xref: /dragonfly/sys/netinet/tcp_subr.c (revision 2cd2d2b5)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
36  *
37  * License terms: all terms for the DragonFly license above plus the following:
38  *
39  * 4. All advertising materials mentioning features or use of this software
40  *    must display the following acknowledgement:
41  *
42  *	This product includes software developed by Jeffrey M. Hsu
43  *	for the DragonFly Project.
44  *
45  *    This requirement may be waived with permission from Jeffrey Hsu.
46  *    This requirement will sunset and may be removed on July 8 2005,
47  *    after which the standard DragonFly license (as shown above) will
48  *    apply.
49  */
50 
51 /*
52  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
53  *	The Regents of the University of California.  All rights reserved.
54  *
55  * Redistribution and use in source and binary forms, with or without
56  * modification, are permitted provided that the following conditions
57  * are met:
58  * 1. Redistributions of source code must retain the above copyright
59  *    notice, this list of conditions and the following disclaimer.
60  * 2. Redistributions in binary form must reproduce the above copyright
61  *    notice, this list of conditions and the following disclaimer in the
62  *    documentation and/or other materials provided with the distribution.
63  * 3. All advertising materials mentioning features or use of this software
64  *    must display the following acknowledgement:
65  *	This product includes software developed by the University of
66  *	California, Berkeley and its contributors.
67  * 4. Neither the name of the University nor the names of its contributors
68  *    may be used to endorse or promote products derived from this software
69  *    without specific prior written permission.
70  *
71  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
72  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
75  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81  * SUCH DAMAGE.
82  *
83  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
84  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
85  * $DragonFly: src/sys/netinet/tcp_subr.c,v 1.38 2004/08/11 02:36:22 dillon Exp $
86  */
87 
88 #include "opt_compat.h"
89 #include "opt_inet6.h"
90 #include "opt_ipsec.h"
91 #include "opt_tcpdebug.h"
92 
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/callout.h>
96 #include <sys/kernel.h>
97 #include <sys/sysctl.h>
98 #include <sys/malloc.h>
99 #include <sys/mpipe.h>
100 #include <sys/mbuf.h>
101 #ifdef INET6
102 #include <sys/domain.h>
103 #endif
104 #include <sys/proc.h>
105 #include <sys/socket.h>
106 #include <sys/socketvar.h>
107 #include <sys/protosw.h>
108 #include <sys/random.h>
109 #include <sys/in_cksum.h>
110 
111 #include <vm/vm_zone.h>
112 
113 #include <net/route.h>
114 #include <net/if.h>
115 #include <net/netisr.h>
116 
117 #define	_IP_VHL
118 #include <netinet/in.h>
119 #include <netinet/in_systm.h>
120 #include <netinet/ip.h>
121 #include <netinet/ip6.h>
122 #include <netinet/in_pcb.h>
123 #include <netinet6/in6_pcb.h>
124 #include <netinet/in_var.h>
125 #include <netinet/ip_var.h>
126 #include <netinet6/ip6_var.h>
127 #include <netinet/tcp.h>
128 #include <netinet/tcp_fsm.h>
129 #include <netinet/tcp_seq.h>
130 #include <netinet/tcp_timer.h>
131 #include <netinet/tcp_var.h>
132 #include <netinet6/tcp6_var.h>
133 #include <netinet/tcpip.h>
134 #ifdef TCPDEBUG
135 #include <netinet/tcp_debug.h>
136 #endif
137 #include <netinet6/ip6protosw.h>
138 
139 #ifdef IPSEC
140 #include <netinet6/ipsec.h>
141 #ifdef INET6
142 #include <netinet6/ipsec6.h>
143 #endif
144 #endif
145 
146 #ifdef FAST_IPSEC
147 #include <netipsec/ipsec.h>
148 #ifdef INET6
149 #include <netipsec/ipsec6.h>
150 #endif
151 #define	IPSEC
152 #endif
153 
154 #include <sys/md5.h>
155 
156 #include <sys/msgport2.h>
157 
158 #include <machine/smp.h>
159 
160 struct inpcbinfo tcbinfo[MAXCPU];
161 struct tcpcbackqhead tcpcbackq[MAXCPU];
162 
163 int tcp_mssdflt = TCP_MSS;
164 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
165     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
166 
167 #ifdef INET6
168 int tcp_v6mssdflt = TCP6_MSS;
169 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
170     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
171 #endif
172 
173 #if 0
174 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
175 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
176     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
177 #endif
178 
179 int tcp_do_rfc1323 = 1;
180 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
181     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
182 
183 int tcp_do_rfc1644 = 0;
184 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
185     &tcp_do_rfc1644, 0, "Enable rfc1644 (TTCP) extensions");
186 
187 static int tcp_tcbhashsize = 0;
188 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
189      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
190 
191 static int do_tcpdrain = 1;
192 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
193      "Enable tcp_drain routine for extra help when low on mbufs");
194 
195 /* XXX JH */
196 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
197     &tcbinfo[0].ipi_count, 0, "Number of active PCBs");
198 
199 static int icmp_may_rst = 1;
200 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
201     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
202 
203 static int tcp_isn_reseed_interval = 0;
204 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
205     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
206 
207 /*
208  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
209  * 1024 exists only for debugging.  A good production default would be
210  * something like 6100.
211  */
212 static int tcp_inflight_enable = 0;
213 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
214     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
215 
216 static int tcp_inflight_debug = 0;
217 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
218     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
219 
220 static int tcp_inflight_min = 6144;
221 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
222     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
223 
224 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
225 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
226     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
227 
228 static int tcp_inflight_stab = 20;
229 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
230     &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 2 packets)");
231 
232 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
233 static struct malloc_pipe tcptemp_mpipe;
234 
235 static void tcp_willblock(void);
236 static void tcp_cleartaocache (void);
237 static void tcp_notify (struct inpcb *, int);
238 
239 struct tcp_stats tcpstats_ary[MAXCPU];
240 #ifdef SMP
241 static int
242 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
243 {
244 	int cpu, error = 0;
245 
246 	for (cpu = 0; cpu < ncpus; ++cpu) {
247 		if ((error = SYSCTL_OUT(req, (void *)&tcpstats_ary[cpu],
248 					sizeof(struct tcp_stats))))
249 			break;
250 		if ((error = SYSCTL_IN(req, (void *)&tcpstats_ary[cpu],
251 				       sizeof(struct tcp_stats))))
252 			break;
253 	}
254 
255 	return (error);
256 }
257 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
258     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
259 #else
260 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
261     &tcpstat, tcp_stats, "TCP statistics");
262 #endif
263 
264 /*
265  * Target size of TCP PCB hash tables. Must be a power of two.
266  *
267  * Note that this can be overridden by the kernel environment
268  * variable net.inet.tcp.tcbhashsize
269  */
270 #ifndef TCBHASHSIZE
271 #define	TCBHASHSIZE	512
272 #endif
273 
274 /*
275  * This is the actual shape of what we allocate using the zone
276  * allocator.  Doing it this way allows us to protect both structures
277  * using the same generation count, and also eliminates the overhead
278  * of allocating tcpcbs separately.  By hiding the structure here,
279  * we avoid changing most of the rest of the code (although it needs
280  * to be changed, eventually, for greater efficiency).
281  */
282 #define	ALIGNMENT	32
283 #define	ALIGNM1		(ALIGNMENT - 1)
284 struct	inp_tp {
285 	union {
286 		struct	inpcb inp;
287 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
288 	} inp_tp_u;
289 	struct	tcpcb tcb;
290 	struct	callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
291 	struct	callout inp_tp_delack;
292 };
293 #undef ALIGNMENT
294 #undef ALIGNM1
295 
296 /*
297  * Tcp initialization
298  */
299 void
300 tcp_init()
301 {
302 	struct inpcbporthead *porthashbase;
303 	u_long porthashmask;
304 	struct vm_zone *ipi_zone;
305 	int hashsize = TCBHASHSIZE;
306 	int cpu;
307 
308 	/*
309 	 * note: tcptemp is used for keepalives, and it is ok for an
310 	 * allocation to fail so do not specify MPF_INT.
311 	 */
312 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
313 		    25, -1, 0, NULL);
314 
315 	tcp_ccgen = 1;
316 	tcp_cleartaocache();
317 
318 	tcp_delacktime = TCPTV_DELACK;
319 	tcp_keepinit = TCPTV_KEEP_INIT;
320 	tcp_keepidle = TCPTV_KEEP_IDLE;
321 	tcp_keepintvl = TCPTV_KEEPINTVL;
322 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
323 	tcp_msl = TCPTV_MSL;
324 	tcp_rexmit_min = TCPTV_MIN;
325 	tcp_rexmit_slop = TCPTV_CPU_VAR;
326 
327 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
328 	if (!powerof2(hashsize)) {
329 		printf("WARNING: TCB hash size not a power of 2\n");
330 		hashsize = 512; /* safe default */
331 	}
332 	tcp_tcbhashsize = hashsize;
333 	porthashbase = hashinit(hashsize, M_PCB, &porthashmask);
334 	ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets,
335 			 ZONE_INTERRUPT, 0);
336 
337 	for (cpu = 0; cpu < ncpus2; cpu++) {
338 		in_pcbinfo_init(&tcbinfo[cpu]);
339 		tcbinfo[cpu].cpu = cpu;
340 		tcbinfo[cpu].hashbase = hashinit(hashsize, M_PCB,
341 		    &tcbinfo[cpu].hashmask);
342 		tcbinfo[cpu].porthashbase = porthashbase;
343 		tcbinfo[cpu].porthashmask = porthashmask;
344 		tcbinfo[cpu].wildcardhashbase = hashinit(hashsize, M_PCB,
345 		    &tcbinfo[cpu].wildcardhashmask);
346 		tcbinfo[cpu].ipi_zone = ipi_zone;
347 		TAILQ_INIT(&tcpcbackq[cpu]);
348 	}
349 
350 	tcp_reass_maxseg = nmbclusters / 16;
351 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
352 
353 #ifdef INET6
354 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
355 #else
356 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
357 #endif
358 	if (max_protohdr < TCP_MINPROTOHDR)
359 		max_protohdr = TCP_MINPROTOHDR;
360 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
361 		panic("tcp_init");
362 #undef TCP_MINPROTOHDR
363 
364 	/*
365 	 * Initialize TCP statistics.
366 	 *
367 	 * It is layed out as an array which is has one element for UP,
368 	 * and SMP_MAXCPU elements for SMP.  This allows us to retain
369 	 * the access mechanism from userland for both UP and SMP.
370 	 */
371 #ifdef SMP
372 	for (cpu = 0; cpu < ncpus; ++cpu) {
373 		bzero(&tcpstats_ary[cpu], sizeof(struct tcp_stats));
374 	}
375 #else
376 	bzero(&tcpstat, sizeof(struct tcp_stats));
377 #endif
378 
379 	syncache_init();
380 	tcp_thread_init();
381 }
382 
383 void
384 tcpmsg_service_loop(void *dummy)
385 {
386 	struct netmsg *msg;
387 
388 	while ((msg = lwkt_waitport(&curthread->td_msgport, NULL))) {
389 		do {
390 			msg->nm_lmsg.ms_cmd.cm_func(&msg->nm_lmsg);
391 		} while ((msg = lwkt_getport(&curthread->td_msgport)) != NULL);
392 		tcp_willblock();
393 	}
394 }
395 
396 static void
397 tcp_willblock(void)
398 {
399 	struct tcpcb *tp;
400 	int cpu = mycpu->gd_cpuid;
401 
402 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
403 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
404 		tp->t_flags &= ~TF_ONOUTPUTQ;
405 		TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
406 		tcp_output(tp);
407 	}
408 }
409 
410 
411 /*
412  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
413  * tcp_template used to store this data in mbufs, but we now recopy it out
414  * of the tcpcb each time to conserve mbufs.
415  */
416 void
417 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr)
418 {
419 	struct inpcb *inp = tp->t_inpcb;
420 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
421 
422 #ifdef INET6
423 	if (inp->inp_vflag & INP_IPV6) {
424 		struct ip6_hdr *ip6;
425 
426 		ip6 = (struct ip6_hdr *)ip_ptr;
427 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
428 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
429 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
430 			(IPV6_VERSION & IPV6_VERSION_MASK);
431 		ip6->ip6_nxt = IPPROTO_TCP;
432 		ip6->ip6_plen = sizeof(struct tcphdr);
433 		ip6->ip6_src = inp->in6p_laddr;
434 		ip6->ip6_dst = inp->in6p_faddr;
435 		tcp_hdr->th_sum = 0;
436 	} else
437 #endif
438 	{
439 		struct ip *ip = (struct ip *) ip_ptr;
440 
441 		ip->ip_vhl = IP_VHL_BORING;
442 		ip->ip_tos = 0;
443 		ip->ip_len = 0;
444 		ip->ip_id = 0;
445 		ip->ip_off = 0;
446 		ip->ip_ttl = 0;
447 		ip->ip_sum = 0;
448 		ip->ip_p = IPPROTO_TCP;
449 		ip->ip_src = inp->inp_laddr;
450 		ip->ip_dst = inp->inp_faddr;
451 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
452 				    ip->ip_dst.s_addr,
453 				    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
454 	}
455 
456 	tcp_hdr->th_sport = inp->inp_lport;
457 	tcp_hdr->th_dport = inp->inp_fport;
458 	tcp_hdr->th_seq = 0;
459 	tcp_hdr->th_ack = 0;
460 	tcp_hdr->th_x2 = 0;
461 	tcp_hdr->th_off = 5;
462 	tcp_hdr->th_flags = 0;
463 	tcp_hdr->th_win = 0;
464 	tcp_hdr->th_urp = 0;
465 }
466 
467 /*
468  * Create template to be used to send tcp packets on a connection.
469  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
470  * use for this function is in keepalives, which use tcp_respond.
471  */
472 struct tcptemp *
473 tcp_maketemplate(struct tcpcb *tp)
474 {
475 	struct tcptemp *tmp;
476 
477 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
478 		return (NULL);
479 	tcp_fillheaders(tp, (void *)&tmp->tt_ipgen, (void *)&tmp->tt_t);
480 	return (tmp);
481 }
482 
483 void
484 tcp_freetemplate(struct tcptemp *tmp)
485 {
486 	mpipe_free(&tcptemp_mpipe, tmp);
487 }
488 
489 /*
490  * Send a single message to the TCP at address specified by
491  * the given TCP/IP header.  If m == NULL, then we make a copy
492  * of the tcpiphdr at ti and send directly to the addressed host.
493  * This is used to force keep alive messages out using the TCP
494  * template for a connection.  If flags are given then we send
495  * a message back to the TCP which originated the * segment ti,
496  * and discard the mbuf containing it and any other attached mbufs.
497  *
498  * In any case the ack and sequence number of the transmitted
499  * segment are as specified by the parameters.
500  *
501  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
502  */
503 void
504 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
505 	    tcp_seq ack, tcp_seq seq, int flags)
506 {
507 	int tlen;
508 	int win = 0;
509 	struct route *ro = NULL;
510 	struct route sro;
511 	struct ip *ip = ipgen;
512 	struct tcphdr *nth;
513 	int ipflags = 0;
514 	struct route_in6 *ro6 = NULL;
515 	struct route_in6 sro6;
516 	struct ip6_hdr *ip6 = ipgen;
517 #ifdef INET6
518 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
519 #else
520 	const boolean_t isipv6 = FALSE;
521 #endif
522 
523 	if (tp != NULL) {
524 		if (!(flags & TH_RST)) {
525 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
526 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
527 				win = (long)TCP_MAXWIN << tp->rcv_scale;
528 		}
529 		if (isipv6)
530 			ro6 = &tp->t_inpcb->in6p_route;
531 		else
532 			ro = &tp->t_inpcb->inp_route;
533 	} else {
534 		if (isipv6) {
535 			ro6 = &sro6;
536 			bzero(ro6, sizeof *ro6);
537 		} else {
538 			ro = &sro;
539 			bzero(ro, sizeof *ro);
540 		}
541 	}
542 	if (m == NULL) {
543 		m = m_gethdr(MB_DONTWAIT, MT_HEADER);
544 		if (m == NULL)
545 			return;
546 		tlen = 0;
547 		m->m_data += max_linkhdr;
548 		if (isipv6) {
549 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
550 			ip6 = mtod(m, struct ip6_hdr *);
551 			nth = (struct tcphdr *)(ip6 + 1);
552 		} else {
553 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
554 			ip = mtod(m, struct ip *);
555 			nth = (struct tcphdr *)(ip + 1);
556 		}
557 		bcopy(th, nth, sizeof(struct tcphdr));
558 		flags = TH_ACK;
559 	} else {
560 		m_freem(m->m_next);
561 		m->m_next = NULL;
562 		m->m_data = (caddr_t)ipgen;
563 		/* m_len is set later */
564 		tlen = 0;
565 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
566 		if (isipv6) {
567 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
568 			nth = (struct tcphdr *)(ip6 + 1);
569 		} else {
570 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
571 			nth = (struct tcphdr *)(ip + 1);
572 		}
573 		if (th != nth) {
574 			/*
575 			 * this is usually a case when an extension header
576 			 * exists between the IPv6 header and the
577 			 * TCP header.
578 			 */
579 			nth->th_sport = th->th_sport;
580 			nth->th_dport = th->th_dport;
581 		}
582 		xchg(nth->th_dport, nth->th_sport, n_short);
583 #undef xchg
584 	}
585 	if (isipv6) {
586 		ip6->ip6_flow = 0;
587 		ip6->ip6_vfc = IPV6_VERSION;
588 		ip6->ip6_nxt = IPPROTO_TCP;
589 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
590 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
591 	} else {
592 		tlen += sizeof(struct tcpiphdr);
593 		ip->ip_len = tlen;
594 		ip->ip_ttl = ip_defttl;
595 	}
596 	m->m_len = tlen;
597 	m->m_pkthdr.len = tlen;
598 	m->m_pkthdr.rcvif = (struct ifnet *) NULL;
599 	nth->th_seq = htonl(seq);
600 	nth->th_ack = htonl(ack);
601 	nth->th_x2 = 0;
602 	nth->th_off = sizeof(struct tcphdr) >> 2;
603 	nth->th_flags = flags;
604 	if (tp != NULL)
605 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
606 	else
607 		nth->th_win = htons((u_short)win);
608 	nth->th_urp = 0;
609 	if (isipv6) {
610 		nth->th_sum = 0;
611 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
612 					sizeof(struct ip6_hdr),
613 					tlen - sizeof(struct ip6_hdr));
614 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
615 					       (ro6 && ro6->ro_rt) ?
616 					           ro6->ro_rt->rt_ifp : NULL);
617 	} else {
618 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
619 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
620 		m->m_pkthdr.csum_flags = CSUM_TCP;
621 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
622 	}
623 #ifdef TCPDEBUG
624 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
625 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
626 #endif
627 	if (isipv6) {
628 		(void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
629 				 tp ? tp->t_inpcb : NULL);
630 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
631 			RTFREE(ro6->ro_rt);
632 			ro6->ro_rt = NULL;
633 		}
634 	} else {
635 		(void)ip_output(m, NULL, ro, ipflags, NULL,
636 				tp ? tp->t_inpcb : NULL);
637 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
638 			RTFREE(ro->ro_rt);
639 			ro->ro_rt = NULL;
640 		}
641 	}
642 }
643 
644 /*
645  * Create a new TCP control block, making an
646  * empty reassembly queue and hooking it to the argument
647  * protocol control block.  The `inp' parameter must have
648  * come from the zone allocator set up in tcp_init().
649  */
650 struct tcpcb *
651 tcp_newtcpcb(struct inpcb *inp)
652 {
653 	struct inp_tp *it;
654 	struct tcpcb *tp;
655 #ifdef INET6
656 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
657 #else
658 	const boolean_t isipv6 = FALSE;
659 #endif
660 
661 	it = (struct inp_tp *)inp;
662 	tp = &it->tcb;
663 	bzero(tp, sizeof(struct tcpcb));
664 	LIST_INIT(&tp->t_segq);
665 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
666 
667 	/* Set up our timeouts. */
668 	callout_init(tp->tt_rexmt = &it->inp_tp_rexmt);
669 	callout_init(tp->tt_persist = &it->inp_tp_persist);
670 	callout_init(tp->tt_keep = &it->inp_tp_keep);
671 	callout_init(tp->tt_2msl = &it->inp_tp_2msl);
672 	callout_init(tp->tt_delack = &it->inp_tp_delack);
673 
674 	if (tcp_do_rfc1323)
675 		tp->t_flags = (TF_REQ_SCALE | TF_REQ_TSTMP);
676 	if (tcp_do_rfc1644)
677 		tp->t_flags |= TF_REQ_CC;
678 	tp->t_inpcb = inp;	/* XXX */
679 	tp->t_state = TCPS_CLOSED;
680 	/*
681 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
682 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
683 	 * reasonable initial retransmit time.
684 	 */
685 	tp->t_srtt = TCPTV_SRTTBASE;
686 	tp->t_rttvar =
687 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
688 	tp->t_rttmin = tcp_rexmit_min;
689 	tp->t_rxtcur = TCPTV_RTOBASE;
690 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
691 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
692 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
693 	tp->t_rcvtime = ticks;
694 	tp->t_bw_rtttime = ticks;
695 	/*
696 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
697 	 * because the socket may be bound to an IPv6 wildcard address,
698 	 * which may match an IPv4-mapped IPv6 address.
699 	 */
700 	inp->inp_ip_ttl = ip_defttl;
701 	inp->inp_ppcb = (caddr_t)tp;
702 	return (tp);		/* XXX */
703 }
704 
705 /*
706  * Drop a TCP connection, reporting the specified error.
707  * If connection is synchronized, then send a RST to peer.
708  */
709 struct tcpcb *
710 tcp_drop(struct tcpcb *tp, int errno)
711 {
712 	struct socket *so = tp->t_inpcb->inp_socket;
713 
714 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
715 		tp->t_state = TCPS_CLOSED;
716 		(void) tcp_output(tp);
717 		tcpstat.tcps_drops++;
718 	} else
719 		tcpstat.tcps_conndrops++;
720 	if (errno == ETIMEDOUT && tp->t_softerror)
721 		errno = tp->t_softerror;
722 	so->so_error = errno;
723 	return (tcp_close(tp));
724 }
725 
726 #ifdef SMP
727 
728 struct netmsg_remwildcard {
729 	struct lwkt_msg		nm_lmsg;
730 	struct inpcb		*nm_inp;
731 	struct inpcbinfo	*nm_pcbinfo;
732 #if defined(INET6)
733 	int			nm_isinet6;
734 #else
735 	int			nm_unused01;
736 #endif
737 };
738 
739 /*
740  * Wildcard inpcb's on SMP boxes must be removed from all cpus before the
741  * inp can be detached.  We do this by cycling through the cpus, ending up
742  * on the cpu controlling the inp last and then doing the disconnect.
743  */
744 static int
745 in_pcbremwildcardhash_handler(struct lwkt_msg *msg0)
746 {
747 	struct netmsg_remwildcard *msg = (struct netmsg_remwildcard *)msg0;
748 	int cpu;
749 
750 	cpu = msg->nm_pcbinfo->cpu;
751 
752 	if (cpu == msg->nm_inp->inp_pcbinfo->cpu) {
753 		/* note: detach removes any wildcard hash entry */
754 #ifdef INET6
755 		if (msg->nm_isinet6)
756 			in6_pcbdetach(msg->nm_inp);
757 		else
758 #endif
759 			in_pcbdetach(msg->nm_inp);
760 		lwkt_replymsg(&msg->nm_lmsg, 0);
761 	} else {
762 		in_pcbremwildcardhash_oncpu(msg->nm_inp, msg->nm_pcbinfo);
763 		cpu = (cpu + 1) % ncpus2;
764 		msg->nm_pcbinfo = &tcbinfo[cpu];
765 		lwkt_forwardmsg(tcp_cport(cpu), &msg->nm_lmsg);
766 	}
767 	return (EASYNC);
768 }
769 
770 #endif
771 
772 /*
773  * Close a TCP control block:
774  *	discard all space held by the tcp
775  *	discard internet protocol block
776  *	wake up any sleepers
777  */
778 struct tcpcb *
779 tcp_close(struct tcpcb *tp)
780 {
781 	struct tseg_qent *q;
782 	struct inpcb *inp = tp->t_inpcb;
783 	struct socket *so = inp->inp_socket;
784 	struct rtentry *rt;
785 	boolean_t dosavessthresh;
786 #ifdef SMP
787 	int cpu;
788 #endif
789 #ifdef INET6
790 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
791 	boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
792 #else
793 	const boolean_t isipv6 = FALSE;
794 #endif
795 
796 	/*
797 	 * The tp is not instantly destroyed in the wildcard case.  Setting
798 	 * the state to TCPS_TERMINATING will prevent the TCP stack from
799 	 * messing with it, though it should be noted that this change may
800 	 * not take effect on other cpus until we have chained the wildcard
801 	 * hash removal.
802 	 *
803 	 * XXX we currently depend on the BGL to synchronize the tp->t_state
804 	 * update and prevent other tcp protocol threads from accepting new
805 	 * connections on the listen socket we might be trying to close down.
806 	 */
807 	KKASSERT(tp->t_state != TCPS_TERMINATING);
808 	tp->t_state = TCPS_TERMINATING;
809 
810 	/*
811 	 * Make sure that all of our timers are stopped before we
812 	 * delete the PCB.
813 	 */
814 	callout_stop(tp->tt_rexmt);
815 	callout_stop(tp->tt_persist);
816 	callout_stop(tp->tt_keep);
817 	callout_stop(tp->tt_2msl);
818 	callout_stop(tp->tt_delack);
819 
820 	if (tp->t_flags & TF_ONOUTPUTQ) {
821 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
822 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
823 		tp->t_flags &= ~TF_ONOUTPUTQ;
824 	}
825 
826 	/*
827 	 * If we got enough samples through the srtt filter,
828 	 * save the rtt and rttvar in the routing entry.
829 	 * 'Enough' is arbitrarily defined as the 16 samples.
830 	 * 16 samples is enough for the srtt filter to converge
831 	 * to within 5% of the correct value; fewer samples and
832 	 * we could save a very bogus rtt.
833 	 *
834 	 * Don't update the default route's characteristics and don't
835 	 * update anything that the user "locked".
836 	 */
837 	if (tp->t_rttupdated >= 16) {
838 		u_long i = 0;
839 
840 		if (isipv6) {
841 			struct sockaddr_in6 *sin6;
842 
843 			if ((rt = inp->in6p_route.ro_rt) == NULL)
844 				goto no_valid_rt;
845 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
846 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
847 				goto no_valid_rt;
848 		} else
849 			if ((rt = inp->inp_route.ro_rt) == NULL ||
850 			    ((struct sockaddr_in *)rt_key(rt))->
851 			     sin_addr.s_addr == INADDR_ANY)
852 				goto no_valid_rt;
853 
854 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
855 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
856 			if (rt->rt_rmx.rmx_rtt && i)
857 				/*
858 				 * filter this update to half the old & half
859 				 * the new values, converting scale.
860 				 * See route.h and tcp_var.h for a
861 				 * description of the scaling constants.
862 				 */
863 				rt->rt_rmx.rmx_rtt =
864 				    (rt->rt_rmx.rmx_rtt + i) / 2;
865 			else
866 				rt->rt_rmx.rmx_rtt = i;
867 			tcpstat.tcps_cachedrtt++;
868 		}
869 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
870 			i = tp->t_rttvar *
871 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
872 			if (rt->rt_rmx.rmx_rttvar && i)
873 				rt->rt_rmx.rmx_rttvar =
874 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
875 			else
876 				rt->rt_rmx.rmx_rttvar = i;
877 			tcpstat.tcps_cachedrttvar++;
878 		}
879 		/*
880 		 * The old comment here said:
881 		 * update the pipelimit (ssthresh) if it has been updated
882 		 * already or if a pipesize was specified & the threshhold
883 		 * got below half the pipesize.  I.e., wait for bad news
884 		 * before we start updating, then update on both good
885 		 * and bad news.
886 		 *
887 		 * But we want to save the ssthresh even if no pipesize is
888 		 * specified explicitly in the route, because such
889 		 * connections still have an implicit pipesize specified
890 		 * by the global tcp_sendspace.  In the absence of a reliable
891 		 * way to calculate the pipesize, it will have to do.
892 		 */
893 		i = tp->snd_ssthresh;
894 		if (rt->rt_rmx.rmx_sendpipe != 0)
895 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
896 		else
897 			dosavessthresh = (i < so->so_snd.sb_hiwat/2);
898 		if (dosavessthresh ||
899 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
900 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
901 			/*
902 			 * convert the limit from user data bytes to
903 			 * packets then to packet data bytes.
904 			 */
905 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
906 			if (i < 2)
907 				i = 2;
908 			i *= tp->t_maxseg +
909 			     (isipv6 ?
910 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
911 			      sizeof(struct tcpiphdr));
912 			if (rt->rt_rmx.rmx_ssthresh)
913 				rt->rt_rmx.rmx_ssthresh =
914 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
915 			else
916 				rt->rt_rmx.rmx_ssthresh = i;
917 			tcpstat.tcps_cachedssthresh++;
918 		}
919 	}
920 
921 no_valid_rt:
922 	/* free the reassembly queue, if any */
923 	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
924 		LIST_REMOVE(q, tqe_q);
925 		m_freem(q->tqe_m);
926 		FREE(q, M_TSEGQ);
927 		tcp_reass_qsize--;
928 	}
929 
930 	inp->inp_ppcb = NULL;
931 	soisdisconnected(so);
932 	/*
933 	 * Discard the inp.  In the SMP case a wildcard inp's hash (created
934 	 * by a listen socket or an INADDR_ANY udp socket) is replicated
935 	 * for each protocol thread and must be removed in the context of
936 	 * that thread.  This is accomplished by chaining the message
937 	 * through the cpus.
938 	 *
939 	 * If the inp is not wildcarded we simply detach, which will remove
940 	 * the any hashes still present for this inp.
941 	 */
942 #ifdef SMP
943 	if (inp->inp_flags & INP_WILDCARD_MP) {
944 		struct netmsg_remwildcard *msg;
945 
946 		cpu = (inp->inp_pcbinfo->cpu + 1) % ncpus2;
947 		msg = malloc(sizeof(struct netmsg_remwildcard),
948 			    M_LWKTMSG, M_INTWAIT);
949 		lwkt_initmsg(&msg->nm_lmsg, &netisr_afree_rport, 0,
950 		    lwkt_cmd_func(in_pcbremwildcardhash_handler),
951 		    lwkt_cmd_op_none);
952 #ifdef INET6
953 		msg->nm_isinet6 = isafinet6;
954 #endif
955 		msg->nm_inp = inp;
956 		msg->nm_pcbinfo = &tcbinfo[cpu];
957 		lwkt_sendmsg(tcp_cport(cpu), &msg->nm_lmsg);
958 	} else
959 #endif
960 	{
961 		/* note: detach removes any wildcard hash entry */
962 #ifdef INET6
963 		if (isafinet6)
964 			in6_pcbdetach(inp);
965 		else
966 #endif
967 			in_pcbdetach(inp);
968 	}
969 	tcpstat.tcps_closed++;
970 	return (NULL);
971 }
972 
973 static __inline void
974 tcp_drain_oncpu(struct inpcbhead *head)
975 {
976 	struct inpcb *inpb;
977 	struct tcpcb *tcpb;
978 	struct tseg_qent *te;
979 
980 	LIST_FOREACH(inpb, head, inp_list) {
981 		if (inpb->inp_flags & INP_PLACEMARKER)
982 			continue;
983 		if ((tcpb = intotcpcb(inpb))) {
984 			while ((te = LIST_FIRST(&tcpb->t_segq)) != NULL) {
985 				LIST_REMOVE(te, tqe_q);
986 				m_freem(te->tqe_m);
987 				FREE(te, M_TSEGQ);
988 				tcp_reass_qsize--;
989 			}
990 		}
991 	}
992 }
993 
994 #ifdef SMP
995 struct netmsg_tcp_drain {
996 	struct lwkt_msg		nm_lmsg;
997 	struct inpcbhead	*nm_head;
998 };
999 
1000 static int
1001 tcp_drain_handler(lwkt_msg_t lmsg)
1002 {
1003 	struct netmsg_tcp_drain *nm = (void *)lmsg;
1004 
1005 	tcp_drain_oncpu(nm->nm_head);
1006 	lwkt_replymsg(lmsg, 0);
1007 	return(EASYNC);
1008 }
1009 #endif
1010 
1011 void
1012 tcp_drain()
1013 {
1014 #ifdef SMP
1015 	int cpu;
1016 #endif
1017 
1018 	if (!do_tcpdrain)
1019 		return;
1020 
1021 	/*
1022 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1023 	 * if there is one...
1024 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1025 	 *	reassembly queue should be flushed, but in a situation
1026 	 *	where we're really low on mbufs, this is potentially
1027 	 *	useful.
1028 	 */
1029 #ifdef SMP
1030 	for (cpu = 0; cpu < ncpus2; cpu++) {
1031 		struct netmsg_tcp_drain *msg;
1032 
1033 		if (cpu == mycpu->gd_cpuid) {
1034 			tcp_drain_oncpu(&tcbinfo[cpu].pcblisthead);
1035 		} else {
1036 			msg = malloc(sizeof(struct netmsg_tcp_drain),
1037 				    M_LWKTMSG, M_NOWAIT);
1038 			if (msg == NULL)
1039 				continue;
1040 			lwkt_initmsg(&msg->nm_lmsg, &netisr_afree_rport, 0,
1041 				lwkt_cmd_func(tcp_drain_handler),
1042 				lwkt_cmd_op_none);
1043 			msg->nm_head = &tcbinfo[cpu].pcblisthead;
1044 			lwkt_sendmsg(tcp_cport(cpu), &msg->nm_lmsg);
1045 		}
1046 	}
1047 #else
1048 	tcp_drain_oncpu(&tcbinfo[0].pcblisthead);
1049 #endif
1050 }
1051 
1052 /*
1053  * Notify a tcp user of an asynchronous error;
1054  * store error as soft error, but wake up user
1055  * (for now, won't do anything until can select for soft error).
1056  *
1057  * Do not wake up user since there currently is no mechanism for
1058  * reporting soft errors (yet - a kqueue filter may be added).
1059  */
1060 static void
1061 tcp_notify(struct inpcb *inp, int error)
1062 {
1063 	struct tcpcb *tp = intotcpcb(inp);
1064 
1065 	/*
1066 	 * Ignore some errors if we are hooked up.
1067 	 * If connection hasn't completed, has retransmitted several times,
1068 	 * and receives a second error, give up now.  This is better
1069 	 * than waiting a long time to establish a connection that
1070 	 * can never complete.
1071 	 */
1072 	if (tp->t_state == TCPS_ESTABLISHED &&
1073 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1074 	      error == EHOSTDOWN)) {
1075 		return;
1076 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1077 	    tp->t_softerror)
1078 		tcp_drop(tp, error);
1079 	else
1080 		tp->t_softerror = error;
1081 #if 0
1082 	wakeup((caddr_t) &so->so_timeo);
1083 	sorwakeup(so);
1084 	sowwakeup(so);
1085 #endif
1086 }
1087 
1088 static int
1089 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1090 {
1091 	int error, i, n;
1092 	struct inpcb *marker;
1093 	struct inpcb *inp;
1094 	inp_gen_t gencnt;
1095 	struct xinpgen xig;
1096 	globaldata_t gd;
1097 	int origcpu, ccpu;
1098 
1099 	error = 0;
1100 	n = 0;
1101 
1102 	/*
1103 	 * The process of preparing the TCB list is too time-consuming and
1104 	 * resource-intensive to repeat twice on every request.
1105 	 */
1106 	if (req->oldptr == NULL) {
1107 		for (ccpu = 0; ccpu < ncpus; ++ccpu) {
1108 			gd = globaldata_find(ccpu);
1109 			n += tcbinfo[gd->gd_cpuid].ipi_count;
1110 		}
1111 		req->oldidx = 2 * ncpus * (sizeof xig) +
1112 		  (n + n/8) * sizeof(struct xtcpcb);
1113 		return (0);
1114 	}
1115 
1116 	if (req->newptr != NULL)
1117 		return (EPERM);
1118 
1119 	marker = malloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1120 	marker->inp_flags |= INP_PLACEMARKER;
1121 
1122 	/*
1123 	 * OK, now we're committed to doing something.  Run the inpcb list
1124 	 * for each cpu in the system and construct the output.  Use a
1125 	 * list placemarker to deal with list changes occuring during
1126 	 * copyout blockages (but otherwise depend on being on the correct
1127 	 * cpu to avoid races).
1128 	 */
1129 	origcpu = mycpu->gd_cpuid;
1130 	for (ccpu = 1; ccpu <= ncpus && error == 0; ++ccpu) {
1131 		globaldata_t rgd;
1132 		caddr_t inp_ppcb;
1133 		struct xtcpcb xt;
1134 		int cpu_id;
1135 
1136 		cpu_id = (origcpu + ccpu) % ncpus;
1137 		if ((smp_active_mask & (1 << cpu_id)) == 0)
1138 			continue;
1139 		rgd = globaldata_find(cpu_id);
1140 		lwkt_setcpu_self(rgd);
1141 
1142 		/* indicate change of CPU */
1143 		cpu_mb1();
1144 
1145 		gencnt = tcbinfo[cpu_id].ipi_gencnt;
1146 		n = tcbinfo[cpu_id].ipi_count;
1147 
1148 		xig.xig_len = sizeof xig;
1149 		xig.xig_count = n;
1150 		xig.xig_gen = gencnt;
1151 		xig.xig_sogen = so_gencnt;
1152 		xig.xig_cpu = cpu_id;
1153 		error = SYSCTL_OUT(req, &xig, sizeof xig);
1154 		if (error != 0)
1155 			break;
1156 
1157 		LIST_INSERT_HEAD(&tcbinfo[cpu_id].pcblisthead, marker, inp_list);
1158 		i = 0;
1159 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1160 			/*
1161 			 * process a snapshot of pcbs, ignoring placemarkers
1162 			 * and using our own to allow SYSCTL_OUT to block.
1163 			 */
1164 			LIST_REMOVE(marker, inp_list);
1165 			LIST_INSERT_AFTER(inp, marker, inp_list);
1166 
1167 			if (inp->inp_flags & INP_PLACEMARKER)
1168 				continue;
1169 			if (inp->inp_gencnt > gencnt)
1170 				continue;
1171 			if (prison_xinpcb(req->td, inp))
1172 				continue;
1173 
1174 			xt.xt_len = sizeof xt;
1175 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1176 			inp_ppcb = inp->inp_ppcb;
1177 			if (inp_ppcb != NULL)
1178 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1179 			else
1180 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1181 			if (inp->inp_socket)
1182 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1183 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1184 				break;
1185 			++i;
1186 		}
1187 		LIST_REMOVE(marker, inp_list);
1188 		if (error == 0 && i < n) {
1189 			bzero(&xt, sizeof(xt));
1190 			xt.xt_len = sizeof(xt);
1191 			while (i < n) {
1192 				error = SYSCTL_OUT(req, &xt, sizeof (xt));
1193 				if (error)
1194 					break;
1195 				++i;
1196 			}
1197 		}
1198 		if (error == 0) {
1199 			/*
1200 			 * Give the user an updated idea of our state.
1201 			 * If the generation differs from what we told
1202 			 * her before, she knows that something happened
1203 			 * while we were processing this request, and it
1204 			 * might be necessary to retry.
1205 			 */
1206 			xig.xig_gen = tcbinfo[cpu_id].ipi_gencnt;
1207 			xig.xig_sogen = so_gencnt;
1208 			xig.xig_count = tcbinfo[cpu_id].ipi_count;
1209 			error = SYSCTL_OUT(req, &xig, sizeof xig);
1210 		}
1211 	}
1212 
1213 	/*
1214 	 * Make sure we are on the same cpu we were on originally, since
1215 	 * higher level callers expect this.  Also don't pollute caches with
1216 	 * migrated userland data by (eventually) returning to userland
1217 	 * on a different cpu.
1218 	 */
1219 	lwkt_setcpu_self(globaldata_find(origcpu));
1220 	free(marker, M_TEMP);
1221 	return (error);
1222 }
1223 
1224 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1225 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1226 
1227 static int
1228 tcp_getcred(SYSCTL_HANDLER_ARGS)
1229 {
1230 	struct sockaddr_in addrs[2];
1231 	struct inpcb *inp;
1232 	int cpu;
1233 	int error, s;
1234 
1235 	error = suser(req->td);
1236 	if (error != 0)
1237 		return (error);
1238 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1239 	if (error != 0)
1240 		return (error);
1241 	s = splnet();
1242 
1243 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1244 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1245 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1246 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1247 	if (inp == NULL || inp->inp_socket == NULL) {
1248 		error = ENOENT;
1249 		goto out;
1250 	}
1251 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1252 out:
1253 	splx(s);
1254 	return (error);
1255 }
1256 
1257 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1258     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1259 
1260 #ifdef INET6
1261 static int
1262 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1263 {
1264 	struct sockaddr_in6 addrs[2];
1265 	struct inpcb *inp;
1266 	int error, s;
1267 	boolean_t mapped = FALSE;
1268 
1269 	error = suser(req->td);
1270 	if (error != 0)
1271 		return (error);
1272 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1273 	if (error != 0)
1274 		return (error);
1275 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1276 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1277 			mapped = TRUE;
1278 		else
1279 			return (EINVAL);
1280 	}
1281 	s = splnet();
1282 	if (mapped) {
1283 		inp = in_pcblookup_hash(&tcbinfo[0],
1284 		    *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1285 		    addrs[1].sin6_port,
1286 		    *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1287 		    addrs[0].sin6_port,
1288 		    0, NULL);
1289 	} else {
1290 		inp = in6_pcblookup_hash(&tcbinfo[0],
1291 		    &addrs[1].sin6_addr, addrs[1].sin6_port,
1292 		    &addrs[0].sin6_addr, addrs[0].sin6_port,
1293 		    0, NULL);
1294 	}
1295 	if (inp == NULL || inp->inp_socket == NULL) {
1296 		error = ENOENT;
1297 		goto out;
1298 	}
1299 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1300 out:
1301 	splx(s);
1302 	return (error);
1303 }
1304 
1305 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1306 	    0, 0,
1307 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1308 #endif
1309 
1310 void
1311 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1312 {
1313 	struct ip *ip = vip;
1314 	struct tcphdr *th;
1315 	struct in_addr faddr;
1316 	struct inpcb *inp;
1317 	struct tcpcb *tp;
1318 	void (*notify)(struct inpcb *, int) = tcp_notify;
1319 	tcp_seq icmp_seq;
1320 	int cpu;
1321 	int s;
1322 
1323 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1324 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1325 		return;
1326 
1327 	if (cmd == PRC_QUENCH)
1328 		notify = tcp_quench;
1329 	else if (icmp_may_rst &&
1330 		 (cmd == PRC_UNREACH_ADMIN_PROHIB || cmd == PRC_UNREACH_PORT ||
1331 		  cmd == PRC_TIMXCEED_INTRANS) &&
1332 		 ip != NULL)
1333 		notify = tcp_drop_syn_sent;
1334 	else if (cmd == PRC_MSGSIZE)
1335 		notify = tcp_mtudisc;
1336 	else if (PRC_IS_REDIRECT(cmd)) {
1337 		ip = NULL;
1338 		notify = in_rtchange;
1339 	} else if (cmd == PRC_HOSTDEAD)
1340 		ip = NULL;
1341 	else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
1342 		return;
1343 	if (ip != NULL) {
1344 		s = splnet();
1345 		th = (struct tcphdr *)((caddr_t)ip +
1346 				       (IP_VHL_HL(ip->ip_vhl) << 2));
1347 		cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
1348 				  ip->ip_src.s_addr, th->th_sport);
1349 		inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
1350 					ip->ip_src, th->th_sport, 0, NULL);
1351 		if ((inp != NULL) && (inp->inp_socket != NULL)) {
1352 			icmp_seq = htonl(th->th_seq);
1353 			tp = intotcpcb(inp);
1354 			if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1355 			    SEQ_LT(icmp_seq, tp->snd_max))
1356 				(*notify)(inp, inetctlerrmap[cmd]);
1357 		} else {
1358 			struct in_conninfo inc;
1359 
1360 			inc.inc_fport = th->th_dport;
1361 			inc.inc_lport = th->th_sport;
1362 			inc.inc_faddr = faddr;
1363 			inc.inc_laddr = ip->ip_src;
1364 #ifdef INET6
1365 			inc.inc_isipv6 = 0;
1366 #endif
1367 			syncache_unreach(&inc, th);
1368 		}
1369 		splx(s);
1370 	} else {
1371 		for (cpu = 0; cpu < ncpus2; cpu++) {
1372 			in_pcbnotifyall(&tcbinfo[cpu].pcblisthead, faddr,
1373 					inetctlerrmap[cmd], notify);
1374 		}
1375 	}
1376 }
1377 
1378 #ifdef INET6
1379 void
1380 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1381 {
1382 	struct tcphdr th;
1383 	void (*notify) (struct inpcb *, int) = tcp_notify;
1384 	struct ip6_hdr *ip6;
1385 	struct mbuf *m;
1386 	struct ip6ctlparam *ip6cp = NULL;
1387 	const struct sockaddr_in6 *sa6_src = NULL;
1388 	int off;
1389 	struct tcp_portonly {
1390 		u_int16_t th_sport;
1391 		u_int16_t th_dport;
1392 	} *thp;
1393 
1394 	if (sa->sa_family != AF_INET6 ||
1395 	    sa->sa_len != sizeof(struct sockaddr_in6))
1396 		return;
1397 
1398 	if (cmd == PRC_QUENCH)
1399 		notify = tcp_quench;
1400 	else if (cmd == PRC_MSGSIZE)
1401 		notify = tcp_mtudisc;
1402 	else if (!PRC_IS_REDIRECT(cmd) &&
1403 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1404 		return;
1405 
1406 	/* if the parameter is from icmp6, decode it. */
1407 	if (d != NULL) {
1408 		ip6cp = (struct ip6ctlparam *)d;
1409 		m = ip6cp->ip6c_m;
1410 		ip6 = ip6cp->ip6c_ip6;
1411 		off = ip6cp->ip6c_off;
1412 		sa6_src = ip6cp->ip6c_src;
1413 	} else {
1414 		m = NULL;
1415 		ip6 = NULL;
1416 		off = 0;	/* fool gcc */
1417 		sa6_src = &sa6_any;
1418 	}
1419 
1420 	if (ip6 != NULL) {
1421 		struct in_conninfo inc;
1422 		/*
1423 		 * XXX: We assume that when IPV6 is non NULL,
1424 		 * M and OFF are valid.
1425 		 */
1426 
1427 		/* check if we can safely examine src and dst ports */
1428 		if (m->m_pkthdr.len < off + sizeof *thp)
1429 			return;
1430 
1431 		bzero(&th, sizeof th);
1432 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1433 
1434 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, th.th_dport,
1435 		    (struct sockaddr *)ip6cp->ip6c_src,
1436 		    th.th_sport, cmd, notify);
1437 
1438 		inc.inc_fport = th.th_dport;
1439 		inc.inc_lport = th.th_sport;
1440 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1441 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1442 		inc.inc_isipv6 = 1;
1443 		syncache_unreach(&inc, &th);
1444 	} else
1445 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, 0,
1446 		    (const struct sockaddr *)sa6_src, 0, cmd, notify);
1447 }
1448 #endif
1449 
1450 /*
1451  * Following is where TCP initial sequence number generation occurs.
1452  *
1453  * There are two places where we must use initial sequence numbers:
1454  * 1.  In SYN-ACK packets.
1455  * 2.  In SYN packets.
1456  *
1457  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1458  * tcp_syncache.c for details.
1459  *
1460  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1461  * depends on this property.  In addition, these ISNs should be
1462  * unguessable so as to prevent connection hijacking.  To satisfy
1463  * the requirements of this situation, the algorithm outlined in
1464  * RFC 1948 is used to generate sequence numbers.
1465  *
1466  * Implementation details:
1467  *
1468  * Time is based off the system timer, and is corrected so that it
1469  * increases by one megabyte per second.  This allows for proper
1470  * recycling on high speed LANs while still leaving over an hour
1471  * before rollover.
1472  *
1473  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1474  * between seeding of isn_secret.  This is normally set to zero,
1475  * as reseeding should not be necessary.
1476  *
1477  */
1478 
1479 #define	ISN_BYTES_PER_SECOND 1048576
1480 
1481 u_char isn_secret[32];
1482 int isn_last_reseed;
1483 MD5_CTX isn_ctx;
1484 
1485 tcp_seq
1486 tcp_new_isn(struct tcpcb *tp)
1487 {
1488 	u_int32_t md5_buffer[4];
1489 	tcp_seq new_isn;
1490 
1491 	/* Seed if this is the first use, reseed if requested. */
1492 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1493 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1494 		< (u_int)ticks))) {
1495 		read_random_unlimited(&isn_secret, sizeof isn_secret);
1496 		isn_last_reseed = ticks;
1497 	}
1498 
1499 	/* Compute the md5 hash and return the ISN. */
1500 	MD5Init(&isn_ctx);
1501 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1502 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1503 #ifdef INET6
1504 	if (tp->t_inpcb->inp_vflag & INP_IPV6) {
1505 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1506 			  sizeof(struct in6_addr));
1507 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1508 			  sizeof(struct in6_addr));
1509 	} else
1510 #endif
1511 	{
1512 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1513 			  sizeof(struct in_addr));
1514 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1515 			  sizeof(struct in_addr));
1516 	}
1517 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1518 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1519 	new_isn = (tcp_seq) md5_buffer[0];
1520 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1521 	return (new_isn);
1522 }
1523 
1524 /*
1525  * When a source quench is received, close congestion window
1526  * to one segment.  We will gradually open it again as we proceed.
1527  */
1528 void
1529 tcp_quench(struct inpcb *inp, int errno)
1530 {
1531 	struct tcpcb *tp = intotcpcb(inp);
1532 
1533 	if (tp != NULL)
1534 		tp->snd_cwnd = tp->t_maxseg;
1535 }
1536 
1537 /*
1538  * When a specific ICMP unreachable message is received and the
1539  * connection state is SYN-SENT, drop the connection.  This behavior
1540  * is controlled by the icmp_may_rst sysctl.
1541  */
1542 void
1543 tcp_drop_syn_sent(struct inpcb *inp, int errno)
1544 {
1545 	struct tcpcb *tp = intotcpcb(inp);
1546 
1547 	if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
1548 		tcp_drop(tp, errno);
1549 }
1550 
1551 /*
1552  * When `need fragmentation' ICMP is received, update our idea of the MSS
1553  * based on the new value in the route.  Also nudge TCP to send something,
1554  * since we know the packet we just sent was dropped.
1555  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1556  */
1557 void
1558 tcp_mtudisc(struct inpcb *inp, int errno)
1559 {
1560 	struct tcpcb *tp = intotcpcb(inp);
1561 	struct rtentry *rt;
1562 	struct rmxp_tao *taop;
1563 	struct socket *so = inp->inp_socket;
1564 	int offered;
1565 	int mss;
1566 #ifdef INET6
1567 	boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1568 #else
1569 	const boolean_t isipv6 = FALSE;
1570 #endif
1571 
1572 	if (tp != NULL) {
1573 		if (isipv6)
1574 			rt = tcp_rtlookup6(&inp->inp_inc);
1575 		else
1576 			rt = tcp_rtlookup(&inp->inp_inc);
1577 		if (rt == NULL || rt->rt_rmx.rmx_mtu == 0) {
1578 			tp->t_maxopd = tp->t_maxseg =
1579 			    isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
1580 			return;
1581 		}
1582 		taop = rmx_taop(rt->rt_rmx);
1583 		offered = taop->tao_mssopt;
1584 		mss = rt->rt_rmx.rmx_mtu -
1585 			(isipv6 ?
1586 			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1587 			 sizeof(struct tcpiphdr));
1588 
1589 		if (offered != 0)
1590 			mss = min(mss, offered);
1591 		/*
1592 		 * XXX - The above conditional probably violates the TCP
1593 		 * spec.  The problem is that, since we don't know the
1594 		 * other end's MSS, we are supposed to use a conservative
1595 		 * default.  But, if we do that, then MTU discovery will
1596 		 * never actually take place, because the conservative
1597 		 * default is much less than the MTUs typically seen
1598 		 * on the Internet today.  For the moment, we'll sweep
1599 		 * this under the carpet.
1600 		 *
1601 		 * The conservative default might not actually be a problem
1602 		 * if the only case this occurs is when sending an initial
1603 		 * SYN with options and data to a host we've never talked
1604 		 * to before.  Then, they will reply with an MSS value which
1605 		 * will get recorded and the new parameters should get
1606 		 * recomputed.  For Further Study.
1607 		 */
1608 		if (tp->t_maxopd <= mss)
1609 			return;
1610 		tp->t_maxopd = mss;
1611 
1612 		if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP &&
1613 		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1614 			mss -= TCPOLEN_TSTAMP_APPA;
1615 		if ((tp->t_flags & (TF_REQ_CC | TF_NOOPT)) == TF_REQ_CC &&
1616 		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1617 			mss -= TCPOLEN_CC_APPA;
1618 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1619 		if (mss > MCLBYTES)
1620 			mss &= ~(MCLBYTES - 1);
1621 #else
1622 		if (mss > MCLBYTES)
1623 			mss = mss / MCLBYTES * MCLBYTES;
1624 #endif
1625 		if (so->so_snd.sb_hiwat < mss)
1626 			mss = so->so_snd.sb_hiwat;
1627 
1628 		tp->t_maxseg = mss;
1629 
1630 		tcpstat.tcps_mturesent++;
1631 		tp->t_rtttime = 0;
1632 		tp->snd_nxt = tp->snd_una;
1633 		tcp_output(tp);
1634 	}
1635 }
1636 
1637 /*
1638  * Look-up the routing entry to the peer of this inpcb.  If no route
1639  * is found and it cannot be allocated the return NULL.  This routine
1640  * is called by TCP routines that access the rmx structure and by tcp_mss
1641  * to get the interface MTU.
1642  */
1643 struct rtentry *
1644 tcp_rtlookup(struct in_conninfo *inc)
1645 {
1646 	struct route *ro;
1647 	struct rtentry *rt;
1648 
1649 	ro = &inc->inc_route;
1650 	rt = ro->ro_rt;
1651 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1652 		/* No route yet, so try to acquire one */
1653 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1654 			/*
1655 			 * unused portions of the structure MUST be zero'd
1656 			 * out because rtalloc() treats it as opaque data
1657 			 */
1658 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1659 			ro->ro_dst.sa_family = AF_INET;
1660 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1661 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1662 			    inc->inc_faddr;
1663 			rtalloc(ro);
1664 			rt = ro->ro_rt;
1665 		}
1666 	}
1667 	return (rt);
1668 }
1669 
1670 #ifdef INET6
1671 struct rtentry *
1672 tcp_rtlookup6(struct in_conninfo *inc)
1673 {
1674 	struct route_in6 *ro6;
1675 	struct rtentry *rt;
1676 
1677 	ro6 = &inc->inc6_route;
1678 	rt = ro6->ro_rt;
1679 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1680 		/* No route yet, so try to acquire one */
1681 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1682 			/*
1683 			 * unused portions of the structure MUST be zero'd
1684 			 * out because rtalloc() treats it as opaque data
1685 			 */
1686 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1687 			ro6->ro_dst.sin6_family = AF_INET6;
1688 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1689 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1690 			rtalloc((struct route *)ro6);
1691 			rt = ro6->ro_rt;
1692 		}
1693 	}
1694 	return (rt);
1695 }
1696 #endif
1697 
1698 #ifdef IPSEC
1699 /* compute ESP/AH header size for TCP, including outer IP header. */
1700 size_t
1701 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1702 {
1703 	struct inpcb *inp;
1704 	struct mbuf *m;
1705 	size_t hdrsiz;
1706 	struct ip *ip;
1707 	struct tcphdr *th;
1708 
1709 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1710 		return (0);
1711 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1712 	if (!m)
1713 		return (0);
1714 
1715 #ifdef INET6
1716 	if (inp->inp_vflag & INP_IPV6) {
1717 		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1718 
1719 		th = (struct tcphdr *)(ip6 + 1);
1720 		m->m_pkthdr.len = m->m_len =
1721 		    sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1722 		tcp_fillheaders(tp, ip6, th);
1723 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1724 	} else
1725 #endif
1726 	{
1727 		ip = mtod(m, struct ip *);
1728 		th = (struct tcphdr *)(ip + 1);
1729 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1730 		tcp_fillheaders(tp, ip, th);
1731 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1732 	}
1733 
1734 	m_free(m);
1735 	return (hdrsiz);
1736 }
1737 #endif
1738 
1739 /*
1740  * Return a pointer to the cached information about the remote host.
1741  * The cached information is stored in the protocol specific part of
1742  * the route metrics.
1743  */
1744 struct rmxp_tao *
1745 tcp_gettaocache(struct in_conninfo *inc)
1746 {
1747 	struct rtentry *rt;
1748 
1749 #ifdef INET6
1750 	if (inc->inc_isipv6)
1751 		rt = tcp_rtlookup6(inc);
1752 	else
1753 #endif
1754 		rt = tcp_rtlookup(inc);
1755 
1756 	/* Make sure this is a host route and is up. */
1757 	if (rt == NULL ||
1758 	    (rt->rt_flags & (RTF_UP | RTF_HOST)) != (RTF_UP | RTF_HOST))
1759 		return (NULL);
1760 
1761 	return (rmx_taop(rt->rt_rmx));
1762 }
1763 
1764 /*
1765  * Clear all the TAO cache entries, called from tcp_init.
1766  *
1767  * XXX
1768  * This routine is just an empty one, because we assume that the routing
1769  * routing tables are initialized at the same time when TCP, so there is
1770  * nothing in the cache left over.
1771  */
1772 static void
1773 tcp_cleartaocache()
1774 {
1775 }
1776 
1777 /*
1778  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1779  *
1780  * This code attempts to calculate the bandwidth-delay product as a
1781  * means of determining the optimal window size to maximize bandwidth,
1782  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1783  * routers.  This code also does a fairly good job keeping RTTs in check
1784  * across slow links like modems.  We implement an algorithm which is very
1785  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1786  * transmitter side of a TCP connection and so only effects the transmit
1787  * side of the connection.
1788  *
1789  * BACKGROUND:  TCP makes no provision for the management of buffer space
1790  * at the end points or at the intermediate routers and switches.  A TCP
1791  * stream, whether using NewReno or not, will eventually buffer as
1792  * many packets as it is able and the only reason this typically works is
1793  * due to the fairly small default buffers made available for a connection
1794  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1795  * scaling it is now fairly easy for even a single TCP connection to blow-out
1796  * all available buffer space not only on the local interface, but on
1797  * intermediate routers and switches as well.  NewReno makes a misguided
1798  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1799  * then backing off, then steadily increasing the window again until another
1800  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1801  * is only made worse as network loads increase and the idea of intentionally
1802  * blowing out network buffers is, frankly, a terrible way to manage network
1803  * resources.
1804  *
1805  * It is far better to limit the transmit window prior to the failure
1806  * condition being achieved.  There are two general ways to do this:  First
1807  * you can 'scan' through different transmit window sizes and locate the
1808  * point where the RTT stops increasing, indicating that you have filled the
1809  * pipe, then scan backwards until you note that RTT stops decreasing, then
1810  * repeat ad-infinitum.  This method works in principle but has severe
1811  * implementation issues due to RTT variances, timer granularity, and
1812  * instability in the algorithm which can lead to many false positives and
1813  * create oscillations as well as interact badly with other TCP streams
1814  * implementing the same algorithm.
1815  *
1816  * The second method is to limit the window to the bandwidth delay product
1817  * of the link.  This is the method we implement.  RTT variances and our
1818  * own manipulation of the congestion window, bwnd, can potentially
1819  * destabilize the algorithm.  For this reason we have to stabilize the
1820  * elements used to calculate the window.  We do this by using the minimum
1821  * observed RTT, the long term average of the observed bandwidth, and
1822  * by adding two segments worth of slop.  It isn't perfect but it is able
1823  * to react to changing conditions and gives us a very stable basis on
1824  * which to extend the algorithm.
1825  */
1826 void
1827 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1828 {
1829 	u_long bw;
1830 	u_long bwnd;
1831 	int save_ticks;
1832 
1833 	/*
1834 	 * If inflight_enable is disabled in the middle of a tcp connection,
1835 	 * make sure snd_bwnd is effectively disabled.
1836 	 */
1837 	if (!tcp_inflight_enable) {
1838 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1839 		tp->snd_bandwidth = 0;
1840 		return;
1841 	}
1842 
1843 	/*
1844 	 * Figure out the bandwidth.  Due to the tick granularity this
1845 	 * is a very rough number and it MUST be averaged over a fairly
1846 	 * long period of time.  XXX we need to take into account a link
1847 	 * that is not using all available bandwidth, but for now our
1848 	 * slop will ramp us up if this case occurs and the bandwidth later
1849 	 * increases.
1850 	 *
1851 	 * Note: if ticks rollover 'bw' may wind up negative.  We must
1852 	 * effectively reset t_bw_rtttime for this case.
1853 	 */
1854 	save_ticks = ticks;
1855 	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1856 		return;
1857 
1858 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1859 	    (save_ticks - tp->t_bw_rtttime);
1860 	tp->t_bw_rtttime = save_ticks;
1861 	tp->t_bw_rtseq = ack_seq;
1862 	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
1863 		return;
1864 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1865 
1866 	tp->snd_bandwidth = bw;
1867 
1868 	/*
1869 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1870 	 * segments.  The additional slop puts us squarely in the sweet
1871 	 * spot and also handles the bandwidth run-up case.  Without the
1872 	 * slop we could be locking ourselves into a lower bandwidth.
1873 	 *
1874 	 * Situations Handled:
1875 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1876 	 *	    high speed LANs, allowing larger TCP buffers to be
1877 	 *	    specified, and also does a good job preventing
1878 	 *	    over-queueing of packets over choke points like modems
1879 	 *	    (at least for the transmit side).
1880 	 *
1881 	 *	(2) Is able to handle changing network loads (bandwidth
1882 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1883 	 *	    increases).
1884 	 *
1885 	 *	(3) Theoretically should stabilize in the face of multiple
1886 	 *	    connections implementing the same algorithm (this may need
1887 	 *	    a little work).
1888 	 *
1889 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1890 	 *	    be adjusted with a sysctl but typically only needs to be on
1891 	 *	    very slow connections.  A value no smaller then 5 should
1892 	 *	    be used, but only reduce this default if you have no other
1893 	 *	    choice.
1894 	 */
1895 
1896 #define	USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1897 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
1898 	       tcp_inflight_stab * (int)tp->t_maxseg / 10;
1899 #undef USERTT
1900 
1901 	if (tcp_inflight_debug > 0) {
1902 		static int ltime;
1903 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1904 			ltime = ticks;
1905 			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1906 				tp, bw, tp->t_rttbest, tp->t_srtt, bwnd);
1907 		}
1908 	}
1909 	if ((long)bwnd < tcp_inflight_min)
1910 		bwnd = tcp_inflight_min;
1911 	if (bwnd > tcp_inflight_max)
1912 		bwnd = tcp_inflight_max;
1913 	if ((long)bwnd < tp->t_maxseg * 2)
1914 		bwnd = tp->t_maxseg * 2;
1915 	tp->snd_bwnd = bwnd;
1916 }
1917