6) {
633 		ip6->ip6_flow = 0;
634 		ip6->ip6_vfc = IPV6_VERSION;
635 		ip6->ip6_nxt = IPPROTO_TCP;
636 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
637 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
638 	} else {
639 		tlen += sizeof(struct tcpiphdr);
640 		ip->ip_len = tlen;
641 		ip->ip_ttl = ip_defttl;
642 	}
643 	m->m_len = tlen;
644 	m->m_pkthdr.len = tlen;
645 	m->m_pkthdr.rcvif = NULL;
646 	nth->th_seq = htonl(seq);
647 	nth->th_ack = htonl(ack);
648 	nth->th_x2 = 0;
649 	nth->th_off = sizeof(struct tcphdr) >> 2;
650 	nth->th_flags = flags;
651 	if (tp != NULL)
652 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
653 	else
654 		nth->th_win = htons((u_short)win);
655 	nth->th_urp = 0;
656 	if (isipv6) {
657 		nth->th_sum = 0;
658 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
659 					sizeof(struct ip6_hdr),
660 					tlen - sizeof(struct ip6_hdr));
661 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
662 					       (ro6 && ro6->ro_rt) ?
663 						ro6->ro_rt->rt_ifp : NULL);
664 	} else {
665 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
666 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
667 		m->m_pkthdr.csum_flags = CSUM_TCP;
668 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
669 		m->m_pkthdr.csum_thlen = sizeof(struct tcphdr);
670 	}
671 #ifdef TCPDEBUG
672 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
673 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
674 #endif
675 	if (isipv6) {
676 		ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
677 			   tp ? tp->t_inpcb : NULL);
678 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
679 			RTFREE(ro6->ro_rt);
680 			ro6->ro_rt = NULL;
681 		}
682 	} else {
683 		ipflags |= IP_DEBUGROUTE;
684 		ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
685 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
686 			RTFREE(ro->ro_rt);
687 			ro->ro_rt = NULL;
688 		}
689 	}
690 }
691 
692 /*
693  * Create a new TCP control block, making an
694  * empty reassembly queue and hooking it to the argument
695  * protocol control block.  The `inp' parameter must have
696  * come from the zone allocator set up in tcp_init().
697  */
698 struct tcpcb *
699 tcp_newtcpcb(struct inpcb *inp)
700 {
701 	struct inp_tp *it;
702 	struct tcpcb *tp;
703 #ifdef INET6
704 	boolean_t isipv6 = INP_ISIPV6(inp);
705 #else
706 	const boolean_t isipv6 = FALSE;
707 #endif
708 
709 	it = (struct inp_tp *)inp;
710 	tp = &it->tcb;
711 	bzero(tp, sizeof(struct tcpcb));
712 	TAILQ_INIT(&tp->t_segq);
713 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
714 	tp->t_rxtthresh = tcprexmtthresh;
715 
716 	/* Set up our timeouts. */
717 	tp->tt_rexmt = &it->inp_tp_rexmt;
718 	tp->tt_persist = &it->inp_tp_persist;
719 	tp->tt_keep = &it->inp_tp_keep;
720 	tp->tt_2msl = &it->inp_tp_2msl;
721 	tp->tt_delack = &it->inp_tp_delack;
722 	tcp_inittimers(tp);
723 
724 	/*
725 	 * Zero out timer message.  We don't create it here,
726 	 * since the current CPU may not be the owner of this
727 	 * inpcb.
728 	 */
729 	tp->tt_msg = &it->inp_tp_timermsg;
730 	bzero(tp->tt_msg, sizeof(*tp->tt_msg));
731 
732 	tp->t_keepinit = tcp_keepinit;
733 	tp->t_keepidle = tcp_keepidle;
734 	tp->t_keepintvl = tcp_keepintvl;
735 	tp->t_keepcnt = tcp_keepcnt;
736 	tp->t_maxidle = tp->t_keepintvl * tp->t_keepcnt;
737 
738 	if (tcp_do_ncr)
739 		tp->t_flags |= TF_NCR;
740 	if (tcp_do_rfc1323)
741 		tp->t_flags |= (TF_REQ_SCALE | TF_REQ_TSTMP);
742 
743 	tp->t_inpcb = inp;	/* XXX */
744 	tp->t_state = TCPS_CLOSED;
745 	/*
746 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
747 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
748 	 * reasonable initial retransmit time.
749 	 */
750 	tp->t_srtt = TCPTV_SRTTBASE;
751 	tp->t_rttvar =
752 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
753 	tp->t_rttmin = tcp_rexmit_min;
754 	tp->t_rxtcur = TCPTV_RTOBASE;
755 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
756 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
757 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
758 	tp->snd_last = ticks;
759 	tp->t_rcvtime = ticks;
760 	/*
761 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
762 	 * because the socket may be bound to an IPv6 wildcard address,
763 	 * which may match an IPv4-mapped IPv6 address.
764 	 */
765 	inp->inp_ip_ttl = ip_defttl;
766 	inp->inp_ppcb = tp;
767 	tcp_sack_tcpcb_init(tp);
768 
769 	tp->tt_sndmore = &it->inp_tp_sndmore;
770 	tcp_output_init(tp);
771 
772 	return (tp);		/* XXX */
773 }
774 
775 /*
776  * Drop a TCP connection, reporting the specified error.
777  * If connection is synchronized, then send a RST to peer.
778  */
779 struct tcpcb *
780 tcp_drop(struct tcpcb *tp, int error)
781 {
782 	struct socket *so = tp->t_inpcb->inp_socket;
783 
784 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
785 		tp->t_state = TCPS_CLOSED;
786 		tcp_output(tp);
787 		tcpstat.tcps_drops++;
788 	} else
789 		tcpstat.tcps_conndrops++;
790 	if (error == ETIMEDOUT && tp->t_softerror)
791 		error = tp->t_softerror;
792 	so->so_error = error;
793 	return (tcp_close(tp));
794 }
795 
796 struct netmsg_listen_detach {
797 	struct netmsg_base	base;
798 	struct tcpcb		*nm_tp;
799 	struct tcpcb		*nm_tp_inh;
800 };
801 
802 static void
803 tcp_listen_detach_handler(netmsg_t msg)
804 {
805 	struct netmsg_listen_detach *nmsg = (struct netmsg_listen_detach *)msg;
806 	struct tcpcb *tp = nmsg->nm_tp;
807 	int cpu = mycpuid, nextcpu;
808 
809 	if (tp->t_flags & TF_LISTEN)
810 		syncache_destroy(tp, nmsg->nm_tp_inh);
811 
812 	in_pcbremwildcardhash_oncpu(tp->t_inpcb, &tcbinfo[cpu]);
813 
814 	nextcpu = cpu + 1;
815 	if (nextcpu < ncpus2)
816 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &nmsg->base.lmsg);
817 	else
818 		lwkt_replymsg(&nmsg->base.lmsg, 0);
819 }
820 
821 /*
822  * Close a TCP control block:
823  *	discard all space held by the tcp
824  *	discard internet protocol block
825  *	wake up any sleepers
826  */
827 struct tcpcb *
828 tcp_close(struct tcpcb *tp)
829 {
830 	struct tseg_qent *q;
831 	struct inpcb *inp = tp->t_inpcb;
832 	struct inpcb *inp_inh = NULL;
833 	struct tcpcb *tp_inh = NULL;
834 	struct socket *so = inp->inp_socket;
835 	struct rtentry *rt;
836 	boolean_t dosavessthresh;
837 #ifdef INET6
838 	boolean_t isipv6 = INP_ISIPV6(inp);
839 #else
840 	const boolean_t isipv6 = FALSE;
841 #endif
842 
843 	if (tp->t_flags & TF_LISTEN) {
844 		/*
845 		 * Pending socket/syncache inheritance
846 		 *
847 		 * If this is a listen(2) socket, find another listen(2)
848 		 * socket in the same local group, which could inherit
849 		 * the syncache and sockets pending on the completion
850 		 * and incompletion queues.
851 		 *
852 		 * NOTE:
853 		 * Currently the inheritance could only happen on the
854 		 * listen(2) sockets w/ SO_REUSEPORT set.
855 		 */
856 		ASSERT_IN_NETISR(0);
857 		inp_inh = in_pcblocalgroup_last(&tcbinfo[0], inp);
858 		if (inp_inh != NULL)
859 			tp_inh = intotcpcb(inp_inh);
860 	}
861 
862 	/*
863 	 * INP_WILDCARD indicates that listen(2) has been called on
864 	 * this socket.  This implies:
865 	 * - A wildcard inp's hash is replicated for each protocol thread.
866 	 * - Syncache for this inp grows independently in each protocol
867 	 *   thread.
868 	 * - There is more than one cpu
869 	 *
870 	 * We have to chain a message to the rest of the protocol threads
871 	 * to cleanup the wildcard hash and the syncache.  The cleanup
872 	 * in the current protocol thread is defered till the end of this
873 	 * function (syncache_destroy and in_pcbdetach).
874 	 *
875 	 * NOTE:
876 	 * After cleanup the inp's hash and syncache entries, this inp will
877 	 * no longer be available to the rest of the protocol threads, so we
878 	 * are safe to whack the inp in the following code.
879 	 */
880 	if ((inp->inp_flags & INP_WILDCARD) && ncpus2 > 1) {
881 		struct netmsg_listen_detach nmsg;
882 
883 		KKASSERT(so->so_port == netisr_cpuport(0));
884 		ASSERT_IN_NETISR(0);
885 		KKASSERT(inp->inp_pcbinfo == &tcbinfo[0]);
886 
887 		netmsg_init(&nmsg.base, NULL, &curthread->td_msgport,
888 			    MSGF_PRIORITY, tcp_listen_detach_handler);
889 		nmsg.nm_tp = tp;
890 		nmsg.nm_tp_inh = tp_inh;
891 		lwkt_domsg(netisr_cpuport(1), &nmsg.base.lmsg, 0);
892 	}
893 
894 	KKASSERT(tp->t_state != TCPS_TERMINATING);
895 	tp->t_state = TCPS_TERMINATING;
896 
897 	/*
898 	 * Make sure that all of our timers are stopped before we
899 	 * delete the PCB.  For listen TCP socket (tp->tt_msg == NULL),
900 	 * timers are never used.  If timer message is never created
901 	 * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
902 	 */
903 	if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
904 		tcp_callout_stop(tp, tp->tt_rexmt);
905 		tcp_callout_stop(tp, tp->tt_persist);
906 		tcp_callout_stop(tp, tp->tt_keep);
907 		tcp_callout_stop(tp, tp->tt_2msl);
908 		tcp_callout_stop(tp, tp->tt_delack);
909 	}
910 
911 	if (tp->t_flags & TF_ONOUTPUTQ) {
912 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
913 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
914 		tp->t_flags &= ~TF_ONOUTPUTQ;
915 	}
916 
917 	/*
918 	 * If we got enough samples through the srtt filter,
919 	 * save the rtt and rttvar in the routing entry.
920 	 * 'Enough' is arbitrarily defined as the 16 samples.
921 	 * 16 samples is enough for the srtt filter to converge
922 	 * to within 5% of the correct value; fewer samples and
923 	 * we could save a very bogus rtt.
924 	 *
925 	 * Don't update the default route's characteristics and don't
926 	 * update anything that the user "locked".
927 	 */
928 	if (tp->t_rttupdated >= 16) {
929 		u_long i = 0;
930 
931 		if (isipv6) {
932 			struct sockaddr_in6 *sin6;
933 
934 			if ((rt = inp->in6p_route.ro_rt) == NULL)
935 				goto no_valid_rt;
936 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
937 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
938 				goto no_valid_rt;
939 		} else
940 			if ((rt = inp->inp_route.ro_rt) == NULL ||
941 			    ((struct sockaddr_in *)rt_key(rt))->
942 			     sin_addr.s_addr == INADDR_ANY)
943 				goto no_valid_rt;
944 
945 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
946 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
947 			if (rt->rt_rmx.rmx_rtt && i)
948 				/*
949 				 * filter this update to half the old & half
950 				 * the new values, converting scale.
951 				 * See route.h and tcp_var.h for a
952 				 * description of the scaling constants.
953 				 */
954 				rt->rt_rmx.rmx_rtt =
955 				    (rt->rt_rmx.rmx_rtt + i) / 2;
956 			else
957 				rt->rt_rmx.rmx_rtt = i;
958 			tcpstat.tcps_cachedrtt++;
959 		}
960 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
961 			i = tp->t_rttvar *
962 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
963 			if (rt->rt_rmx.rmx_rttvar && i)
964 				rt->rt_rmx.rmx_rttvar =
965 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
966 			else
967 				rt->rt_rmx.rmx_rttvar = i;
968 			tcpstat.tcps_cachedrttvar++;
969 		}
970 		/*
971 		 * The old comment here said:
972 		 * update the pipelimit (ssthresh) if it has been updated
973 		 * already or if a pipesize was specified & the threshhold
974 		 * got below half the pipesize.  I.e., wait for bad news
975 		 * before we start updating, then update on both good
976 		 * and bad news.
977 		 *
978 		 * But we want to save the ssthresh even if no pipesize is
979 		 * specified explicitly in the route, because such
980 		 * connections still have an implicit pipesize specified
981 		 * by the global tcp_sendspace.  In the absence of a reliable
982 		 * way to calculate the pipesize, it will have to do.
983 		 */
984 		i = tp->snd_ssthresh;
985 		if (rt->rt_rmx.rmx_sendpipe != 0)
986 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
987 		else
988 			dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
989 		if (dosavessthresh ||
990 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
991 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
992 			/*
993 			 * convert the limit from user data bytes to
994 			 * packets then to packet data bytes.
995 			 */
996 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
997 			if (i < 2)
998 				i = 2;
999 			i *= tp->t_maxseg +
1000 			     (isipv6 ?
1001 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1002 			      sizeof(struct tcpiphdr));
1003 			if (rt->rt_rmx.rmx_ssthresh)
1004 				rt->rt_rmx.rmx_ssthresh =
1005 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
1006 			else
1007 				rt->rt_rmx.rmx_ssthresh = i;
1008 			tcpstat.tcps_cachedssthresh++;
1009 		}
1010 	}
1011 
1012 no_valid_rt:
1013 	/* free the reassembly queue, if any */
1014 	while((q = TAILQ_FIRST(&tp->t_segq)) != NULL) {
1015 		TAILQ_REMOVE(&tp->t_segq, q, tqe_q);
1016 		m_freem(q->tqe_m);
1017 		kfree(q, M_TSEGQ);
1018 		atomic_add_int(&tcp_reass_qsize, -1);
1019 	}
1020 	/* throw away SACK blocks in scoreboard*/
1021 	if (TCP_DO_SACK(tp))
1022 		tcp_sack_destroy(&tp->scb);
1023 
1024 	inp->inp_ppcb = NULL;
1025 	soisdisconnected(so);
1026 	/* note: pcb detached later on */
1027 
1028 	tcp_destroy_timermsg(tp);
1029 	tcp_output_cancel(tp);
1030 
1031 	if (tp->t_flags & TF_LISTEN) {
1032 		syncache_destroy(tp, tp_inh);
1033 		if (inp_inh != NULL && inp_inh->inp_socket != NULL) {
1034 			/*
1035 			 * Pending sockets inheritance only needs
1036 			 * to be done once in the current thread,
1037 			 * i.e. netisr0.
1038 			 */
1039 			soinherit(so, inp_inh->inp_socket);
1040 		}
1041 	}
1042 
1043 	so_async_rcvd_drop(so);
1044 	/* Drop the reference for the asynchronized pru_rcvd */
1045 	sofree(so);
1046 
1047 	/*
1048 	 * NOTE:
1049 	 * pcbdetach removes any wildcard hash entry on the current CPU.
1050 	 */
1051 #ifdef INET6
1052 	if (isipv6)
1053 		in6_pcbdetach(inp);
1054 	else
1055 #endif
1056 		in_pcbdetach(inp);
1057 
1058 	tcpstat.tcps_closed++;
1059 	return (NULL);
1060 }
1061 
1062 static __inline void
1063 tcp_drain_oncpu(struct inpcbinfo *pcbinfo)
1064 {
1065 	struct inpcbhead *head = &pcbinfo->pcblisthead;
1066 	struct inpcb *inpb;
1067 
1068 	/*
1069 	 * Since we run in netisr, it is MP safe, even if
1070 	 * we block during the inpcb list iteration, i.e.
1071 	 * we don't need to use inpcb marker here.
1072 	 */
1073 	KASSERT(&curthread->td_msgport == netisr_cpuport(pcbinfo->cpu),
1074 	    ("not in correct netisr"));
1075 
1076 	LIST_FOREACH(inpb, head, inp_list) {
1077 		struct tcpcb *tcpb;
1078 		struct tseg_qent *te;
1079 
1080 		if ((inpb->inp_flags & INP_PLACEMARKER) == 0 &&
1081 		    (tcpb = intotcpcb(inpb)) != NULL &&
1082 		    (te = TAILQ_FIRST(&tcpb->t_segq)) != NULL) {
1083 			TAILQ_REMOVE(&tcpb->t_segq, te, tqe_q);
1084 			if (te->tqe_th->th_flags & TH_FIN)
1085 				tcpb->t_flags &= ~TF_QUEDFIN;
1086 			m_freem(te->tqe_m);
1087 			kfree(te, M_TSEGQ);
1088 			atomic_add_int(&tcp_reass_qsize, -1);
1089 			/* retry */
1090 		}
1091 	}
1092 }
1093 
1094 static void
1095 tcp_drain_dispatch(netmsg_t nmsg)
1096 {
1097 	crit_enter();
1098 	lwkt_replymsg(&nmsg->lmsg, 0);  /* reply ASAP */
1099 	crit_exit();
1100 
1101 	tcp_drain_oncpu(&tcbinfo[mycpuid]);
1102 }
1103 
1104 static void
1105 tcp_drain_ipi(void *arg __unused)
1106 {
1107 	int cpu = mycpuid;
1108 	struct lwkt_msg *msg = &tcp_drain_netmsg[cpu].lmsg;
1109 
1110 	crit_enter();
1111 	if (msg->ms_flags & MSGF_DONE)
1112 		lwkt_sendmsg_oncpu(netisr_cpuport(cpu), msg);
1113 	crit_exit();
1114 }
1115 
1116 void
1117 tcp_drain(void)
1118 {
1119 	cpumask_t mask;
1120 
1121 	if (!do_tcpdrain)
1122 		return;
1123 
1124 	/*
1125 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1126 	 * if there is one...
1127 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1128 	 *	reassembly queue should be flushed, but in a situation
1129 	 *	where we're really low on mbufs, this is potentially
1130 	 *	useful.
1131 	 * YYY: We may consider run tcp_drain_oncpu directly here,
1132 	 *      however, that will require M_WAITOK memory allocation
1133 	 *      for the inpcb marker.
1134 	 */
1135 	CPUMASK_ASSBMASK(mask, ncpus2);
1136 	CPUMASK_ANDMASK(mask, smp_active_mask);
1137 	if (CPUMASK_TESTNZERO(mask))
1138 		lwkt_send_ipiq_mask(mask, tcp_drain_ipi, NULL);
1139 }
1140 
1141 /*
1142  * Notify a tcp user of an asynchronous error;
1143  * store error as soft error, but wake up user
1144  * (for now, won't do anything until can select for soft error).
1145  *
1146  * Do not wake up user since there currently is no mechanism for
1147  * reporting soft errors (yet - a kqueue filter may be added).
1148  */
1149 static void
1150 tcp_notify(struct inpcb *inp, int error)
1151 {
1152 	struct tcpcb *tp = intotcpcb(inp);
1153 
1154 	/*
1155 	 * Ignore some errors if we are hooked up.
1156 	 * If connection hasn't completed, has retransmitted several times,
1157 	 * and receives a second error, give up now.  This is better
1158 	 * than waiting a long time to establish a connection that
1159 	 * can never complete.
1160 	 */
1161 	if (tp->t_state == TCPS_ESTABLISHED &&
1162 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1163 	      error == EHOSTDOWN)) {
1164 		return;
1165 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1166 	    tp->t_softerror)
1167 		tcp_drop(tp, error);
1168 	else
1169 		tp->t_softerror = error;
1170 #if 0
1171 	wakeup(&so->so_timeo);
1172 	sorwakeup(so);
1173 	sowwakeup(so);
1174 #endif
1175 }
1176 
1177 static int
1178 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1179 {
1180 	int error, i, n;
1181 	struct inpcb *marker;
1182 	struct inpcb *inp;
1183 	int origcpu, ccpu;
1184 
1185 	error = 0;
1186 	n = 0;
1187 
1188 	/*
1189 	 * The process of preparing the TCB list is too time-consuming and
1190 	 * resource-intensive to repeat twice on every request.
1191 	 */
1192 	if (req->oldptr == NULL) {
1193 		for (ccpu = 0; ccpu < ncpus2; ++ccpu)
1194 			n += tcbinfo[ccpu].ipi_count;
1195 		req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1196 		return (0);
1197 	}
1198 
1199 	if (req->newptr != NULL)
1200 		return (EPERM);
1201 
1202 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1203 	marker->inp_flags |= INP_PLACEMARKER;
1204 
1205 	/*
1206 	 * OK, now we're committed to doing something.  Run the inpcb list
1207 	 * for each cpu in the system and construct the output.  Use a
1208 	 * list placemarker to deal with list changes occuring during
1209 	 * copyout blockages (but otherwise depend on being on the correct
1210 	 * cpu to avoid races).
1211 	 */
1212 	origcpu = mycpu->gd_cpuid;
1213 	for (ccpu = 0; ccpu < ncpus2 && error == 0; ++ccpu) {
1214 		caddr_t inp_ppcb;
1215 		struct xtcpcb xt;
1216 
1217 		lwkt_migratecpu(ccpu);
1218 
1219 		n = tcbinfo[ccpu].ipi_count;
1220 
1221 		LIST_INSERT_HEAD(&tcbinfo[ccpu].pcblisthead, marker, inp_list);
1222 		i = 0;
1223 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1224 			/*
1225 			 * process a snapshot of pcbs, ignoring placemarkers
1226 			 * and using our own to allow SYSCTL_OUT to block.
1227 			 */
1228 			LIST_REMOVE(marker, inp_list);
1229 			LIST_INSERT_AFTER(inp, marker, inp_list);
1230 
1231 			if (inp->inp_flags & INP_PLACEMARKER)
1232 				continue;
1233 			if (prison_xinpcb(req->td, inp))
1234 				continue;
1235 
1236 			xt.xt_len = sizeof xt;
1237 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1238 			inp_ppcb = inp->inp_ppcb;
1239 			if (inp_ppcb != NULL)
1240 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1241 			else
1242 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1243 			if (inp->inp_socket)
1244 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1245 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1246 				break;
1247 			++i;
1248 		}
1249 		LIST_REMOVE(marker, inp_list);
1250 		if (error == 0 && i < n) {
1251 			bzero(&xt, sizeof xt);
1252 			xt.xt_len = sizeof xt;
1253 			while (i < n) {
1254 				error = SYSCTL_OUT(req, &xt, sizeof xt);
1255 				if (error)
1256 					break;
1257 				++i;
1258 			}
1259 		}
1260 	}
1261 
1262 	/*
1263 	 * Make sure we are on the same cpu we were on originally, since
1264 	 * higher level callers expect this.  Also don't pollute caches with
1265 	 * migrated userland data by (eventually) returning to userland
1266 	 * on a different cpu.
1267 	 */
1268 	lwkt_migratecpu(origcpu);
1269 	kfree(marker, M_TEMP);
1270 	return (error);
1271 }
1272 
1273 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1274 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1275 
1276 static int
1277 tcp_getcred(SYSCTL_HANDLER_ARGS)
1278 {
1279 	struct sockaddr_in addrs[2];
1280 	struct ucred cred0, *cred = NULL;
1281 	struct inpcb *inp;
1282 	int cpu, origcpu, error;
1283 
1284 	error = priv_check(req->td, PRIV_ROOT);
1285 	if (error != 0)
1286 		return (error);
1287 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1288 	if (error != 0)
1289 		return (error);
1290 
1291 	origcpu = mycpuid;
1292 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1293 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1294 
1295 	lwkt_migratecpu(cpu);
1296 
1297 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1298 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1299 	if (inp == NULL || inp->inp_socket == NULL) {
1300 		error = ENOENT;
1301 	} else if (inp->inp_socket->so_cred != NULL) {
1302 		cred0 = *(inp->inp_socket->so_cred);
1303 		cred = &cred0;
1304 	}
1305 
1306 	lwkt_migratecpu(origcpu);
1307 
1308 	if (error)
1309 		return (error);
1310 
1311 	return SYSCTL_OUT(req, cred, sizeof(struct ucred));
1312 }
1313 
1314 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1315     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1316 
1317 #ifdef INET6
1318 static int
1319 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1320 {
1321 	struct sockaddr_in6 addrs[2];
1322 	struct inpcb *inp;
1323 	int error;
1324 
1325 	error = priv_check(req->td, PRIV_ROOT);
1326 	if (error != 0)
1327 		return (error);
1328 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1329 	if (error != 0)
1330 		return (error);
1331 	crit_enter();
1332 	inp = in6_pcblookup_hash(&tcbinfo[0],
1333 	    &addrs[1].sin6_addr, addrs[1].sin6_port,
1334 	    &addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1335 	if (inp == NULL || inp->inp_socket == NULL) {
1336 		error = ENOENT;
1337 		goto out;
1338 	}
1339 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1340 out:
1341 	crit_exit();
1342 	return (error);
1343 }
1344 
1345 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1346 	    0, 0,
1347 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1348 #endif
1349 
1350 struct netmsg_tcp_notify {
1351 	struct netmsg_base base;
1352 	inp_notify_t	nm_notify;
1353 	struct in_addr	nm_faddr;
1354 	int		nm_arg;
1355 };
1356 
1357 static void
1358 tcp_notifyall_oncpu(netmsg_t msg)
1359 {
1360 	struct netmsg_tcp_notify *nm = (struct netmsg_tcp_notify *)msg;
1361 	int nextcpu;
1362 
1363 	in_pcbnotifyall(&tcbinfo[mycpuid], nm->nm_faddr,
1364 			nm->nm_arg, nm->nm_notify);
1365 
1366 	nextcpu = mycpuid + 1;
1367 	if (nextcpu < ncpus2)
1368 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &nm->base.lmsg);
1369 	else
1370 		lwkt_replymsg(&nm->base.lmsg, 0);
1371 }
1372 
1373 inp_notify_t
1374 tcp_get_inpnotify(int cmd, const struct sockaddr *sa,
1375     int *arg, struct ip **ip0, int *cpuid)
1376 {
1377 	struct ip *ip = *ip0;
1378 	struct in_addr faddr;
1379 	inp_notify_t notify = tcp_notify;
1380 
1381 	faddr = ((const struct sockaddr_in *)sa)->sin_addr;
1382 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1383 		return NULL;
1384 
1385 	*arg = inetctlerrmap[cmd];
1386 	if (cmd == PRC_QUENCH) {
1387 		notify = tcp_quench;
1388 	} else if (icmp_may_rst &&
1389 		   (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1390 		    cmd == PRC_UNREACH_PORT ||
1391 		    cmd == PRC_TIMXCEED_INTRANS) &&
1392 		   ip != NULL) {
1393 		notify = tcp_drop_syn_sent;
1394 	} else if (cmd == PRC_MSGSIZE) {
1395 		const struct icmp *icmp = (const struct icmp *)
1396 		    ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1397 
1398 		*arg = ntohs(icmp->icmp_nextmtu);
1399 		notify = tcp_mtudisc;
1400 	} else if (PRC_IS_REDIRECT(cmd)) {
1401 		ip = NULL;
1402 		notify = in_rtchange;
1403 	} else if (cmd == PRC_HOSTDEAD) {
1404 		ip = NULL;
1405 	} else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1406 		return NULL;
1407 	}
1408 
1409 	if (cpuid != NULL) {
1410 		if (ip == NULL) {
1411 			/* Go through all CPUs */
1412 			*cpuid = ncpus;
1413 		} else {
1414 			const struct tcphdr *th;
1415 
1416 			th = (const struct tcphdr *)
1417 			    ((caddr_t)ip + (IP_VHL_HL(ip->ip_vhl) << 2));
1418 			*cpuid = tcp_addrcpu(faddr.s_addr, th->th_dport,
1419 			    ip->ip_src.s_addr, th->th_sport);
1420 		}
1421 	}
1422 
1423 	*ip0 = ip;
1424 	return notify;
1425 }
1426 
1427 void
1428 tcp_ctlinput(netmsg_t msg)
1429 {
1430 	int cmd = msg->ctlinput.nm_cmd;
1431 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1432 	struct ip *ip = msg->ctlinput.nm_extra;
1433 	struct in_addr faddr;
1434 	inp_notify_t notify;
1435 	int arg, cpuid;
1436 
1437 	notify = tcp_get_inpnotify(cmd, sa, &arg, &ip, &cpuid);
1438 	if (notify == NULL)
1439 		goto done;
1440 
1441 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1442 	if (ip != NULL) {
1443 		const struct tcphdr *th;
1444 		struct inpcb *inp;
1445 
1446 		if (cpuid != mycpuid)
1447 			goto done;
1448 
1449 		th = (const struct tcphdr *)
1450 		    ((caddr_t)ip + (IP_VHL_HL(ip->ip_vhl) << 2));
1451 		inp = in_pcblookup_hash(&tcbinfo[mycpuid], faddr, th->th_dport,
1452 					ip->ip_src, th->th_sport, 0, NULL);
1453 		if (inp != NULL && inp->inp_socket != NULL) {
1454 			tcp_seq icmpseq = htonl(th->th_seq);
1455 			struct tcpcb *tp = intotcpcb(inp);
1456 
1457 			if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1458 			    SEQ_LT(icmpseq, tp->snd_max))
1459 				notify(inp, arg);
1460 		} else {
1461 			struct in_conninfo inc;
1462 
1463 			inc.inc_fport = th->th_dport;
1464 			inc.inc_lport = th->th_sport;
1465 			inc.inc_faddr = faddr;
1466 			inc.inc_laddr = ip->ip_src;
1467 #ifdef INET6
1468 			inc.inc_isipv6 = 0;
1469 #endif
1470 			syncache_unreach(&inc, th);
1471 		}
1472 	} else if (msg->ctlinput.nm_direct) {
1473 		if (cpuid != ncpus && cpuid != mycpuid)
1474 			goto done;
1475 		if (mycpuid >= ncpus2)
1476 			goto done;
1477 
1478 		in_pcbnotifyall(&tcbinfo[mycpuid], faddr, arg, notify);
1479 	} else {
1480 		struct netmsg_tcp_notify *nm;
1481 
1482 		ASSERT_IN_NETISR(0);
1483 		nm = kmalloc(sizeof(*nm), M_LWKTMSG, M_INTWAIT);
1484 		netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1485 			    0, tcp_notifyall_oncpu);
1486 		nm->nm_faddr = faddr;
1487 		nm->nm_arg = arg;
1488 		nm->nm_notify = notify;
1489 
1490 		lwkt_sendmsg(netisr_cpuport(0), &nm->base.lmsg);
1491 	}
1492 done:
1493 	lwkt_replymsg(&msg->lmsg, 0);
1494 }
1495 
1496 #ifdef INET6
1497 
1498 void
1499 tcp6_ctlinput(netmsg_t msg)
1500 {
1501 	int cmd = msg->ctlinput.nm_cmd;
1502 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1503 	void *d = msg->ctlinput.nm_extra;
1504 	struct tcphdr th;
1505 	inp_notify_t notify = tcp_notify;
1506 	struct ip6_hdr *ip6;
1507 	struct mbuf *m;
1508 	struct ip6ctlparam *ip6cp = NULL;
1509 	const struct sockaddr_in6 *sa6_src = NULL;
1510 	int off;
1511 	struct tcp_portonly {
1512 		u_int16_t th_sport;
1513 		u_int16_t th_dport;
1514 	} *thp;
1515 	int arg;
1516 
1517 	if (sa->sa_family != AF_INET6 ||
1518 	    sa->sa_len != sizeof(struct sockaddr_in6)) {
1519 		goto out;
1520 	}
1521 
1522 	arg = 0;
1523 	if (cmd == PRC_QUENCH)
1524 		notify = tcp_quench;
1525 	else if (cmd == PRC_MSGSIZE) {
1526 		struct ip6ctlparam *ip6cp = d;
1527 		struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1528 
1529 		arg = ntohl(icmp6->icmp6_mtu);
1530 		notify = tcp_mtudisc;
1531 	} else if (!PRC_IS_REDIRECT(cmd) &&
1532 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1533 		goto out;
1534 	}
1535 
1536 	/* if the parameter is from icmp6, decode it. */
1537 	if (d != NULL) {
1538 		ip6cp = (struct ip6ctlparam *)d;
1539 		m = ip6cp->ip6c_m;
1540 		ip6 = ip6cp->ip6c_ip6;
1541 		off = ip6cp->ip6c_off;
1542 		sa6_src = ip6cp->ip6c_src;
1543 	} else {
1544 		m = NULL;
1545 		ip6 = NULL;
1546 		off = 0;	/* fool gcc */
1547 		sa6_src = &sa6_any;
1548 	}
1549 
1550 	if (ip6 != NULL) {
1551 		struct in_conninfo inc;
1552 		/*
1553 		 * XXX: We assume that when IPV6 is non NULL,
1554 		 * M and OFF are valid.
1555 		 */
1556 
1557 		/* check if we can safely examine src and dst ports */
1558 		if (m->m_pkthdr.len < off + sizeof *thp)
1559 			goto out;
1560 
1561 		bzero(&th, sizeof th);
1562 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1563 
1564 		in6_pcbnotify(&tcbinfo[0], sa, th.th_dport,
1565 		    (struct sockaddr *)ip6cp->ip6c_src,
1566 		    th.th_sport, cmd, arg, notify);
1567 
1568 		inc.inc_fport = th.th_dport;
1569 		inc.inc_lport = th.th_sport;
1570 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1571 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1572 		inc.inc_isipv6 = 1;
1573 		syncache_unreach(&inc, &th);
1574 	} else {
1575 		in6_pcbnotify(&tcbinfo[0], sa, 0,
1576 		    (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1577 	}
1578 out:
1579 	lwkt_replymsg(&msg->ctlinput.base.lmsg, 0);
1580 }
1581 
1582 #endif
1583 
1584 /*
1585  * Following is where TCP initial sequence number generation occurs.
1586  *
1587  * There are two places where we must use initial sequence numbers:
1588  * 1.  In SYN-ACK packets.
1589  * 2.  In SYN packets.
1590  *
1591  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1592  * tcp_syncache.c for details.
1593  *
1594  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1595  * depends on this property.  In addition, these ISNs should be
1596  * unguessable so as to prevent connection hijacking.  To satisfy
1597  * the requirements of this situation, the algorithm outlined in
1598  * RFC 1948 is used to generate sequence numbers.
1599  *
1600  * Implementation details:
1601  *
1602  * Time is based off the system timer, and is corrected so that it
1603  * increases by one megabyte per second.  This allows for proper
1604  * recycling on high speed LANs while still leaving over an hour
1605  * before rollover.
1606  *
1607  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1608  * between seeding of isn_secret.  This is normally set to zero,
1609  * as reseeding should not be necessary.
1610  *
1611  */
1612 
1613 #define	ISN_BYTES_PER_SECOND 1048576
1614 
1615 u_char isn_secret[32];
1616 int isn_last_reseed;
1617 MD5_CTX isn_ctx;
1618 
1619 tcp_seq
1620 tcp_new_isn(struct tcpcb *tp)
1621 {
1622 	u_int32_t md5_buffer[4];
1623 	tcp_seq new_isn;
1624 
1625 	/* Seed if this is the first use, reseed if requested. */
1626 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1627 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1628 		< (u_int)ticks))) {
1629 		read_random_unlimited(&isn_secret, sizeof isn_secret);
1630 		isn_last_reseed = ticks;
1631 	}
1632 
1633 	/* Compute the md5 hash and return the ISN. */
1634 	MD5Init(&isn_ctx);
1635 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1636 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1637 #ifdef INET6
1638 	if (INP_ISIPV6(tp->t_inpcb)) {
1639 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1640 			  sizeof(struct in6_addr));
1641 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1642 			  sizeof(struct in6_addr));
1643 	} else
1644 #endif
1645 	{
1646 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1647 			  sizeof(struct in_addr));
1648 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1649 			  sizeof(struct in_addr));
1650 	}
1651 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1652 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1653 	new_isn = (tcp_seq) md5_buffer[0];
1654 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1655 	return (new_isn);
1656 }
1657 
1658 /*
1659  * When a source quench is received, close congestion window
1660  * to one segment.  We will gradually open it again as we proceed.
1661  */
1662 void
1663 tcp_quench(struct inpcb *inp, int error)
1664 {
1665 	struct tcpcb *tp = intotcpcb(inp);
1666 
1667 	if (tp != NULL) {
1668 		tp->snd_cwnd = tp->t_maxseg;
1669 		tp->snd_wacked = 0;
1670 	}
1671 }
1672 
1673 /*
1674  * When a specific ICMP unreachable message is received and the
1675  * connection state is SYN-SENT, drop the connection.  This behavior
1676  * is controlled by the icmp_may_rst sysctl.
1677  */
1678 void
1679 tcp_drop_syn_sent(struct inpcb *inp, int error)
1680 {
1681 	struct tcpcb *tp = intotcpcb(inp);
1682 
1683 	if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
1684 		tcp_drop(tp, error);
1685 }
1686 
1687 /*
1688  * When a `need fragmentation' ICMP is received, update our idea of the MSS
1689  * based on the new value in the route.  Also nudge TCP to send something,
1690  * since we know the packet we just sent was dropped.
1691  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1692  */
1693 void
1694 tcp_mtudisc(struct inpcb *inp, int mtu)
1695 {
1696 	struct tcpcb *tp = intotcpcb(inp);
1697 	struct rtentry *rt;
1698 	struct socket *so = inp->inp_socket;
1699 	int maxopd, mss;
1700 #ifdef INET6
1701 	boolean_t isipv6 = INP_ISIPV6(inp);
1702 #else
1703 	const boolean_t isipv6 = FALSE;
1704 #endif
1705 
1706 	if (tp == NULL)
1707 		return;
1708 
1709 	/*
1710 	 * If no MTU is provided in the ICMP message, use the
1711 	 * next lower likely value, as specified in RFC 1191.
1712 	 */
1713 	if (mtu == 0) {
1714 		int oldmtu;
1715 
1716 		oldmtu = tp->t_maxopd +
1717 		    (isipv6 ?
1718 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1719 		     sizeof(struct tcpiphdr));
1720 		mtu = ip_next_mtu(oldmtu, 0);
1721 	}
1722 
1723 	if (isipv6)
1724 		rt = tcp_rtlookup6(&inp->inp_inc);
1725 	else
1726 		rt = tcp_rtlookup(&inp->inp_inc);
1727 	if (rt != NULL) {
1728 		if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1729 			mtu = rt->rt_rmx.rmx_mtu;
1730 
1731 		maxopd = mtu -
1732 		    (isipv6 ?
1733 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1734 		     sizeof(struct tcpiphdr));
1735 
1736 		/*
1737 		 * XXX - The following conditional probably violates the TCP
1738 		 * spec.  The problem is that, since we don't know the
1739 		 * other end's MSS, we are supposed to use a conservative
1740 		 * default.  But, if we do that, then MTU discovery will
1741 		 * never actually take place, because the conservative
1742 		 * default is much less than the MTUs typically seen
1743 		 * on the Internet today.  For the moment, we'll sweep
1744 		 * this under the carpet.
1745 		 *
1746 		 * The conservative default might not actually be a problem
1747 		 * if the only case this occurs is when sending an initial
1748 		 * SYN with options and data to a host we've never talked
1749 		 * to before.  Then, they will reply with an MSS value which
1750 		 * will get recorded and the new parameters should get
1751 		 * recomputed.  For Further Study.
1752 		 */
1753 		if (rt->rt_rmx.rmx_mssopt  && rt->rt_rmx.rmx_mssopt < maxopd)
1754 			maxopd = rt->rt_rmx.rmx_mssopt;
1755 	} else
1756 		maxopd = mtu -
1757 		    (isipv6 ?
1758 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1759 		     sizeof(struct tcpiphdr));
1760 
1761 	if (tp->t_maxopd <= maxopd)
1762 		return;
1763 	tp->t_maxopd = maxopd;
1764 
1765 	mss = maxopd;
1766 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1767 			   (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1768 		mss -= TCPOLEN_TSTAMP_APPA;
1769 
1770 	/* round down to multiple of MCLBYTES */
1771 #if	(MCLBYTES & (MCLBYTES - 1)) == 0    /* test if MCLBYTES power of 2 */
1772 	if (mss > MCLBYTES)
1773 		mss &= ~(MCLBYTES - 1);
1774 #else
1775 	if (mss > MCLBYTES)
1776 		mss = (mss / MCLBYTES) * MCLBYTES;
1777 #endif
1778 
1779 	if (so->so_snd.ssb_hiwat < mss)
1780 		mss = so->so_snd.ssb_hiwat;
1781 
1782 	tp->t_maxseg = mss;
1783 	tp->t_rtttime = 0;
1784 	tp->snd_nxt = tp->snd_una;
1785 	tcp_output(tp);
1786 	tcpstat.tcps_mturesent++;
1787 }
1788 
1789 /*
1790  * Look-up the routing entry to the peer of this inpcb.  If no route
1791  * is found and it cannot be allocated the return NULL.  This routine
1792  * is called by TCP routines that access the rmx structure and by tcp_mss
1793  * to get the interface MTU.
1794  */
1795 struct rtentry *
1796 tcp_rtlookup(struct in_conninfo *inc)
1797 {
1798 	struct route *ro = &inc->inc_route;
1799 
1800 	if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1801 		/* No route yet, so try to acquire one */
1802 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1803 			/*
1804 			 * unused portions of the structure MUST be zero'd
1805 			 * out because rtalloc() treats it as opaque data
1806 			 */
1807 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1808 			ro->ro_dst.sa_family = AF_INET;
1809 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1810 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1811 			    inc->inc_faddr;
1812 			rtalloc(ro);
1813 		}
1814 	}
1815 	return (ro->ro_rt);
1816 }
1817 
1818 #ifdef INET6
1819 struct rtentry *
1820 tcp_rtlookup6(struct in_conninfo *inc)
1821 {
1822 	struct route_in6 *ro6 = &inc->inc6_route;
1823 
1824 	if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1825 		/* No route yet, so try to acquire one */
1826 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1827 			/*
1828 			 * unused portions of the structure MUST be zero'd
1829 			 * out because rtalloc() treats it as opaque data
1830 			 */
1831 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1832 			ro6->ro_dst.sin6_family = AF_INET6;
1833 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1834 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1835 			rtalloc((struct route *)ro6);
1836 		}
1837 	}
1838 	return (ro6->ro_rt);
1839 }
1840 #endif
1841 
1842 #ifdef IPSEC
1843 /* compute ESP/AH header size for TCP, including outer IP header. */
1844 size_t
1845 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1846 {
1847 	struct inpcb *inp;
1848 	struct mbuf *m;
1849 	size_t hdrsiz;
1850 	struct ip *ip;
1851 	struct tcphdr *th;
1852 
1853 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1854 		return (0);
1855 	MGETHDR(m, M_NOWAIT, MT_DATA);
1856 	if (!m)
1857 		return (0);
1858 
1859 #ifdef INET6
1860 	if (INP_ISIPV6(inp)) {
1861 		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1862 
1863 		th = (struct tcphdr *)(ip6 + 1);
1864 		m->m_pkthdr.len = m->m_len =
1865 		    sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1866 		tcp_fillheaders(tp, ip6, th, FALSE);
1867 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1868 	} else
1869 #endif
1870 	{
1871 		ip = mtod(m, struct ip *);
1872 		th = (struct tcphdr *)(ip + 1);
1873 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1874 		tcp_fillheaders(tp, ip, th, FALSE);
1875 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1876 	}
1877 
1878 	m_free(m);
1879 	return (hdrsiz);
1880 }
1881 #endif
1882 
1883 /*
1884  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1885  *
1886  * This code attempts to calculate the bandwidth-delay product as a
1887  * means of determining the optimal window size to maximize bandwidth,
1888  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1889  * routers.  This code also does a fairly good job keeping RTTs in check
1890  * across slow links like modems.  We implement an algorithm which is very
1891  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1892  * transmitter side of a TCP connection and so only effects the transmit
1893  * side of the connection.
1894  *
1895  * BACKGROUND:  TCP makes no provision for the management of buffer space
1896  * at the end points or at the intermediate routers and switches.  A TCP
1897  * stream, whether using NewReno or not, will eventually buffer as
1898  * many packets as it is able and the only reason this typically works is
1899  * due to the fairly small default buffers made available for a connection
1900  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1901  * scaling it is now fairly easy for even a single TCP connection to blow-out
1902  * all available buffer space not only on the local interface, but on
1903  * intermediate routers and switches as well.  NewReno makes a misguided
1904  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1905  * then backing off, then steadily increasing the window again until another
1906  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1907  * is only made worse as network loads increase and the idea of intentionally
1908  * blowing out network buffers is, frankly, a terrible way to manage network
1909  * resources.
1910  *
1911  * It is far better to limit the transmit window prior to the failure
1912  * condition being achieved.  There are two general ways to do this:  First
1913  * you can 'scan' through different transmit window sizes and locate the
1914  * point where the RTT stops increasing, indicating that you have filled the
1915  * pipe, then scan backwards until you note that RTT stops decreasing, then
1916  * repeat ad-infinitum.  This method works in principle but has severe
1917  * implementation issues due to RTT variances, timer granularity, and
1918  * instability in the algorithm which can lead to many false positives and
1919  * create oscillations as well as interact badly with other TCP streams
1920  * implementing the same algorithm.
1921  *
1922  * The second method is to limit the window to the bandwidth delay product
1923  * of the link.  This is the method we implement.  RTT variances and our
1924  * own manipulation of the congestion window, bwnd, can potentially
1925  * destabilize the algorithm.  For this reason we have to stabilize the
1926  * elements used to calculate the window.  We do this by using the minimum
1927  * observed RTT, the long term average of the observed bandwidth, and
1928  * by adding two segments worth of slop.  It isn't perfect but it is able
1929  * to react to changing conditions and gives us a very stable basis on
1930  * which to extend the algorithm.
1931  */
1932 void
1933 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1934 {
1935 	u_long bw;
1936 	u_long ibw;
1937 	u_long bwnd;
1938 	int save_ticks;
1939 	int delta_ticks;
1940 
1941 	/*
1942 	 * If inflight_enable is disabled in the middle of a tcp connection,
1943 	 * make sure snd_bwnd is effectively disabled.
1944 	 */
1945 	if (!tcp_inflight_enable) {
1946 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1947 		tp->snd_bandwidth = 0;
1948 		return;
1949 	}
1950 
1951 	/*
1952 	 * Validate the delta time.  If a connection is new or has been idle
1953 	 * a long time we have to reset the bandwidth calculator.
1954 	 */
1955 	save_ticks = ticks;
1956 	cpu_ccfence();
1957 	delta_ticks = save_ticks - tp->t_bw_rtttime;
1958 	if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1959 		tp->t_bw_rtttime = save_ticks;
1960 		tp->t_bw_rtseq = ack_seq;
1961 		if (tp->snd_bandwidth == 0)
1962 			tp->snd_bandwidth = tcp_inflight_min;
1963 		return;
1964 	}
1965 
1966 	/*
1967 	 * A delta of at least 1 tick is required.  Waiting 2 ticks will
1968 	 * result in better (bw) accuracy.  More than that and the ramp-up
1969 	 * will be too slow.
1970 	 */
1971 	if (delta_ticks == 0 || delta_ticks == 1)
1972 		return;
1973 
1974 	/*
1975 	 * Sanity check, plus ignore pure window update acks.
1976 	 */
1977 	if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1978 		return;
1979 
1980 	/*
1981 	 * Figure out the bandwidth.  Due to the tick granularity this
1982 	 * is a very rough number and it MUST be averaged over a fairly
1983 	 * long period of time.  XXX we need to take into account a link
1984 	 * that is not using all available bandwidth, but for now our
1985 	 * slop will ramp us up if this case occurs and the bandwidth later
1986 	 * increases.
1987 	 */
1988 	ibw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
1989 	tp->t_bw_rtttime = save_ticks;
1990 	tp->t_bw_rtseq = ack_seq;
1991 	bw = ((int64_t)tp->snd_bandwidth * 15 + ibw) >> 4;
1992 
1993 	tp->snd_bandwidth = bw;
1994 
1995 	/*
1996 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1997 	 * segments.  The additional slop puts us squarely in the sweet
1998 	 * spot and also handles the bandwidth run-up case.  Without the
1999 	 * slop we could be locking ourselves into a lower bandwidth.
2000 	 *
2001 	 * At very high speeds the bw calculation can become overly sensitive
2002 	 * and error prone when delta_ticks is low (e.g. usually 1).  To deal
2003 	 * with the problem the stab must be scaled to the bw.  A stab of 50
2004 	 * (the default) increases the bw for the purposes of the bwnd
2005 	 * calculation by 5%.
2006 	 *
2007 	 * Situations Handled:
2008 	 *	(1) Prevents over-queueing of packets on LANs, especially on
2009 	 *	    high speed LANs, allowing larger TCP buffers to be
2010 	 *	    specified, and also does a good job preventing
2011 	 *	    over-queueing of packets over choke points like modems
2012 	 *	    (at least for the transmit side).
2013 	 *
2014 	 *	(2) Is able to handle changing network loads (bandwidth
2015 	 *	    drops so bwnd drops, bandwidth increases so bwnd
2016 	 *	    increases).
2017 	 *
2018 	 *	(3) Theoretically should stabilize in the face of multiple
2019 	 *	    connections implementing the same algorithm (this may need
2020 	 *	    a little work).
2021 	 *
2022 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2023 	 *	    be adjusted with a sysctl but typically only needs to be on
2024 	 *	    very slow connections.  A value no smaller then 5 should
2025 	 *	    be used, but only reduce this default if you have no other
2026 	 *	    choice.
2027 	 */
2028 
2029 #define	USERTT	((tp->t_srtt + tp->t_rttvar) + tcp_inflight_adjrtt)
2030 	bw += bw * tcp_inflight_stab / 1000;
2031 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
2032 	       (int)tp->t_maxseg * 2;
2033 #undef USERTT
2034 
2035 	if (tcp_inflight_debug > 0) {
2036 		static int ltime;
2037 		if ((u_int)(save_ticks - ltime) >= hz / tcp_inflight_debug) {
2038 			ltime = save_ticks;
2039 			kprintf("%p ibw %ld bw %ld rttvar %d srtt %d "
2040 				"bwnd %ld delta %d snd_win %ld\n",
2041 				tp, ibw, bw, tp->t_rttvar, tp->t_srtt,
2042 				bwnd, delta_ticks, tp->snd_wnd);
2043 		}
2044 	}
2045 	if ((long)bwnd < tcp_inflight_min)
2046 		bwnd = tcp_inflight_min;
2047 	if (bwnd > tcp_inflight_max)
2048 		bwnd = tcp_inflight_max;
2049 	if ((long)bwnd < tp->t_maxseg * 2)
2050 		bwnd = tp->t_maxseg * 2;
2051 	tp->snd_bwnd = bwnd;
2052 }
2053 
2054 static void
2055 tcp_rmx_iwsegs(struct tcpcb *tp, u_long *maxsegs, u_long *capsegs)
2056 {
2057 	struct rtentry *rt;
2058 	struct inpcb *inp = tp->t_inpcb;
2059 #ifdef INET6
2060 	boolean_t isipv6 = INP_ISIPV6(inp);
2061 #else
2062 	const boolean_t isipv6 = FALSE;
2063 #endif
2064 
2065 	/* XXX */
2066 	if (tcp_iw_maxsegs < TCP_IW_MAXSEGS_DFLT)
2067 		tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
2068 	if (tcp_iw_capsegs < TCP_IW_CAPSEGS_DFLT)
2069 		tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
2070 
2071 	if (isipv6)
2072 		rt = tcp_rtlookup6(&inp->inp_inc);
2073 	else
2074 		rt = tcp_rtlookup(&inp->inp_inc);
2075 	if (rt == NULL ||
2076 	    rt->rt_rmx.rmx_iwmaxsegs < TCP_IW_MAXSEGS_DFLT ||
2077 	    rt->rt_rmx.rmx_iwcapsegs < TCP_IW_CAPSEGS_DFLT) {
2078 		*maxsegs = tcp_iw_maxsegs;
2079 		*capsegs = tcp_iw_capsegs;
2080 		return;
2081 	}
2082 	*maxsegs = rt->rt_rmx.rmx_iwmaxsegs;
2083 	*capsegs = rt->rt_rmx.rmx_iwcapsegs;
2084 }
2085 
2086 u_long
2087 tcp_initial_window(struct tcpcb *tp)
2088 {
2089 	if (tcp_do_rfc3390) {
2090 		/*
2091 		 * RFC3390:
2092 		 * "If the SYN or SYN/ACK is lost, the initial window
2093 		 *  used by a sender after a correctly transmitted SYN
2094 		 *  MUST be one segment consisting of MSS bytes."
2095 		 *
2096 		 * However, we do something a little bit more aggressive
2097 		 * then RFC3390 here:
2098 		 * - Only if time spent in the SYN or SYN|ACK retransmition
2099 		 *   >= 3 seconds, the IW is reduced.  We do this mainly
2100 		 *   because when RFC3390 is published, the initial RTO is
2101 		 *   still 3 seconds (the threshold we test here), while
2102 		 *   after RFC6298, the initial RTO is 1 second.  This
2103 		 *   behaviour probably still falls within the spirit of
2104 		 *   RFC3390.
2105 		 * - When IW is reduced, 2*MSS is used instead of 1*MSS.
2106 		 *   Mainly to avoid sender and receiver deadlock until
2107 		 *   delayed ACK timer expires.  And even RFC2581 does not
2108 		 *   try to reduce IW upon SYN or SYN|ACK retransmition
2109 		 *   timeout.
2110 		 *
2111 		 * See also:
2112 		 * http://tools.ietf.org/html/draft-ietf-tcpm-initcwnd-03
2113 		 */
2114 		if (tp->t_rxtsyn >= TCPTV_RTOBASE3) {
2115 			return (2 * tp->t_maxseg);
2116 		} else {
2117 			u_long maxsegs, capsegs;
2118 
2119 			tcp_rmx_iwsegs(tp, &maxsegs, &capsegs);
2120 			return min(maxsegs * tp->t_maxseg,
2121 				   max(2 * tp->t_maxseg, capsegs * 1460));
2122 		}
2123 	} else {
2124 		/*
2125 		 * Even RFC2581 (back to 1999) allows 2*SMSS IW.
2126 		 *
2127 		 * Mainly to avoid sender and receiver deadlock
2128 		 * until delayed ACK timer expires.
2129 		 */
2130 		return (2 * tp->t_maxseg);
2131 	}
2132 }
2133 
2134 #ifdef TCP_SIGNATURE
2135 /*
2136  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2137  *
2138  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2139  * When called from tcp_input(), we can be sure that th_sum has been
2140  * zeroed out and verified already.
2141  *
2142  * Return 0 if successful, otherwise return -1.
2143  *
2144  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2145  * search with the destination IP address, and a 'magic SPI' to be
2146  * determined by the application. This is hardcoded elsewhere to 1179
2147  * right now. Another branch of this code exists which uses the SPD to
2148  * specify per-application flows but it is unstable.
2149  */
2150 int
2151 tcpsignature_compute(
2152 	struct mbuf *m,		/* mbuf chain */
2153 	int len,		/* length of TCP data */
2154 	int optlen,		/* length of TCP options */
2155 	u_char *buf,		/* storage for MD5 digest */
2156 	u_int direction)	/* direction of flow */
2157 {
2158 	struct ippseudo ippseudo;
2159 	MD5_CTX ctx;
2160 	int doff;
2161 	struct ip *ip;
2162 	struct ipovly *ipovly;
2163 	struct secasvar *sav;
2164 	struct tcphdr *th;
2165 #ifdef INET6
2166 	struct ip6_hdr *ip6;
2167 	struct in6_addr in6;
2168 	uint32_t plen;
2169 	uint16_t nhdr;
2170 #endif /* INET6 */
2171 	u_short savecsum;
2172 
2173 	KASSERT(m != NULL, ("passed NULL mbuf. Game over."));
2174 	KASSERT(buf != NULL, ("passed NULL storage pointer for MD5 signature"));
2175 	/*
2176 	 * Extract the destination from the IP header in the mbuf.
2177 	 */
2178 	ip = mtod(m, struct ip *);
2179 #ifdef INET6
2180 	ip6 = NULL;     /* Make the compiler happy. */
2181 #endif /* INET6 */
2182 	/*
2183 	 * Look up an SADB entry which matches the address found in
2184 	 * the segment.
2185 	 */
2186 	switch (IP_VHL_V(ip->ip_vhl)) {
2187 	case IPVERSION:
2188 		sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src, (caddr_t)&ip->ip_dst,
2189 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2190 		break;
2191 #ifdef INET6
2192 	case (IPV6_VERSION >> 4):
2193 		ip6 = mtod(m, struct ip6_hdr *);
2194 		sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src, (caddr_t)&ip6->ip6_dst,
2195 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2196 		break;
2197 #endif /* INET6 */
2198 	default:
2199 		return (EINVAL);
2200 		/* NOTREACHED */
2201 		break;
2202 	}
2203 	if (sav == NULL) {
2204 		kprintf("%s: SADB lookup failed\n", __func__);
2205 		return (EINVAL);
2206 	}
2207 	MD5Init(&ctx);
2208 
2209 	/*
2210 	 * Step 1: Update MD5 hash with IP pseudo-header.
2211 	 *
2212 	 * XXX The ippseudo header MUST be digested in network byte order,
2213 	 * or else we'll fail the regression test. Assume all fields we've
2214 	 * been doing arithmetic on have been in host byte order.
2215 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2216 	 * tcp_output(), the underlying ip_len member has not yet been set.
2217 	 */
2218 	switch (IP_VHL_V(ip->ip_vhl)) {
2219 	case IPVERSION:
2220 		ipovly = (struct ipovly *)ip;
2221 		ippseudo.ippseudo_src = ipovly->ih_src;
2222 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2223 		ippseudo.ippseudo_pad = 0;
2224 		ippseudo.ippseudo_p = IPPROTO_TCP;
2225 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2226 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2227 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2228 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2229 		break;
2230 #ifdef INET6
2231 	/*
2232 	 * RFC 2385, 2.0  Proposal
2233 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2234 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2235 	 * extended next header value (to form 32 bits), and 32-bit segment
2236 	 * length.
2237 	 * Note: Upper-Layer Packet Length comes before Next Header.
2238 	 */
2239 	case (IPV6_VERSION >> 4):
2240 		in6 = ip6->ip6_src;
2241 		in6_clearscope(&in6);
2242 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2243 		in6 = ip6->ip6_dst;
2244 		in6_clearscope(&in6);
2245 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2246 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2247 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2248 		nhdr = 0;
2249 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2250 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2251 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2252 		nhdr = IPPROTO_TCP;
2253 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2254 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2255 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2256 		break;
2257 #endif /* INET6 */
2258 	default:
2259 		return (EINVAL);
2260 		/* NOTREACHED */
2261 		break;
2262 	}
2263 	/*
2264 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2265 	 * The TCP checksum must be set to zero.
2266 	 */
2267 	savecsum = th->th_sum;
2268 	th->th_sum = 0;
2269 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2270 	th->th_sum = savecsum;
2271 	/*
2272 	 * Step 3: Update MD5 hash with TCP segment data.
2273 	 *         Use m_apply() to avoid an early m_pullup().
2274 	 */
2275 	if (len > 0)
2276 		m_apply(m, doff, len, tcpsignature_apply, &ctx);
2277 	/*
2278 	 * Step 4: Update MD5 hash with shared secret.
2279 	 */
2280 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2281 	MD5Final(buf, &ctx);
2282 	key_sa_recordxfer(sav, m);
2283 	key_freesav(sav);
2284 	return (0);
2285 }
2286 
2287 int
2288 tcpsignature_apply(void *fstate, void *data, unsigned int len)
2289 {
2290 
2291 	MD5Update((MD5_CTX *)fstate, (unsigned char *)data, len);
2292 	return (0);
2293 }
2294 #endif /* TCP_SIGNATURE */
2295 
2296 static void
2297 tcp_drop_sysctl_dispatch(netmsg_t nmsg)
2298 {
2299 	struct lwkt_msg *lmsg = &nmsg->lmsg;
2300 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2301 	struct sockaddr_storage *addrs = lmsg->u.ms_resultp;
2302 	int error;
2303 	struct sockaddr_in *fin, *lin;
2304 #ifdef INET6
2305 	struct sockaddr_in6 *fin6, *lin6;
2306 	struct in6_addr f6, l6;
2307 #endif
2308 	struct inpcb *inp;
2309 
2310 	switch (addrs[0].ss_family) {
2311 #ifdef INET6
2312 	case AF_INET6:
2313 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2314 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2315 		error = in6_embedscope(&f6, fin6, NULL, NULL);
2316 		if (error)
2317 			goto done;
2318 		error = in6_embedscope(&l6, lin6, NULL, NULL);
2319 		if (error)
2320 			goto done;
2321 		inp = in6_pcblookup_hash(&tcbinfo[mycpuid], &f6,
2322 		    fin6->sin6_port, &l6, lin6->sin6_port, FALSE, NULL);
2323 		break;
2324 #endif
2325 #ifdef INET
2326 	case AF_INET:
2327 		fin = (struct sockaddr_in *)&addrs[0];
2328 		lin = (struct sockaddr_in *)&addrs[1];
2329 		inp = in_pcblookup_hash(&tcbinfo[mycpuid], fin->sin_addr,
2330 		    fin->sin_port, lin->sin_addr, lin->sin_port, FALSE, NULL);
2331 		break;
2332 #endif
2333 	default:
2334 		/*
2335 		 * Must not reach here, since the address family was
2336 		 * checked in sysctl handler.
2337 		 */
2338 		panic("unknown address family %d", addrs[0].ss_family);
2339 	}
2340 	if (inp != NULL) {
2341 		struct tcpcb *tp = intotcpcb(inp);
2342 
2343 		KASSERT((inp->inp_flags & INP_WILDCARD) == 0,
2344 		    ("in wildcard hash"));
2345 
2346 		if (tp == NULL) {
2347 			error = ESRCH;
2348 			goto done;
2349 		}
2350 		KASSERT((tp->t_flags & TF_LISTEN) == 0, ("listen socket"));
2351 		tcp_drop(tp, ECONNABORTED);
2352 		error = 0;
2353 	} else {
2354 		error = ESRCH;
2355 	}
2356 done:
2357 	lwkt_replymsg(lmsg, error);
2358 }
2359 
2360 static int
2361 sysctl_tcp_drop(SYSCTL_HANDLER_ARGS)
2362 {
2363 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2364 	struct sockaddr_storage addrs[2];
2365 	struct sockaddr_in *fin, *lin;
2366 #ifdef INET6
2367 	struct sockaddr_in6 *fin6, *lin6;
2368 #endif
2369 	struct netmsg_base nmsg;
2370 	struct lwkt_msg *lmsg = &nmsg.lmsg;
2371 	struct lwkt_port *port = NULL;
2372 	int error;
2373 
2374 	fin = lin = NULL;
2375 #ifdef INET6
2376 	fin6 = lin6 = NULL;
2377 #endif
2378 	error = 0;
2379 
2380 	if (req->oldptr != NULL || req->oldlen != 0)
2381 		return (EINVAL);
2382 	if (req->newptr == NULL)
2383 		return (EPERM);
2384 	if (req->newlen < sizeof(addrs))
2385 		return (ENOMEM);
2386 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2387 	if (error)
2388 		return (error);
2389 
2390 	switch (addrs[0].ss_family) {
2391 #ifdef INET6
2392 	case AF_INET6:
2393 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2394 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2395 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2396 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2397 			return (EINVAL);
2398 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr) ||
2399 		    IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2400 			return (EADDRNOTAVAIL);
2401 #if 0
2402 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2403 		if (error)
2404 			return (error);
2405 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2406 		if (error)
2407 			return (error);
2408 #endif
2409 		port = tcp6_addrport();
2410 		break;
2411 #endif
2412 #ifdef INET
2413 	case AF_INET:
2414 		fin = (struct sockaddr_in *)&addrs[0];
2415 		lin = (struct sockaddr_in *)&addrs[1];
2416 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2417 		    lin->sin_len != sizeof(struct sockaddr_in))
2418 			return (EINVAL);
2419 		port = tcp_addrport(fin->sin_addr.s_addr, fin->sin_port,
2420 		    lin->sin_addr.s_addr, lin->sin_port);
2421 		break;
2422 #endif
2423 	default:
2424 		return (EINVAL);
2425 	}
2426 
2427 	netmsg_init(&nmsg, NULL, &curthread->td_msgport, 0,
2428 	    tcp_drop_sysctl_dispatch);
2429 	lmsg->u.ms_resultp = addrs;
2430 	return lwkt_domsg(port, lmsg, 0);
2431 }
2432 
2433 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, drop,
2434     CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP, NULL,
2435     0, sysctl_tcp_drop, "", "Drop TCP connection");
2436