xref: /dragonfly/sys/netinet/tcp_subr.c (revision 3bafb5c1)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
67  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
68  */
69 
70 #include "opt_compat.h"
71 #include "opt_inet.h"
72 #include "opt_inet6.h"
73 #include "opt_ipsec.h"
74 #include "opt_tcpdebug.h"
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/callout.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 #include <sys/malloc.h>
82 #include <sys/mpipe.h>
83 #include <sys/mbuf.h>
84 #ifdef INET6
85 #include <sys/domain.h>
86 #endif
87 #include <sys/proc.h>
88 #include <sys/priv.h>
89 #include <sys/socket.h>
90 #include <sys/socketvar.h>
91 #include <sys/protosw.h>
92 #include <sys/random.h>
93 #include <sys/in_cksum.h>
94 #include <sys/ktr.h>
95 
96 #include <net/route.h>
97 #include <net/if.h>
98 #include <net/netisr.h>
99 
100 #define	_IP_VHL
101 #include <netinet/in.h>
102 #include <netinet/in_systm.h>
103 #include <netinet/ip.h>
104 #include <netinet/ip6.h>
105 #include <netinet/in_pcb.h>
106 #include <netinet6/in6_pcb.h>
107 #include <netinet/in_var.h>
108 #include <netinet/ip_var.h>
109 #include <netinet6/ip6_var.h>
110 #include <netinet/ip_icmp.h>
111 #ifdef INET6
112 #include <netinet/icmp6.h>
113 #endif
114 #include <netinet/tcp.h>
115 #include <netinet/tcp_fsm.h>
116 #include <netinet/tcp_seq.h>
117 #include <netinet/tcp_timer.h>
118 #include <netinet/tcp_timer2.h>
119 #include <netinet/tcp_var.h>
120 #include <netinet6/tcp6_var.h>
121 #include <netinet/tcpip.h>
122 #ifdef TCPDEBUG
123 #include <netinet/tcp_debug.h>
124 #endif
125 #include <netinet6/ip6protosw.h>
126 
127 #ifdef IPSEC
128 #include <netinet6/ipsec.h>
129 #include <netproto/key/key.h>
130 #ifdef INET6
131 #include <netinet6/ipsec6.h>
132 #endif
133 #endif
134 
135 #ifdef FAST_IPSEC
136 #include <netproto/ipsec/ipsec.h>
137 #ifdef INET6
138 #include <netproto/ipsec/ipsec6.h>
139 #endif
140 #define	IPSEC
141 #endif
142 
143 #include <sys/md5.h>
144 #include <machine/smp.h>
145 
146 #include <sys/msgport2.h>
147 #include <sys/mplock2.h>
148 #include <net/netmsg2.h>
149 
150 #if !defined(KTR_TCP)
151 #define KTR_TCP		KTR_ALL
152 #endif
153 /*
154 KTR_INFO_MASTER(tcp);
155 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
156 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
157 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
158 #define logtcp(name)	KTR_LOG(tcp_ ## name)
159 */
160 
161 struct inpcbinfo tcbinfo[MAXCPU];
162 struct tcpcbackqhead tcpcbackq[MAXCPU];
163 
164 static struct lwkt_token tcp_port_token =
165 		LWKT_TOKEN_INITIALIZER(tcp_port_token);
166 
167 int tcp_mssdflt = TCP_MSS;
168 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
169     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
170 
171 #ifdef INET6
172 int tcp_v6mssdflt = TCP6_MSS;
173 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
174     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
175 #endif
176 
177 /*
178  * Minimum MSS we accept and use. This prevents DoS attacks where
179  * we are forced to a ridiculous low MSS like 20 and send hundreds
180  * of packets instead of one. The effect scales with the available
181  * bandwidth and quickly saturates the CPU and network interface
182  * with packet generation and sending. Set to zero to disable MINMSS
183  * checking. This setting prevents us from sending too small packets.
184  */
185 int tcp_minmss = TCP_MINMSS;
186 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
187     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
188 
189 #if 0
190 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
191 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
192     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
193 #endif
194 
195 int tcp_do_rfc1323 = 1;
196 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
197     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
198 
199 static int tcp_tcbhashsize = 0;
200 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
201      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
202 
203 static int do_tcpdrain = 1;
204 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
205      "Enable tcp_drain routine for extra help when low on mbufs");
206 
207 static int icmp_may_rst = 1;
208 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
209     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
210 
211 static int tcp_isn_reseed_interval = 0;
212 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
213     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
214 
215 /*
216  * TCP bandwidth limiting sysctls.  The inflight limiter is now turned on
217  * by default, but with generous values which should allow maximal
218  * bandwidth.  In particular, the slop defaults to 50 (5 packets).
219  *
220  * The reason for doing this is that the limiter is the only mechanism we
221  * have which seems to do a really good job preventing receiver RX rings
222  * on network interfaces from getting blown out.  Even though GigE/10GigE
223  * is supposed to flow control it looks like either it doesn't actually
224  * do it or Open Source drivers do not properly enable it.
225  *
226  * People using the limiter to reduce bottlenecks on slower WAN connections
227  * should set the slop to 20 (2 packets).
228  */
229 static int tcp_inflight_enable = 1;
230 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
231     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
232 
233 static int tcp_inflight_debug = 0;
234 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
235     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
236 
237 static int tcp_inflight_min = 6144;
238 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
239     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
240 
241 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
242 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
243     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
244 
245 static int tcp_inflight_stab = 50;
246 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
247     &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 3 packets)");
248 
249 int tcp_low_rtobase = 1;
250 SYSCTL_INT(_net_inet_tcp, OID_AUTO, low_rtobase, CTLFLAG_RW,
251     &tcp_low_rtobase, 0, "Lowering the Initial RTO (RFC 6298)");
252 
253 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
254 static struct malloc_pipe tcptemp_mpipe;
255 
256 static void tcp_willblock(void);
257 static void tcp_notify (struct inpcb *, int);
258 
259 struct tcp_stats tcpstats_percpu[MAXCPU];
260 #ifdef SMP
261 static int
262 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
263 {
264 	int cpu, error = 0;
265 
266 	for (cpu = 0; cpu < ncpus; ++cpu) {
267 		if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
268 					sizeof(struct tcp_stats))))
269 			break;
270 		if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
271 				       sizeof(struct tcp_stats))))
272 			break;
273 	}
274 
275 	return (error);
276 }
277 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
278     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
279 #else
280 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
281     &tcpstat, tcp_stats, "TCP statistics");
282 #endif
283 
284 /*
285  * Target size of TCP PCB hash tables. Must be a power of two.
286  *
287  * Note that this can be overridden by the kernel environment
288  * variable net.inet.tcp.tcbhashsize
289  */
290 #ifndef TCBHASHSIZE
291 #define	TCBHASHSIZE	512
292 #endif
293 
294 /*
295  * This is the actual shape of what we allocate using the zone
296  * allocator.  Doing it this way allows us to protect both structures
297  * using the same generation count, and also eliminates the overhead
298  * of allocating tcpcbs separately.  By hiding the structure here,
299  * we avoid changing most of the rest of the code (although it needs
300  * to be changed, eventually, for greater efficiency).
301  */
302 #define	ALIGNMENT	32
303 #define	ALIGNM1		(ALIGNMENT - 1)
304 struct	inp_tp {
305 	union {
306 		struct	inpcb inp;
307 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
308 	} inp_tp_u;
309 	struct	tcpcb tcb;
310 	struct	tcp_callout inp_tp_rexmt;
311 	struct	tcp_callout inp_tp_persist;
312 	struct	tcp_callout inp_tp_keep;
313 	struct	tcp_callout inp_tp_2msl;
314 	struct	tcp_callout inp_tp_delack;
315 	struct	netmsg_tcp_timer inp_tp_timermsg;
316 };
317 #undef ALIGNMENT
318 #undef ALIGNM1
319 
320 /*
321  * Tcp initialization
322  */
323 void
324 tcp_init(void)
325 {
326 	struct inpcbporthead *porthashbase;
327 	struct inpcbinfo *ticb;
328 	u_long porthashmask;
329 	int hashsize = TCBHASHSIZE;
330 	int cpu;
331 
332 	/*
333 	 * note: tcptemp is used for keepalives, and it is ok for an
334 	 * allocation to fail so do not specify MPF_INT.
335 	 */
336 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
337 		    25, -1, 0, NULL, NULL, NULL);
338 
339 	tcp_delacktime = TCPTV_DELACK;
340 	tcp_keepinit = TCPTV_KEEP_INIT;
341 	tcp_keepidle = TCPTV_KEEP_IDLE;
342 	tcp_keepintvl = TCPTV_KEEPINTVL;
343 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
344 	tcp_msl = TCPTV_MSL;
345 	tcp_rexmit_min = TCPTV_MIN;
346 	tcp_rexmit_slop = TCPTV_CPU_VAR;
347 
348 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
349 	if (!powerof2(hashsize)) {
350 		kprintf("WARNING: TCB hash size not a power of 2\n");
351 		hashsize = 512; /* safe default */
352 	}
353 	tcp_tcbhashsize = hashsize;
354 	porthashbase = hashinit(hashsize, M_PCB, &porthashmask);
355 
356 	for (cpu = 0; cpu < ncpus2; cpu++) {
357 		ticb = &tcbinfo[cpu];
358 		in_pcbinfo_init(ticb);
359 		ticb->cpu = cpu;
360 		ticb->hashbase = hashinit(hashsize, M_PCB,
361 					  &ticb->hashmask);
362 		ticb->porthashbase = porthashbase;
363 		ticb->porthashmask = porthashmask;
364 		ticb->porttoken = &tcp_port_token;
365 #if 0
366 		ticb->porthashbase = hashinit(hashsize, M_PCB,
367 					      &ticb->porthashmask);
368 #endif
369 		ticb->wildcardhashbase = hashinit(hashsize, M_PCB,
370 						  &ticb->wildcardhashmask);
371 		ticb->ipi_size = sizeof(struct inp_tp);
372 		TAILQ_INIT(&tcpcbackq[cpu]);
373 	}
374 
375 	tcp_reass_maxseg = nmbclusters / 16;
376 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
377 
378 #ifdef INET6
379 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
380 #else
381 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
382 #endif
383 	if (max_protohdr < TCP_MINPROTOHDR)
384 		max_protohdr = TCP_MINPROTOHDR;
385 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
386 		panic("tcp_init");
387 #undef TCP_MINPROTOHDR
388 
389 	/*
390 	 * Initialize TCP statistics counters for each CPU.
391 	 */
392 #ifdef SMP
393 	for (cpu = 0; cpu < ncpus; ++cpu) {
394 		bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
395 	}
396 #else
397 	bzero(&tcpstat, sizeof(struct tcp_stats));
398 #endif
399 
400 	syncache_init();
401 	netisr_register_rollup(tcp_willblock);
402 }
403 
404 static void
405 tcp_willblock(void)
406 {
407 	struct tcpcb *tp;
408 	int cpu = mycpu->gd_cpuid;
409 
410 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
411 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
412 		tp->t_flags &= ~TF_ONOUTPUTQ;
413 		TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
414 		tcp_output(tp);
415 	}
416 }
417 
418 /*
419  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
420  * tcp_template used to store this data in mbufs, but we now recopy it out
421  * of the tcpcb each time to conserve mbufs.
422  */
423 void
424 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr)
425 {
426 	struct inpcb *inp = tp->t_inpcb;
427 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
428 
429 #ifdef INET6
430 	if (inp->inp_vflag & INP_IPV6) {
431 		struct ip6_hdr *ip6;
432 
433 		ip6 = (struct ip6_hdr *)ip_ptr;
434 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
435 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
436 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
437 			(IPV6_VERSION & IPV6_VERSION_MASK);
438 		ip6->ip6_nxt = IPPROTO_TCP;
439 		ip6->ip6_plen = sizeof(struct tcphdr);
440 		ip6->ip6_src = inp->in6p_laddr;
441 		ip6->ip6_dst = inp->in6p_faddr;
442 		tcp_hdr->th_sum = 0;
443 	} else
444 #endif
445 	{
446 		struct ip *ip = (struct ip *) ip_ptr;
447 
448 		ip->ip_vhl = IP_VHL_BORING;
449 		ip->ip_tos = 0;
450 		ip->ip_len = 0;
451 		ip->ip_id = 0;
452 		ip->ip_off = 0;
453 		ip->ip_ttl = 0;
454 		ip->ip_sum = 0;
455 		ip->ip_p = IPPROTO_TCP;
456 		ip->ip_src = inp->inp_laddr;
457 		ip->ip_dst = inp->inp_faddr;
458 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
459 				    ip->ip_dst.s_addr,
460 				    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
461 	}
462 
463 	tcp_hdr->th_sport = inp->inp_lport;
464 	tcp_hdr->th_dport = inp->inp_fport;
465 	tcp_hdr->th_seq = 0;
466 	tcp_hdr->th_ack = 0;
467 	tcp_hdr->th_x2 = 0;
468 	tcp_hdr->th_off = 5;
469 	tcp_hdr->th_flags = 0;
470 	tcp_hdr->th_win = 0;
471 	tcp_hdr->th_urp = 0;
472 }
473 
474 /*
475  * Create template to be used to send tcp packets on a connection.
476  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
477  * use for this function is in keepalives, which use tcp_respond.
478  */
479 struct tcptemp *
480 tcp_maketemplate(struct tcpcb *tp)
481 {
482 	struct tcptemp *tmp;
483 
484 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
485 		return (NULL);
486 	tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t);
487 	return (tmp);
488 }
489 
490 void
491 tcp_freetemplate(struct tcptemp *tmp)
492 {
493 	mpipe_free(&tcptemp_mpipe, tmp);
494 }
495 
496 /*
497  * Send a single message to the TCP at address specified by
498  * the given TCP/IP header.  If m == NULL, then we make a copy
499  * of the tcpiphdr at ti and send directly to the addressed host.
500  * This is used to force keep alive messages out using the TCP
501  * template for a connection.  If flags are given then we send
502  * a message back to the TCP which originated the * segment ti,
503  * and discard the mbuf containing it and any other attached mbufs.
504  *
505  * In any case the ack and sequence number of the transmitted
506  * segment are as specified by the parameters.
507  *
508  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
509  */
510 void
511 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
512 	    tcp_seq ack, tcp_seq seq, int flags)
513 {
514 	int tlen;
515 	int win = 0;
516 	struct route *ro = NULL;
517 	struct route sro;
518 	struct ip *ip = ipgen;
519 	struct tcphdr *nth;
520 	int ipflags = 0;
521 	struct route_in6 *ro6 = NULL;
522 	struct route_in6 sro6;
523 	struct ip6_hdr *ip6 = ipgen;
524 	boolean_t use_tmpro = TRUE;
525 #ifdef INET6
526 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
527 #else
528 	const boolean_t isipv6 = FALSE;
529 #endif
530 
531 	if (tp != NULL) {
532 		if (!(flags & TH_RST)) {
533 			win = ssb_space(&tp->t_inpcb->inp_socket->so_rcv);
534 			if (win < 0)
535 				win = 0;
536 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
537 				win = (long)TCP_MAXWIN << tp->rcv_scale;
538 		}
539 		/*
540 		 * Don't use the route cache of a listen socket,
541 		 * it is not MPSAFE; use temporary route cache.
542 		 */
543 		if (tp->t_state != TCPS_LISTEN) {
544 			if (isipv6)
545 				ro6 = &tp->t_inpcb->in6p_route;
546 			else
547 				ro = &tp->t_inpcb->inp_route;
548 			use_tmpro = FALSE;
549 		}
550 	}
551 	if (use_tmpro) {
552 		if (isipv6) {
553 			ro6 = &sro6;
554 			bzero(ro6, sizeof *ro6);
555 		} else {
556 			ro = &sro;
557 			bzero(ro, sizeof *ro);
558 		}
559 	}
560 	if (m == NULL) {
561 		m = m_gethdr(MB_DONTWAIT, MT_HEADER);
562 		if (m == NULL)
563 			return;
564 		tlen = 0;
565 		m->m_data += max_linkhdr;
566 		if (isipv6) {
567 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
568 			ip6 = mtod(m, struct ip6_hdr *);
569 			nth = (struct tcphdr *)(ip6 + 1);
570 		} else {
571 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
572 			ip = mtod(m, struct ip *);
573 			nth = (struct tcphdr *)(ip + 1);
574 		}
575 		bcopy(th, nth, sizeof(struct tcphdr));
576 		flags = TH_ACK;
577 	} else {
578 		m_freem(m->m_next);
579 		m->m_next = NULL;
580 		m->m_data = (caddr_t)ipgen;
581 		/* m_len is set later */
582 		tlen = 0;
583 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
584 		if (isipv6) {
585 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
586 			nth = (struct tcphdr *)(ip6 + 1);
587 		} else {
588 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
589 			nth = (struct tcphdr *)(ip + 1);
590 		}
591 		if (th != nth) {
592 			/*
593 			 * this is usually a case when an extension header
594 			 * exists between the IPv6 header and the
595 			 * TCP header.
596 			 */
597 			nth->th_sport = th->th_sport;
598 			nth->th_dport = th->th_dport;
599 		}
600 		xchg(nth->th_dport, nth->th_sport, n_short);
601 #undef xchg
602 	}
603 	if (isipv6) {
604 		ip6->ip6_flow = 0;
605 		ip6->ip6_vfc = IPV6_VERSION;
606 		ip6->ip6_nxt = IPPROTO_TCP;
607 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
608 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
609 	} else {
610 		tlen += sizeof(struct tcpiphdr);
611 		ip->ip_len = tlen;
612 		ip->ip_ttl = ip_defttl;
613 	}
614 	m->m_len = tlen;
615 	m->m_pkthdr.len = tlen;
616 	m->m_pkthdr.rcvif = NULL;
617 	nth->th_seq = htonl(seq);
618 	nth->th_ack = htonl(ack);
619 	nth->th_x2 = 0;
620 	nth->th_off = sizeof(struct tcphdr) >> 2;
621 	nth->th_flags = flags;
622 	if (tp != NULL)
623 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
624 	else
625 		nth->th_win = htons((u_short)win);
626 	nth->th_urp = 0;
627 	if (isipv6) {
628 		nth->th_sum = 0;
629 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
630 					sizeof(struct ip6_hdr),
631 					tlen - sizeof(struct ip6_hdr));
632 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
633 					       (ro6 && ro6->ro_rt) ?
634 						ro6->ro_rt->rt_ifp : NULL);
635 	} else {
636 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
637 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
638 		m->m_pkthdr.csum_flags = CSUM_TCP;
639 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
640 	}
641 #ifdef TCPDEBUG
642 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
643 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
644 #endif
645 	if (isipv6) {
646 		ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
647 			   tp ? tp->t_inpcb : NULL);
648 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
649 			RTFREE(ro6->ro_rt);
650 			ro6->ro_rt = NULL;
651 		}
652 	} else {
653 		ipflags |= IP_DEBUGROUTE;
654 		ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
655 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
656 			RTFREE(ro->ro_rt);
657 			ro->ro_rt = NULL;
658 		}
659 	}
660 }
661 
662 /*
663  * Create a new TCP control block, making an
664  * empty reassembly queue and hooking it to the argument
665  * protocol control block.  The `inp' parameter must have
666  * come from the zone allocator set up in tcp_init().
667  */
668 struct tcpcb *
669 tcp_newtcpcb(struct inpcb *inp)
670 {
671 	struct inp_tp *it;
672 	struct tcpcb *tp;
673 #ifdef INET6
674 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
675 #else
676 	const boolean_t isipv6 = FALSE;
677 #endif
678 
679 	it = (struct inp_tp *)inp;
680 	tp = &it->tcb;
681 	bzero(tp, sizeof(struct tcpcb));
682 	LIST_INIT(&tp->t_segq);
683 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
684 
685 	/* Set up our timeouts. */
686 	tp->tt_rexmt = &it->inp_tp_rexmt;
687 	tp->tt_persist = &it->inp_tp_persist;
688 	tp->tt_keep = &it->inp_tp_keep;
689 	tp->tt_2msl = &it->inp_tp_2msl;
690 	tp->tt_delack = &it->inp_tp_delack;
691 	tcp_inittimers(tp);
692 
693 	/*
694 	 * Zero out timer message.  We don't create it here,
695 	 * since the current CPU may not be the owner of this
696 	 * inpcb.
697 	 */
698 	tp->tt_msg = &it->inp_tp_timermsg;
699 	bzero(tp->tt_msg, sizeof(*tp->tt_msg));
700 
701 	tp->t_keepinit = tcp_keepinit;
702 	tp->t_keepidle = tcp_keepidle;
703 	tp->t_keepintvl = tcp_keepintvl;
704 	tp->t_keepcnt = tcp_keepcnt;
705 	tp->t_maxidle = tp->t_keepintvl * tp->t_keepcnt;
706 
707 	if (tcp_do_rfc1323)
708 		tp->t_flags = (TF_REQ_SCALE | TF_REQ_TSTMP);
709 	tp->t_inpcb = inp;	/* XXX */
710 	tp->t_state = TCPS_CLOSED;
711 	/*
712 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
713 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
714 	 * reasonable initial retransmit time.
715 	 */
716 	tp->t_srtt = TCPTV_SRTTBASE;
717 	tp->t_rttvar =
718 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
719 	tp->t_rttmin = tcp_rexmit_min;
720 	tp->t_rxtcur = TCPTV_RTOBASE;
721 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
722 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
723 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
724 	tp->t_rcvtime = ticks;
725 	/*
726 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
727 	 * because the socket may be bound to an IPv6 wildcard address,
728 	 * which may match an IPv4-mapped IPv6 address.
729 	 */
730 	inp->inp_ip_ttl = ip_defttl;
731 	inp->inp_ppcb = tp;
732 	tcp_sack_tcpcb_init(tp);
733 	return (tp);		/* XXX */
734 }
735 
736 /*
737  * Drop a TCP connection, reporting the specified error.
738  * If connection is synchronized, then send a RST to peer.
739  */
740 struct tcpcb *
741 tcp_drop(struct tcpcb *tp, int error)
742 {
743 	struct socket *so = tp->t_inpcb->inp_socket;
744 
745 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
746 		tp->t_state = TCPS_CLOSED;
747 		tcp_output(tp);
748 		tcpstat.tcps_drops++;
749 	} else
750 		tcpstat.tcps_conndrops++;
751 	if (error == ETIMEDOUT && tp->t_softerror)
752 		error = tp->t_softerror;
753 	so->so_error = error;
754 	return (tcp_close(tp));
755 }
756 
757 #ifdef SMP
758 
759 struct netmsg_listen_detach {
760 	struct netmsg_base	base;
761 	struct tcpcb		*nm_tp;
762 };
763 
764 static void
765 tcp_listen_detach_handler(netmsg_t msg)
766 {
767 	struct netmsg_listen_detach *nmsg = (struct netmsg_listen_detach *)msg;
768 	struct tcpcb *tp = nmsg->nm_tp;
769 	int cpu = mycpuid, nextcpu;
770 
771 	if (tp->t_flags & TF_LISTEN)
772 		syncache_destroy(tp);
773 
774 	in_pcbremwildcardhash_oncpu(tp->t_inpcb, &tcbinfo[cpu]);
775 
776 	nextcpu = cpu + 1;
777 	if (nextcpu < ncpus2)
778 		lwkt_forwardmsg(cpu_portfn(nextcpu), &nmsg->base.lmsg);
779 	else
780 		lwkt_replymsg(&nmsg->base.lmsg, 0);
781 }
782 
783 #endif
784 
785 /*
786  * Close a TCP control block:
787  *	discard all space held by the tcp
788  *	discard internet protocol block
789  *	wake up any sleepers
790  */
791 struct tcpcb *
792 tcp_close(struct tcpcb *tp)
793 {
794 	struct tseg_qent *q;
795 	struct inpcb *inp = tp->t_inpcb;
796 	struct socket *so = inp->inp_socket;
797 	struct rtentry *rt;
798 	boolean_t dosavessthresh;
799 #ifdef INET6
800 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
801 	boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
802 #else
803 	const boolean_t isipv6 = FALSE;
804 #endif
805 
806 #ifdef SMP
807 	/*
808 	 * INP_WILDCARD_MP indicates that listen(2) has been called on
809 	 * this socket.  This implies:
810 	 * - A wildcard inp's hash is replicated for each protocol thread.
811 	 * - Syncache for this inp grows independently in each protocol
812 	 *   thread.
813 	 * - There is more than one cpu
814 	 *
815 	 * We have to chain a message to the rest of the protocol threads
816 	 * to cleanup the wildcard hash and the syncache.  The cleanup
817 	 * in the current protocol thread is defered till the end of this
818 	 * function.
819 	 *
820 	 * NOTE:
821 	 * After cleanup the inp's hash and syncache entries, this inp will
822 	 * no longer be available to the rest of the protocol threads, so we
823 	 * are safe to whack the inp in the following code.
824 	 */
825 	if (inp->inp_flags & INP_WILDCARD_MP) {
826 		struct netmsg_listen_detach nmsg;
827 
828 		KKASSERT(so->so_port == cpu_portfn(0));
829 		KKASSERT(&curthread->td_msgport == cpu_portfn(0));
830 		KKASSERT(inp->inp_pcbinfo == &tcbinfo[0]);
831 
832 		netmsg_init(&nmsg.base, NULL, &curthread->td_msgport,
833 			    MSGF_PRIORITY, tcp_listen_detach_handler);
834 		nmsg.nm_tp = tp;
835 		lwkt_domsg(cpu_portfn(1), &nmsg.base.lmsg, 0);
836 
837 		inp->inp_flags &= ~INP_WILDCARD_MP;
838 	}
839 #endif
840 
841 	KKASSERT(tp->t_state != TCPS_TERMINATING);
842 	tp->t_state = TCPS_TERMINATING;
843 
844 	/*
845 	 * Make sure that all of our timers are stopped before we
846 	 * delete the PCB.  For listen TCP socket (tp->tt_msg == NULL),
847 	 * timers are never used.  If timer message is never created
848 	 * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
849 	 */
850 	if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
851 		tcp_callout_stop(tp, tp->tt_rexmt);
852 		tcp_callout_stop(tp, tp->tt_persist);
853 		tcp_callout_stop(tp, tp->tt_keep);
854 		tcp_callout_stop(tp, tp->tt_2msl);
855 		tcp_callout_stop(tp, tp->tt_delack);
856 	}
857 
858 	if (tp->t_flags & TF_ONOUTPUTQ) {
859 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
860 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
861 		tp->t_flags &= ~TF_ONOUTPUTQ;
862 	}
863 
864 	/*
865 	 * If we got enough samples through the srtt filter,
866 	 * save the rtt and rttvar in the routing entry.
867 	 * 'Enough' is arbitrarily defined as the 16 samples.
868 	 * 16 samples is enough for the srtt filter to converge
869 	 * to within 5% of the correct value; fewer samples and
870 	 * we could save a very bogus rtt.
871 	 *
872 	 * Don't update the default route's characteristics and don't
873 	 * update anything that the user "locked".
874 	 */
875 	if (tp->t_rttupdated >= 16) {
876 		u_long i = 0;
877 
878 		if (isipv6) {
879 			struct sockaddr_in6 *sin6;
880 
881 			if ((rt = inp->in6p_route.ro_rt) == NULL)
882 				goto no_valid_rt;
883 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
884 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
885 				goto no_valid_rt;
886 		} else
887 			if ((rt = inp->inp_route.ro_rt) == NULL ||
888 			    ((struct sockaddr_in *)rt_key(rt))->
889 			     sin_addr.s_addr == INADDR_ANY)
890 				goto no_valid_rt;
891 
892 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
893 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
894 			if (rt->rt_rmx.rmx_rtt && i)
895 				/*
896 				 * filter this update to half the old & half
897 				 * the new values, converting scale.
898 				 * See route.h and tcp_var.h for a
899 				 * description of the scaling constants.
900 				 */
901 				rt->rt_rmx.rmx_rtt =
902 				    (rt->rt_rmx.rmx_rtt + i) / 2;
903 			else
904 				rt->rt_rmx.rmx_rtt = i;
905 			tcpstat.tcps_cachedrtt++;
906 		}
907 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
908 			i = tp->t_rttvar *
909 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
910 			if (rt->rt_rmx.rmx_rttvar && i)
911 				rt->rt_rmx.rmx_rttvar =
912 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
913 			else
914 				rt->rt_rmx.rmx_rttvar = i;
915 			tcpstat.tcps_cachedrttvar++;
916 		}
917 		/*
918 		 * The old comment here said:
919 		 * update the pipelimit (ssthresh) if it has been updated
920 		 * already or if a pipesize was specified & the threshhold
921 		 * got below half the pipesize.  I.e., wait for bad news
922 		 * before we start updating, then update on both good
923 		 * and bad news.
924 		 *
925 		 * But we want to save the ssthresh even if no pipesize is
926 		 * specified explicitly in the route, because such
927 		 * connections still have an implicit pipesize specified
928 		 * by the global tcp_sendspace.  In the absence of a reliable
929 		 * way to calculate the pipesize, it will have to do.
930 		 */
931 		i = tp->snd_ssthresh;
932 		if (rt->rt_rmx.rmx_sendpipe != 0)
933 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
934 		else
935 			dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
936 		if (dosavessthresh ||
937 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
938 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
939 			/*
940 			 * convert the limit from user data bytes to
941 			 * packets then to packet data bytes.
942 			 */
943 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
944 			if (i < 2)
945 				i = 2;
946 			i *= tp->t_maxseg +
947 			     (isipv6 ?
948 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
949 			      sizeof(struct tcpiphdr));
950 			if (rt->rt_rmx.rmx_ssthresh)
951 				rt->rt_rmx.rmx_ssthresh =
952 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
953 			else
954 				rt->rt_rmx.rmx_ssthresh = i;
955 			tcpstat.tcps_cachedssthresh++;
956 		}
957 	}
958 
959 no_valid_rt:
960 	/* free the reassembly queue, if any */
961 	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
962 		LIST_REMOVE(q, tqe_q);
963 		m_freem(q->tqe_m);
964 		kfree(q, M_TSEGQ);
965 		atomic_add_int(&tcp_reass_qsize, -1);
966 	}
967 	/* throw away SACK blocks in scoreboard*/
968 	if (TCP_DO_SACK(tp))
969 		tcp_sack_cleanup(&tp->scb);
970 
971 	inp->inp_ppcb = NULL;
972 	soisdisconnected(so);
973 	/* note: pcb detached later on */
974 
975 	tcp_destroy_timermsg(tp);
976 
977 	if (tp->t_flags & TF_LISTEN)
978 		syncache_destroy(tp);
979 
980 	/*
981 	 * NOTE:
982 	 * pcbdetach removes any wildcard hash entry on the current CPU.
983 	 */
984 #ifdef INET6
985 	if (isafinet6)
986 		in6_pcbdetach(inp);
987 	else
988 #endif
989 		in_pcbdetach(inp);
990 
991 	tcpstat.tcps_closed++;
992 	return (NULL);
993 }
994 
995 static __inline void
996 tcp_drain_oncpu(struct inpcbhead *head)
997 {
998 	struct inpcb *marker;
999 	struct inpcb *inpb;
1000 	struct tcpcb *tcpb;
1001 	struct tseg_qent *te;
1002 
1003 	/*
1004 	 * Allows us to block while running the list
1005 	 */
1006 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1007 	marker->inp_flags |= INP_PLACEMARKER;
1008 	LIST_INSERT_HEAD(head, marker, inp_list);
1009 
1010 	while ((inpb = LIST_NEXT(marker, inp_list)) != NULL) {
1011 		if ((inpb->inp_flags & INP_PLACEMARKER) == 0 &&
1012 		    (tcpb = intotcpcb(inpb)) != NULL &&
1013 		    (te = LIST_FIRST(&tcpb->t_segq)) != NULL) {
1014 			LIST_REMOVE(te, tqe_q);
1015 			m_freem(te->tqe_m);
1016 			kfree(te, M_TSEGQ);
1017 			atomic_add_int(&tcp_reass_qsize, -1);
1018 			/* retry */
1019 		} else {
1020 			LIST_REMOVE(marker, inp_list);
1021 			LIST_INSERT_AFTER(inpb, marker, inp_list);
1022 		}
1023 	}
1024 	LIST_REMOVE(marker, inp_list);
1025 	kfree(marker, M_TEMP);
1026 }
1027 
1028 #ifdef SMP
1029 struct netmsg_tcp_drain {
1030 	struct netmsg_base	base;
1031 	struct inpcbhead	*nm_head;
1032 };
1033 
1034 static void
1035 tcp_drain_handler(netmsg_t msg)
1036 {
1037 	struct netmsg_tcp_drain *nm = (void *)msg;
1038 
1039 	tcp_drain_oncpu(nm->nm_head);
1040 	lwkt_replymsg(&nm->base.lmsg, 0);
1041 }
1042 #endif
1043 
1044 void
1045 tcp_drain(void)
1046 {
1047 #ifdef SMP
1048 	int cpu;
1049 #endif
1050 
1051 	if (!do_tcpdrain)
1052 		return;
1053 
1054 	/*
1055 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1056 	 * if there is one...
1057 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1058 	 *	reassembly queue should be flushed, but in a situation
1059 	 *	where we're really low on mbufs, this is potentially
1060 	 *	useful.
1061 	 */
1062 #ifdef SMP
1063 	for (cpu = 0; cpu < ncpus2; cpu++) {
1064 		struct netmsg_tcp_drain *nm;
1065 
1066 		if (cpu == mycpu->gd_cpuid) {
1067 			tcp_drain_oncpu(&tcbinfo[cpu].pcblisthead);
1068 		} else {
1069 			nm = kmalloc(sizeof(struct netmsg_tcp_drain),
1070 				     M_LWKTMSG, M_NOWAIT);
1071 			if (nm == NULL)
1072 				continue;
1073 			netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1074 				    0, tcp_drain_handler);
1075 			nm->nm_head = &tcbinfo[cpu].pcblisthead;
1076 			lwkt_sendmsg(cpu_portfn(cpu), &nm->base.lmsg);
1077 		}
1078 	}
1079 #else
1080 	tcp_drain_oncpu(&tcbinfo[0].pcblisthead);
1081 #endif
1082 }
1083 
1084 /*
1085  * Notify a tcp user of an asynchronous error;
1086  * store error as soft error, but wake up user
1087  * (for now, won't do anything until can select for soft error).
1088  *
1089  * Do not wake up user since there currently is no mechanism for
1090  * reporting soft errors (yet - a kqueue filter may be added).
1091  */
1092 static void
1093 tcp_notify(struct inpcb *inp, int error)
1094 {
1095 	struct tcpcb *tp = intotcpcb(inp);
1096 
1097 	/*
1098 	 * Ignore some errors if we are hooked up.
1099 	 * If connection hasn't completed, has retransmitted several times,
1100 	 * and receives a second error, give up now.  This is better
1101 	 * than waiting a long time to establish a connection that
1102 	 * can never complete.
1103 	 */
1104 	if (tp->t_state == TCPS_ESTABLISHED &&
1105 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1106 	      error == EHOSTDOWN)) {
1107 		return;
1108 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1109 	    tp->t_softerror)
1110 		tcp_drop(tp, error);
1111 	else
1112 		tp->t_softerror = error;
1113 #if 0
1114 	wakeup(&so->so_timeo);
1115 	sorwakeup(so);
1116 	sowwakeup(so);
1117 #endif
1118 }
1119 
1120 static int
1121 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1122 {
1123 	int error, i, n;
1124 	struct inpcb *marker;
1125 	struct inpcb *inp;
1126 	globaldata_t gd;
1127 	int origcpu, ccpu;
1128 
1129 	error = 0;
1130 	n = 0;
1131 
1132 	/*
1133 	 * The process of preparing the TCB list is too time-consuming and
1134 	 * resource-intensive to repeat twice on every request.
1135 	 */
1136 	if (req->oldptr == NULL) {
1137 		for (ccpu = 0; ccpu < ncpus; ++ccpu) {
1138 			gd = globaldata_find(ccpu);
1139 			n += tcbinfo[gd->gd_cpuid].ipi_count;
1140 		}
1141 		req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1142 		return (0);
1143 	}
1144 
1145 	if (req->newptr != NULL)
1146 		return (EPERM);
1147 
1148 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1149 	marker->inp_flags |= INP_PLACEMARKER;
1150 
1151 	/*
1152 	 * OK, now we're committed to doing something.  Run the inpcb list
1153 	 * for each cpu in the system and construct the output.  Use a
1154 	 * list placemarker to deal with list changes occuring during
1155 	 * copyout blockages (but otherwise depend on being on the correct
1156 	 * cpu to avoid races).
1157 	 */
1158 	origcpu = mycpu->gd_cpuid;
1159 	for (ccpu = 1; ccpu <= ncpus && error == 0; ++ccpu) {
1160 		globaldata_t rgd;
1161 		caddr_t inp_ppcb;
1162 		struct xtcpcb xt;
1163 		int cpu_id;
1164 
1165 		cpu_id = (origcpu + ccpu) % ncpus;
1166 		if ((smp_active_mask & CPUMASK(cpu_id)) == 0)
1167 			continue;
1168 		rgd = globaldata_find(cpu_id);
1169 		lwkt_setcpu_self(rgd);
1170 
1171 		n = tcbinfo[cpu_id].ipi_count;
1172 
1173 		LIST_INSERT_HEAD(&tcbinfo[cpu_id].pcblisthead, marker, inp_list);
1174 		i = 0;
1175 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1176 			/*
1177 			 * process a snapshot of pcbs, ignoring placemarkers
1178 			 * and using our own to allow SYSCTL_OUT to block.
1179 			 */
1180 			LIST_REMOVE(marker, inp_list);
1181 			LIST_INSERT_AFTER(inp, marker, inp_list);
1182 
1183 			if (inp->inp_flags & INP_PLACEMARKER)
1184 				continue;
1185 			if (prison_xinpcb(req->td, inp))
1186 				continue;
1187 
1188 			xt.xt_len = sizeof xt;
1189 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1190 			inp_ppcb = inp->inp_ppcb;
1191 			if (inp_ppcb != NULL)
1192 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1193 			else
1194 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1195 			if (inp->inp_socket)
1196 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1197 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1198 				break;
1199 			++i;
1200 		}
1201 		LIST_REMOVE(marker, inp_list);
1202 		if (error == 0 && i < n) {
1203 			bzero(&xt, sizeof xt);
1204 			xt.xt_len = sizeof xt;
1205 			while (i < n) {
1206 				error = SYSCTL_OUT(req, &xt, sizeof xt);
1207 				if (error)
1208 					break;
1209 				++i;
1210 			}
1211 		}
1212 	}
1213 
1214 	/*
1215 	 * Make sure we are on the same cpu we were on originally, since
1216 	 * higher level callers expect this.  Also don't pollute caches with
1217 	 * migrated userland data by (eventually) returning to userland
1218 	 * on a different cpu.
1219 	 */
1220 	lwkt_setcpu_self(globaldata_find(origcpu));
1221 	kfree(marker, M_TEMP);
1222 	return (error);
1223 }
1224 
1225 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1226 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1227 
1228 static int
1229 tcp_getcred(SYSCTL_HANDLER_ARGS)
1230 {
1231 	struct sockaddr_in addrs[2];
1232 	struct inpcb *inp;
1233 	int cpu;
1234 	int error;
1235 
1236 	error = priv_check(req->td, PRIV_ROOT);
1237 	if (error != 0)
1238 		return (error);
1239 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1240 	if (error != 0)
1241 		return (error);
1242 	crit_enter();
1243 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1244 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1245 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1246 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1247 	if (inp == NULL || inp->inp_socket == NULL) {
1248 		error = ENOENT;
1249 		goto out;
1250 	}
1251 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1252 out:
1253 	crit_exit();
1254 	return (error);
1255 }
1256 
1257 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1258     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1259 
1260 #ifdef INET6
1261 static int
1262 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1263 {
1264 	struct sockaddr_in6 addrs[2];
1265 	struct inpcb *inp;
1266 	int error;
1267 	boolean_t mapped = FALSE;
1268 
1269 	error = priv_check(req->td, PRIV_ROOT);
1270 	if (error != 0)
1271 		return (error);
1272 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1273 	if (error != 0)
1274 		return (error);
1275 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1276 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1277 			mapped = TRUE;
1278 		else
1279 			return (EINVAL);
1280 	}
1281 	crit_enter();
1282 	if (mapped) {
1283 		inp = in_pcblookup_hash(&tcbinfo[0],
1284 		    *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1285 		    addrs[1].sin6_port,
1286 		    *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1287 		    addrs[0].sin6_port,
1288 		    0, NULL);
1289 	} else {
1290 		inp = in6_pcblookup_hash(&tcbinfo[0],
1291 		    &addrs[1].sin6_addr, addrs[1].sin6_port,
1292 		    &addrs[0].sin6_addr, addrs[0].sin6_port,
1293 		    0, NULL);
1294 	}
1295 	if (inp == NULL || inp->inp_socket == NULL) {
1296 		error = ENOENT;
1297 		goto out;
1298 	}
1299 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1300 out:
1301 	crit_exit();
1302 	return (error);
1303 }
1304 
1305 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1306 	    0, 0,
1307 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1308 #endif
1309 
1310 struct netmsg_tcp_notify {
1311 	struct netmsg_base base;
1312 	void		(*nm_notify)(struct inpcb *, int);
1313 	struct in_addr	nm_faddr;
1314 	int		nm_arg;
1315 };
1316 
1317 static void
1318 tcp_notifyall_oncpu(netmsg_t msg)
1319 {
1320 	struct netmsg_tcp_notify *nm = (struct netmsg_tcp_notify *)msg;
1321 	int nextcpu;
1322 
1323 	in_pcbnotifyall(&tcbinfo[mycpuid].pcblisthead, nm->nm_faddr,
1324 			nm->nm_arg, nm->nm_notify);
1325 
1326 	nextcpu = mycpuid + 1;
1327 	if (nextcpu < ncpus2)
1328 		lwkt_forwardmsg(cpu_portfn(nextcpu), &nm->base.lmsg);
1329 	else
1330 		lwkt_replymsg(&nm->base.lmsg, 0);
1331 }
1332 
1333 void
1334 tcp_ctlinput(netmsg_t msg)
1335 {
1336 	int cmd = msg->ctlinput.nm_cmd;
1337 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1338 	struct ip *ip = msg->ctlinput.nm_extra;
1339 	struct tcphdr *th;
1340 	struct in_addr faddr;
1341 	struct inpcb *inp;
1342 	struct tcpcb *tp;
1343 	void (*notify)(struct inpcb *, int) = tcp_notify;
1344 	tcp_seq icmpseq;
1345 	int arg, cpu;
1346 
1347 	if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1348 		goto done;
1349 	}
1350 
1351 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1352 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1353 		goto done;
1354 
1355 	arg = inetctlerrmap[cmd];
1356 	if (cmd == PRC_QUENCH) {
1357 		notify = tcp_quench;
1358 	} else if (icmp_may_rst &&
1359 		   (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1360 		    cmd == PRC_UNREACH_PORT ||
1361 		    cmd == PRC_TIMXCEED_INTRANS) &&
1362 		   ip != NULL) {
1363 		notify = tcp_drop_syn_sent;
1364 	} else if (cmd == PRC_MSGSIZE) {
1365 		struct icmp *icmp = (struct icmp *)
1366 		    ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1367 
1368 		arg = ntohs(icmp->icmp_nextmtu);
1369 		notify = tcp_mtudisc;
1370 	} else if (PRC_IS_REDIRECT(cmd)) {
1371 		ip = NULL;
1372 		notify = in_rtchange;
1373 	} else if (cmd == PRC_HOSTDEAD) {
1374 		ip = NULL;
1375 	}
1376 
1377 	if (ip != NULL) {
1378 		crit_enter();
1379 		th = (struct tcphdr *)((caddr_t)ip +
1380 				       (IP_VHL_HL(ip->ip_vhl) << 2));
1381 		cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
1382 				  ip->ip_src.s_addr, th->th_sport);
1383 		inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
1384 					ip->ip_src, th->th_sport, 0, NULL);
1385 		if ((inp != NULL) && (inp->inp_socket != NULL)) {
1386 			icmpseq = htonl(th->th_seq);
1387 			tp = intotcpcb(inp);
1388 			if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1389 			    SEQ_LT(icmpseq, tp->snd_max))
1390 				(*notify)(inp, arg);
1391 		} else {
1392 			struct in_conninfo inc;
1393 
1394 			inc.inc_fport = th->th_dport;
1395 			inc.inc_lport = th->th_sport;
1396 			inc.inc_faddr = faddr;
1397 			inc.inc_laddr = ip->ip_src;
1398 #ifdef INET6
1399 			inc.inc_isipv6 = 0;
1400 #endif
1401 			syncache_unreach(&inc, th);
1402 		}
1403 		crit_exit();
1404 	} else {
1405 		struct netmsg_tcp_notify *nm;
1406 
1407 		KKASSERT(&curthread->td_msgport == cpu_portfn(0));
1408 		nm = kmalloc(sizeof(*nm), M_LWKTMSG, M_INTWAIT);
1409 		netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1410 			    0, tcp_notifyall_oncpu);
1411 		nm->nm_faddr = faddr;
1412 		nm->nm_arg = arg;
1413 		nm->nm_notify = notify;
1414 
1415 		lwkt_sendmsg(cpu_portfn(0), &nm->base.lmsg);
1416 	}
1417 done:
1418 	lwkt_replymsg(&msg->lmsg, 0);
1419 }
1420 
1421 #ifdef INET6
1422 
1423 void
1424 tcp6_ctlinput(netmsg_t msg)
1425 {
1426 	int cmd = msg->ctlinput.nm_cmd;
1427 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1428 	void *d = msg->ctlinput.nm_extra;
1429 	struct tcphdr th;
1430 	void (*notify) (struct inpcb *, int) = tcp_notify;
1431 	struct ip6_hdr *ip6;
1432 	struct mbuf *m;
1433 	struct ip6ctlparam *ip6cp = NULL;
1434 	const struct sockaddr_in6 *sa6_src = NULL;
1435 	int off;
1436 	struct tcp_portonly {
1437 		u_int16_t th_sport;
1438 		u_int16_t th_dport;
1439 	} *thp;
1440 	int arg;
1441 
1442 	if (sa->sa_family != AF_INET6 ||
1443 	    sa->sa_len != sizeof(struct sockaddr_in6)) {
1444 		goto out;
1445 	}
1446 
1447 	arg = 0;
1448 	if (cmd == PRC_QUENCH)
1449 		notify = tcp_quench;
1450 	else if (cmd == PRC_MSGSIZE) {
1451 		struct ip6ctlparam *ip6cp = d;
1452 		struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1453 
1454 		arg = ntohl(icmp6->icmp6_mtu);
1455 		notify = tcp_mtudisc;
1456 	} else if (!PRC_IS_REDIRECT(cmd) &&
1457 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1458 		goto out;
1459 	}
1460 
1461 	/* if the parameter is from icmp6, decode it. */
1462 	if (d != NULL) {
1463 		ip6cp = (struct ip6ctlparam *)d;
1464 		m = ip6cp->ip6c_m;
1465 		ip6 = ip6cp->ip6c_ip6;
1466 		off = ip6cp->ip6c_off;
1467 		sa6_src = ip6cp->ip6c_src;
1468 	} else {
1469 		m = NULL;
1470 		ip6 = NULL;
1471 		off = 0;	/* fool gcc */
1472 		sa6_src = &sa6_any;
1473 	}
1474 
1475 	if (ip6 != NULL) {
1476 		struct in_conninfo inc;
1477 		/*
1478 		 * XXX: We assume that when IPV6 is non NULL,
1479 		 * M and OFF are valid.
1480 		 */
1481 
1482 		/* check if we can safely examine src and dst ports */
1483 		if (m->m_pkthdr.len < off + sizeof *thp)
1484 			goto out;
1485 
1486 		bzero(&th, sizeof th);
1487 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1488 
1489 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, th.th_dport,
1490 		    (struct sockaddr *)ip6cp->ip6c_src,
1491 		    th.th_sport, cmd, arg, notify);
1492 
1493 		inc.inc_fport = th.th_dport;
1494 		inc.inc_lport = th.th_sport;
1495 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1496 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1497 		inc.inc_isipv6 = 1;
1498 		syncache_unreach(&inc, &th);
1499 	} else {
1500 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, 0,
1501 		    (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1502 	}
1503 out:
1504 	lwkt_replymsg(&msg->ctlinput.base.lmsg, 0);
1505 }
1506 
1507 #endif
1508 
1509 /*
1510  * Following is where TCP initial sequence number generation occurs.
1511  *
1512  * There are two places where we must use initial sequence numbers:
1513  * 1.  In SYN-ACK packets.
1514  * 2.  In SYN packets.
1515  *
1516  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1517  * tcp_syncache.c for details.
1518  *
1519  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1520  * depends on this property.  In addition, these ISNs should be
1521  * unguessable so as to prevent connection hijacking.  To satisfy
1522  * the requirements of this situation, the algorithm outlined in
1523  * RFC 1948 is used to generate sequence numbers.
1524  *
1525  * Implementation details:
1526  *
1527  * Time is based off the system timer, and is corrected so that it
1528  * increases by one megabyte per second.  This allows for proper
1529  * recycling on high speed LANs while still leaving over an hour
1530  * before rollover.
1531  *
1532  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1533  * between seeding of isn_secret.  This is normally set to zero,
1534  * as reseeding should not be necessary.
1535  *
1536  */
1537 
1538 #define	ISN_BYTES_PER_SECOND 1048576
1539 
1540 u_char isn_secret[32];
1541 int isn_last_reseed;
1542 MD5_CTX isn_ctx;
1543 
1544 tcp_seq
1545 tcp_new_isn(struct tcpcb *tp)
1546 {
1547 	u_int32_t md5_buffer[4];
1548 	tcp_seq new_isn;
1549 
1550 	/* Seed if this is the first use, reseed if requested. */
1551 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1552 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1553 		< (u_int)ticks))) {
1554 		read_random_unlimited(&isn_secret, sizeof isn_secret);
1555 		isn_last_reseed = ticks;
1556 	}
1557 
1558 	/* Compute the md5 hash and return the ISN. */
1559 	MD5Init(&isn_ctx);
1560 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1561 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1562 #ifdef INET6
1563 	if (tp->t_inpcb->inp_vflag & INP_IPV6) {
1564 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1565 			  sizeof(struct in6_addr));
1566 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1567 			  sizeof(struct in6_addr));
1568 	} else
1569 #endif
1570 	{
1571 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1572 			  sizeof(struct in_addr));
1573 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1574 			  sizeof(struct in_addr));
1575 	}
1576 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1577 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1578 	new_isn = (tcp_seq) md5_buffer[0];
1579 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1580 	return (new_isn);
1581 }
1582 
1583 /*
1584  * When a source quench is received, close congestion window
1585  * to one segment.  We will gradually open it again as we proceed.
1586  */
1587 void
1588 tcp_quench(struct inpcb *inp, int error)
1589 {
1590 	struct tcpcb *tp = intotcpcb(inp);
1591 
1592 	if (tp != NULL) {
1593 		tp->snd_cwnd = tp->t_maxseg;
1594 		tp->snd_wacked = 0;
1595 	}
1596 }
1597 
1598 /*
1599  * When a specific ICMP unreachable message is received and the
1600  * connection state is SYN-SENT, drop the connection.  This behavior
1601  * is controlled by the icmp_may_rst sysctl.
1602  */
1603 void
1604 tcp_drop_syn_sent(struct inpcb *inp, int error)
1605 {
1606 	struct tcpcb *tp = intotcpcb(inp);
1607 
1608 	if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
1609 		tcp_drop(tp, error);
1610 }
1611 
1612 /*
1613  * When a `need fragmentation' ICMP is received, update our idea of the MSS
1614  * based on the new value in the route.  Also nudge TCP to send something,
1615  * since we know the packet we just sent was dropped.
1616  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1617  */
1618 void
1619 tcp_mtudisc(struct inpcb *inp, int mtu)
1620 {
1621 	struct tcpcb *tp = intotcpcb(inp);
1622 	struct rtentry *rt;
1623 	struct socket *so = inp->inp_socket;
1624 	int maxopd, mss;
1625 #ifdef INET6
1626 	boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1627 #else
1628 	const boolean_t isipv6 = FALSE;
1629 #endif
1630 
1631 	if (tp == NULL)
1632 		return;
1633 
1634 	/*
1635 	 * If no MTU is provided in the ICMP message, use the
1636 	 * next lower likely value, as specified in RFC 1191.
1637 	 */
1638 	if (mtu == 0) {
1639 		int oldmtu;
1640 
1641 		oldmtu = tp->t_maxopd +
1642 		    (isipv6 ?
1643 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1644 		     sizeof(struct tcpiphdr));
1645 		mtu = ip_next_mtu(oldmtu, 0);
1646 	}
1647 
1648 	if (isipv6)
1649 		rt = tcp_rtlookup6(&inp->inp_inc);
1650 	else
1651 		rt = tcp_rtlookup(&inp->inp_inc);
1652 	if (rt != NULL) {
1653 		if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1654 			mtu = rt->rt_rmx.rmx_mtu;
1655 
1656 		maxopd = mtu -
1657 		    (isipv6 ?
1658 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1659 		     sizeof(struct tcpiphdr));
1660 
1661 		/*
1662 		 * XXX - The following conditional probably violates the TCP
1663 		 * spec.  The problem is that, since we don't know the
1664 		 * other end's MSS, we are supposed to use a conservative
1665 		 * default.  But, if we do that, then MTU discovery will
1666 		 * never actually take place, because the conservative
1667 		 * default is much less than the MTUs typically seen
1668 		 * on the Internet today.  For the moment, we'll sweep
1669 		 * this under the carpet.
1670 		 *
1671 		 * The conservative default might not actually be a problem
1672 		 * if the only case this occurs is when sending an initial
1673 		 * SYN with options and data to a host we've never talked
1674 		 * to before.  Then, they will reply with an MSS value which
1675 		 * will get recorded and the new parameters should get
1676 		 * recomputed.  For Further Study.
1677 		 */
1678 		if (rt->rt_rmx.rmx_mssopt  && rt->rt_rmx.rmx_mssopt < maxopd)
1679 			maxopd = rt->rt_rmx.rmx_mssopt;
1680 	} else
1681 		maxopd = mtu -
1682 		    (isipv6 ?
1683 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1684 		     sizeof(struct tcpiphdr));
1685 
1686 	if (tp->t_maxopd <= maxopd)
1687 		return;
1688 	tp->t_maxopd = maxopd;
1689 
1690 	mss = maxopd;
1691 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1692 			   (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1693 		mss -= TCPOLEN_TSTAMP_APPA;
1694 
1695 	/* round down to multiple of MCLBYTES */
1696 #if	(MCLBYTES & (MCLBYTES - 1)) == 0    /* test if MCLBYTES power of 2 */
1697 	if (mss > MCLBYTES)
1698 		mss &= ~(MCLBYTES - 1);
1699 #else
1700 	if (mss > MCLBYTES)
1701 		mss = (mss / MCLBYTES) * MCLBYTES;
1702 #endif
1703 
1704 	if (so->so_snd.ssb_hiwat < mss)
1705 		mss = so->so_snd.ssb_hiwat;
1706 
1707 	tp->t_maxseg = mss;
1708 	tp->t_rtttime = 0;
1709 	tp->snd_nxt = tp->snd_una;
1710 	tcp_output(tp);
1711 	tcpstat.tcps_mturesent++;
1712 }
1713 
1714 /*
1715  * Look-up the routing entry to the peer of this inpcb.  If no route
1716  * is found and it cannot be allocated the return NULL.  This routine
1717  * is called by TCP routines that access the rmx structure and by tcp_mss
1718  * to get the interface MTU.
1719  */
1720 struct rtentry *
1721 tcp_rtlookup(struct in_conninfo *inc)
1722 {
1723 	struct route *ro = &inc->inc_route;
1724 
1725 	if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1726 		/* No route yet, so try to acquire one */
1727 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1728 			/*
1729 			 * unused portions of the structure MUST be zero'd
1730 			 * out because rtalloc() treats it as opaque data
1731 			 */
1732 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1733 			ro->ro_dst.sa_family = AF_INET;
1734 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1735 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1736 			    inc->inc_faddr;
1737 			rtalloc(ro);
1738 		}
1739 	}
1740 	return (ro->ro_rt);
1741 }
1742 
1743 #ifdef INET6
1744 struct rtentry *
1745 tcp_rtlookup6(struct in_conninfo *inc)
1746 {
1747 	struct route_in6 *ro6 = &inc->inc6_route;
1748 
1749 	if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1750 		/* No route yet, so try to acquire one */
1751 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1752 			/*
1753 			 * unused portions of the structure MUST be zero'd
1754 			 * out because rtalloc() treats it as opaque data
1755 			 */
1756 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1757 			ro6->ro_dst.sin6_family = AF_INET6;
1758 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1759 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1760 			rtalloc((struct route *)ro6);
1761 		}
1762 	}
1763 	return (ro6->ro_rt);
1764 }
1765 #endif
1766 
1767 #ifdef IPSEC
1768 /* compute ESP/AH header size for TCP, including outer IP header. */
1769 size_t
1770 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1771 {
1772 	struct inpcb *inp;
1773 	struct mbuf *m;
1774 	size_t hdrsiz;
1775 	struct ip *ip;
1776 	struct tcphdr *th;
1777 
1778 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1779 		return (0);
1780 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1781 	if (!m)
1782 		return (0);
1783 
1784 #ifdef INET6
1785 	if (inp->inp_vflag & INP_IPV6) {
1786 		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1787 
1788 		th = (struct tcphdr *)(ip6 + 1);
1789 		m->m_pkthdr.len = m->m_len =
1790 		    sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1791 		tcp_fillheaders(tp, ip6, th);
1792 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1793 	} else
1794 #endif
1795 	{
1796 		ip = mtod(m, struct ip *);
1797 		th = (struct tcphdr *)(ip + 1);
1798 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1799 		tcp_fillheaders(tp, ip, th);
1800 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1801 	}
1802 
1803 	m_free(m);
1804 	return (hdrsiz);
1805 }
1806 #endif
1807 
1808 /*
1809  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1810  *
1811  * This code attempts to calculate the bandwidth-delay product as a
1812  * means of determining the optimal window size to maximize bandwidth,
1813  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1814  * routers.  This code also does a fairly good job keeping RTTs in check
1815  * across slow links like modems.  We implement an algorithm which is very
1816  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1817  * transmitter side of a TCP connection and so only effects the transmit
1818  * side of the connection.
1819  *
1820  * BACKGROUND:  TCP makes no provision for the management of buffer space
1821  * at the end points or at the intermediate routers and switches.  A TCP
1822  * stream, whether using NewReno or not, will eventually buffer as
1823  * many packets as it is able and the only reason this typically works is
1824  * due to the fairly small default buffers made available for a connection
1825  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1826  * scaling it is now fairly easy for even a single TCP connection to blow-out
1827  * all available buffer space not only on the local interface, but on
1828  * intermediate routers and switches as well.  NewReno makes a misguided
1829  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1830  * then backing off, then steadily increasing the window again until another
1831  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1832  * is only made worse as network loads increase and the idea of intentionally
1833  * blowing out network buffers is, frankly, a terrible way to manage network
1834  * resources.
1835  *
1836  * It is far better to limit the transmit window prior to the failure
1837  * condition being achieved.  There are two general ways to do this:  First
1838  * you can 'scan' through different transmit window sizes and locate the
1839  * point where the RTT stops increasing, indicating that you have filled the
1840  * pipe, then scan backwards until you note that RTT stops decreasing, then
1841  * repeat ad-infinitum.  This method works in principle but has severe
1842  * implementation issues due to RTT variances, timer granularity, and
1843  * instability in the algorithm which can lead to many false positives and
1844  * create oscillations as well as interact badly with other TCP streams
1845  * implementing the same algorithm.
1846  *
1847  * The second method is to limit the window to the bandwidth delay product
1848  * of the link.  This is the method we implement.  RTT variances and our
1849  * own manipulation of the congestion window, bwnd, can potentially
1850  * destabilize the algorithm.  For this reason we have to stabilize the
1851  * elements used to calculate the window.  We do this by using the minimum
1852  * observed RTT, the long term average of the observed bandwidth, and
1853  * by adding two segments worth of slop.  It isn't perfect but it is able
1854  * to react to changing conditions and gives us a very stable basis on
1855  * which to extend the algorithm.
1856  */
1857 void
1858 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1859 {
1860 	u_long bw;
1861 	u_long bwnd;
1862 	int save_ticks;
1863 	int delta_ticks;
1864 
1865 	/*
1866 	 * If inflight_enable is disabled in the middle of a tcp connection,
1867 	 * make sure snd_bwnd is effectively disabled.
1868 	 */
1869 	if (!tcp_inflight_enable) {
1870 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1871 		tp->snd_bandwidth = 0;
1872 		return;
1873 	}
1874 
1875 	/*
1876 	 * Validate the delta time.  If a connection is new or has been idle
1877 	 * a long time we have to reset the bandwidth calculator.
1878 	 */
1879 	save_ticks = ticks;
1880 	delta_ticks = save_ticks - tp->t_bw_rtttime;
1881 	if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1882 		tp->t_bw_rtttime = ticks;
1883 		tp->t_bw_rtseq = ack_seq;
1884 		if (tp->snd_bandwidth == 0)
1885 			tp->snd_bandwidth = tcp_inflight_min;
1886 		return;
1887 	}
1888 	if (delta_ticks == 0)
1889 		return;
1890 
1891 	/*
1892 	 * Sanity check, plus ignore pure window update acks.
1893 	 */
1894 	if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1895 		return;
1896 
1897 	/*
1898 	 * Figure out the bandwidth.  Due to the tick granularity this
1899 	 * is a very rough number and it MUST be averaged over a fairly
1900 	 * long period of time.  XXX we need to take into account a link
1901 	 * that is not using all available bandwidth, but for now our
1902 	 * slop will ramp us up if this case occurs and the bandwidth later
1903 	 * increases.
1904 	 */
1905 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
1906 	tp->t_bw_rtttime = save_ticks;
1907 	tp->t_bw_rtseq = ack_seq;
1908 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1909 
1910 	tp->snd_bandwidth = bw;
1911 
1912 	/*
1913 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1914 	 * segments.  The additional slop puts us squarely in the sweet
1915 	 * spot and also handles the bandwidth run-up case.  Without the
1916 	 * slop we could be locking ourselves into a lower bandwidth.
1917 	 *
1918 	 * Situations Handled:
1919 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1920 	 *	    high speed LANs, allowing larger TCP buffers to be
1921 	 *	    specified, and also does a good job preventing
1922 	 *	    over-queueing of packets over choke points like modems
1923 	 *	    (at least for the transmit side).
1924 	 *
1925 	 *	(2) Is able to handle changing network loads (bandwidth
1926 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1927 	 *	    increases).
1928 	 *
1929 	 *	(3) Theoretically should stabilize in the face of multiple
1930 	 *	    connections implementing the same algorithm (this may need
1931 	 *	    a little work).
1932 	 *
1933 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1934 	 *	    be adjusted with a sysctl but typically only needs to be on
1935 	 *	    very slow connections.  A value no smaller then 5 should
1936 	 *	    be used, but only reduce this default if you have no other
1937 	 *	    choice.
1938 	 */
1939 
1940 #define	USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1941 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
1942 	       tcp_inflight_stab * (int)tp->t_maxseg / 10;
1943 #undef USERTT
1944 
1945 	if (tcp_inflight_debug > 0) {
1946 		static int ltime;
1947 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1948 			ltime = ticks;
1949 			kprintf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1950 				tp, bw, tp->t_rttbest, tp->t_srtt, bwnd);
1951 		}
1952 	}
1953 	if ((long)bwnd < tcp_inflight_min)
1954 		bwnd = tcp_inflight_min;
1955 	if (bwnd > tcp_inflight_max)
1956 		bwnd = tcp_inflight_max;
1957 	if ((long)bwnd < tp->t_maxseg * 2)
1958 		bwnd = tp->t_maxseg * 2;
1959 	tp->snd_bwnd = bwnd;
1960 }
1961 
1962 #ifdef TCP_SIGNATURE
1963 /*
1964  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
1965  *
1966  * We do this over ip, tcphdr, segment data, and the key in the SADB.
1967  * When called from tcp_input(), we can be sure that th_sum has been
1968  * zeroed out and verified already.
1969  *
1970  * Return 0 if successful, otherwise return -1.
1971  *
1972  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
1973  * search with the destination IP address, and a 'magic SPI' to be
1974  * determined by the application. This is hardcoded elsewhere to 1179
1975  * right now. Another branch of this code exists which uses the SPD to
1976  * specify per-application flows but it is unstable.
1977  */
1978 int
1979 tcpsignature_compute(
1980 	struct mbuf *m,		/* mbuf chain */
1981 	int len,		/* length of TCP data */
1982 	int optlen,		/* length of TCP options */
1983 	u_char *buf,		/* storage for MD5 digest */
1984 	u_int direction)	/* direction of flow */
1985 {
1986 	struct ippseudo ippseudo;
1987 	MD5_CTX ctx;
1988 	int doff;
1989 	struct ip *ip;
1990 	struct ipovly *ipovly;
1991 	struct secasvar *sav;
1992 	struct tcphdr *th;
1993 #ifdef INET6
1994 	struct ip6_hdr *ip6;
1995 	struct in6_addr in6;
1996 	uint32_t plen;
1997 	uint16_t nhdr;
1998 #endif /* INET6 */
1999 	u_short savecsum;
2000 
2001 	KASSERT(m != NULL, ("passed NULL mbuf. Game over."));
2002 	KASSERT(buf != NULL, ("passed NULL storage pointer for MD5 signature"));
2003 	/*
2004 	 * Extract the destination from the IP header in the mbuf.
2005 	 */
2006 	ip = mtod(m, struct ip *);
2007 #ifdef INET6
2008 	ip6 = NULL;     /* Make the compiler happy. */
2009 #endif /* INET6 */
2010 	/*
2011 	 * Look up an SADB entry which matches the address found in
2012 	 * the segment.
2013 	 */
2014 	switch (IP_VHL_V(ip->ip_vhl)) {
2015 	case IPVERSION:
2016 		sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src, (caddr_t)&ip->ip_dst,
2017 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2018 		break;
2019 #ifdef INET6
2020 	case (IPV6_VERSION >> 4):
2021 		ip6 = mtod(m, struct ip6_hdr *);
2022 		sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src, (caddr_t)&ip6->ip6_dst,
2023 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2024 		break;
2025 #endif /* INET6 */
2026 	default:
2027 		return (EINVAL);
2028 		/* NOTREACHED */
2029 		break;
2030 	}
2031 	if (sav == NULL) {
2032 		kprintf("%s: SADB lookup failed\n", __func__);
2033 		return (EINVAL);
2034 	}
2035 	MD5Init(&ctx);
2036 
2037 	/*
2038 	 * Step 1: Update MD5 hash with IP pseudo-header.
2039 	 *
2040 	 * XXX The ippseudo header MUST be digested in network byte order,
2041 	 * or else we'll fail the regression test. Assume all fields we've
2042 	 * been doing arithmetic on have been in host byte order.
2043 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2044 	 * tcp_output(), the underlying ip_len member has not yet been set.
2045 	 */
2046 	switch (IP_VHL_V(ip->ip_vhl)) {
2047 	case IPVERSION:
2048 		ipovly = (struct ipovly *)ip;
2049 		ippseudo.ippseudo_src = ipovly->ih_src;
2050 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2051 		ippseudo.ippseudo_pad = 0;
2052 		ippseudo.ippseudo_p = IPPROTO_TCP;
2053 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2054 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2055 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2056 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2057 		break;
2058 #ifdef INET6
2059 	/*
2060 	 * RFC 2385, 2.0  Proposal
2061 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2062 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2063 	 * extended next header value (to form 32 bits), and 32-bit segment
2064 	 * length.
2065 	 * Note: Upper-Layer Packet Length comes before Next Header.
2066 	 */
2067 	case (IPV6_VERSION >> 4):
2068 		in6 = ip6->ip6_src;
2069 		in6_clearscope(&in6);
2070 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2071 		in6 = ip6->ip6_dst;
2072 		in6_clearscope(&in6);
2073 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2074 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2075 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2076 		nhdr = 0;
2077 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2078 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2079 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2080 		nhdr = IPPROTO_TCP;
2081 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2082 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2083 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2084 		break;
2085 #endif /* INET6 */
2086 	default:
2087 		return (EINVAL);
2088 		/* NOTREACHED */
2089 		break;
2090 	}
2091 	/*
2092 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2093 	 * The TCP checksum must be set to zero.
2094 	 */
2095 	savecsum = th->th_sum;
2096 	th->th_sum = 0;
2097 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2098 	th->th_sum = savecsum;
2099 	/*
2100 	 * Step 3: Update MD5 hash with TCP segment data.
2101 	 *         Use m_apply() to avoid an early m_pullup().
2102 	 */
2103 	if (len > 0)
2104 		m_apply(m, doff, len, tcpsignature_apply, &ctx);
2105 	/*
2106 	 * Step 4: Update MD5 hash with shared secret.
2107 	 */
2108 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2109 	MD5Final(buf, &ctx);
2110 	key_sa_recordxfer(sav, m);
2111 	key_freesav(sav);
2112 	return (0);
2113 }
2114 
2115 int
2116 tcpsignature_apply(void *fstate, void *data, unsigned int len)
2117 {
2118 
2119 	MD5Update((MD5_CTX *)fstate, (unsigned char *)data, len);
2120 	return (0);
2121 }
2122 #endif /* TCP_SIGNATURE */
2123