xref: /dragonfly/sys/netinet/tcp_subr.c (revision 3170ffd7)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 4. Neither the name of the University nor the names of its contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  *
62  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
63  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
64  */
65 
66 #include "opt_compat.h"
67 #include "opt_inet.h"
68 #include "opt_inet6.h"
69 #include "opt_ipsec.h"
70 #include "opt_tcpdebug.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/callout.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/malloc.h>
78 #include <sys/mpipe.h>
79 #include <sys/mbuf.h>
80 #ifdef INET6
81 #include <sys/domain.h>
82 #endif
83 #include <sys/proc.h>
84 #include <sys/priv.h>
85 #include <sys/socket.h>
86 #include <sys/socketops.h>
87 #include <sys/socketvar.h>
88 #include <sys/protosw.h>
89 #include <sys/random.h>
90 #include <sys/in_cksum.h>
91 #include <sys/ktr.h>
92 
93 #include <net/route.h>
94 #include <net/if.h>
95 #include <net/netisr2.h>
96 
97 #define	_IP_VHL
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/ip.h>
101 #include <netinet/ip6.h>
102 #include <netinet/in_pcb.h>
103 #include <netinet6/in6_pcb.h>
104 #include <netinet/in_var.h>
105 #include <netinet/ip_var.h>
106 #include <netinet6/ip6_var.h>
107 #include <netinet/ip_icmp.h>
108 #ifdef INET6
109 #include <netinet/icmp6.h>
110 #endif
111 #include <netinet/tcp.h>
112 #include <netinet/tcp_fsm.h>
113 #include <netinet/tcp_seq.h>
114 #include <netinet/tcp_timer.h>
115 #include <netinet/tcp_timer2.h>
116 #include <netinet/tcp_var.h>
117 #include <netinet6/tcp6_var.h>
118 #include <netinet/tcpip.h>
119 #ifdef TCPDEBUG
120 #include <netinet/tcp_debug.h>
121 #endif
122 #include <netinet6/ip6protosw.h>
123 
124 #ifdef IPSEC
125 #include <netinet6/ipsec.h>
126 #include <netproto/key/key.h>
127 #ifdef INET6
128 #include <netinet6/ipsec6.h>
129 #endif
130 #endif
131 
132 #ifdef FAST_IPSEC
133 #include <netproto/ipsec/ipsec.h>
134 #ifdef INET6
135 #include <netproto/ipsec/ipsec6.h>
136 #endif
137 #define	IPSEC
138 #endif
139 
140 #include <sys/md5.h>
141 #include <machine/smp.h>
142 
143 #include <sys/msgport2.h>
144 #include <sys/mplock2.h>
145 #include <net/netmsg2.h>
146 
147 #if !defined(KTR_TCP)
148 #define KTR_TCP		KTR_ALL
149 #endif
150 /*
151 KTR_INFO_MASTER(tcp);
152 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
153 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
154 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
155 #define logtcp(name)	KTR_LOG(tcp_ ## name)
156 */
157 
158 #define TCP_IW_MAXSEGS_DFLT	4
159 #define TCP_IW_CAPSEGS_DFLT	3
160 
161 struct inpcbinfo tcbinfo[MAXCPU];
162 struct tcpcbackqhead tcpcbackq[MAXCPU];
163 
164 static struct lwkt_token tcp_port_token =
165 		LWKT_TOKEN_INITIALIZER(tcp_port_token);
166 
167 int tcp_mssdflt = TCP_MSS;
168 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
169     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
170 
171 #ifdef INET6
172 int tcp_v6mssdflt = TCP6_MSS;
173 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
174     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
175 #endif
176 
177 /*
178  * Minimum MSS we accept and use. This prevents DoS attacks where
179  * we are forced to a ridiculous low MSS like 20 and send hundreds
180  * of packets instead of one. The effect scales with the available
181  * bandwidth and quickly saturates the CPU and network interface
182  * with packet generation and sending. Set to zero to disable MINMSS
183  * checking. This setting prevents us from sending too small packets.
184  */
185 int tcp_minmss = TCP_MINMSS;
186 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
187     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
188 
189 #if 0
190 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
191 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
192     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
193 #endif
194 
195 int tcp_do_rfc1323 = 1;
196 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
197     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
198 
199 static int tcp_tcbhashsize = 0;
200 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
201      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
202 
203 static int do_tcpdrain = 1;
204 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
205      "Enable tcp_drain routine for extra help when low on mbufs");
206 
207 static int icmp_may_rst = 1;
208 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
209     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
210 
211 static int tcp_isn_reseed_interval = 0;
212 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
213     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
214 
215 /*
216  * TCP bandwidth limiting sysctls.  The inflight limiter is now turned on
217  * by default, but with generous values which should allow maximal
218  * bandwidth.  In particular, the slop defaults to 50 (5 packets).
219  *
220  * The reason for doing this is that the limiter is the only mechanism we
221  * have which seems to do a really good job preventing receiver RX rings
222  * on network interfaces from getting blown out.  Even though GigE/10GigE
223  * is supposed to flow control it looks like either it doesn't actually
224  * do it or Open Source drivers do not properly enable it.
225  *
226  * People using the limiter to reduce bottlenecks on slower WAN connections
227  * should set the slop to 20 (2 packets).
228  */
229 static int tcp_inflight_enable = 1;
230 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
231     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
232 
233 static int tcp_inflight_debug = 0;
234 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
235     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
236 
237 static int tcp_inflight_min = 6144;
238 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
239     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
240 
241 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
242 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
243     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
244 
245 static int tcp_inflight_stab = 50;
246 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
247     &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 3 packets)");
248 
249 static int tcp_do_rfc3390 = 1;
250 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
251     &tcp_do_rfc3390, 0,
252     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
253 
254 static u_long tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
255 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwmaxsegs, CTLFLAG_RW,
256     &tcp_iw_maxsegs, 0, "TCP IW segments max");
257 
258 static u_long tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
259 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwcapsegs, CTLFLAG_RW,
260     &tcp_iw_capsegs, 0, "TCP IW segments");
261 
262 int tcp_low_rtobase = 1;
263 SYSCTL_INT(_net_inet_tcp, OID_AUTO, low_rtobase, CTLFLAG_RW,
264     &tcp_low_rtobase, 0, "Lowering the Initial RTO (RFC 6298)");
265 
266 static int tcp_do_ncr = 1;
267 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr, CTLFLAG_RW,
268     &tcp_do_ncr, 0, "Non-Congestion Robustness (RFC 4653)");
269 
270 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
271 static struct malloc_pipe tcptemp_mpipe;
272 
273 static void tcp_willblock(void);
274 static void tcp_notify (struct inpcb *, int);
275 
276 struct tcp_stats tcpstats_percpu[MAXCPU] __cachealign;
277 
278 static int
279 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
280 {
281 	int cpu, error = 0;
282 
283 	for (cpu = 0; cpu < ncpus; ++cpu) {
284 		if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
285 					sizeof(struct tcp_stats))))
286 			break;
287 		if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
288 				       sizeof(struct tcp_stats))))
289 			break;
290 	}
291 
292 	return (error);
293 }
294 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
295     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
296 
297 /*
298  * Target size of TCP PCB hash tables. Must be a power of two.
299  *
300  * Note that this can be overridden by the kernel environment
301  * variable net.inet.tcp.tcbhashsize
302  */
303 #ifndef TCBHASHSIZE
304 #define	TCBHASHSIZE	512
305 #endif
306 
307 /*
308  * This is the actual shape of what we allocate using the zone
309  * allocator.  Doing it this way allows us to protect both structures
310  * using the same generation count, and also eliminates the overhead
311  * of allocating tcpcbs separately.  By hiding the structure here,
312  * we avoid changing most of the rest of the code (although it needs
313  * to be changed, eventually, for greater efficiency).
314  */
315 #define	ALIGNMENT	32
316 #define	ALIGNM1		(ALIGNMENT - 1)
317 struct	inp_tp {
318 	union {
319 		struct	inpcb inp;
320 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
321 	} inp_tp_u;
322 	struct	tcpcb tcb;
323 	struct	tcp_callout inp_tp_rexmt;
324 	struct	tcp_callout inp_tp_persist;
325 	struct	tcp_callout inp_tp_keep;
326 	struct	tcp_callout inp_tp_2msl;
327 	struct	tcp_callout inp_tp_delack;
328 	struct	netmsg_tcp_timer inp_tp_timermsg;
329 	struct	netmsg_base inp_tp_sndmore;
330 };
331 #undef ALIGNMENT
332 #undef ALIGNM1
333 
334 /*
335  * Tcp initialization
336  */
337 void
338 tcp_init(void)
339 {
340 	struct inpcbporthead *porthashbase;
341 	struct inpcbinfo *ticb;
342 	u_long porthashmask;
343 	int hashsize = TCBHASHSIZE;
344 	int cpu;
345 
346 	/*
347 	 * note: tcptemp is used for keepalives, and it is ok for an
348 	 * allocation to fail so do not specify MPF_INT.
349 	 */
350 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
351 		    25, -1, 0, NULL, NULL, NULL);
352 
353 	tcp_delacktime = TCPTV_DELACK;
354 	tcp_keepinit = TCPTV_KEEP_INIT;
355 	tcp_keepidle = TCPTV_KEEP_IDLE;
356 	tcp_keepintvl = TCPTV_KEEPINTVL;
357 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
358 	tcp_msl = TCPTV_MSL;
359 	tcp_rexmit_min = TCPTV_MIN;
360 	tcp_rexmit_slop = TCPTV_CPU_VAR;
361 
362 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
363 	if (!powerof2(hashsize)) {
364 		kprintf("WARNING: TCB hash size not a power of 2\n");
365 		hashsize = 512; /* safe default */
366 	}
367 	tcp_tcbhashsize = hashsize;
368 	porthashbase = hashinit(hashsize, M_PCB, &porthashmask);
369 
370 	for (cpu = 0; cpu < ncpus2; cpu++) {
371 		ticb = &tcbinfo[cpu];
372 		in_pcbinfo_init(ticb);
373 		ticb->cpu = cpu;
374 		ticb->hashbase = hashinit(hashsize, M_PCB,
375 					  &ticb->hashmask);
376 		ticb->porthashbase = porthashbase;
377 		ticb->porthashmask = porthashmask;
378 		ticb->porttoken = &tcp_port_token;
379 #if 0
380 		ticb->porthashbase = hashinit(hashsize, M_PCB,
381 					      &ticb->porthashmask);
382 #endif
383 		ticb->wildcardhashbase = hashinit(hashsize, M_PCB,
384 						  &ticb->wildcardhashmask);
385 		ticb->ipi_size = sizeof(struct inp_tp);
386 		TAILQ_INIT(&tcpcbackq[cpu]);
387 	}
388 
389 	tcp_reass_maxseg = nmbclusters / 16;
390 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
391 
392 #ifdef INET6
393 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
394 #else
395 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
396 #endif
397 	if (max_protohdr < TCP_MINPROTOHDR)
398 		max_protohdr = TCP_MINPROTOHDR;
399 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
400 		panic("tcp_init");
401 #undef TCP_MINPROTOHDR
402 
403 	/*
404 	 * Initialize TCP statistics counters for each CPU.
405 	 */
406 	for (cpu = 0; cpu < ncpus; ++cpu) {
407 		bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
408 	}
409 
410 	syncache_init();
411 	netisr_register_rollup(tcp_willblock, NETISR_ROLLUP_PRIO_TCP);
412 }
413 
414 static void
415 tcp_willblock(void)
416 {
417 	struct tcpcb *tp;
418 	int cpu = mycpu->gd_cpuid;
419 
420 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
421 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
422 		tp->t_flags &= ~TF_ONOUTPUTQ;
423 		TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
424 		tcp_output(tp);
425 	}
426 }
427 
428 /*
429  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
430  * tcp_template used to store this data in mbufs, but we now recopy it out
431  * of the tcpcb each time to conserve mbufs.
432  */
433 void
434 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr, boolean_t tso)
435 {
436 	struct inpcb *inp = tp->t_inpcb;
437 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
438 
439 #ifdef INET6
440 	if (inp->inp_vflag & INP_IPV6) {
441 		struct ip6_hdr *ip6;
442 
443 		ip6 = (struct ip6_hdr *)ip_ptr;
444 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
445 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
446 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
447 			(IPV6_VERSION & IPV6_VERSION_MASK);
448 		ip6->ip6_nxt = IPPROTO_TCP;
449 		ip6->ip6_plen = sizeof(struct tcphdr);
450 		ip6->ip6_src = inp->in6p_laddr;
451 		ip6->ip6_dst = inp->in6p_faddr;
452 		tcp_hdr->th_sum = 0;
453 	} else
454 #endif
455 	{
456 		struct ip *ip = (struct ip *) ip_ptr;
457 		u_int plen;
458 
459 		ip->ip_vhl = IP_VHL_BORING;
460 		ip->ip_tos = 0;
461 		ip->ip_len = 0;
462 		ip->ip_id = 0;
463 		ip->ip_off = 0;
464 		ip->ip_ttl = 0;
465 		ip->ip_sum = 0;
466 		ip->ip_p = IPPROTO_TCP;
467 		ip->ip_src = inp->inp_laddr;
468 		ip->ip_dst = inp->inp_faddr;
469 
470 		if (tso)
471 			plen = htons(IPPROTO_TCP);
472 		else
473 			plen = htons(sizeof(struct tcphdr) + IPPROTO_TCP);
474 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
475 		    ip->ip_dst.s_addr, plen);
476 	}
477 
478 	tcp_hdr->th_sport = inp->inp_lport;
479 	tcp_hdr->th_dport = inp->inp_fport;
480 	tcp_hdr->th_seq = 0;
481 	tcp_hdr->th_ack = 0;
482 	tcp_hdr->th_x2 = 0;
483 	tcp_hdr->th_off = 5;
484 	tcp_hdr->th_flags = 0;
485 	tcp_hdr->th_win = 0;
486 	tcp_hdr->th_urp = 0;
487 }
488 
489 /*
490  * Create template to be used to send tcp packets on a connection.
491  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
492  * use for this function is in keepalives, which use tcp_respond.
493  */
494 struct tcptemp *
495 tcp_maketemplate(struct tcpcb *tp)
496 {
497 	struct tcptemp *tmp;
498 
499 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
500 		return (NULL);
501 	tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t, FALSE);
502 	return (tmp);
503 }
504 
505 void
506 tcp_freetemplate(struct tcptemp *tmp)
507 {
508 	mpipe_free(&tcptemp_mpipe, tmp);
509 }
510 
511 /*
512  * Send a single message to the TCP at address specified by
513  * the given TCP/IP header.  If m == NULL, then we make a copy
514  * of the tcpiphdr at ti and send directly to the addressed host.
515  * This is used to force keep alive messages out using the TCP
516  * template for a connection.  If flags are given then we send
517  * a message back to the TCP which originated the * segment ti,
518  * and discard the mbuf containing it and any other attached mbufs.
519  *
520  * In any case the ack and sequence number of the transmitted
521  * segment are as specified by the parameters.
522  *
523  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
524  */
525 void
526 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
527 	    tcp_seq ack, tcp_seq seq, int flags)
528 {
529 	int tlen;
530 	int win = 0;
531 	struct route *ro = NULL;
532 	struct route sro;
533 	struct ip *ip = ipgen;
534 	struct tcphdr *nth;
535 	int ipflags = 0;
536 	struct route_in6 *ro6 = NULL;
537 	struct route_in6 sro6;
538 	struct ip6_hdr *ip6 = ipgen;
539 	boolean_t use_tmpro = TRUE;
540 #ifdef INET6
541 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
542 #else
543 	const boolean_t isipv6 = FALSE;
544 #endif
545 
546 	if (tp != NULL) {
547 		if (!(flags & TH_RST)) {
548 			win = ssb_space(&tp->t_inpcb->inp_socket->so_rcv);
549 			if (win < 0)
550 				win = 0;
551 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
552 				win = (long)TCP_MAXWIN << tp->rcv_scale;
553 		}
554 		/*
555 		 * Don't use the route cache of a listen socket,
556 		 * it is not MPSAFE; use temporary route cache.
557 		 */
558 		if (tp->t_state != TCPS_LISTEN) {
559 			if (isipv6)
560 				ro6 = &tp->t_inpcb->in6p_route;
561 			else
562 				ro = &tp->t_inpcb->inp_route;
563 			use_tmpro = FALSE;
564 		}
565 	}
566 	if (use_tmpro) {
567 		if (isipv6) {
568 			ro6 = &sro6;
569 			bzero(ro6, sizeof *ro6);
570 		} else {
571 			ro = &sro;
572 			bzero(ro, sizeof *ro);
573 		}
574 	}
575 	if (m == NULL) {
576 		m = m_gethdr(MB_DONTWAIT, MT_HEADER);
577 		if (m == NULL)
578 			return;
579 		tlen = 0;
580 		m->m_data += max_linkhdr;
581 		if (isipv6) {
582 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
583 			ip6 = mtod(m, struct ip6_hdr *);
584 			nth = (struct tcphdr *)(ip6 + 1);
585 		} else {
586 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
587 			ip = mtod(m, struct ip *);
588 			nth = (struct tcphdr *)(ip + 1);
589 		}
590 		bcopy(th, nth, sizeof(struct tcphdr));
591 		flags = TH_ACK;
592 	} else {
593 		m_freem(m->m_next);
594 		m->m_next = NULL;
595 		m->m_data = (caddr_t)ipgen;
596 		/* m_len is set later */
597 		tlen = 0;
598 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
599 		if (isipv6) {
600 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
601 			nth = (struct tcphdr *)(ip6 + 1);
602 		} else {
603 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
604 			nth = (struct tcphdr *)(ip + 1);
605 		}
606 		if (th != nth) {
607 			/*
608 			 * this is usually a case when an extension header
609 			 * exists between the IPv6 header and the
610 			 * TCP header.
611 			 */
612 			nth->th_sport = th->th_sport;
613 			nth->th_dport = th->th_dport;
614 		}
615 		xchg(nth->th_dport, nth->th_sport, n_short);
616 #undef xchg
617 	}
618 	if (isipv6) {
619 		ip6->ip6_flow = 0;
620 		ip6->ip6_vfc = IPV6_VERSION;
621 		ip6->ip6_nxt = IPPROTO_TCP;
622 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
623 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
624 	} else {
625 		tlen += sizeof(struct tcpiphdr);
626 		ip->ip_len = tlen;
627 		ip->ip_ttl = ip_defttl;
628 	}
629 	m->m_len = tlen;
630 	m->m_pkthdr.len = tlen;
631 	m->m_pkthdr.rcvif = NULL;
632 	nth->th_seq = htonl(seq);
633 	nth->th_ack = htonl(ack);
634 	nth->th_x2 = 0;
635 	nth->th_off = sizeof(struct tcphdr) >> 2;
636 	nth->th_flags = flags;
637 	if (tp != NULL)
638 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
639 	else
640 		nth->th_win = htons((u_short)win);
641 	nth->th_urp = 0;
642 	if (isipv6) {
643 		nth->th_sum = 0;
644 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
645 					sizeof(struct ip6_hdr),
646 					tlen - sizeof(struct ip6_hdr));
647 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
648 					       (ro6 && ro6->ro_rt) ?
649 						ro6->ro_rt->rt_ifp : NULL);
650 	} else {
651 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
652 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
653 		m->m_pkthdr.csum_flags = CSUM_TCP;
654 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
655 		m->m_pkthdr.csum_thlen = sizeof(struct tcphdr);
656 	}
657 #ifdef TCPDEBUG
658 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
659 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
660 #endif
661 	if (isipv6) {
662 		ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
663 			   tp ? tp->t_inpcb : NULL);
664 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
665 			RTFREE(ro6->ro_rt);
666 			ro6->ro_rt = NULL;
667 		}
668 	} else {
669 		ipflags |= IP_DEBUGROUTE;
670 		ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
671 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
672 			RTFREE(ro->ro_rt);
673 			ro->ro_rt = NULL;
674 		}
675 	}
676 }
677 
678 /*
679  * Create a new TCP control block, making an
680  * empty reassembly queue and hooking it to the argument
681  * protocol control block.  The `inp' parameter must have
682  * come from the zone allocator set up in tcp_init().
683  */
684 struct tcpcb *
685 tcp_newtcpcb(struct inpcb *inp)
686 {
687 	struct inp_tp *it;
688 	struct tcpcb *tp;
689 #ifdef INET6
690 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
691 #else
692 	const boolean_t isipv6 = FALSE;
693 #endif
694 
695 	it = (struct inp_tp *)inp;
696 	tp = &it->tcb;
697 	bzero(tp, sizeof(struct tcpcb));
698 	TAILQ_INIT(&tp->t_segq);
699 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
700 	tp->t_rxtthresh = tcprexmtthresh;
701 
702 	/* Set up our timeouts. */
703 	tp->tt_rexmt = &it->inp_tp_rexmt;
704 	tp->tt_persist = &it->inp_tp_persist;
705 	tp->tt_keep = &it->inp_tp_keep;
706 	tp->tt_2msl = &it->inp_tp_2msl;
707 	tp->tt_delack = &it->inp_tp_delack;
708 	tcp_inittimers(tp);
709 
710 	/*
711 	 * Zero out timer message.  We don't create it here,
712 	 * since the current CPU may not be the owner of this
713 	 * inpcb.
714 	 */
715 	tp->tt_msg = &it->inp_tp_timermsg;
716 	bzero(tp->tt_msg, sizeof(*tp->tt_msg));
717 
718 	tp->t_keepinit = tcp_keepinit;
719 	tp->t_keepidle = tcp_keepidle;
720 	tp->t_keepintvl = tcp_keepintvl;
721 	tp->t_keepcnt = tcp_keepcnt;
722 	tp->t_maxidle = tp->t_keepintvl * tp->t_keepcnt;
723 
724 	if (tcp_do_ncr)
725 		tp->t_flags |= TF_NCR;
726 	if (tcp_do_rfc1323)
727 		tp->t_flags |= (TF_REQ_SCALE | TF_REQ_TSTMP);
728 
729 	tp->t_inpcb = inp;	/* XXX */
730 	tp->t_state = TCPS_CLOSED;
731 	/*
732 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
733 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
734 	 * reasonable initial retransmit time.
735 	 */
736 	tp->t_srtt = TCPTV_SRTTBASE;
737 	tp->t_rttvar =
738 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
739 	tp->t_rttmin = tcp_rexmit_min;
740 	tp->t_rxtcur = TCPTV_RTOBASE;
741 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
742 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
743 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
744 	tp->snd_last = ticks;
745 	tp->t_rcvtime = ticks;
746 	/*
747 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
748 	 * because the socket may be bound to an IPv6 wildcard address,
749 	 * which may match an IPv4-mapped IPv6 address.
750 	 */
751 	inp->inp_ip_ttl = ip_defttl;
752 	inp->inp_ppcb = tp;
753 	tcp_sack_tcpcb_init(tp);
754 
755 	tp->tt_sndmore = &it->inp_tp_sndmore;
756 	tcp_output_init(tp);
757 
758 	return (tp);		/* XXX */
759 }
760 
761 /*
762  * Drop a TCP connection, reporting the specified error.
763  * If connection is synchronized, then send a RST to peer.
764  */
765 struct tcpcb *
766 tcp_drop(struct tcpcb *tp, int error)
767 {
768 	struct socket *so = tp->t_inpcb->inp_socket;
769 
770 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
771 		tp->t_state = TCPS_CLOSED;
772 		tcp_output(tp);
773 		tcpstat.tcps_drops++;
774 	} else
775 		tcpstat.tcps_conndrops++;
776 	if (error == ETIMEDOUT && tp->t_softerror)
777 		error = tp->t_softerror;
778 	so->so_error = error;
779 	return (tcp_close(tp));
780 }
781 
782 struct netmsg_listen_detach {
783 	struct netmsg_base	base;
784 	struct tcpcb		*nm_tp;
785 };
786 
787 static void
788 tcp_listen_detach_handler(netmsg_t msg)
789 {
790 	struct netmsg_listen_detach *nmsg = (struct netmsg_listen_detach *)msg;
791 	struct tcpcb *tp = nmsg->nm_tp;
792 	int cpu = mycpuid, nextcpu;
793 
794 	if (tp->t_flags & TF_LISTEN)
795 		syncache_destroy(tp);
796 
797 	in_pcbremwildcardhash_oncpu(tp->t_inpcb, &tcbinfo[cpu]);
798 
799 	nextcpu = cpu + 1;
800 	if (nextcpu < ncpus2)
801 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &nmsg->base.lmsg);
802 	else
803 		lwkt_replymsg(&nmsg->base.lmsg, 0);
804 }
805 
806 /*
807  * Close a TCP control block:
808  *	discard all space held by the tcp
809  *	discard internet protocol block
810  *	wake up any sleepers
811  */
812 struct tcpcb *
813 tcp_close(struct tcpcb *tp)
814 {
815 	struct tseg_qent *q;
816 	struct inpcb *inp = tp->t_inpcb;
817 	struct socket *so = inp->inp_socket;
818 	struct rtentry *rt;
819 	boolean_t dosavessthresh;
820 #ifdef INET6
821 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
822 	boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
823 #else
824 	const boolean_t isipv6 = FALSE;
825 #endif
826 
827 	/*
828 	 * INP_WILDCARD_MP indicates that listen(2) has been called on
829 	 * this socket.  This implies:
830 	 * - A wildcard inp's hash is replicated for each protocol thread.
831 	 * - Syncache for this inp grows independently in each protocol
832 	 *   thread.
833 	 * - There is more than one cpu
834 	 *
835 	 * We have to chain a message to the rest of the protocol threads
836 	 * to cleanup the wildcard hash and the syncache.  The cleanup
837 	 * in the current protocol thread is defered till the end of this
838 	 * function.
839 	 *
840 	 * NOTE:
841 	 * After cleanup the inp's hash and syncache entries, this inp will
842 	 * no longer be available to the rest of the protocol threads, so we
843 	 * are safe to whack the inp in the following code.
844 	 */
845 	if (inp->inp_flags & INP_WILDCARD_MP) {
846 		struct netmsg_listen_detach nmsg;
847 
848 		KKASSERT(so->so_port == netisr_cpuport(0));
849 		KKASSERT(&curthread->td_msgport == netisr_cpuport(0));
850 		KKASSERT(inp->inp_pcbinfo == &tcbinfo[0]);
851 
852 		netmsg_init(&nmsg.base, NULL, &curthread->td_msgport,
853 			    MSGF_PRIORITY, tcp_listen_detach_handler);
854 		nmsg.nm_tp = tp;
855 		lwkt_domsg(netisr_cpuport(1), &nmsg.base.lmsg, 0);
856 
857 		inp->inp_flags &= ~INP_WILDCARD_MP;
858 	}
859 
860 	KKASSERT(tp->t_state != TCPS_TERMINATING);
861 	tp->t_state = TCPS_TERMINATING;
862 
863 	/*
864 	 * Make sure that all of our timers are stopped before we
865 	 * delete the PCB.  For listen TCP socket (tp->tt_msg == NULL),
866 	 * timers are never used.  If timer message is never created
867 	 * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
868 	 */
869 	if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
870 		tcp_callout_stop(tp, tp->tt_rexmt);
871 		tcp_callout_stop(tp, tp->tt_persist);
872 		tcp_callout_stop(tp, tp->tt_keep);
873 		tcp_callout_stop(tp, tp->tt_2msl);
874 		tcp_callout_stop(tp, tp->tt_delack);
875 	}
876 
877 	if (tp->t_flags & TF_ONOUTPUTQ) {
878 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
879 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
880 		tp->t_flags &= ~TF_ONOUTPUTQ;
881 	}
882 
883 	/*
884 	 * If we got enough samples through the srtt filter,
885 	 * save the rtt and rttvar in the routing entry.
886 	 * 'Enough' is arbitrarily defined as the 16 samples.
887 	 * 16 samples is enough for the srtt filter to converge
888 	 * to within 5% of the correct value; fewer samples and
889 	 * we could save a very bogus rtt.
890 	 *
891 	 * Don't update the default route's characteristics and don't
892 	 * update anything that the user "locked".
893 	 */
894 	if (tp->t_rttupdated >= 16) {
895 		u_long i = 0;
896 
897 		if (isipv6) {
898 			struct sockaddr_in6 *sin6;
899 
900 			if ((rt = inp->in6p_route.ro_rt) == NULL)
901 				goto no_valid_rt;
902 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
903 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
904 				goto no_valid_rt;
905 		} else
906 			if ((rt = inp->inp_route.ro_rt) == NULL ||
907 			    ((struct sockaddr_in *)rt_key(rt))->
908 			     sin_addr.s_addr == INADDR_ANY)
909 				goto no_valid_rt;
910 
911 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
912 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
913 			if (rt->rt_rmx.rmx_rtt && i)
914 				/*
915 				 * filter this update to half the old & half
916 				 * the new values, converting scale.
917 				 * See route.h and tcp_var.h for a
918 				 * description of the scaling constants.
919 				 */
920 				rt->rt_rmx.rmx_rtt =
921 				    (rt->rt_rmx.rmx_rtt + i) / 2;
922 			else
923 				rt->rt_rmx.rmx_rtt = i;
924 			tcpstat.tcps_cachedrtt++;
925 		}
926 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
927 			i = tp->t_rttvar *
928 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
929 			if (rt->rt_rmx.rmx_rttvar && i)
930 				rt->rt_rmx.rmx_rttvar =
931 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
932 			else
933 				rt->rt_rmx.rmx_rttvar = i;
934 			tcpstat.tcps_cachedrttvar++;
935 		}
936 		/*
937 		 * The old comment here said:
938 		 * update the pipelimit (ssthresh) if it has been updated
939 		 * already or if a pipesize was specified & the threshhold
940 		 * got below half the pipesize.  I.e., wait for bad news
941 		 * before we start updating, then update on both good
942 		 * and bad news.
943 		 *
944 		 * But we want to save the ssthresh even if no pipesize is
945 		 * specified explicitly in the route, because such
946 		 * connections still have an implicit pipesize specified
947 		 * by the global tcp_sendspace.  In the absence of a reliable
948 		 * way to calculate the pipesize, it will have to do.
949 		 */
950 		i = tp->snd_ssthresh;
951 		if (rt->rt_rmx.rmx_sendpipe != 0)
952 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
953 		else
954 			dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
955 		if (dosavessthresh ||
956 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
957 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
958 			/*
959 			 * convert the limit from user data bytes to
960 			 * packets then to packet data bytes.
961 			 */
962 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
963 			if (i < 2)
964 				i = 2;
965 			i *= tp->t_maxseg +
966 			     (isipv6 ?
967 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
968 			      sizeof(struct tcpiphdr));
969 			if (rt->rt_rmx.rmx_ssthresh)
970 				rt->rt_rmx.rmx_ssthresh =
971 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
972 			else
973 				rt->rt_rmx.rmx_ssthresh = i;
974 			tcpstat.tcps_cachedssthresh++;
975 		}
976 	}
977 
978 no_valid_rt:
979 	/* free the reassembly queue, if any */
980 	while((q = TAILQ_FIRST(&tp->t_segq)) != NULL) {
981 		TAILQ_REMOVE(&tp->t_segq, q, tqe_q);
982 		m_freem(q->tqe_m);
983 		kfree(q, M_TSEGQ);
984 		atomic_add_int(&tcp_reass_qsize, -1);
985 	}
986 	/* throw away SACK blocks in scoreboard*/
987 	if (TCP_DO_SACK(tp))
988 		tcp_sack_destroy(&tp->scb);
989 
990 	inp->inp_ppcb = NULL;
991 	soisdisconnected(so);
992 	/* note: pcb detached later on */
993 
994 	tcp_destroy_timermsg(tp);
995 	tcp_output_cancel(tp);
996 
997 	if (tp->t_flags & TF_LISTEN)
998 		syncache_destroy(tp);
999 
1000 	so_async_rcvd_drop(so);
1001 	/* Drop the reference for the asynchronized pru_rcvd */
1002 	sofree(so);
1003 
1004 	/*
1005 	 * NOTE:
1006 	 * pcbdetach removes any wildcard hash entry on the current CPU.
1007 	 */
1008 #ifdef INET6
1009 	if (isafinet6)
1010 		in6_pcbdetach(inp);
1011 	else
1012 #endif
1013 		in_pcbdetach(inp);
1014 
1015 	tcpstat.tcps_closed++;
1016 	return (NULL);
1017 }
1018 
1019 static __inline void
1020 tcp_drain_oncpu(struct inpcbhead *head)
1021 {
1022 	struct inpcb *marker;
1023 	struct inpcb *inpb;
1024 	struct tcpcb *tcpb;
1025 	struct tseg_qent *te;
1026 
1027 	/*
1028 	 * Allows us to block while running the list
1029 	 */
1030 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1031 	marker->inp_flags |= INP_PLACEMARKER;
1032 	LIST_INSERT_HEAD(head, marker, inp_list);
1033 
1034 	while ((inpb = LIST_NEXT(marker, inp_list)) != NULL) {
1035 		if ((inpb->inp_flags & INP_PLACEMARKER) == 0 &&
1036 		    (tcpb = intotcpcb(inpb)) != NULL &&
1037 		    (te = TAILQ_FIRST(&tcpb->t_segq)) != NULL) {
1038 			TAILQ_REMOVE(&tcpb->t_segq, te, tqe_q);
1039 			if (te->tqe_th->th_flags & TH_FIN)
1040 				tcpb->t_flags &= ~TF_QUEDFIN;
1041 			m_freem(te->tqe_m);
1042 			kfree(te, M_TSEGQ);
1043 			atomic_add_int(&tcp_reass_qsize, -1);
1044 			/* retry */
1045 		} else {
1046 			LIST_REMOVE(marker, inp_list);
1047 			LIST_INSERT_AFTER(inpb, marker, inp_list);
1048 		}
1049 	}
1050 	LIST_REMOVE(marker, inp_list);
1051 	kfree(marker, M_TEMP);
1052 }
1053 
1054 struct netmsg_tcp_drain {
1055 	struct netmsg_base	base;
1056 	struct inpcbhead	*nm_head;
1057 };
1058 
1059 static void
1060 tcp_drain_handler(netmsg_t msg)
1061 {
1062 	struct netmsg_tcp_drain *nm = (void *)msg;
1063 
1064 	tcp_drain_oncpu(nm->nm_head);
1065 	lwkt_replymsg(&nm->base.lmsg, 0);
1066 }
1067 
1068 void
1069 tcp_drain(void)
1070 {
1071 	int cpu;
1072 
1073 	if (!do_tcpdrain)
1074 		return;
1075 
1076 	/*
1077 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1078 	 * if there is one...
1079 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1080 	 *	reassembly queue should be flushed, but in a situation
1081 	 *	where we're really low on mbufs, this is potentially
1082 	 *	useful.
1083 	 */
1084 	for (cpu = 0; cpu < ncpus2; cpu++) {
1085 		struct netmsg_tcp_drain *nm;
1086 
1087 		if (cpu == mycpu->gd_cpuid) {
1088 			tcp_drain_oncpu(&tcbinfo[cpu].pcblisthead);
1089 		} else {
1090 			nm = kmalloc(sizeof(struct netmsg_tcp_drain),
1091 				     M_LWKTMSG, M_NOWAIT);
1092 			if (nm == NULL)
1093 				continue;
1094 			netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1095 				    0, tcp_drain_handler);
1096 			nm->nm_head = &tcbinfo[cpu].pcblisthead;
1097 			lwkt_sendmsg(netisr_cpuport(cpu), &nm->base.lmsg);
1098 		}
1099 	}
1100 }
1101 
1102 /*
1103  * Notify a tcp user of an asynchronous error;
1104  * store error as soft error, but wake up user
1105  * (for now, won't do anything until can select for soft error).
1106  *
1107  * Do not wake up user since there currently is no mechanism for
1108  * reporting soft errors (yet - a kqueue filter may be added).
1109  */
1110 static void
1111 tcp_notify(struct inpcb *inp, int error)
1112 {
1113 	struct tcpcb *tp = intotcpcb(inp);
1114 
1115 	/*
1116 	 * Ignore some errors if we are hooked up.
1117 	 * If connection hasn't completed, has retransmitted several times,
1118 	 * and receives a second error, give up now.  This is better
1119 	 * than waiting a long time to establish a connection that
1120 	 * can never complete.
1121 	 */
1122 	if (tp->t_state == TCPS_ESTABLISHED &&
1123 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1124 	      error == EHOSTDOWN)) {
1125 		return;
1126 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1127 	    tp->t_softerror)
1128 		tcp_drop(tp, error);
1129 	else
1130 		tp->t_softerror = error;
1131 #if 0
1132 	wakeup(&so->so_timeo);
1133 	sorwakeup(so);
1134 	sowwakeup(so);
1135 #endif
1136 }
1137 
1138 static int
1139 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1140 {
1141 	int error, i, n;
1142 	struct inpcb *marker;
1143 	struct inpcb *inp;
1144 	globaldata_t gd;
1145 	int origcpu, ccpu;
1146 
1147 	error = 0;
1148 	n = 0;
1149 
1150 	/*
1151 	 * The process of preparing the TCB list is too time-consuming and
1152 	 * resource-intensive to repeat twice on every request.
1153 	 */
1154 	if (req->oldptr == NULL) {
1155 		for (ccpu = 0; ccpu < ncpus; ++ccpu) {
1156 			gd = globaldata_find(ccpu);
1157 			n += tcbinfo[gd->gd_cpuid].ipi_count;
1158 		}
1159 		req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1160 		return (0);
1161 	}
1162 
1163 	if (req->newptr != NULL)
1164 		return (EPERM);
1165 
1166 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1167 	marker->inp_flags |= INP_PLACEMARKER;
1168 
1169 	/*
1170 	 * OK, now we're committed to doing something.  Run the inpcb list
1171 	 * for each cpu in the system and construct the output.  Use a
1172 	 * list placemarker to deal with list changes occuring during
1173 	 * copyout blockages (but otherwise depend on being on the correct
1174 	 * cpu to avoid races).
1175 	 */
1176 	origcpu = mycpu->gd_cpuid;
1177 	for (ccpu = 1; ccpu <= ncpus && error == 0; ++ccpu) {
1178 		globaldata_t rgd;
1179 		caddr_t inp_ppcb;
1180 		struct xtcpcb xt;
1181 		int cpu_id;
1182 
1183 		cpu_id = (origcpu + ccpu) % ncpus;
1184 		if ((smp_active_mask & CPUMASK(cpu_id)) == 0)
1185 			continue;
1186 		rgd = globaldata_find(cpu_id);
1187 		lwkt_setcpu_self(rgd);
1188 
1189 		n = tcbinfo[cpu_id].ipi_count;
1190 
1191 		LIST_INSERT_HEAD(&tcbinfo[cpu_id].pcblisthead, marker, inp_list);
1192 		i = 0;
1193 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1194 			/*
1195 			 * process a snapshot of pcbs, ignoring placemarkers
1196 			 * and using our own to allow SYSCTL_OUT to block.
1197 			 */
1198 			LIST_REMOVE(marker, inp_list);
1199 			LIST_INSERT_AFTER(inp, marker, inp_list);
1200 
1201 			if (inp->inp_flags & INP_PLACEMARKER)
1202 				continue;
1203 			if (prison_xinpcb(req->td, inp))
1204 				continue;
1205 
1206 			xt.xt_len = sizeof xt;
1207 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1208 			inp_ppcb = inp->inp_ppcb;
1209 			if (inp_ppcb != NULL)
1210 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1211 			else
1212 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1213 			if (inp->inp_socket)
1214 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1215 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1216 				break;
1217 			++i;
1218 		}
1219 		LIST_REMOVE(marker, inp_list);
1220 		if (error == 0 && i < n) {
1221 			bzero(&xt, sizeof xt);
1222 			xt.xt_len = sizeof xt;
1223 			while (i < n) {
1224 				error = SYSCTL_OUT(req, &xt, sizeof xt);
1225 				if (error)
1226 					break;
1227 				++i;
1228 			}
1229 		}
1230 	}
1231 
1232 	/*
1233 	 * Make sure we are on the same cpu we were on originally, since
1234 	 * higher level callers expect this.  Also don't pollute caches with
1235 	 * migrated userland data by (eventually) returning to userland
1236 	 * on a different cpu.
1237 	 */
1238 	lwkt_setcpu_self(globaldata_find(origcpu));
1239 	kfree(marker, M_TEMP);
1240 	return (error);
1241 }
1242 
1243 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1244 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1245 
1246 static int
1247 tcp_getcred(SYSCTL_HANDLER_ARGS)
1248 {
1249 	struct sockaddr_in addrs[2];
1250 	struct inpcb *inp;
1251 	int cpu;
1252 	int error;
1253 
1254 	error = priv_check(req->td, PRIV_ROOT);
1255 	if (error != 0)
1256 		return (error);
1257 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1258 	if (error != 0)
1259 		return (error);
1260 	crit_enter();
1261 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1262 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1263 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1264 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1265 	if (inp == NULL || inp->inp_socket == NULL) {
1266 		error = ENOENT;
1267 		goto out;
1268 	}
1269 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1270 out:
1271 	crit_exit();
1272 	return (error);
1273 }
1274 
1275 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1276     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1277 
1278 #ifdef INET6
1279 static int
1280 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1281 {
1282 	struct sockaddr_in6 addrs[2];
1283 	struct inpcb *inp;
1284 	int error;
1285 	boolean_t mapped = FALSE;
1286 
1287 	error = priv_check(req->td, PRIV_ROOT);
1288 	if (error != 0)
1289 		return (error);
1290 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1291 	if (error != 0)
1292 		return (error);
1293 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1294 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1295 			mapped = TRUE;
1296 		else
1297 			return (EINVAL);
1298 	}
1299 	crit_enter();
1300 	if (mapped) {
1301 		inp = in_pcblookup_hash(&tcbinfo[0],
1302 		    *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1303 		    addrs[1].sin6_port,
1304 		    *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1305 		    addrs[0].sin6_port,
1306 		    0, NULL);
1307 	} else {
1308 		inp = in6_pcblookup_hash(&tcbinfo[0],
1309 		    &addrs[1].sin6_addr, addrs[1].sin6_port,
1310 		    &addrs[0].sin6_addr, addrs[0].sin6_port,
1311 		    0, NULL);
1312 	}
1313 	if (inp == NULL || inp->inp_socket == NULL) {
1314 		error = ENOENT;
1315 		goto out;
1316 	}
1317 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1318 out:
1319 	crit_exit();
1320 	return (error);
1321 }
1322 
1323 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1324 	    0, 0,
1325 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1326 #endif
1327 
1328 struct netmsg_tcp_notify {
1329 	struct netmsg_base base;
1330 	void		(*nm_notify)(struct inpcb *, int);
1331 	struct in_addr	nm_faddr;
1332 	int		nm_arg;
1333 };
1334 
1335 static void
1336 tcp_notifyall_oncpu(netmsg_t msg)
1337 {
1338 	struct netmsg_tcp_notify *nm = (struct netmsg_tcp_notify *)msg;
1339 	int nextcpu;
1340 
1341 	in_pcbnotifyall(&tcbinfo[mycpuid].pcblisthead, nm->nm_faddr,
1342 			nm->nm_arg, nm->nm_notify);
1343 
1344 	nextcpu = mycpuid + 1;
1345 	if (nextcpu < ncpus2)
1346 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &nm->base.lmsg);
1347 	else
1348 		lwkt_replymsg(&nm->base.lmsg, 0);
1349 }
1350 
1351 void
1352 tcp_ctlinput(netmsg_t msg)
1353 {
1354 	int cmd = msg->ctlinput.nm_cmd;
1355 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1356 	struct ip *ip = msg->ctlinput.nm_extra;
1357 	struct tcphdr *th;
1358 	struct in_addr faddr;
1359 	struct inpcb *inp;
1360 	struct tcpcb *tp;
1361 	void (*notify)(struct inpcb *, int) = tcp_notify;
1362 	tcp_seq icmpseq;
1363 	int arg, cpu;
1364 
1365 	if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1366 		goto done;
1367 	}
1368 
1369 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1370 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1371 		goto done;
1372 
1373 	arg = inetctlerrmap[cmd];
1374 	if (cmd == PRC_QUENCH) {
1375 		notify = tcp_quench;
1376 	} else if (icmp_may_rst &&
1377 		   (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1378 		    cmd == PRC_UNREACH_PORT ||
1379 		    cmd == PRC_TIMXCEED_INTRANS) &&
1380 		   ip != NULL) {
1381 		notify = tcp_drop_syn_sent;
1382 	} else if (cmd == PRC_MSGSIZE) {
1383 		struct icmp *icmp = (struct icmp *)
1384 		    ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1385 
1386 		arg = ntohs(icmp->icmp_nextmtu);
1387 		notify = tcp_mtudisc;
1388 	} else if (PRC_IS_REDIRECT(cmd)) {
1389 		ip = NULL;
1390 		notify = in_rtchange;
1391 	} else if (cmd == PRC_HOSTDEAD) {
1392 		ip = NULL;
1393 	}
1394 
1395 	if (ip != NULL) {
1396 		crit_enter();
1397 		th = (struct tcphdr *)((caddr_t)ip +
1398 				       (IP_VHL_HL(ip->ip_vhl) << 2));
1399 		cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
1400 				  ip->ip_src.s_addr, th->th_sport);
1401 		inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
1402 					ip->ip_src, th->th_sport, 0, NULL);
1403 		if ((inp != NULL) && (inp->inp_socket != NULL)) {
1404 			icmpseq = htonl(th->th_seq);
1405 			tp = intotcpcb(inp);
1406 			if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1407 			    SEQ_LT(icmpseq, tp->snd_max))
1408 				(*notify)(inp, arg);
1409 		} else {
1410 			struct in_conninfo inc;
1411 
1412 			inc.inc_fport = th->th_dport;
1413 			inc.inc_lport = th->th_sport;
1414 			inc.inc_faddr = faddr;
1415 			inc.inc_laddr = ip->ip_src;
1416 #ifdef INET6
1417 			inc.inc_isipv6 = 0;
1418 #endif
1419 			syncache_unreach(&inc, th);
1420 		}
1421 		crit_exit();
1422 	} else {
1423 		struct netmsg_tcp_notify *nm;
1424 
1425 		KKASSERT(&curthread->td_msgport == netisr_cpuport(0));
1426 		nm = kmalloc(sizeof(*nm), M_LWKTMSG, M_INTWAIT);
1427 		netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1428 			    0, tcp_notifyall_oncpu);
1429 		nm->nm_faddr = faddr;
1430 		nm->nm_arg = arg;
1431 		nm->nm_notify = notify;
1432 
1433 		lwkt_sendmsg(netisr_cpuport(0), &nm->base.lmsg);
1434 	}
1435 done:
1436 	lwkt_replymsg(&msg->lmsg, 0);
1437 }
1438 
1439 #ifdef INET6
1440 
1441 void
1442 tcp6_ctlinput(netmsg_t msg)
1443 {
1444 	int cmd = msg->ctlinput.nm_cmd;
1445 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1446 	void *d = msg->ctlinput.nm_extra;
1447 	struct tcphdr th;
1448 	void (*notify) (struct inpcb *, int) = tcp_notify;
1449 	struct ip6_hdr *ip6;
1450 	struct mbuf *m;
1451 	struct ip6ctlparam *ip6cp = NULL;
1452 	const struct sockaddr_in6 *sa6_src = NULL;
1453 	int off;
1454 	struct tcp_portonly {
1455 		u_int16_t th_sport;
1456 		u_int16_t th_dport;
1457 	} *thp;
1458 	int arg;
1459 
1460 	if (sa->sa_family != AF_INET6 ||
1461 	    sa->sa_len != sizeof(struct sockaddr_in6)) {
1462 		goto out;
1463 	}
1464 
1465 	arg = 0;
1466 	if (cmd == PRC_QUENCH)
1467 		notify = tcp_quench;
1468 	else if (cmd == PRC_MSGSIZE) {
1469 		struct ip6ctlparam *ip6cp = d;
1470 		struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1471 
1472 		arg = ntohl(icmp6->icmp6_mtu);
1473 		notify = tcp_mtudisc;
1474 	} else if (!PRC_IS_REDIRECT(cmd) &&
1475 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1476 		goto out;
1477 	}
1478 
1479 	/* if the parameter is from icmp6, decode it. */
1480 	if (d != NULL) {
1481 		ip6cp = (struct ip6ctlparam *)d;
1482 		m = ip6cp->ip6c_m;
1483 		ip6 = ip6cp->ip6c_ip6;
1484 		off = ip6cp->ip6c_off;
1485 		sa6_src = ip6cp->ip6c_src;
1486 	} else {
1487 		m = NULL;
1488 		ip6 = NULL;
1489 		off = 0;	/* fool gcc */
1490 		sa6_src = &sa6_any;
1491 	}
1492 
1493 	if (ip6 != NULL) {
1494 		struct in_conninfo inc;
1495 		/*
1496 		 * XXX: We assume that when IPV6 is non NULL,
1497 		 * M and OFF are valid.
1498 		 */
1499 
1500 		/* check if we can safely examine src and dst ports */
1501 		if (m->m_pkthdr.len < off + sizeof *thp)
1502 			goto out;
1503 
1504 		bzero(&th, sizeof th);
1505 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1506 
1507 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, th.th_dport,
1508 		    (struct sockaddr *)ip6cp->ip6c_src,
1509 		    th.th_sport, cmd, arg, notify);
1510 
1511 		inc.inc_fport = th.th_dport;
1512 		inc.inc_lport = th.th_sport;
1513 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1514 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1515 		inc.inc_isipv6 = 1;
1516 		syncache_unreach(&inc, &th);
1517 	} else {
1518 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, 0,
1519 		    (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1520 	}
1521 out:
1522 	lwkt_replymsg(&msg->ctlinput.base.lmsg, 0);
1523 }
1524 
1525 #endif
1526 
1527 /*
1528  * Following is where TCP initial sequence number generation occurs.
1529  *
1530  * There are two places where we must use initial sequence numbers:
1531  * 1.  In SYN-ACK packets.
1532  * 2.  In SYN packets.
1533  *
1534  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1535  * tcp_syncache.c for details.
1536  *
1537  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1538  * depends on this property.  In addition, these ISNs should be
1539  * unguessable so as to prevent connection hijacking.  To satisfy
1540  * the requirements of this situation, the algorithm outlined in
1541  * RFC 1948 is used to generate sequence numbers.
1542  *
1543  * Implementation details:
1544  *
1545  * Time is based off the system timer, and is corrected so that it
1546  * increases by one megabyte per second.  This allows for proper
1547  * recycling on high speed LANs while still leaving over an hour
1548  * before rollover.
1549  *
1550  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1551  * between seeding of isn_secret.  This is normally set to zero,
1552  * as reseeding should not be necessary.
1553  *
1554  */
1555 
1556 #define	ISN_BYTES_PER_SECOND 1048576
1557 
1558 u_char isn_secret[32];
1559 int isn_last_reseed;
1560 MD5_CTX isn_ctx;
1561 
1562 tcp_seq
1563 tcp_new_isn(struct tcpcb *tp)
1564 {
1565 	u_int32_t md5_buffer[4];
1566 	tcp_seq new_isn;
1567 
1568 	/* Seed if this is the first use, reseed if requested. */
1569 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1570 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1571 		< (u_int)ticks))) {
1572 		read_random_unlimited(&isn_secret, sizeof isn_secret);
1573 		isn_last_reseed = ticks;
1574 	}
1575 
1576 	/* Compute the md5 hash and return the ISN. */
1577 	MD5Init(&isn_ctx);
1578 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1579 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1580 #ifdef INET6
1581 	if (tp->t_inpcb->inp_vflag & INP_IPV6) {
1582 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1583 			  sizeof(struct in6_addr));
1584 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1585 			  sizeof(struct in6_addr));
1586 	} else
1587 #endif
1588 	{
1589 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1590 			  sizeof(struct in_addr));
1591 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1592 			  sizeof(struct in_addr));
1593 	}
1594 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1595 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1596 	new_isn = (tcp_seq) md5_buffer[0];
1597 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1598 	return (new_isn);
1599 }
1600 
1601 /*
1602  * When a source quench is received, close congestion window
1603  * to one segment.  We will gradually open it again as we proceed.
1604  */
1605 void
1606 tcp_quench(struct inpcb *inp, int error)
1607 {
1608 	struct tcpcb *tp = intotcpcb(inp);
1609 
1610 	if (tp != NULL) {
1611 		tp->snd_cwnd = tp->t_maxseg;
1612 		tp->snd_wacked = 0;
1613 	}
1614 }
1615 
1616 /*
1617  * When a specific ICMP unreachable message is received and the
1618  * connection state is SYN-SENT, drop the connection.  This behavior
1619  * is controlled by the icmp_may_rst sysctl.
1620  */
1621 void
1622 tcp_drop_syn_sent(struct inpcb *inp, int error)
1623 {
1624 	struct tcpcb *tp = intotcpcb(inp);
1625 
1626 	if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
1627 		tcp_drop(tp, error);
1628 }
1629 
1630 /*
1631  * When a `need fragmentation' ICMP is received, update our idea of the MSS
1632  * based on the new value in the route.  Also nudge TCP to send something,
1633  * since we know the packet we just sent was dropped.
1634  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1635  */
1636 void
1637 tcp_mtudisc(struct inpcb *inp, int mtu)
1638 {
1639 	struct tcpcb *tp = intotcpcb(inp);
1640 	struct rtentry *rt;
1641 	struct socket *so = inp->inp_socket;
1642 	int maxopd, mss;
1643 #ifdef INET6
1644 	boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1645 #else
1646 	const boolean_t isipv6 = FALSE;
1647 #endif
1648 
1649 	if (tp == NULL)
1650 		return;
1651 
1652 	/*
1653 	 * If no MTU is provided in the ICMP message, use the
1654 	 * next lower likely value, as specified in RFC 1191.
1655 	 */
1656 	if (mtu == 0) {
1657 		int oldmtu;
1658 
1659 		oldmtu = tp->t_maxopd +
1660 		    (isipv6 ?
1661 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1662 		     sizeof(struct tcpiphdr));
1663 		mtu = ip_next_mtu(oldmtu, 0);
1664 	}
1665 
1666 	if (isipv6)
1667 		rt = tcp_rtlookup6(&inp->inp_inc);
1668 	else
1669 		rt = tcp_rtlookup(&inp->inp_inc);
1670 	if (rt != NULL) {
1671 		if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1672 			mtu = rt->rt_rmx.rmx_mtu;
1673 
1674 		maxopd = mtu -
1675 		    (isipv6 ?
1676 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1677 		     sizeof(struct tcpiphdr));
1678 
1679 		/*
1680 		 * XXX - The following conditional probably violates the TCP
1681 		 * spec.  The problem is that, since we don't know the
1682 		 * other end's MSS, we are supposed to use a conservative
1683 		 * default.  But, if we do that, then MTU discovery will
1684 		 * never actually take place, because the conservative
1685 		 * default is much less than the MTUs typically seen
1686 		 * on the Internet today.  For the moment, we'll sweep
1687 		 * this under the carpet.
1688 		 *
1689 		 * The conservative default might not actually be a problem
1690 		 * if the only case this occurs is when sending an initial
1691 		 * SYN with options and data to a host we've never talked
1692 		 * to before.  Then, they will reply with an MSS value which
1693 		 * will get recorded and the new parameters should get
1694 		 * recomputed.  For Further Study.
1695 		 */
1696 		if (rt->rt_rmx.rmx_mssopt  && rt->rt_rmx.rmx_mssopt < maxopd)
1697 			maxopd = rt->rt_rmx.rmx_mssopt;
1698 	} else
1699 		maxopd = mtu -
1700 		    (isipv6 ?
1701 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1702 		     sizeof(struct tcpiphdr));
1703 
1704 	if (tp->t_maxopd <= maxopd)
1705 		return;
1706 	tp->t_maxopd = maxopd;
1707 
1708 	mss = maxopd;
1709 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1710 			   (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1711 		mss -= TCPOLEN_TSTAMP_APPA;
1712 
1713 	/* round down to multiple of MCLBYTES */
1714 #if	(MCLBYTES & (MCLBYTES - 1)) == 0    /* test if MCLBYTES power of 2 */
1715 	if (mss > MCLBYTES)
1716 		mss &= ~(MCLBYTES - 1);
1717 #else
1718 	if (mss > MCLBYTES)
1719 		mss = (mss / MCLBYTES) * MCLBYTES;
1720 #endif
1721 
1722 	if (so->so_snd.ssb_hiwat < mss)
1723 		mss = so->so_snd.ssb_hiwat;
1724 
1725 	tp->t_maxseg = mss;
1726 	tp->t_rtttime = 0;
1727 	tp->snd_nxt = tp->snd_una;
1728 	tcp_output(tp);
1729 	tcpstat.tcps_mturesent++;
1730 }
1731 
1732 /*
1733  * Look-up the routing entry to the peer of this inpcb.  If no route
1734  * is found and it cannot be allocated the return NULL.  This routine
1735  * is called by TCP routines that access the rmx structure and by tcp_mss
1736  * to get the interface MTU.
1737  */
1738 struct rtentry *
1739 tcp_rtlookup(struct in_conninfo *inc)
1740 {
1741 	struct route *ro = &inc->inc_route;
1742 
1743 	if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1744 		/* No route yet, so try to acquire one */
1745 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1746 			/*
1747 			 * unused portions of the structure MUST be zero'd
1748 			 * out because rtalloc() treats it as opaque data
1749 			 */
1750 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1751 			ro->ro_dst.sa_family = AF_INET;
1752 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1753 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1754 			    inc->inc_faddr;
1755 			rtalloc(ro);
1756 		}
1757 	}
1758 	return (ro->ro_rt);
1759 }
1760 
1761 #ifdef INET6
1762 struct rtentry *
1763 tcp_rtlookup6(struct in_conninfo *inc)
1764 {
1765 	struct route_in6 *ro6 = &inc->inc6_route;
1766 
1767 	if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1768 		/* No route yet, so try to acquire one */
1769 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1770 			/*
1771 			 * unused portions of the structure MUST be zero'd
1772 			 * out because rtalloc() treats it as opaque data
1773 			 */
1774 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1775 			ro6->ro_dst.sin6_family = AF_INET6;
1776 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1777 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1778 			rtalloc((struct route *)ro6);
1779 		}
1780 	}
1781 	return (ro6->ro_rt);
1782 }
1783 #endif
1784 
1785 #ifdef IPSEC
1786 /* compute ESP/AH header size for TCP, including outer IP header. */
1787 size_t
1788 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1789 {
1790 	struct inpcb *inp;
1791 	struct mbuf *m;
1792 	size_t hdrsiz;
1793 	struct ip *ip;
1794 	struct tcphdr *th;
1795 
1796 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1797 		return (0);
1798 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1799 	if (!m)
1800 		return (0);
1801 
1802 #ifdef INET6
1803 	if (inp->inp_vflag & INP_IPV6) {
1804 		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1805 
1806 		th = (struct tcphdr *)(ip6 + 1);
1807 		m->m_pkthdr.len = m->m_len =
1808 		    sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1809 		tcp_fillheaders(tp, ip6, th, FALSE);
1810 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1811 	} else
1812 #endif
1813 	{
1814 		ip = mtod(m, struct ip *);
1815 		th = (struct tcphdr *)(ip + 1);
1816 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1817 		tcp_fillheaders(tp, ip, th, FALSE);
1818 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1819 	}
1820 
1821 	m_free(m);
1822 	return (hdrsiz);
1823 }
1824 #endif
1825 
1826 /*
1827  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1828  *
1829  * This code attempts to calculate the bandwidth-delay product as a
1830  * means of determining the optimal window size to maximize bandwidth,
1831  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1832  * routers.  This code also does a fairly good job keeping RTTs in check
1833  * across slow links like modems.  We implement an algorithm which is very
1834  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1835  * transmitter side of a TCP connection and so only effects the transmit
1836  * side of the connection.
1837  *
1838  * BACKGROUND:  TCP makes no provision for the management of buffer space
1839  * at the end points or at the intermediate routers and switches.  A TCP
1840  * stream, whether using NewReno or not, will eventually buffer as
1841  * many packets as it is able and the only reason this typically works is
1842  * due to the fairly small default buffers made available for a connection
1843  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1844  * scaling it is now fairly easy for even a single TCP connection to blow-out
1845  * all available buffer space not only on the local interface, but on
1846  * intermediate routers and switches as well.  NewReno makes a misguided
1847  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1848  * then backing off, then steadily increasing the window again until another
1849  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1850  * is only made worse as network loads increase and the idea of intentionally
1851  * blowing out network buffers is, frankly, a terrible way to manage network
1852  * resources.
1853  *
1854  * It is far better to limit the transmit window prior to the failure
1855  * condition being achieved.  There are two general ways to do this:  First
1856  * you can 'scan' through different transmit window sizes and locate the
1857  * point where the RTT stops increasing, indicating that you have filled the
1858  * pipe, then scan backwards until you note that RTT stops decreasing, then
1859  * repeat ad-infinitum.  This method works in principle but has severe
1860  * implementation issues due to RTT variances, timer granularity, and
1861  * instability in the algorithm which can lead to many false positives and
1862  * create oscillations as well as interact badly with other TCP streams
1863  * implementing the same algorithm.
1864  *
1865  * The second method is to limit the window to the bandwidth delay product
1866  * of the link.  This is the method we implement.  RTT variances and our
1867  * own manipulation of the congestion window, bwnd, can potentially
1868  * destabilize the algorithm.  For this reason we have to stabilize the
1869  * elements used to calculate the window.  We do this by using the minimum
1870  * observed RTT, the long term average of the observed bandwidth, and
1871  * by adding two segments worth of slop.  It isn't perfect but it is able
1872  * to react to changing conditions and gives us a very stable basis on
1873  * which to extend the algorithm.
1874  */
1875 void
1876 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1877 {
1878 	u_long bw;
1879 	u_long bwnd;
1880 	int save_ticks;
1881 	int delta_ticks;
1882 
1883 	/*
1884 	 * If inflight_enable is disabled in the middle of a tcp connection,
1885 	 * make sure snd_bwnd is effectively disabled.
1886 	 */
1887 	if (!tcp_inflight_enable) {
1888 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1889 		tp->snd_bandwidth = 0;
1890 		return;
1891 	}
1892 
1893 	/*
1894 	 * Validate the delta time.  If a connection is new or has been idle
1895 	 * a long time we have to reset the bandwidth calculator.
1896 	 */
1897 	save_ticks = ticks;
1898 	delta_ticks = save_ticks - tp->t_bw_rtttime;
1899 	if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1900 		tp->t_bw_rtttime = ticks;
1901 		tp->t_bw_rtseq = ack_seq;
1902 		if (tp->snd_bandwidth == 0)
1903 			tp->snd_bandwidth = tcp_inflight_min;
1904 		return;
1905 	}
1906 	if (delta_ticks == 0)
1907 		return;
1908 
1909 	/*
1910 	 * Sanity check, plus ignore pure window update acks.
1911 	 */
1912 	if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1913 		return;
1914 
1915 	/*
1916 	 * Figure out the bandwidth.  Due to the tick granularity this
1917 	 * is a very rough number and it MUST be averaged over a fairly
1918 	 * long period of time.  XXX we need to take into account a link
1919 	 * that is not using all available bandwidth, but for now our
1920 	 * slop will ramp us up if this case occurs and the bandwidth later
1921 	 * increases.
1922 	 */
1923 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
1924 	tp->t_bw_rtttime = save_ticks;
1925 	tp->t_bw_rtseq = ack_seq;
1926 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1927 
1928 	tp->snd_bandwidth = bw;
1929 
1930 	/*
1931 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1932 	 * segments.  The additional slop puts us squarely in the sweet
1933 	 * spot and also handles the bandwidth run-up case.  Without the
1934 	 * slop we could be locking ourselves into a lower bandwidth.
1935 	 *
1936 	 * Situations Handled:
1937 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1938 	 *	    high speed LANs, allowing larger TCP buffers to be
1939 	 *	    specified, and also does a good job preventing
1940 	 *	    over-queueing of packets over choke points like modems
1941 	 *	    (at least for the transmit side).
1942 	 *
1943 	 *	(2) Is able to handle changing network loads (bandwidth
1944 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1945 	 *	    increases).
1946 	 *
1947 	 *	(3) Theoretically should stabilize in the face of multiple
1948 	 *	    connections implementing the same algorithm (this may need
1949 	 *	    a little work).
1950 	 *
1951 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1952 	 *	    be adjusted with a sysctl but typically only needs to be on
1953 	 *	    very slow connections.  A value no smaller then 5 should
1954 	 *	    be used, but only reduce this default if you have no other
1955 	 *	    choice.
1956 	 */
1957 
1958 #define	USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1959 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
1960 	       tcp_inflight_stab * (int)tp->t_maxseg / 10;
1961 #undef USERTT
1962 
1963 	if (tcp_inflight_debug > 0) {
1964 		static int ltime;
1965 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1966 			ltime = ticks;
1967 			kprintf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1968 				tp, bw, tp->t_rttbest, tp->t_srtt, bwnd);
1969 		}
1970 	}
1971 	if ((long)bwnd < tcp_inflight_min)
1972 		bwnd = tcp_inflight_min;
1973 	if (bwnd > tcp_inflight_max)
1974 		bwnd = tcp_inflight_max;
1975 	if ((long)bwnd < tp->t_maxseg * 2)
1976 		bwnd = tp->t_maxseg * 2;
1977 	tp->snd_bwnd = bwnd;
1978 }
1979 
1980 static void
1981 tcp_rmx_iwsegs(struct tcpcb *tp, u_long *maxsegs, u_long *capsegs)
1982 {
1983 	struct rtentry *rt;
1984 	struct inpcb *inp = tp->t_inpcb;
1985 #ifdef INET6
1986 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
1987 #else
1988 	const boolean_t isipv6 = FALSE;
1989 #endif
1990 
1991 	/* XXX */
1992 	if (tcp_iw_maxsegs < TCP_IW_MAXSEGS_DFLT)
1993 		tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
1994 	if (tcp_iw_capsegs < TCP_IW_CAPSEGS_DFLT)
1995 		tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
1996 
1997 	if (isipv6)
1998 		rt = tcp_rtlookup6(&inp->inp_inc);
1999 	else
2000 		rt = tcp_rtlookup(&inp->inp_inc);
2001 	if (rt == NULL ||
2002 	    rt->rt_rmx.rmx_iwmaxsegs < TCP_IW_MAXSEGS_DFLT ||
2003 	    rt->rt_rmx.rmx_iwcapsegs < TCP_IW_CAPSEGS_DFLT) {
2004 		*maxsegs = tcp_iw_maxsegs;
2005 		*capsegs = tcp_iw_capsegs;
2006 		return;
2007 	}
2008 	*maxsegs = rt->rt_rmx.rmx_iwmaxsegs;
2009 	*capsegs = rt->rt_rmx.rmx_iwcapsegs;
2010 }
2011 
2012 u_long
2013 tcp_initial_window(struct tcpcb *tp)
2014 {
2015 	if (tcp_do_rfc3390) {
2016 		/*
2017 		 * RFC3390:
2018 		 * "If the SYN or SYN/ACK is lost, the initial window
2019 		 *  used by a sender after a correctly transmitted SYN
2020 		 *  MUST be one segment consisting of MSS bytes."
2021 		 *
2022 		 * However, we do something a little bit more aggressive
2023 		 * then RFC3390 here:
2024 		 * - Only if time spent in the SYN or SYN|ACK retransmition
2025 		 *   >= 3 seconds, the IW is reduced.  We do this mainly
2026 		 *   because when RFC3390 is published, the initial RTO is
2027 		 *   still 3 seconds (the threshold we test here), while
2028 		 *   after RFC6298, the initial RTO is 1 second.  This
2029 		 *   behaviour probably still falls within the spirit of
2030 		 *   RFC3390.
2031 		 * - When IW is reduced, 2*MSS is used instead of 1*MSS.
2032 		 *   Mainly to avoid sender and receiver deadlock until
2033 		 *   delayed ACK timer expires.  And even RFC2581 does not
2034 		 *   try to reduce IW upon SYN or SYN|ACK retransmition
2035 		 *   timeout.
2036 		 *
2037 		 * See also:
2038 		 * http://tools.ietf.org/html/draft-ietf-tcpm-initcwnd-03
2039 		 */
2040 		if (tp->t_rxtsyn >= TCPTV_RTOBASE3) {
2041 			return (2 * tp->t_maxseg);
2042 		} else {
2043 			u_long maxsegs, capsegs;
2044 
2045 			tcp_rmx_iwsegs(tp, &maxsegs, &capsegs);
2046 			return min(maxsegs * tp->t_maxseg,
2047 				   max(2 * tp->t_maxseg, capsegs * 1460));
2048 		}
2049 	} else {
2050 		/*
2051 		 * Even RFC2581 (back to 1999) allows 2*SMSS IW.
2052 		 *
2053 		 * Mainly to avoid sender and receiver deadlock
2054 		 * until delayed ACK timer expires.
2055 		 */
2056 		return (2 * tp->t_maxseg);
2057 	}
2058 }
2059 
2060 #ifdef TCP_SIGNATURE
2061 /*
2062  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2063  *
2064  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2065  * When called from tcp_input(), we can be sure that th_sum has been
2066  * zeroed out and verified already.
2067  *
2068  * Return 0 if successful, otherwise return -1.
2069  *
2070  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2071  * search with the destination IP address, and a 'magic SPI' to be
2072  * determined by the application. This is hardcoded elsewhere to 1179
2073  * right now. Another branch of this code exists which uses the SPD to
2074  * specify per-application flows but it is unstable.
2075  */
2076 int
2077 tcpsignature_compute(
2078 	struct mbuf *m,		/* mbuf chain */
2079 	int len,		/* length of TCP data */
2080 	int optlen,		/* length of TCP options */
2081 	u_char *buf,		/* storage for MD5 digest */
2082 	u_int direction)	/* direction of flow */
2083 {
2084 	struct ippseudo ippseudo;
2085 	MD5_CTX ctx;
2086 	int doff;
2087 	struct ip *ip;
2088 	struct ipovly *ipovly;
2089 	struct secasvar *sav;
2090 	struct tcphdr *th;
2091 #ifdef INET6
2092 	struct ip6_hdr *ip6;
2093 	struct in6_addr in6;
2094 	uint32_t plen;
2095 	uint16_t nhdr;
2096 #endif /* INET6 */
2097 	u_short savecsum;
2098 
2099 	KASSERT(m != NULL, ("passed NULL mbuf. Game over."));
2100 	KASSERT(buf != NULL, ("passed NULL storage pointer for MD5 signature"));
2101 	/*
2102 	 * Extract the destination from the IP header in the mbuf.
2103 	 */
2104 	ip = mtod(m, struct ip *);
2105 #ifdef INET6
2106 	ip6 = NULL;     /* Make the compiler happy. */
2107 #endif /* INET6 */
2108 	/*
2109 	 * Look up an SADB entry which matches the address found in
2110 	 * the segment.
2111 	 */
2112 	switch (IP_VHL_V(ip->ip_vhl)) {
2113 	case IPVERSION:
2114 		sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src, (caddr_t)&ip->ip_dst,
2115 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2116 		break;
2117 #ifdef INET6
2118 	case (IPV6_VERSION >> 4):
2119 		ip6 = mtod(m, struct ip6_hdr *);
2120 		sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src, (caddr_t)&ip6->ip6_dst,
2121 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2122 		break;
2123 #endif /* INET6 */
2124 	default:
2125 		return (EINVAL);
2126 		/* NOTREACHED */
2127 		break;
2128 	}
2129 	if (sav == NULL) {
2130 		kprintf("%s: SADB lookup failed\n", __func__);
2131 		return (EINVAL);
2132 	}
2133 	MD5Init(&ctx);
2134 
2135 	/*
2136 	 * Step 1: Update MD5 hash with IP pseudo-header.
2137 	 *
2138 	 * XXX The ippseudo header MUST be digested in network byte order,
2139 	 * or else we'll fail the regression test. Assume all fields we've
2140 	 * been doing arithmetic on have been in host byte order.
2141 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2142 	 * tcp_output(), the underlying ip_len member has not yet been set.
2143 	 */
2144 	switch (IP_VHL_V(ip->ip_vhl)) {
2145 	case IPVERSION:
2146 		ipovly = (struct ipovly *)ip;
2147 		ippseudo.ippseudo_src = ipovly->ih_src;
2148 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2149 		ippseudo.ippseudo_pad = 0;
2150 		ippseudo.ippseudo_p = IPPROTO_TCP;
2151 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2152 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2153 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2154 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2155 		break;
2156 #ifdef INET6
2157 	/*
2158 	 * RFC 2385, 2.0  Proposal
2159 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2160 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2161 	 * extended next header value (to form 32 bits), and 32-bit segment
2162 	 * length.
2163 	 * Note: Upper-Layer Packet Length comes before Next Header.
2164 	 */
2165 	case (IPV6_VERSION >> 4):
2166 		in6 = ip6->ip6_src;
2167 		in6_clearscope(&in6);
2168 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2169 		in6 = ip6->ip6_dst;
2170 		in6_clearscope(&in6);
2171 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2172 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2173 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2174 		nhdr = 0;
2175 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2176 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2177 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2178 		nhdr = IPPROTO_TCP;
2179 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2180 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2181 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2182 		break;
2183 #endif /* INET6 */
2184 	default:
2185 		return (EINVAL);
2186 		/* NOTREACHED */
2187 		break;
2188 	}
2189 	/*
2190 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2191 	 * The TCP checksum must be set to zero.
2192 	 */
2193 	savecsum = th->th_sum;
2194 	th->th_sum = 0;
2195 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2196 	th->th_sum = savecsum;
2197 	/*
2198 	 * Step 3: Update MD5 hash with TCP segment data.
2199 	 *         Use m_apply() to avoid an early m_pullup().
2200 	 */
2201 	if (len > 0)
2202 		m_apply(m, doff, len, tcpsignature_apply, &ctx);
2203 	/*
2204 	 * Step 4: Update MD5 hash with shared secret.
2205 	 */
2206 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2207 	MD5Final(buf, &ctx);
2208 	key_sa_recordxfer(sav, m);
2209 	key_freesav(sav);
2210 	return (0);
2211 }
2212 
2213 int
2214 tcpsignature_apply(void *fstate, void *data, unsigned int len)
2215 {
2216 
2217 	MD5Update((MD5_CTX *)fstate, (unsigned char *)data, len);
2218 	return (0);
2219 }
2220 #endif /* TCP_SIGNATURE */
2221 
2222 boolean_t
2223 tcp_tso_pullup(struct mbuf **mp, int hoff, struct ip **ip0, int *iphlen0,
2224     struct tcphdr **th0, int *thoff0)
2225 {
2226 	struct mbuf *m = *mp;
2227 	struct ip *ip;
2228 	int len, iphlen;
2229 	struct tcphdr *th;
2230 	int thoff;
2231 
2232 	len = hoff + sizeof(struct ip);
2233 
2234 	/* The fixed IP header must reside completely in the first mbuf. */
2235 	if (m->m_len < len) {
2236 		m = m_pullup(m, len);
2237 		if (m == NULL)
2238 			goto fail;
2239 	}
2240 
2241 	ip = mtodoff(m, struct ip *, hoff);
2242 	iphlen = IP_VHL_HL(ip->ip_vhl) << 2;
2243 
2244 	/* The full IP header must reside completely in the one mbuf. */
2245 	if (m->m_len < hoff + iphlen) {
2246 		m = m_pullup(m, hoff + iphlen);
2247 		if (m == NULL)
2248 			goto fail;
2249 		ip = mtodoff(m, struct ip *, hoff);
2250 	}
2251 
2252 	KASSERT(ip->ip_p == IPPROTO_TCP, ("not tcp %d", ip->ip_p));
2253 
2254 	if (m->m_len < hoff + iphlen + sizeof(struct tcphdr)) {
2255 		m = m_pullup(m, hoff + iphlen + sizeof(struct tcphdr));
2256 		if (m == NULL)
2257 			goto fail;
2258 		ip = mtodoff(m, struct ip *, hoff);
2259 	}
2260 
2261 	th = (struct tcphdr *)((caddr_t)ip + iphlen);
2262 	thoff = th->th_off << 2;
2263 
2264 	if (m->m_len < hoff + iphlen + thoff) {
2265 		m = m_pullup(m, hoff + iphlen + thoff);
2266 		if (m == NULL)
2267 			goto fail;
2268 		ip = mtodoff(m, struct ip *, hoff);
2269 		th = (struct tcphdr *)((caddr_t)ip + iphlen);
2270 	}
2271 
2272 	*mp = m;
2273 	*ip0 = ip;
2274 	*iphlen0 = iphlen;
2275 	*th0 = th;
2276 	*thoff0 = thoff;
2277 	return TRUE;
2278 
2279 fail:
2280 	if (m != NULL)
2281 		m_freem(m);
2282 	*mp = NULL;
2283 	return FALSE;
2284 }
2285