xref: /dragonfly/sys/netinet/tcp_subr.c (revision 4caa7869)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
35  * $DragonFly: src/sys/netinet/tcp_subr.c,v 1.9 2003/11/08 07:57:51 dillon Exp $
36  */
37 
38 #include "opt_compat.h"
39 #include "opt_inet6.h"
40 #include "opt_ipsec.h"
41 #include "opt_tcpdebug.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/kernel.h>
47 #include <sys/sysctl.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #ifdef INET6
51 #include <sys/domain.h>
52 #endif
53 #include <sys/proc.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/protosw.h>
57 #include <sys/random.h>
58 
59 #include <vm/vm_zone.h>
60 
61 #include <net/route.h>
62 #include <net/if.h>
63 
64 #define _IP_VHL
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #ifdef INET6
69 #include <netinet/ip6.h>
70 #endif
71 #include <netinet/in_pcb.h>
72 #ifdef INET6
73 #include <netinet6/in6_pcb.h>
74 #endif
75 #include <netinet/in_var.h>
76 #include <netinet/ip_var.h>
77 #ifdef INET6
78 #include <netinet6/ip6_var.h>
79 #endif
80 #include <netinet/tcp.h>
81 #include <netinet/tcp_fsm.h>
82 #include <netinet/tcp_seq.h>
83 #include <netinet/tcp_timer.h>
84 #include <netinet/tcp_var.h>
85 #ifdef INET6
86 #include <netinet6/tcp6_var.h>
87 #endif
88 #include <netinet/tcpip.h>
89 #ifdef TCPDEBUG
90 #include <netinet/tcp_debug.h>
91 #endif
92 #include <netinet6/ip6protosw.h>
93 
94 #ifdef IPSEC
95 #include <netinet6/ipsec.h>
96 #ifdef INET6
97 #include <netinet6/ipsec6.h>
98 #endif
99 #endif /*IPSEC*/
100 
101 #ifdef FAST_IPSEC
102 #include <netipsec/ipsec.h>
103 #ifdef INET6
104 #include <netipsec/ipsec6.h>
105 #endif
106 #define	IPSEC
107 #endif /*FAST_IPSEC*/
108 
109 #include <machine/in_cksum.h>
110 #include <sys/md5.h>
111 
112 int 	tcp_mssdflt = TCP_MSS;
113 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
114     &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
115 
116 #ifdef INET6
117 int	tcp_v6mssdflt = TCP6_MSS;
118 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
119 	CTLFLAG_RW, &tcp_v6mssdflt , 0,
120 	"Default TCP Maximum Segment Size for IPv6");
121 #endif
122 
123 #if 0
124 static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
125 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
126     &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
127 #endif
128 
129 int	tcp_do_rfc1323 = 1;
130 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
131     &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
132 
133 int	tcp_do_rfc1644 = 0;
134 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
135     &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
136 
137 static int	tcp_tcbhashsize = 0;
138 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
139      &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
140 
141 static int	do_tcpdrain = 1;
142 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
143      "Enable tcp_drain routine for extra help when low on mbufs");
144 
145 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
146     &tcbinfo.ipi_count, 0, "Number of active PCBs");
147 
148 static int	icmp_may_rst = 1;
149 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
150     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
151 
152 static int	tcp_isn_reseed_interval = 0;
153 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
154     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
155 
156 /*
157  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
158  * 1024 exists only for debugging.  A good production default would be
159  * something like 6100.
160  */
161 static int     tcp_inflight_enable = 0;
162 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
163     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
164 
165 static int     tcp_inflight_debug = 0;
166 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
167     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
168 
169 static int     tcp_inflight_min = 6144;
170 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
171     &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
172 
173 static int     tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
174 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
175     &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
176 
177 static int     tcp_inflight_stab = 20;
178 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
179     &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 2 packets)");
180 
181 static void	tcp_cleartaocache (void);
182 static void	tcp_notify (struct inpcb *, int);
183 
184 /*
185  * Target size of TCP PCB hash tables. Must be a power of two.
186  *
187  * Note that this can be overridden by the kernel environment
188  * variable net.inet.tcp.tcbhashsize
189  */
190 #ifndef TCBHASHSIZE
191 #define TCBHASHSIZE	512
192 #endif
193 
194 /*
195  * This is the actual shape of what we allocate using the zone
196  * allocator.  Doing it this way allows us to protect both structures
197  * using the same generation count, and also eliminates the overhead
198  * of allocating tcpcbs separately.  By hiding the structure here,
199  * we avoid changing most of the rest of the code (although it needs
200  * to be changed, eventually, for greater efficiency).
201  */
202 #define	ALIGNMENT	32
203 #define	ALIGNM1		(ALIGNMENT - 1)
204 struct	inp_tp {
205 	union {
206 		struct	inpcb inp;
207 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
208 	} inp_tp_u;
209 	struct	tcpcb tcb;
210 	struct	callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
211 	struct	callout inp_tp_delack;
212 };
213 #undef ALIGNMENT
214 #undef ALIGNM1
215 
216 /*
217  * Tcp initialization
218  */
219 void
220 tcp_init()
221 {
222 	int hashsize = TCBHASHSIZE;
223 
224 	tcp_ccgen = 1;
225 	tcp_cleartaocache();
226 
227 	tcp_delacktime = TCPTV_DELACK;
228 	tcp_keepinit = TCPTV_KEEP_INIT;
229 	tcp_keepidle = TCPTV_KEEP_IDLE;
230 	tcp_keepintvl = TCPTV_KEEPINTVL;
231 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
232 	tcp_msl = TCPTV_MSL;
233 	tcp_rexmit_min = TCPTV_MIN;
234 	tcp_rexmit_slop = TCPTV_CPU_VAR;
235 
236 	LIST_INIT(&tcb);
237 	tcbinfo.listhead = &tcb;
238 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
239 	if (!powerof2(hashsize)) {
240 		printf("WARNING: TCB hash size not a power of 2\n");
241 		hashsize = 512; /* safe default */
242 	}
243 	tcp_tcbhashsize = hashsize;
244 	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
245 	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
246 					&tcbinfo.porthashmask);
247 	tcbinfo.ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets,
248 				 ZONE_INTERRUPT, 0);
249 #ifdef INET6
250 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
251 #else /* INET6 */
252 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
253 #endif /* INET6 */
254 	if (max_protohdr < TCP_MINPROTOHDR)
255 		max_protohdr = TCP_MINPROTOHDR;
256 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
257 		panic("tcp_init");
258 #undef TCP_MINPROTOHDR
259 
260 	syncache_init();
261 	tcp_thread_init();
262 }
263 
264 /*
265  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
266  * tcp_template used to store this data in mbufs, but we now recopy it out
267  * of the tcpcb each time to conserve mbufs.
268  */
269 void
270 tcp_fillheaders(tp, ip_ptr, tcp_ptr)
271 	struct tcpcb *tp;
272 	void *ip_ptr;
273 	void *tcp_ptr;
274 {
275 	struct inpcb *inp = tp->t_inpcb;
276 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
277 
278 #ifdef INET6
279 	if ((inp->inp_vflag & INP_IPV6) != 0) {
280 		struct ip6_hdr *ip6;
281 
282 		ip6 = (struct ip6_hdr *)ip_ptr;
283 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
284 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
285 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
286 			(IPV6_VERSION & IPV6_VERSION_MASK);
287 		ip6->ip6_nxt = IPPROTO_TCP;
288 		ip6->ip6_plen = sizeof(struct tcphdr);
289 		ip6->ip6_src = inp->in6p_laddr;
290 		ip6->ip6_dst = inp->in6p_faddr;
291 		tcp_hdr->th_sum = 0;
292 	} else
293 #endif
294 	{
295 	struct ip *ip = (struct ip *) ip_ptr;
296 
297 	ip->ip_vhl = IP_VHL_BORING;
298 	ip->ip_tos = 0;
299 	ip->ip_len = 0;
300 	ip->ip_id = 0;
301 	ip->ip_off = 0;
302 	ip->ip_ttl = 0;
303 	ip->ip_sum = 0;
304 	ip->ip_p = IPPROTO_TCP;
305 	ip->ip_src = inp->inp_laddr;
306 	ip->ip_dst = inp->inp_faddr;
307 	tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
308 		htons(sizeof(struct tcphdr) + IPPROTO_TCP));
309 	}
310 
311 	tcp_hdr->th_sport = inp->inp_lport;
312 	tcp_hdr->th_dport = inp->inp_fport;
313 	tcp_hdr->th_seq = 0;
314 	tcp_hdr->th_ack = 0;
315 	tcp_hdr->th_x2 = 0;
316 	tcp_hdr->th_off = 5;
317 	tcp_hdr->th_flags = 0;
318 	tcp_hdr->th_win = 0;
319 	tcp_hdr->th_urp = 0;
320 }
321 
322 /*
323  * Create template to be used to send tcp packets on a connection.
324  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
325  * use for this function is in keepalives, which use tcp_respond.
326  */
327 struct tcptemp *
328 tcp_maketemplate(tp)
329 	struct tcpcb *tp;
330 {
331 	struct mbuf *m;
332 	struct tcptemp *n;
333 
334 	m = m_get(M_DONTWAIT, MT_HEADER);
335 	if (m == NULL)
336 		return (0);
337 	m->m_len = sizeof(struct tcptemp);
338 	n = mtod(m, struct tcptemp *);
339 
340 	tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
341 	return (n);
342 }
343 
344 /*
345  * Send a single message to the TCP at address specified by
346  * the given TCP/IP header.  If m == 0, then we make a copy
347  * of the tcpiphdr at ti and send directly to the addressed host.
348  * This is used to force keep alive messages out using the TCP
349  * template for a connection.  If flags are given then we send
350  * a message back to the TCP which originated the * segment ti,
351  * and discard the mbuf containing it and any other attached mbufs.
352  *
353  * In any case the ack and sequence number of the transmitted
354  * segment are as specified by the parameters.
355  *
356  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
357  */
358 void
359 tcp_respond(tp, ipgen, th, m, ack, seq, flags)
360 	struct tcpcb *tp;
361 	void *ipgen;
362 	struct tcphdr *th;
363 	struct mbuf *m;
364 	tcp_seq ack, seq;
365 	int flags;
366 {
367 	int tlen;
368 	int win = 0;
369 	struct route *ro = 0;
370 	struct route sro;
371 	struct ip *ip;
372 	struct tcphdr *nth;
373 #ifdef INET6
374 	struct route_in6 *ro6 = 0;
375 	struct route_in6 sro6;
376 	struct ip6_hdr *ip6;
377 	int isipv6;
378 #endif /* INET6 */
379 	int ipflags = 0;
380 
381 #ifdef INET6
382 	isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6;
383 	ip6 = ipgen;
384 #endif /* INET6 */
385 	ip = ipgen;
386 
387 	if (tp) {
388 		if (!(flags & TH_RST)) {
389 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
390 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
391 				win = (long)TCP_MAXWIN << tp->rcv_scale;
392 		}
393 #ifdef INET6
394 		if (isipv6)
395 			ro6 = &tp->t_inpcb->in6p_route;
396 		else
397 #endif /* INET6 */
398 		ro = &tp->t_inpcb->inp_route;
399 	} else {
400 #ifdef INET6
401 		if (isipv6) {
402 			ro6 = &sro6;
403 			bzero(ro6, sizeof *ro6);
404 		} else
405 #endif /* INET6 */
406 	      {
407 		ro = &sro;
408 		bzero(ro, sizeof *ro);
409 	      }
410 	}
411 	if (m == 0) {
412 		m = m_gethdr(M_DONTWAIT, MT_HEADER);
413 		if (m == NULL)
414 			return;
415 		tlen = 0;
416 		m->m_data += max_linkhdr;
417 #ifdef INET6
418 		if (isipv6) {
419 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
420 			      sizeof(struct ip6_hdr));
421 			ip6 = mtod(m, struct ip6_hdr *);
422 			nth = (struct tcphdr *)(ip6 + 1);
423 		} else
424 #endif /* INET6 */
425 	      {
426 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
427 		ip = mtod(m, struct ip *);
428 		nth = (struct tcphdr *)(ip + 1);
429 	      }
430 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
431 		flags = TH_ACK;
432 	} else {
433 		m_freem(m->m_next);
434 		m->m_next = 0;
435 		m->m_data = (caddr_t)ipgen;
436 		/* m_len is set later */
437 		tlen = 0;
438 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
439 #ifdef INET6
440 		if (isipv6) {
441 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
442 			nth = (struct tcphdr *)(ip6 + 1);
443 		} else
444 #endif /* INET6 */
445 	      {
446 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
447 		nth = (struct tcphdr *)(ip + 1);
448 	      }
449 		if (th != nth) {
450 			/*
451 			 * this is usually a case when an extension header
452 			 * exists between the IPv6 header and the
453 			 * TCP header.
454 			 */
455 			nth->th_sport = th->th_sport;
456 			nth->th_dport = th->th_dport;
457 		}
458 		xchg(nth->th_dport, nth->th_sport, n_short);
459 #undef xchg
460 	}
461 #ifdef INET6
462 	if (isipv6) {
463 		ip6->ip6_flow = 0;
464 		ip6->ip6_vfc = IPV6_VERSION;
465 		ip6->ip6_nxt = IPPROTO_TCP;
466 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
467 						tlen));
468 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
469 	} else
470 #endif
471       {
472 	tlen += sizeof (struct tcpiphdr);
473 	ip->ip_len = tlen;
474 	ip->ip_ttl = ip_defttl;
475       }
476 	m->m_len = tlen;
477 	m->m_pkthdr.len = tlen;
478 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
479 	nth->th_seq = htonl(seq);
480 	nth->th_ack = htonl(ack);
481 	nth->th_x2 = 0;
482 	nth->th_off = sizeof (struct tcphdr) >> 2;
483 	nth->th_flags = flags;
484 	if (tp)
485 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
486 	else
487 		nth->th_win = htons((u_short)win);
488 	nth->th_urp = 0;
489 #ifdef INET6
490 	if (isipv6) {
491 		nth->th_sum = 0;
492 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
493 					sizeof(struct ip6_hdr),
494 					tlen - sizeof(struct ip6_hdr));
495 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
496 					       ro6 && ro6->ro_rt ?
497 					       ro6->ro_rt->rt_ifp :
498 					       NULL);
499 	} else
500 #endif /* INET6 */
501       {
502         nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
503 	    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
504         m->m_pkthdr.csum_flags = CSUM_TCP;
505         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
506       }
507 #ifdef TCPDEBUG
508 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
509 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
510 #endif
511 #ifdef INET6
512 	if (isipv6) {
513 		(void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
514 			tp ? tp->t_inpcb : NULL);
515 		if (ro6 == &sro6 && ro6->ro_rt) {
516 			RTFREE(ro6->ro_rt);
517 			ro6->ro_rt = NULL;
518 		}
519 	} else
520 #endif /* INET6 */
521       {
522 	(void) ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
523 	if (ro == &sro && ro->ro_rt) {
524 		RTFREE(ro->ro_rt);
525 		ro->ro_rt = NULL;
526 	}
527       }
528 }
529 
530 /*
531  * Create a new TCP control block, making an
532  * empty reassembly queue and hooking it to the argument
533  * protocol control block.  The `inp' parameter must have
534  * come from the zone allocator set up in tcp_init().
535  */
536 struct tcpcb *
537 tcp_newtcpcb(inp)
538 	struct inpcb *inp;
539 {
540 	struct inp_tp *it;
541 	struct tcpcb *tp;
542 #ifdef INET6
543 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
544 #endif /* INET6 */
545 
546 	it = (struct inp_tp *)inp;
547 	tp = &it->tcb;
548 	bzero((char *) tp, sizeof(struct tcpcb));
549 	LIST_INIT(&tp->t_segq);
550 	tp->t_maxseg = tp->t_maxopd =
551 #ifdef INET6
552 		isipv6 ? tcp_v6mssdflt :
553 #endif /* INET6 */
554 		tcp_mssdflt;
555 
556 	/* Set up our timeouts. */
557 	callout_init(tp->tt_rexmt = &it->inp_tp_rexmt);
558 	callout_init(tp->tt_persist = &it->inp_tp_persist);
559 	callout_init(tp->tt_keep = &it->inp_tp_keep);
560 	callout_init(tp->tt_2msl = &it->inp_tp_2msl);
561 	callout_init(tp->tt_delack = &it->inp_tp_delack);
562 
563 	if (tcp_do_rfc1323)
564 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
565 	if (tcp_do_rfc1644)
566 		tp->t_flags |= TF_REQ_CC;
567 	tp->t_inpcb = inp;	/* XXX */
568 	/*
569 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
570 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
571 	 * reasonable initial retransmit time.
572 	 */
573 	tp->t_srtt = TCPTV_SRTTBASE;
574 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
575 	tp->t_rttmin = tcp_rexmit_min;
576 	tp->t_rxtcur = TCPTV_RTOBASE;
577 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
578 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
579 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
580 	tp->t_rcvtime = ticks;
581 	tp->t_bw_rtttime = ticks;
582         /*
583 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
584 	 * because the socket may be bound to an IPv6 wildcard address,
585 	 * which may match an IPv4-mapped IPv6 address.
586 	 */
587 	inp->inp_ip_ttl = ip_defttl;
588 	inp->inp_ppcb = (caddr_t)tp;
589 	return (tp);		/* XXX */
590 }
591 
592 /*
593  * Drop a TCP connection, reporting
594  * the specified error.  If connection is synchronized,
595  * then send a RST to peer.
596  */
597 struct tcpcb *
598 tcp_drop(tp, errno)
599 	struct tcpcb *tp;
600 	int errno;
601 {
602 	struct socket *so = tp->t_inpcb->inp_socket;
603 
604 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
605 		tp->t_state = TCPS_CLOSED;
606 		(void) tcp_output(tp);
607 		tcpstat.tcps_drops++;
608 	} else
609 		tcpstat.tcps_conndrops++;
610 	if (errno == ETIMEDOUT && tp->t_softerror)
611 		errno = tp->t_softerror;
612 	so->so_error = errno;
613 	return (tcp_close(tp));
614 }
615 
616 /*
617  * Close a TCP control block:
618  *	discard all space held by the tcp
619  *	discard internet protocol block
620  *	wake up any sleepers
621  */
622 struct tcpcb *
623 tcp_close(tp)
624 	struct tcpcb *tp;
625 {
626 	struct tseg_qent *q;
627 	struct inpcb *inp = tp->t_inpcb;
628 	struct socket *so = inp->inp_socket;
629 #ifdef INET6
630 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
631 #endif /* INET6 */
632 	struct rtentry *rt;
633 	int dosavessthresh;
634 
635 	/*
636 	 * Make sure that all of our timers are stopped before we
637 	 * delete the PCB.
638 	 */
639 	callout_stop(tp->tt_rexmt);
640 	callout_stop(tp->tt_persist);
641 	callout_stop(tp->tt_keep);
642 	callout_stop(tp->tt_2msl);
643 	callout_stop(tp->tt_delack);
644 
645 	/*
646 	 * If we got enough samples through the srtt filter,
647 	 * save the rtt and rttvar in the routing entry.
648 	 * 'Enough' is arbitrarily defined as the 16 samples.
649 	 * 16 samples is enough for the srtt filter to converge
650 	 * to within 5% of the correct value; fewer samples and
651 	 * we could save a very bogus rtt.
652 	 *
653 	 * Don't update the default route's characteristics and don't
654 	 * update anything that the user "locked".
655 	 */
656 	if (tp->t_rttupdated >= 16) {
657 		u_long i = 0;
658 #ifdef INET6
659 		if (isipv6) {
660 			struct sockaddr_in6 *sin6;
661 
662 			if ((rt = inp->in6p_route.ro_rt) == NULL)
663 				goto no_valid_rt;
664 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
665 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
666 				goto no_valid_rt;
667 		}
668 		else
669 #endif /* INET6 */
670 		if ((rt = inp->inp_route.ro_rt) == NULL ||
671 		    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr
672 		    == INADDR_ANY)
673 			goto no_valid_rt;
674 
675 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
676 			i = tp->t_srtt *
677 			    (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
678 			if (rt->rt_rmx.rmx_rtt && i)
679 				/*
680 				 * filter this update to half the old & half
681 				 * the new values, converting scale.
682 				 * See route.h and tcp_var.h for a
683 				 * description of the scaling constants.
684 				 */
685 				rt->rt_rmx.rmx_rtt =
686 				    (rt->rt_rmx.rmx_rtt + i) / 2;
687 			else
688 				rt->rt_rmx.rmx_rtt = i;
689 			tcpstat.tcps_cachedrtt++;
690 		}
691 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
692 			i = tp->t_rttvar *
693 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
694 			if (rt->rt_rmx.rmx_rttvar && i)
695 				rt->rt_rmx.rmx_rttvar =
696 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
697 			else
698 				rt->rt_rmx.rmx_rttvar = i;
699 			tcpstat.tcps_cachedrttvar++;
700 		}
701 		/*
702 		 * The old comment here said:
703 		 * update the pipelimit (ssthresh) if it has been updated
704 		 * already or if a pipesize was specified & the threshhold
705 		 * got below half the pipesize.  I.e., wait for bad news
706 		 * before we start updating, then update on both good
707 		 * and bad news.
708 		 *
709 		 * But we want to save the ssthresh even if no pipesize is
710 		 * specified explicitly in the route, because such
711 		 * connections still have an implicit pipesize specified
712 		 * by the global tcp_sendspace.  In the absence of a reliable
713 		 * way to calculate the pipesize, it will have to do.
714 		 */
715 		i = tp->snd_ssthresh;
716 		if (rt->rt_rmx.rmx_sendpipe != 0)
717 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
718 		else
719 			dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
720 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
721 		     i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
722 		    || dosavessthresh) {
723 			/*
724 			 * convert the limit from user data bytes to
725 			 * packets then to packet data bytes.
726 			 */
727 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
728 			if (i < 2)
729 				i = 2;
730 			i *= (u_long)(tp->t_maxseg +
731 #ifdef INET6
732 				      (isipv6 ? sizeof (struct ip6_hdr) +
733 					       sizeof (struct tcphdr) :
734 #endif
735 				       sizeof (struct tcpiphdr)
736 #ifdef INET6
737 				       )
738 #endif
739 				      );
740 			if (rt->rt_rmx.rmx_ssthresh)
741 				rt->rt_rmx.rmx_ssthresh =
742 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
743 			else
744 				rt->rt_rmx.rmx_ssthresh = i;
745 			tcpstat.tcps_cachedssthresh++;
746 		}
747 	}
748     no_valid_rt:
749 	/* free the reassembly queue, if any */
750 	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
751 		LIST_REMOVE(q, tqe_q);
752 		m_freem(q->tqe_m);
753 		FREE(q, M_TSEGQ);
754 	}
755 	inp->inp_ppcb = NULL;
756 	soisdisconnected(so);
757 #ifdef INET6
758 	if (INP_CHECK_SOCKAF(so, AF_INET6))
759 		in6_pcbdetach(inp);
760 	else
761 #endif /* INET6 */
762 	in_pcbdetach(inp);
763 	tcpstat.tcps_closed++;
764 	return ((struct tcpcb *)0);
765 }
766 
767 void
768 tcp_drain()
769 {
770 	if (do_tcpdrain)
771 	{
772 		struct inpcb *inpb;
773 		struct tcpcb *tcpb;
774 		struct tseg_qent *te;
775 
776 	/*
777 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
778 	 * if there is one...
779 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
780 	 *      reassembly queue should be flushed, but in a situation
781 	 * 	where we're really low on mbufs, this is potentially
782 	 *  	usefull.
783 	 */
784 		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
785 			if ((tcpb = intotcpcb(inpb))) {
786 				while ((te = LIST_FIRST(&tcpb->t_segq))
787 			            != NULL) {
788 					LIST_REMOVE(te, tqe_q);
789 					m_freem(te->tqe_m);
790 					FREE(te, M_TSEGQ);
791 				}
792 			}
793 		}
794 
795 	}
796 }
797 
798 /*
799  * Notify a tcp user of an asynchronous error;
800  * store error as soft error, but wake up user
801  * (for now, won't do anything until can select for soft error).
802  *
803  * Do not wake up user since there currently is no mechanism for
804  * reporting soft errors (yet - a kqueue filter may be added).
805  */
806 static void
807 tcp_notify(inp, error)
808 	struct inpcb *inp;
809 	int error;
810 {
811 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
812 
813 	/*
814 	 * Ignore some errors if we are hooked up.
815 	 * If connection hasn't completed, has retransmitted several times,
816 	 * and receives a second error, give up now.  This is better
817 	 * than waiting a long time to establish a connection that
818 	 * can never complete.
819 	 */
820 	if (tp->t_state == TCPS_ESTABLISHED &&
821 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
822 	      error == EHOSTDOWN)) {
823 		return;
824 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
825 	    tp->t_softerror)
826 		tcp_drop(tp, error);
827 	else
828 		tp->t_softerror = error;
829 #if 0
830 	wakeup((caddr_t) &so->so_timeo);
831 	sorwakeup(so);
832 	sowwakeup(so);
833 #endif
834 }
835 
836 static int
837 tcp_pcblist(SYSCTL_HANDLER_ARGS)
838 {
839 	int error, i, n, s;
840 	struct inpcb *inp, **inp_list;
841 	inp_gen_t gencnt;
842 	struct xinpgen xig;
843 
844 	/*
845 	 * The process of preparing the TCB list is too time-consuming and
846 	 * resource-intensive to repeat twice on every request.
847 	 */
848 	if (req->oldptr == 0) {
849 		n = tcbinfo.ipi_count;
850 		req->oldidx = 2 * (sizeof xig)
851 			+ (n + n/8) * sizeof(struct xtcpcb);
852 		return 0;
853 	}
854 
855 	if (req->newptr != 0)
856 		return EPERM;
857 
858 	/*
859 	 * OK, now we're committed to doing something.
860 	 */
861 	s = splnet();
862 	gencnt = tcbinfo.ipi_gencnt;
863 	n = tcbinfo.ipi_count;
864 	splx(s);
865 
866 	xig.xig_len = sizeof xig;
867 	xig.xig_count = n;
868 	xig.xig_gen = gencnt;
869 	xig.xig_sogen = so_gencnt;
870 	error = SYSCTL_OUT(req, &xig, sizeof xig);
871 	if (error)
872 		return error;
873 
874 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
875 	if (inp_list == 0)
876 		return ENOMEM;
877 
878 	s = splnet();
879 	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n;
880 	     inp = LIST_NEXT(inp, inp_list)) {
881 		if (inp->inp_gencnt <= gencnt && !prison_xinpcb(req->td, inp))
882 			inp_list[i++] = inp;
883 	}
884 	splx(s);
885 	n = i;
886 
887 	error = 0;
888 	for (i = 0; i < n; i++) {
889 		inp = inp_list[i];
890 		if (inp->inp_gencnt <= gencnt) {
891 			struct xtcpcb xt;
892 			caddr_t inp_ppcb;
893 			xt.xt_len = sizeof xt;
894 			/* XXX should avoid extra copy */
895 			bcopy(inp, &xt.xt_inp, sizeof *inp);
896 			inp_ppcb = inp->inp_ppcb;
897 			if (inp_ppcb != NULL)
898 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
899 			else
900 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
901 			if (inp->inp_socket)
902 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
903 			error = SYSCTL_OUT(req, &xt, sizeof xt);
904 		}
905 	}
906 	if (!error) {
907 		/*
908 		 * Give the user an updated idea of our state.
909 		 * If the generation differs from what we told
910 		 * her before, she knows that something happened
911 		 * while we were processing this request, and it
912 		 * might be necessary to retry.
913 		 */
914 		s = splnet();
915 		xig.xig_gen = tcbinfo.ipi_gencnt;
916 		xig.xig_sogen = so_gencnt;
917 		xig.xig_count = tcbinfo.ipi_count;
918 		splx(s);
919 		error = SYSCTL_OUT(req, &xig, sizeof xig);
920 	}
921 	free(inp_list, M_TEMP);
922 	return error;
923 }
924 
925 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
926 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
927 
928 static int
929 tcp_getcred(SYSCTL_HANDLER_ARGS)
930 {
931 	struct sockaddr_in addrs[2];
932 	struct inpcb *inp;
933 	int error, s;
934 
935 	error = suser(req->td);
936 	if (error)
937 		return (error);
938 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
939 	if (error)
940 		return (error);
941 	s = splnet();
942 	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
943 	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
944 	if (inp == NULL || inp->inp_socket == NULL) {
945 		error = ENOENT;
946 		goto out;
947 	}
948 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
949 out:
950 	splx(s);
951 	return (error);
952 }
953 
954 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW,
955     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
956 
957 #ifdef INET6
958 static int
959 tcp6_getcred(SYSCTL_HANDLER_ARGS)
960 {
961 	struct sockaddr_in6 addrs[2];
962 	struct inpcb *inp;
963 	int error, s, mapped = 0;
964 
965 	error = suser(req->td);
966 	if (error)
967 		return (error);
968 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
969 	if (error)
970 		return (error);
971 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
972 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
973 			mapped = 1;
974 		else
975 			return (EINVAL);
976 	}
977 	s = splnet();
978 	if (mapped == 1)
979 		inp = in_pcblookup_hash(&tcbinfo,
980 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
981 			addrs[1].sin6_port,
982 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
983 			addrs[0].sin6_port,
984 			0, NULL);
985 	else
986 		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
987 				 addrs[1].sin6_port,
988 				 &addrs[0].sin6_addr, addrs[0].sin6_port,
989 				 0, NULL);
990 	if (inp == NULL || inp->inp_socket == NULL) {
991 		error = ENOENT;
992 		goto out;
993 	}
994 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred,
995 			   sizeof(struct ucred));
996 out:
997 	splx(s);
998 	return (error);
999 }
1000 
1001 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW,
1002 	    0, 0,
1003 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1004 #endif
1005 
1006 
1007 void
1008 tcp_ctlinput(cmd, sa, vip)
1009 	int cmd;
1010 	struct sockaddr *sa;
1011 	void *vip;
1012 {
1013 	struct ip *ip = vip;
1014 	struct tcphdr *th;
1015 	struct in_addr faddr;
1016 	struct inpcb *inp;
1017 	struct tcpcb *tp;
1018 	void (*notify) (struct inpcb *, int) = tcp_notify;
1019 	tcp_seq icmp_seq;
1020 	int s;
1021 
1022 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1023 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1024 		return;
1025 
1026 	if (cmd == PRC_QUENCH)
1027 		notify = tcp_quench;
1028 	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1029 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1030 		notify = tcp_drop_syn_sent;
1031 	else if (cmd == PRC_MSGSIZE)
1032 		notify = tcp_mtudisc;
1033 	else if (PRC_IS_REDIRECT(cmd)) {
1034 		ip = 0;
1035 		notify = in_rtchange;
1036 	} else if (cmd == PRC_HOSTDEAD)
1037 		ip = 0;
1038 	else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
1039 		return;
1040 	if (ip) {
1041 		s = splnet();
1042 		th = (struct tcphdr *)((caddr_t)ip
1043 				       + (IP_VHL_HL(ip->ip_vhl) << 2));
1044 		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1045 		    ip->ip_src, th->th_sport, 0, NULL);
1046 		if (inp != NULL && inp->inp_socket != NULL) {
1047 			icmp_seq = htonl(th->th_seq);
1048 			tp = intotcpcb(inp);
1049 			if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1050 			    SEQ_LT(icmp_seq, tp->snd_max))
1051 				(*notify)(inp, inetctlerrmap[cmd]);
1052 		} else {
1053 			struct in_conninfo inc;
1054 
1055 			inc.inc_fport = th->th_dport;
1056 			inc.inc_lport = th->th_sport;
1057 			inc.inc_faddr = faddr;
1058 			inc.inc_laddr = ip->ip_src;
1059 #ifdef INET6
1060 			inc.inc_isipv6 = 0;
1061 #endif
1062 			syncache_unreach(&inc, th);
1063 		}
1064 		splx(s);
1065 	} else
1066 		in_pcbnotifyall(&tcb, faddr, inetctlerrmap[cmd], notify);
1067 }
1068 
1069 #ifdef INET6
1070 void
1071 tcp6_ctlinput(cmd, sa, d)
1072 	int cmd;
1073 	struct sockaddr *sa;
1074 	void *d;
1075 {
1076 	struct tcphdr th;
1077 	void (*notify) (struct inpcb *, int) = tcp_notify;
1078 	struct ip6_hdr *ip6;
1079 	struct mbuf *m;
1080 	struct ip6ctlparam *ip6cp = NULL;
1081 	const struct sockaddr_in6 *sa6_src = NULL;
1082 	int off;
1083 	struct tcp_portonly {
1084 		u_int16_t th_sport;
1085 		u_int16_t th_dport;
1086 	} *thp;
1087 
1088 	if (sa->sa_family != AF_INET6 ||
1089 	    sa->sa_len != sizeof(struct sockaddr_in6))
1090 		return;
1091 
1092 	if (cmd == PRC_QUENCH)
1093 		notify = tcp_quench;
1094 	else if (cmd == PRC_MSGSIZE)
1095 		notify = tcp_mtudisc;
1096 	else if (!PRC_IS_REDIRECT(cmd) &&
1097 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1098 		return;
1099 
1100 	/* if the parameter is from icmp6, decode it. */
1101 	if (d != NULL) {
1102 		ip6cp = (struct ip6ctlparam *)d;
1103 		m = ip6cp->ip6c_m;
1104 		ip6 = ip6cp->ip6c_ip6;
1105 		off = ip6cp->ip6c_off;
1106 		sa6_src = ip6cp->ip6c_src;
1107 	} else {
1108 		m = NULL;
1109 		ip6 = NULL;
1110 		off = 0;	/* fool gcc */
1111 		sa6_src = &sa6_any;
1112 	}
1113 
1114 	if (ip6) {
1115 		struct in_conninfo inc;
1116 		/*
1117 		 * XXX: We assume that when IPV6 is non NULL,
1118 		 * M and OFF are valid.
1119 		 */
1120 
1121 		/* check if we can safely examine src and dst ports */
1122 		if (m->m_pkthdr.len < off + sizeof(*thp))
1123 			return;
1124 
1125 		bzero(&th, sizeof(th));
1126 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1127 
1128 		in6_pcbnotify(&tcb, sa, th.th_dport,
1129 		    (struct sockaddr *)ip6cp->ip6c_src,
1130 		    th.th_sport, cmd, notify);
1131 
1132 		inc.inc_fport = th.th_dport;
1133 		inc.inc_lport = th.th_sport;
1134 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1135 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1136 		inc.inc_isipv6 = 1;
1137 		syncache_unreach(&inc, &th);
1138 	} else
1139 		in6_pcbnotify(&tcb, sa, 0, (const struct sockaddr *)sa6_src,
1140 			      0, cmd, notify);
1141 }
1142 #endif /* INET6 */
1143 
1144 
1145 /*
1146  * Following is where TCP initial sequence number generation occurs.
1147  *
1148  * There are two places where we must use initial sequence numbers:
1149  * 1.  In SYN-ACK packets.
1150  * 2.  In SYN packets.
1151  *
1152  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1153  * tcp_syncache.c for details.
1154  *
1155  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1156  * depends on this property.  In addition, these ISNs should be
1157  * unguessable so as to prevent connection hijacking.  To satisfy
1158  * the requirements of this situation, the algorithm outlined in
1159  * RFC 1948 is used to generate sequence numbers.
1160  *
1161  * Implementation details:
1162  *
1163  * Time is based off the system timer, and is corrected so that it
1164  * increases by one megabyte per second.  This allows for proper
1165  * recycling on high speed LANs while still leaving over an hour
1166  * before rollover.
1167  *
1168  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1169  * between seeding of isn_secret.  This is normally set to zero,
1170  * as reseeding should not be necessary.
1171  *
1172  */
1173 
1174 #define ISN_BYTES_PER_SECOND 1048576
1175 
1176 u_char isn_secret[32];
1177 int isn_last_reseed;
1178 MD5_CTX isn_ctx;
1179 
1180 tcp_seq
1181 tcp_new_isn(tp)
1182 	struct tcpcb *tp;
1183 {
1184 	u_int32_t md5_buffer[4];
1185 	tcp_seq new_isn;
1186 
1187 	/* Seed if this is the first use, reseed if requested. */
1188 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1189 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1190 		< (u_int)ticks))) {
1191 		read_random_unlimited(&isn_secret, sizeof(isn_secret));
1192 		isn_last_reseed = ticks;
1193 	}
1194 
1195 	/* Compute the md5 hash and return the ISN. */
1196 	MD5Init(&isn_ctx);
1197 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1198 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1199 #ifdef INET6
1200 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1201 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1202 			  sizeof(struct in6_addr));
1203 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1204 			  sizeof(struct in6_addr));
1205 	} else
1206 #endif
1207 	{
1208 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1209 			  sizeof(struct in_addr));
1210 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1211 			  sizeof(struct in_addr));
1212 	}
1213 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1214 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1215 	new_isn = (tcp_seq) md5_buffer[0];
1216 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1217 	return new_isn;
1218 }
1219 
1220 /*
1221  * When a source quench is received, close congestion window
1222  * to one segment.  We will gradually open it again as we proceed.
1223  */
1224 void
1225 tcp_quench(inp, errno)
1226 	struct inpcb *inp;
1227 	int errno;
1228 {
1229 	struct tcpcb *tp = intotcpcb(inp);
1230 
1231 	if (tp)
1232 		tp->snd_cwnd = tp->t_maxseg;
1233 }
1234 
1235 /*
1236  * When a specific ICMP unreachable message is received and the
1237  * connection state is SYN-SENT, drop the connection.  This behavior
1238  * is controlled by the icmp_may_rst sysctl.
1239  */
1240 void
1241 tcp_drop_syn_sent(inp, errno)
1242 	struct inpcb *inp;
1243 	int errno;
1244 {
1245 	struct tcpcb *tp = intotcpcb(inp);
1246 
1247 	if (tp && tp->t_state == TCPS_SYN_SENT)
1248 		tcp_drop(tp, errno);
1249 }
1250 
1251 /*
1252  * When `need fragmentation' ICMP is received, update our idea of the MSS
1253  * based on the new value in the route.  Also nudge TCP to send something,
1254  * since we know the packet we just sent was dropped.
1255  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1256  */
1257 void
1258 tcp_mtudisc(inp, errno)
1259 	struct inpcb *inp;
1260 	int errno;
1261 {
1262 	struct tcpcb *tp = intotcpcb(inp);
1263 	struct rtentry *rt;
1264 	struct rmxp_tao *taop;
1265 	struct socket *so = inp->inp_socket;
1266 	int offered;
1267 	int mss;
1268 #ifdef INET6
1269 	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1270 #endif /* INET6 */
1271 
1272 	if (tp) {
1273 #ifdef INET6
1274 		if (isipv6)
1275 			rt = tcp_rtlookup6(&inp->inp_inc);
1276 		else
1277 #endif /* INET6 */
1278 		rt = tcp_rtlookup(&inp->inp_inc);
1279 		if (!rt || !rt->rt_rmx.rmx_mtu) {
1280 			tp->t_maxopd = tp->t_maxseg =
1281 #ifdef INET6
1282 				isipv6 ? tcp_v6mssdflt :
1283 #endif /* INET6 */
1284 				tcp_mssdflt;
1285 			return;
1286 		}
1287 		taop = rmx_taop(rt->rt_rmx);
1288 		offered = taop->tao_mssopt;
1289 		mss = rt->rt_rmx.rmx_mtu -
1290 #ifdef INET6
1291 			(isipv6 ?
1292 			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1293 #endif /* INET6 */
1294 			 sizeof(struct tcpiphdr)
1295 #ifdef INET6
1296 			 )
1297 #endif /* INET6 */
1298 			;
1299 
1300 		if (offered)
1301 			mss = min(mss, offered);
1302 		/*
1303 		 * XXX - The above conditional probably violates the TCP
1304 		 * spec.  The problem is that, since we don't know the
1305 		 * other end's MSS, we are supposed to use a conservative
1306 		 * default.  But, if we do that, then MTU discovery will
1307 		 * never actually take place, because the conservative
1308 		 * default is much less than the MTUs typically seen
1309 		 * on the Internet today.  For the moment, we'll sweep
1310 		 * this under the carpet.
1311 		 *
1312 		 * The conservative default might not actually be a problem
1313 		 * if the only case this occurs is when sending an initial
1314 		 * SYN with options and data to a host we've never talked
1315 		 * to before.  Then, they will reply with an MSS value which
1316 		 * will get recorded and the new parameters should get
1317 		 * recomputed.  For Further Study.
1318 		 */
1319 		if (tp->t_maxopd <= mss)
1320 			return;
1321 		tp->t_maxopd = mss;
1322 
1323 		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1324 		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1325 			mss -= TCPOLEN_TSTAMP_APPA;
1326 		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1327 		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1328 			mss -= TCPOLEN_CC_APPA;
1329 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1330 		if (mss > MCLBYTES)
1331 			mss &= ~(MCLBYTES-1);
1332 #else
1333 		if (mss > MCLBYTES)
1334 			mss = mss / MCLBYTES * MCLBYTES;
1335 #endif
1336 		if (so->so_snd.sb_hiwat < mss)
1337 			mss = so->so_snd.sb_hiwat;
1338 
1339 		tp->t_maxseg = mss;
1340 
1341 		tcpstat.tcps_mturesent++;
1342 		tp->t_rtttime = 0;
1343 		tp->snd_nxt = tp->snd_una;
1344 		tcp_output(tp);
1345 	}
1346 }
1347 
1348 /*
1349  * Look-up the routing entry to the peer of this inpcb.  If no route
1350  * is found and it cannot be allocated the return NULL.  This routine
1351  * is called by TCP routines that access the rmx structure and by tcp_mss
1352  * to get the interface MTU.
1353  */
1354 struct rtentry *
1355 tcp_rtlookup(inc)
1356 	struct in_conninfo *inc;
1357 {
1358 	struct route *ro;
1359 	struct rtentry *rt;
1360 
1361 	ro = &inc->inc_route;
1362 	rt = ro->ro_rt;
1363 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1364 		/* No route yet, so try to acquire one */
1365 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1366 			ro->ro_dst.sa_family = AF_INET;
1367 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1368 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1369 			    inc->inc_faddr;
1370 			rtalloc(ro);
1371 			rt = ro->ro_rt;
1372 		}
1373 	}
1374 	return rt;
1375 }
1376 
1377 #ifdef INET6
1378 struct rtentry *
1379 tcp_rtlookup6(inc)
1380 	struct in_conninfo *inc;
1381 {
1382 	struct route_in6 *ro6;
1383 	struct rtentry *rt;
1384 
1385 	ro6 = &inc->inc6_route;
1386 	rt = ro6->ro_rt;
1387 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1388 		/* No route yet, so try to acquire one */
1389 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1390 			ro6->ro_dst.sin6_family = AF_INET6;
1391 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1392 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1393 			rtalloc((struct route *)ro6);
1394 			rt = ro6->ro_rt;
1395 		}
1396 	}
1397 	return rt;
1398 }
1399 #endif /* INET6 */
1400 
1401 #ifdef IPSEC
1402 /* compute ESP/AH header size for TCP, including outer IP header. */
1403 size_t
1404 ipsec_hdrsiz_tcp(tp)
1405 	struct tcpcb *tp;
1406 {
1407 	struct inpcb *inp;
1408 	struct mbuf *m;
1409 	size_t hdrsiz;
1410 	struct ip *ip;
1411 #ifdef INET6
1412 	struct ip6_hdr *ip6;
1413 #endif /* INET6 */
1414 	struct tcphdr *th;
1415 
1416 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1417 		return 0;
1418 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1419 	if (!m)
1420 		return 0;
1421 
1422 #ifdef INET6
1423 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1424 		ip6 = mtod(m, struct ip6_hdr *);
1425 		th = (struct tcphdr *)(ip6 + 1);
1426 		m->m_pkthdr.len = m->m_len =
1427 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1428 		tcp_fillheaders(tp, ip6, th);
1429 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1430 	} else
1431 #endif /* INET6 */
1432       {
1433 	ip = mtod(m, struct ip *);
1434 	th = (struct tcphdr *)(ip + 1);
1435 	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1436 	tcp_fillheaders(tp, ip, th);
1437 	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1438       }
1439 
1440 	m_free(m);
1441 	return hdrsiz;
1442 }
1443 #endif /*IPSEC*/
1444 
1445 /*
1446  * Return a pointer to the cached information about the remote host.
1447  * The cached information is stored in the protocol specific part of
1448  * the route metrics.
1449  */
1450 struct rmxp_tao *
1451 tcp_gettaocache(inc)
1452 	struct in_conninfo *inc;
1453 {
1454 	struct rtentry *rt;
1455 
1456 #ifdef INET6
1457 	if (inc->inc_isipv6)
1458 		rt = tcp_rtlookup6(inc);
1459 	else
1460 #endif /* INET6 */
1461 	rt = tcp_rtlookup(inc);
1462 
1463 	/* Make sure this is a host route and is up. */
1464 	if (rt == NULL ||
1465 	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
1466 		return NULL;
1467 
1468 	return rmx_taop(rt->rt_rmx);
1469 }
1470 
1471 /*
1472  * Clear all the TAO cache entries, called from tcp_init.
1473  *
1474  * XXX
1475  * This routine is just an empty one, because we assume that the routing
1476  * routing tables are initialized at the same time when TCP, so there is
1477  * nothing in the cache left over.
1478  */
1479 static void
1480 tcp_cleartaocache()
1481 {
1482 }
1483 
1484 /*
1485  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1486  *
1487  * This code attempts to calculate the bandwidth-delay product as a
1488  * means of determining the optimal window size to maximize bandwidth,
1489  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1490  * routers.  This code also does a fairly good job keeping RTTs in check
1491  * across slow links like modems.  We implement an algorithm which is very
1492  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1493  * transmitter side of a TCP connection and so only effects the transmit
1494  * side of the connection.
1495  *
1496  * BACKGROUND:  TCP makes no provision for the management of buffer space
1497  * at the end points or at the intermediate routers and switches.  A TCP
1498  * stream, whether using NewReno or not, will eventually buffer as
1499  * many packets as it is able and the only reason this typically works is
1500  * due to the fairly small default buffers made available for a connection
1501  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1502  * scaling it is now fairly easy for even a single TCP connection to blow-out
1503  * all available buffer space not only on the local interface, but on
1504  * intermediate routers and switches as well.  NewReno makes a misguided
1505  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1506  * then backing off, then steadily increasing the window again until another
1507  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1508  * is only made worse as network loads increase and the idea of intentionally
1509  * blowing out network buffers is, frankly, a terrible way to manage network
1510  * resources.
1511  *
1512  * It is far better to limit the transmit window prior to the failure
1513  * condition being achieved.  There are two general ways to do this:  First
1514  * you can 'scan' through different transmit window sizes and locate the
1515  * point where the RTT stops increasing, indicating that you have filled the
1516  * pipe, then scan backwards until you note that RTT stops decreasing, then
1517  * repeat ad-infinitum.  This method works in principle but has severe
1518  * implementation issues due to RTT variances, timer granularity, and
1519  * instability in the algorithm which can lead to many false positives and
1520  * create oscillations as well as interact badly with other TCP streams
1521  * implementing the same algorithm.
1522  *
1523  * The second method is to limit the window to the bandwidth delay product
1524  * of the link.  This is the method we implement.  RTT variances and our
1525  * own manipulation of the congestion window, bwnd, can potentially
1526  * destabilize the algorithm.  For this reason we have to stabilize the
1527  * elements used to calculate the window.  We do this by using the minimum
1528  * observed RTT, the long term average of the observed bandwidth, and
1529  * by adding two segments worth of slop.  It isn't perfect but it is able
1530  * to react to changing conditions and gives us a very stable basis on
1531  * which to extend the algorithm.
1532  */
1533 void
1534 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1535 {
1536 	u_long bw;
1537 	u_long bwnd;
1538 	int save_ticks;
1539 
1540 	/*
1541 	 * If inflight_enable is disabled in the middle of a tcp connection,
1542 	 * make sure snd_bwnd is effectively disabled.
1543 	 */
1544 	if (tcp_inflight_enable == 0) {
1545 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1546 		tp->snd_bandwidth = 0;
1547 		return;
1548 	}
1549 
1550 	/*
1551 	 * Figure out the bandwidth.  Due to the tick granularity this
1552 	 * is a very rough number and it MUST be averaged over a fairly
1553 	 * long period of time.  XXX we need to take into account a link
1554 	 * that is not using all available bandwidth, but for now our
1555 	 * slop will ramp us up if this case occurs and the bandwidth later
1556 	 * increases.
1557 	 *
1558 	 * Note: if ticks rollover 'bw' may wind up negative.  We must
1559 	 * effectively reset t_bw_rtttime for this case.
1560 	 */
1561 	save_ticks = ticks;
1562 	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1563 		return;
1564 
1565 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1566 	    (save_ticks - tp->t_bw_rtttime);
1567 	tp->t_bw_rtttime = save_ticks;
1568 	tp->t_bw_rtseq = ack_seq;
1569 	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
1570 		return;
1571 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1572 
1573 	tp->snd_bandwidth = bw;
1574 
1575 	/*
1576 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1577 	 * segments.  The additional slop puts us squarely in the sweet
1578 	 * spot and also handles the bandwidth run-up case.  Without the
1579 	 * slop we could be locking ourselves into a lower bandwidth.
1580 	 *
1581 	 * Situations Handled:
1582 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1583 	 *	    high speed LANs, allowing larger TCP buffers to be
1584 	 *	    specified, and also does a good job preventing
1585 	 *	    over-queueing of packets over choke points like modems
1586 	 *	    (at least for the transmit side).
1587 	 *
1588 	 *	(2) Is able to handle changing network loads (bandwidth
1589 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1590 	 *	    increases).
1591 	 *
1592 	 *	(3) Theoretically should stabilize in the face of multiple
1593 	 *	    connections implementing the same algorithm (this may need
1594 	 *	    a little work).
1595 	 *
1596 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1597 	 *	    be adjusted with a sysctl but typically only needs to be on
1598 	 *	    very slow connections.  A value no smaller then 5 should
1599 	 *	    be used, but only reduce this default if you have no other
1600 	 *	    choice.
1601 	 */
1602 #define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1603 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * (int)tp->t_maxseg / 10;
1604 #undef USERTT
1605 
1606 	if (tcp_inflight_debug > 0) {
1607 		static int ltime;
1608 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1609 			ltime = ticks;
1610 			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1611 			    tp,
1612 			    bw,
1613 			    tp->t_rttbest,
1614 			    tp->t_srtt,
1615 			    bwnd
1616 			);
1617 		}
1618 	}
1619 	if ((long)bwnd < tcp_inflight_min)
1620 		bwnd = tcp_inflight_min;
1621 	if (bwnd > tcp_inflight_max)
1622 		bwnd = tcp_inflight_max;
1623 	if ((long)bwnd < tp->t_maxseg * 2)
1624 		bwnd = tp->t_maxseg * 2;
1625 	tp->snd_bwnd = bwnd;
1626 }
1627