xref: /dragonfly/sys/netinet/tcp_subr.c (revision 4e1af74f)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
67  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
68  */
69 
70 #include "opt_compat.h"
71 #include "opt_inet.h"
72 #include "opt_inet6.h"
73 #include "opt_ipsec.h"
74 #include "opt_tcpdebug.h"
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/callout.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 #include <sys/malloc.h>
82 #include <sys/mpipe.h>
83 #include <sys/mbuf.h>
84 #ifdef INET6
85 #include <sys/domain.h>
86 #endif
87 #include <sys/proc.h>
88 #include <sys/priv.h>
89 #include <sys/socket.h>
90 #include <sys/socketvar.h>
91 #include <sys/protosw.h>
92 #include <sys/random.h>
93 #include <sys/in_cksum.h>
94 #include <sys/ktr.h>
95 
96 #include <net/route.h>
97 #include <net/if.h>
98 #include <net/netisr.h>
99 
100 #define	_IP_VHL
101 #include <netinet/in.h>
102 #include <netinet/in_systm.h>
103 #include <netinet/ip.h>
104 #include <netinet/ip6.h>
105 #include <netinet/in_pcb.h>
106 #include <netinet6/in6_pcb.h>
107 #include <netinet/in_var.h>
108 #include <netinet/ip_var.h>
109 #include <netinet6/ip6_var.h>
110 #include <netinet/ip_icmp.h>
111 #ifdef INET6
112 #include <netinet/icmp6.h>
113 #endif
114 #include <netinet/tcp.h>
115 #include <netinet/tcp_fsm.h>
116 #include <netinet/tcp_seq.h>
117 #include <netinet/tcp_timer.h>
118 #include <netinet/tcp_timer2.h>
119 #include <netinet/tcp_var.h>
120 #include <netinet6/tcp6_var.h>
121 #include <netinet/tcpip.h>
122 #ifdef TCPDEBUG
123 #include <netinet/tcp_debug.h>
124 #endif
125 #include <netinet6/ip6protosw.h>
126 
127 #ifdef IPSEC
128 #include <netinet6/ipsec.h>
129 #include <netproto/key/key.h>
130 #ifdef INET6
131 #include <netinet6/ipsec6.h>
132 #endif
133 #endif
134 
135 #ifdef FAST_IPSEC
136 #include <netproto/ipsec/ipsec.h>
137 #ifdef INET6
138 #include <netproto/ipsec/ipsec6.h>
139 #endif
140 #define	IPSEC
141 #endif
142 
143 #include <sys/md5.h>
144 #include <machine/smp.h>
145 
146 #include <sys/msgport2.h>
147 #include <sys/mplock2.h>
148 #include <net/netmsg2.h>
149 
150 #if !defined(KTR_TCP)
151 #define KTR_TCP		KTR_ALL
152 #endif
153 /*
154 KTR_INFO_MASTER(tcp);
155 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
156 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
157 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
158 #define logtcp(name)	KTR_LOG(tcp_ ## name)
159 */
160 
161 #define TCP_IW_MAXSEGS_DFLT	4
162 #define TCP_IW_CAPSEGS_DFLT	3
163 
164 struct inpcbinfo tcbinfo[MAXCPU];
165 struct tcpcbackqhead tcpcbackq[MAXCPU];
166 
167 static struct lwkt_token tcp_port_token =
168 		LWKT_TOKEN_INITIALIZER(tcp_port_token);
169 
170 int tcp_mssdflt = TCP_MSS;
171 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
172     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
173 
174 #ifdef INET6
175 int tcp_v6mssdflt = TCP6_MSS;
176 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
177     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
178 #endif
179 
180 /*
181  * Minimum MSS we accept and use. This prevents DoS attacks where
182  * we are forced to a ridiculous low MSS like 20 and send hundreds
183  * of packets instead of one. The effect scales with the available
184  * bandwidth and quickly saturates the CPU and network interface
185  * with packet generation and sending. Set to zero to disable MINMSS
186  * checking. This setting prevents us from sending too small packets.
187  */
188 int tcp_minmss = TCP_MINMSS;
189 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
190     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
191 
192 #if 0
193 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
194 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
195     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
196 #endif
197 
198 int tcp_do_rfc1323 = 1;
199 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
200     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
201 
202 static int tcp_tcbhashsize = 0;
203 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
204      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
205 
206 static int do_tcpdrain = 1;
207 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
208      "Enable tcp_drain routine for extra help when low on mbufs");
209 
210 static int icmp_may_rst = 1;
211 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
212     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
213 
214 static int tcp_isn_reseed_interval = 0;
215 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
216     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
217 
218 /*
219  * TCP bandwidth limiting sysctls.  The inflight limiter is now turned on
220  * by default, but with generous values which should allow maximal
221  * bandwidth.  In particular, the slop defaults to 50 (5 packets).
222  *
223  * The reason for doing this is that the limiter is the only mechanism we
224  * have which seems to do a really good job preventing receiver RX rings
225  * on network interfaces from getting blown out.  Even though GigE/10GigE
226  * is supposed to flow control it looks like either it doesn't actually
227  * do it or Open Source drivers do not properly enable it.
228  *
229  * People using the limiter to reduce bottlenecks on slower WAN connections
230  * should set the slop to 20 (2 packets).
231  */
232 static int tcp_inflight_enable = 1;
233 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
234     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
235 
236 static int tcp_inflight_debug = 0;
237 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
238     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
239 
240 static int tcp_inflight_min = 6144;
241 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
242     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
243 
244 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
245 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
246     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
247 
248 static int tcp_inflight_stab = 50;
249 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
250     &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 3 packets)");
251 
252 static int tcp_do_rfc3390 = 1;
253 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
254     &tcp_do_rfc3390, 0,
255     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
256 
257 static u_long tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
258 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwmaxsegs, CTLFLAG_RW,
259     &tcp_iw_maxsegs, 0, "TCP IW segments max");
260 
261 static u_long tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
262 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwcapsegs, CTLFLAG_RW,
263     &tcp_iw_capsegs, 0, "TCP IW segments");
264 
265 int tcp_low_rtobase = 1;
266 SYSCTL_INT(_net_inet_tcp, OID_AUTO, low_rtobase, CTLFLAG_RW,
267     &tcp_low_rtobase, 0, "Lowering the Initial RTO (RFC 6298)");
268 
269 static int tcp_do_ncr = 1;
270 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr, CTLFLAG_RW,
271     &tcp_do_ncr, 0, "Non-Congestion Robustness (RFC 4653)");
272 
273 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
274 static struct malloc_pipe tcptemp_mpipe;
275 
276 static void tcp_willblock(void);
277 static void tcp_notify (struct inpcb *, int);
278 
279 struct tcp_stats tcpstats_percpu[MAXCPU];
280 #ifdef SMP
281 static int
282 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
283 {
284 	int cpu, error = 0;
285 
286 	for (cpu = 0; cpu < ncpus; ++cpu) {
287 		if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
288 					sizeof(struct tcp_stats))))
289 			break;
290 		if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
291 				       sizeof(struct tcp_stats))))
292 			break;
293 	}
294 
295 	return (error);
296 }
297 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
298     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
299 #else
300 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
301     &tcpstat, tcp_stats, "TCP statistics");
302 #endif
303 
304 /*
305  * Target size of TCP PCB hash tables. Must be a power of two.
306  *
307  * Note that this can be overridden by the kernel environment
308  * variable net.inet.tcp.tcbhashsize
309  */
310 #ifndef TCBHASHSIZE
311 #define	TCBHASHSIZE	512
312 #endif
313 
314 /*
315  * This is the actual shape of what we allocate using the zone
316  * allocator.  Doing it this way allows us to protect both structures
317  * using the same generation count, and also eliminates the overhead
318  * of allocating tcpcbs separately.  By hiding the structure here,
319  * we avoid changing most of the rest of the code (although it needs
320  * to be changed, eventually, for greater efficiency).
321  */
322 #define	ALIGNMENT	32
323 #define	ALIGNM1		(ALIGNMENT - 1)
324 struct	inp_tp {
325 	union {
326 		struct	inpcb inp;
327 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
328 	} inp_tp_u;
329 	struct	tcpcb tcb;
330 	struct	tcp_callout inp_tp_rexmt;
331 	struct	tcp_callout inp_tp_persist;
332 	struct	tcp_callout inp_tp_keep;
333 	struct	tcp_callout inp_tp_2msl;
334 	struct	tcp_callout inp_tp_delack;
335 	struct	netmsg_tcp_timer inp_tp_timermsg;
336 };
337 #undef ALIGNMENT
338 #undef ALIGNM1
339 
340 /*
341  * Tcp initialization
342  */
343 void
344 tcp_init(void)
345 {
346 	struct inpcbporthead *porthashbase;
347 	struct inpcbinfo *ticb;
348 	u_long porthashmask;
349 	int hashsize = TCBHASHSIZE;
350 	int cpu;
351 
352 	/*
353 	 * note: tcptemp is used for keepalives, and it is ok for an
354 	 * allocation to fail so do not specify MPF_INT.
355 	 */
356 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
357 		    25, -1, 0, NULL, NULL, NULL);
358 
359 	tcp_delacktime = TCPTV_DELACK;
360 	tcp_keepinit = TCPTV_KEEP_INIT;
361 	tcp_keepidle = TCPTV_KEEP_IDLE;
362 	tcp_keepintvl = TCPTV_KEEPINTVL;
363 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
364 	tcp_msl = TCPTV_MSL;
365 	tcp_rexmit_min = TCPTV_MIN;
366 	tcp_rexmit_slop = TCPTV_CPU_VAR;
367 
368 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
369 	if (!powerof2(hashsize)) {
370 		kprintf("WARNING: TCB hash size not a power of 2\n");
371 		hashsize = 512; /* safe default */
372 	}
373 	tcp_tcbhashsize = hashsize;
374 	porthashbase = hashinit(hashsize, M_PCB, &porthashmask);
375 
376 	for (cpu = 0; cpu < ncpus2; cpu++) {
377 		ticb = &tcbinfo[cpu];
378 		in_pcbinfo_init(ticb);
379 		ticb->cpu = cpu;
380 		ticb->hashbase = hashinit(hashsize, M_PCB,
381 					  &ticb->hashmask);
382 		ticb->porthashbase = porthashbase;
383 		ticb->porthashmask = porthashmask;
384 		ticb->porttoken = &tcp_port_token;
385 #if 0
386 		ticb->porthashbase = hashinit(hashsize, M_PCB,
387 					      &ticb->porthashmask);
388 #endif
389 		ticb->wildcardhashbase = hashinit(hashsize, M_PCB,
390 						  &ticb->wildcardhashmask);
391 		ticb->ipi_size = sizeof(struct inp_tp);
392 		TAILQ_INIT(&tcpcbackq[cpu]);
393 	}
394 
395 	tcp_reass_maxseg = nmbclusters / 16;
396 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
397 
398 #ifdef INET6
399 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
400 #else
401 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
402 #endif
403 	if (max_protohdr < TCP_MINPROTOHDR)
404 		max_protohdr = TCP_MINPROTOHDR;
405 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
406 		panic("tcp_init");
407 #undef TCP_MINPROTOHDR
408 
409 	/*
410 	 * Initialize TCP statistics counters for each CPU.
411 	 */
412 #ifdef SMP
413 	for (cpu = 0; cpu < ncpus; ++cpu) {
414 		bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
415 	}
416 #else
417 	bzero(&tcpstat, sizeof(struct tcp_stats));
418 #endif
419 
420 	syncache_init();
421 	netisr_register_rollup(tcp_willblock);
422 }
423 
424 static void
425 tcp_willblock(void)
426 {
427 	struct tcpcb *tp;
428 	int cpu = mycpu->gd_cpuid;
429 
430 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
431 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
432 		tp->t_flags &= ~TF_ONOUTPUTQ;
433 		TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
434 		tcp_output(tp);
435 	}
436 }
437 
438 /*
439  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
440  * tcp_template used to store this data in mbufs, but we now recopy it out
441  * of the tcpcb each time to conserve mbufs.
442  */
443 void
444 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr)
445 {
446 	struct inpcb *inp = tp->t_inpcb;
447 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
448 
449 #ifdef INET6
450 	if (inp->inp_vflag & INP_IPV6) {
451 		struct ip6_hdr *ip6;
452 
453 		ip6 = (struct ip6_hdr *)ip_ptr;
454 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
455 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
456 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
457 			(IPV6_VERSION & IPV6_VERSION_MASK);
458 		ip6->ip6_nxt = IPPROTO_TCP;
459 		ip6->ip6_plen = sizeof(struct tcphdr);
460 		ip6->ip6_src = inp->in6p_laddr;
461 		ip6->ip6_dst = inp->in6p_faddr;
462 		tcp_hdr->th_sum = 0;
463 	} else
464 #endif
465 	{
466 		struct ip *ip = (struct ip *) ip_ptr;
467 
468 		ip->ip_vhl = IP_VHL_BORING;
469 		ip->ip_tos = 0;
470 		ip->ip_len = 0;
471 		ip->ip_id = 0;
472 		ip->ip_off = 0;
473 		ip->ip_ttl = 0;
474 		ip->ip_sum = 0;
475 		ip->ip_p = IPPROTO_TCP;
476 		ip->ip_src = inp->inp_laddr;
477 		ip->ip_dst = inp->inp_faddr;
478 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
479 				    ip->ip_dst.s_addr,
480 				    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
481 	}
482 
483 	tcp_hdr->th_sport = inp->inp_lport;
484 	tcp_hdr->th_dport = inp->inp_fport;
485 	tcp_hdr->th_seq = 0;
486 	tcp_hdr->th_ack = 0;
487 	tcp_hdr->th_x2 = 0;
488 	tcp_hdr->th_off = 5;
489 	tcp_hdr->th_flags = 0;
490 	tcp_hdr->th_win = 0;
491 	tcp_hdr->th_urp = 0;
492 }
493 
494 /*
495  * Create template to be used to send tcp packets on a connection.
496  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
497  * use for this function is in keepalives, which use tcp_respond.
498  */
499 struct tcptemp *
500 tcp_maketemplate(struct tcpcb *tp)
501 {
502 	struct tcptemp *tmp;
503 
504 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
505 		return (NULL);
506 	tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t);
507 	return (tmp);
508 }
509 
510 void
511 tcp_freetemplate(struct tcptemp *tmp)
512 {
513 	mpipe_free(&tcptemp_mpipe, tmp);
514 }
515 
516 /*
517  * Send a single message to the TCP at address specified by
518  * the given TCP/IP header.  If m == NULL, then we make a copy
519  * of the tcpiphdr at ti and send directly to the addressed host.
520  * This is used to force keep alive messages out using the TCP
521  * template for a connection.  If flags are given then we send
522  * a message back to the TCP which originated the * segment ti,
523  * and discard the mbuf containing it and any other attached mbufs.
524  *
525  * In any case the ack and sequence number of the transmitted
526  * segment are as specified by the parameters.
527  *
528  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
529  */
530 void
531 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
532 	    tcp_seq ack, tcp_seq seq, int flags)
533 {
534 	int tlen;
535 	int win = 0;
536 	struct route *ro = NULL;
537 	struct route sro;
538 	struct ip *ip = ipgen;
539 	struct tcphdr *nth;
540 	int ipflags = 0;
541 	struct route_in6 *ro6 = NULL;
542 	struct route_in6 sro6;
543 	struct ip6_hdr *ip6 = ipgen;
544 	boolean_t use_tmpro = TRUE;
545 #ifdef INET6
546 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
547 #else
548 	const boolean_t isipv6 = FALSE;
549 #endif
550 
551 	if (tp != NULL) {
552 		if (!(flags & TH_RST)) {
553 			win = ssb_space(&tp->t_inpcb->inp_socket->so_rcv);
554 			if (win < 0)
555 				win = 0;
556 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
557 				win = (long)TCP_MAXWIN << tp->rcv_scale;
558 		}
559 		/*
560 		 * Don't use the route cache of a listen socket,
561 		 * it is not MPSAFE; use temporary route cache.
562 		 */
563 		if (tp->t_state != TCPS_LISTEN) {
564 			if (isipv6)
565 				ro6 = &tp->t_inpcb->in6p_route;
566 			else
567 				ro = &tp->t_inpcb->inp_route;
568 			use_tmpro = FALSE;
569 		}
570 	}
571 	if (use_tmpro) {
572 		if (isipv6) {
573 			ro6 = &sro6;
574 			bzero(ro6, sizeof *ro6);
575 		} else {
576 			ro = &sro;
577 			bzero(ro, sizeof *ro);
578 		}
579 	}
580 	if (m == NULL) {
581 		m = m_gethdr(MB_DONTWAIT, MT_HEADER);
582 		if (m == NULL)
583 			return;
584 		tlen = 0;
585 		m->m_data += max_linkhdr;
586 		if (isipv6) {
587 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
588 			ip6 = mtod(m, struct ip6_hdr *);
589 			nth = (struct tcphdr *)(ip6 + 1);
590 		} else {
591 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
592 			ip = mtod(m, struct ip *);
593 			nth = (struct tcphdr *)(ip + 1);
594 		}
595 		bcopy(th, nth, sizeof(struct tcphdr));
596 		flags = TH_ACK;
597 	} else {
598 		m_freem(m->m_next);
599 		m->m_next = NULL;
600 		m->m_data = (caddr_t)ipgen;
601 		/* m_len is set later */
602 		tlen = 0;
603 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
604 		if (isipv6) {
605 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
606 			nth = (struct tcphdr *)(ip6 + 1);
607 		} else {
608 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
609 			nth = (struct tcphdr *)(ip + 1);
610 		}
611 		if (th != nth) {
612 			/*
613 			 * this is usually a case when an extension header
614 			 * exists between the IPv6 header and the
615 			 * TCP header.
616 			 */
617 			nth->th_sport = th->th_sport;
618 			nth->th_dport = th->th_dport;
619 		}
620 		xchg(nth->th_dport, nth->th_sport, n_short);
621 #undef xchg
622 	}
623 	if (isipv6) {
624 		ip6->ip6_flow = 0;
625 		ip6->ip6_vfc = IPV6_VERSION;
626 		ip6->ip6_nxt = IPPROTO_TCP;
627 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
628 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
629 	} else {
630 		tlen += sizeof(struct tcpiphdr);
631 		ip->ip_len = tlen;
632 		ip->ip_ttl = ip_defttl;
633 	}
634 	m->m_len = tlen;
635 	m->m_pkthdr.len = tlen;
636 	m->m_pkthdr.rcvif = NULL;
637 	nth->th_seq = htonl(seq);
638 	nth->th_ack = htonl(ack);
639 	nth->th_x2 = 0;
640 	nth->th_off = sizeof(struct tcphdr) >> 2;
641 	nth->th_flags = flags;
642 	if (tp != NULL)
643 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
644 	else
645 		nth->th_win = htons((u_short)win);
646 	nth->th_urp = 0;
647 	if (isipv6) {
648 		nth->th_sum = 0;
649 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
650 					sizeof(struct ip6_hdr),
651 					tlen - sizeof(struct ip6_hdr));
652 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
653 					       (ro6 && ro6->ro_rt) ?
654 						ro6->ro_rt->rt_ifp : NULL);
655 	} else {
656 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
657 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
658 		m->m_pkthdr.csum_flags = CSUM_TCP;
659 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
660 	}
661 #ifdef TCPDEBUG
662 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
663 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
664 #endif
665 	if (isipv6) {
666 		ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
667 			   tp ? tp->t_inpcb : NULL);
668 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
669 			RTFREE(ro6->ro_rt);
670 			ro6->ro_rt = NULL;
671 		}
672 	} else {
673 		ipflags |= IP_DEBUGROUTE;
674 		ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
675 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
676 			RTFREE(ro->ro_rt);
677 			ro->ro_rt = NULL;
678 		}
679 	}
680 }
681 
682 /*
683  * Create a new TCP control block, making an
684  * empty reassembly queue and hooking it to the argument
685  * protocol control block.  The `inp' parameter must have
686  * come from the zone allocator set up in tcp_init().
687  */
688 struct tcpcb *
689 tcp_newtcpcb(struct inpcb *inp)
690 {
691 	struct inp_tp *it;
692 	struct tcpcb *tp;
693 #ifdef INET6
694 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
695 #else
696 	const boolean_t isipv6 = FALSE;
697 #endif
698 
699 	it = (struct inp_tp *)inp;
700 	tp = &it->tcb;
701 	bzero(tp, sizeof(struct tcpcb));
702 	TAILQ_INIT(&tp->t_segq);
703 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
704 	tp->t_rxtthresh = tcprexmtthresh;
705 
706 	/* Set up our timeouts. */
707 	tp->tt_rexmt = &it->inp_tp_rexmt;
708 	tp->tt_persist = &it->inp_tp_persist;
709 	tp->tt_keep = &it->inp_tp_keep;
710 	tp->tt_2msl = &it->inp_tp_2msl;
711 	tp->tt_delack = &it->inp_tp_delack;
712 	tcp_inittimers(tp);
713 
714 	/*
715 	 * Zero out timer message.  We don't create it here,
716 	 * since the current CPU may not be the owner of this
717 	 * inpcb.
718 	 */
719 	tp->tt_msg = &it->inp_tp_timermsg;
720 	bzero(tp->tt_msg, sizeof(*tp->tt_msg));
721 
722 	tp->t_keepinit = tcp_keepinit;
723 	tp->t_keepidle = tcp_keepidle;
724 	tp->t_keepintvl = tcp_keepintvl;
725 	tp->t_keepcnt = tcp_keepcnt;
726 	tp->t_maxidle = tp->t_keepintvl * tp->t_keepcnt;
727 
728 	if (tcp_do_ncr)
729 		tp->t_flags |= TF_NCR;
730 	if (tcp_do_rfc1323)
731 		tp->t_flags |= (TF_REQ_SCALE | TF_REQ_TSTMP);
732 
733 	tp->t_inpcb = inp;	/* XXX */
734 	tp->t_state = TCPS_CLOSED;
735 	/*
736 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
737 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
738 	 * reasonable initial retransmit time.
739 	 */
740 	tp->t_srtt = TCPTV_SRTTBASE;
741 	tp->t_rttvar =
742 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
743 	tp->t_rttmin = tcp_rexmit_min;
744 	tp->t_rxtcur = TCPTV_RTOBASE;
745 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
746 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
747 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
748 	tp->snd_last = ticks;
749 	tp->t_rcvtime = ticks;
750 	/*
751 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
752 	 * because the socket may be bound to an IPv6 wildcard address,
753 	 * which may match an IPv4-mapped IPv6 address.
754 	 */
755 	inp->inp_ip_ttl = ip_defttl;
756 	inp->inp_ppcb = tp;
757 	tcp_sack_tcpcb_init(tp);
758 	return (tp);		/* XXX */
759 }
760 
761 /*
762  * Drop a TCP connection, reporting the specified error.
763  * If connection is synchronized, then send a RST to peer.
764  */
765 struct tcpcb *
766 tcp_drop(struct tcpcb *tp, int error)
767 {
768 	struct socket *so = tp->t_inpcb->inp_socket;
769 
770 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
771 		tp->t_state = TCPS_CLOSED;
772 		tcp_output(tp);
773 		tcpstat.tcps_drops++;
774 	} else
775 		tcpstat.tcps_conndrops++;
776 	if (error == ETIMEDOUT && tp->t_softerror)
777 		error = tp->t_softerror;
778 	so->so_error = error;
779 	return (tcp_close(tp));
780 }
781 
782 #ifdef SMP
783 
784 struct netmsg_listen_detach {
785 	struct netmsg_base	base;
786 	struct tcpcb		*nm_tp;
787 };
788 
789 static void
790 tcp_listen_detach_handler(netmsg_t msg)
791 {
792 	struct netmsg_listen_detach *nmsg = (struct netmsg_listen_detach *)msg;
793 	struct tcpcb *tp = nmsg->nm_tp;
794 	int cpu = mycpuid, nextcpu;
795 
796 	if (tp->t_flags & TF_LISTEN)
797 		syncache_destroy(tp);
798 
799 	in_pcbremwildcardhash_oncpu(tp->t_inpcb, &tcbinfo[cpu]);
800 
801 	nextcpu = cpu + 1;
802 	if (nextcpu < ncpus2)
803 		lwkt_forwardmsg(cpu_portfn(nextcpu), &nmsg->base.lmsg);
804 	else
805 		lwkt_replymsg(&nmsg->base.lmsg, 0);
806 }
807 
808 #endif
809 
810 /*
811  * Close a TCP control block:
812  *	discard all space held by the tcp
813  *	discard internet protocol block
814  *	wake up any sleepers
815  */
816 struct tcpcb *
817 tcp_close(struct tcpcb *tp)
818 {
819 	struct tseg_qent *q;
820 	struct inpcb *inp = tp->t_inpcb;
821 	struct socket *so = inp->inp_socket;
822 	struct rtentry *rt;
823 	boolean_t dosavessthresh;
824 #ifdef INET6
825 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
826 	boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
827 #else
828 	const boolean_t isipv6 = FALSE;
829 #endif
830 
831 #ifdef SMP
832 	/*
833 	 * INP_WILDCARD_MP indicates that listen(2) has been called on
834 	 * this socket.  This implies:
835 	 * - A wildcard inp's hash is replicated for each protocol thread.
836 	 * - Syncache for this inp grows independently in each protocol
837 	 *   thread.
838 	 * - There is more than one cpu
839 	 *
840 	 * We have to chain a message to the rest of the protocol threads
841 	 * to cleanup the wildcard hash and the syncache.  The cleanup
842 	 * in the current protocol thread is defered till the end of this
843 	 * function.
844 	 *
845 	 * NOTE:
846 	 * After cleanup the inp's hash and syncache entries, this inp will
847 	 * no longer be available to the rest of the protocol threads, so we
848 	 * are safe to whack the inp in the following code.
849 	 */
850 	if (inp->inp_flags & INP_WILDCARD_MP) {
851 		struct netmsg_listen_detach nmsg;
852 
853 		KKASSERT(so->so_port == cpu_portfn(0));
854 		KKASSERT(&curthread->td_msgport == cpu_portfn(0));
855 		KKASSERT(inp->inp_pcbinfo == &tcbinfo[0]);
856 
857 		netmsg_init(&nmsg.base, NULL, &curthread->td_msgport,
858 			    MSGF_PRIORITY, tcp_listen_detach_handler);
859 		nmsg.nm_tp = tp;
860 		lwkt_domsg(cpu_portfn(1), &nmsg.base.lmsg, 0);
861 
862 		inp->inp_flags &= ~INP_WILDCARD_MP;
863 	}
864 #endif
865 
866 	KKASSERT(tp->t_state != TCPS_TERMINATING);
867 	tp->t_state = TCPS_TERMINATING;
868 
869 	/*
870 	 * Make sure that all of our timers are stopped before we
871 	 * delete the PCB.  For listen TCP socket (tp->tt_msg == NULL),
872 	 * timers are never used.  If timer message is never created
873 	 * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
874 	 */
875 	if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
876 		tcp_callout_stop(tp, tp->tt_rexmt);
877 		tcp_callout_stop(tp, tp->tt_persist);
878 		tcp_callout_stop(tp, tp->tt_keep);
879 		tcp_callout_stop(tp, tp->tt_2msl);
880 		tcp_callout_stop(tp, tp->tt_delack);
881 	}
882 
883 	if (tp->t_flags & TF_ONOUTPUTQ) {
884 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
885 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
886 		tp->t_flags &= ~TF_ONOUTPUTQ;
887 	}
888 
889 	/*
890 	 * If we got enough samples through the srtt filter,
891 	 * save the rtt and rttvar in the routing entry.
892 	 * 'Enough' is arbitrarily defined as the 16 samples.
893 	 * 16 samples is enough for the srtt filter to converge
894 	 * to within 5% of the correct value; fewer samples and
895 	 * we could save a very bogus rtt.
896 	 *
897 	 * Don't update the default route's characteristics and don't
898 	 * update anything that the user "locked".
899 	 */
900 	if (tp->t_rttupdated >= 16) {
901 		u_long i = 0;
902 
903 		if (isipv6) {
904 			struct sockaddr_in6 *sin6;
905 
906 			if ((rt = inp->in6p_route.ro_rt) == NULL)
907 				goto no_valid_rt;
908 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
909 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
910 				goto no_valid_rt;
911 		} else
912 			if ((rt = inp->inp_route.ro_rt) == NULL ||
913 			    ((struct sockaddr_in *)rt_key(rt))->
914 			     sin_addr.s_addr == INADDR_ANY)
915 				goto no_valid_rt;
916 
917 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
918 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
919 			if (rt->rt_rmx.rmx_rtt && i)
920 				/*
921 				 * filter this update to half the old & half
922 				 * the new values, converting scale.
923 				 * See route.h and tcp_var.h for a
924 				 * description of the scaling constants.
925 				 */
926 				rt->rt_rmx.rmx_rtt =
927 				    (rt->rt_rmx.rmx_rtt + i) / 2;
928 			else
929 				rt->rt_rmx.rmx_rtt = i;
930 			tcpstat.tcps_cachedrtt++;
931 		}
932 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
933 			i = tp->t_rttvar *
934 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
935 			if (rt->rt_rmx.rmx_rttvar && i)
936 				rt->rt_rmx.rmx_rttvar =
937 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
938 			else
939 				rt->rt_rmx.rmx_rttvar = i;
940 			tcpstat.tcps_cachedrttvar++;
941 		}
942 		/*
943 		 * The old comment here said:
944 		 * update the pipelimit (ssthresh) if it has been updated
945 		 * already or if a pipesize was specified & the threshhold
946 		 * got below half the pipesize.  I.e., wait for bad news
947 		 * before we start updating, then update on both good
948 		 * and bad news.
949 		 *
950 		 * But we want to save the ssthresh even if no pipesize is
951 		 * specified explicitly in the route, because such
952 		 * connections still have an implicit pipesize specified
953 		 * by the global tcp_sendspace.  In the absence of a reliable
954 		 * way to calculate the pipesize, it will have to do.
955 		 */
956 		i = tp->snd_ssthresh;
957 		if (rt->rt_rmx.rmx_sendpipe != 0)
958 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
959 		else
960 			dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
961 		if (dosavessthresh ||
962 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
963 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
964 			/*
965 			 * convert the limit from user data bytes to
966 			 * packets then to packet data bytes.
967 			 */
968 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
969 			if (i < 2)
970 				i = 2;
971 			i *= tp->t_maxseg +
972 			     (isipv6 ?
973 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
974 			      sizeof(struct tcpiphdr));
975 			if (rt->rt_rmx.rmx_ssthresh)
976 				rt->rt_rmx.rmx_ssthresh =
977 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
978 			else
979 				rt->rt_rmx.rmx_ssthresh = i;
980 			tcpstat.tcps_cachedssthresh++;
981 		}
982 	}
983 
984 no_valid_rt:
985 	/* free the reassembly queue, if any */
986 	while((q = TAILQ_FIRST(&tp->t_segq)) != NULL) {
987 		TAILQ_REMOVE(&tp->t_segq, q, tqe_q);
988 		m_freem(q->tqe_m);
989 		kfree(q, M_TSEGQ);
990 		atomic_add_int(&tcp_reass_qsize, -1);
991 	}
992 	/* throw away SACK blocks in scoreboard*/
993 	if (TCP_DO_SACK(tp))
994 		tcp_sack_destroy(&tp->scb);
995 
996 	inp->inp_ppcb = NULL;
997 	soisdisconnected(so);
998 	/* note: pcb detached later on */
999 
1000 	tcp_destroy_timermsg(tp);
1001 
1002 	if (tp->t_flags & TF_LISTEN)
1003 		syncache_destroy(tp);
1004 
1005 	/*
1006 	 * NOTE:
1007 	 * pcbdetach removes any wildcard hash entry on the current CPU.
1008 	 */
1009 #ifdef INET6
1010 	if (isafinet6)
1011 		in6_pcbdetach(inp);
1012 	else
1013 #endif
1014 		in_pcbdetach(inp);
1015 
1016 	tcpstat.tcps_closed++;
1017 	return (NULL);
1018 }
1019 
1020 static __inline void
1021 tcp_drain_oncpu(struct inpcbhead *head)
1022 {
1023 	struct inpcb *marker;
1024 	struct inpcb *inpb;
1025 	struct tcpcb *tcpb;
1026 	struct tseg_qent *te;
1027 
1028 	/*
1029 	 * Allows us to block while running the list
1030 	 */
1031 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1032 	marker->inp_flags |= INP_PLACEMARKER;
1033 	LIST_INSERT_HEAD(head, marker, inp_list);
1034 
1035 	while ((inpb = LIST_NEXT(marker, inp_list)) != NULL) {
1036 		if ((inpb->inp_flags & INP_PLACEMARKER) == 0 &&
1037 		    (tcpb = intotcpcb(inpb)) != NULL &&
1038 		    (te = TAILQ_FIRST(&tcpb->t_segq)) != NULL) {
1039 			TAILQ_REMOVE(&tcpb->t_segq, te, tqe_q);
1040 			if (te->tqe_th->th_flags & TH_FIN)
1041 				tcpb->t_flags &= ~TF_QUEDFIN;
1042 			m_freem(te->tqe_m);
1043 			kfree(te, M_TSEGQ);
1044 			atomic_add_int(&tcp_reass_qsize, -1);
1045 			/* retry */
1046 		} else {
1047 			LIST_REMOVE(marker, inp_list);
1048 			LIST_INSERT_AFTER(inpb, marker, inp_list);
1049 		}
1050 	}
1051 	LIST_REMOVE(marker, inp_list);
1052 	kfree(marker, M_TEMP);
1053 }
1054 
1055 #ifdef SMP
1056 struct netmsg_tcp_drain {
1057 	struct netmsg_base	base;
1058 	struct inpcbhead	*nm_head;
1059 };
1060 
1061 static void
1062 tcp_drain_handler(netmsg_t msg)
1063 {
1064 	struct netmsg_tcp_drain *nm = (void *)msg;
1065 
1066 	tcp_drain_oncpu(nm->nm_head);
1067 	lwkt_replymsg(&nm->base.lmsg, 0);
1068 }
1069 #endif
1070 
1071 void
1072 tcp_drain(void)
1073 {
1074 #ifdef SMP
1075 	int cpu;
1076 #endif
1077 
1078 	if (!do_tcpdrain)
1079 		return;
1080 
1081 	/*
1082 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1083 	 * if there is one...
1084 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1085 	 *	reassembly queue should be flushed, but in a situation
1086 	 *	where we're really low on mbufs, this is potentially
1087 	 *	useful.
1088 	 */
1089 #ifdef SMP
1090 	for (cpu = 0; cpu < ncpus2; cpu++) {
1091 		struct netmsg_tcp_drain *nm;
1092 
1093 		if (cpu == mycpu->gd_cpuid) {
1094 			tcp_drain_oncpu(&tcbinfo[cpu].pcblisthead);
1095 		} else {
1096 			nm = kmalloc(sizeof(struct netmsg_tcp_drain),
1097 				     M_LWKTMSG, M_NOWAIT);
1098 			if (nm == NULL)
1099 				continue;
1100 			netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1101 				    0, tcp_drain_handler);
1102 			nm->nm_head = &tcbinfo[cpu].pcblisthead;
1103 			lwkt_sendmsg(cpu_portfn(cpu), &nm->base.lmsg);
1104 		}
1105 	}
1106 #else
1107 	tcp_drain_oncpu(&tcbinfo[0].pcblisthead);
1108 #endif
1109 }
1110 
1111 /*
1112  * Notify a tcp user of an asynchronous error;
1113  * store error as soft error, but wake up user
1114  * (for now, won't do anything until can select for soft error).
1115  *
1116  * Do not wake up user since there currently is no mechanism for
1117  * reporting soft errors (yet - a kqueue filter may be added).
1118  */
1119 static void
1120 tcp_notify(struct inpcb *inp, int error)
1121 {
1122 	struct tcpcb *tp = intotcpcb(inp);
1123 
1124 	/*
1125 	 * Ignore some errors if we are hooked up.
1126 	 * If connection hasn't completed, has retransmitted several times,
1127 	 * and receives a second error, give up now.  This is better
1128 	 * than waiting a long time to establish a connection that
1129 	 * can never complete.
1130 	 */
1131 	if (tp->t_state == TCPS_ESTABLISHED &&
1132 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1133 	      error == EHOSTDOWN)) {
1134 		return;
1135 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1136 	    tp->t_softerror)
1137 		tcp_drop(tp, error);
1138 	else
1139 		tp->t_softerror = error;
1140 #if 0
1141 	wakeup(&so->so_timeo);
1142 	sorwakeup(so);
1143 	sowwakeup(so);
1144 #endif
1145 }
1146 
1147 static int
1148 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1149 {
1150 	int error, i, n;
1151 	struct inpcb *marker;
1152 	struct inpcb *inp;
1153 	globaldata_t gd;
1154 	int origcpu, ccpu;
1155 
1156 	error = 0;
1157 	n = 0;
1158 
1159 	/*
1160 	 * The process of preparing the TCB list is too time-consuming and
1161 	 * resource-intensive to repeat twice on every request.
1162 	 */
1163 	if (req->oldptr == NULL) {
1164 		for (ccpu = 0; ccpu < ncpus; ++ccpu) {
1165 			gd = globaldata_find(ccpu);
1166 			n += tcbinfo[gd->gd_cpuid].ipi_count;
1167 		}
1168 		req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1169 		return (0);
1170 	}
1171 
1172 	if (req->newptr != NULL)
1173 		return (EPERM);
1174 
1175 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1176 	marker->inp_flags |= INP_PLACEMARKER;
1177 
1178 	/*
1179 	 * OK, now we're committed to doing something.  Run the inpcb list
1180 	 * for each cpu in the system and construct the output.  Use a
1181 	 * list placemarker to deal with list changes occuring during
1182 	 * copyout blockages (but otherwise depend on being on the correct
1183 	 * cpu to avoid races).
1184 	 */
1185 	origcpu = mycpu->gd_cpuid;
1186 	for (ccpu = 1; ccpu <= ncpus && error == 0; ++ccpu) {
1187 		globaldata_t rgd;
1188 		caddr_t inp_ppcb;
1189 		struct xtcpcb xt;
1190 		int cpu_id;
1191 
1192 		cpu_id = (origcpu + ccpu) % ncpus;
1193 		if ((smp_active_mask & CPUMASK(cpu_id)) == 0)
1194 			continue;
1195 		rgd = globaldata_find(cpu_id);
1196 		lwkt_setcpu_self(rgd);
1197 
1198 		n = tcbinfo[cpu_id].ipi_count;
1199 
1200 		LIST_INSERT_HEAD(&tcbinfo[cpu_id].pcblisthead, marker, inp_list);
1201 		i = 0;
1202 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1203 			/*
1204 			 * process a snapshot of pcbs, ignoring placemarkers
1205 			 * and using our own to allow SYSCTL_OUT to block.
1206 			 */
1207 			LIST_REMOVE(marker, inp_list);
1208 			LIST_INSERT_AFTER(inp, marker, inp_list);
1209 
1210 			if (inp->inp_flags & INP_PLACEMARKER)
1211 				continue;
1212 			if (prison_xinpcb(req->td, inp))
1213 				continue;
1214 
1215 			xt.xt_len = sizeof xt;
1216 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1217 			inp_ppcb = inp->inp_ppcb;
1218 			if (inp_ppcb != NULL)
1219 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1220 			else
1221 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1222 			if (inp->inp_socket)
1223 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1224 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1225 				break;
1226 			++i;
1227 		}
1228 		LIST_REMOVE(marker, inp_list);
1229 		if (error == 0 && i < n) {
1230 			bzero(&xt, sizeof xt);
1231 			xt.xt_len = sizeof xt;
1232 			while (i < n) {
1233 				error = SYSCTL_OUT(req, &xt, sizeof xt);
1234 				if (error)
1235 					break;
1236 				++i;
1237 			}
1238 		}
1239 	}
1240 
1241 	/*
1242 	 * Make sure we are on the same cpu we were on originally, since
1243 	 * higher level callers expect this.  Also don't pollute caches with
1244 	 * migrated userland data by (eventually) returning to userland
1245 	 * on a different cpu.
1246 	 */
1247 	lwkt_setcpu_self(globaldata_find(origcpu));
1248 	kfree(marker, M_TEMP);
1249 	return (error);
1250 }
1251 
1252 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1253 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1254 
1255 static int
1256 tcp_getcred(SYSCTL_HANDLER_ARGS)
1257 {
1258 	struct sockaddr_in addrs[2];
1259 	struct inpcb *inp;
1260 	int cpu;
1261 	int error;
1262 
1263 	error = priv_check(req->td, PRIV_ROOT);
1264 	if (error != 0)
1265 		return (error);
1266 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1267 	if (error != 0)
1268 		return (error);
1269 	crit_enter();
1270 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1271 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1272 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1273 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1274 	if (inp == NULL || inp->inp_socket == NULL) {
1275 		error = ENOENT;
1276 		goto out;
1277 	}
1278 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1279 out:
1280 	crit_exit();
1281 	return (error);
1282 }
1283 
1284 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1285     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1286 
1287 #ifdef INET6
1288 static int
1289 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1290 {
1291 	struct sockaddr_in6 addrs[2];
1292 	struct inpcb *inp;
1293 	int error;
1294 	boolean_t mapped = FALSE;
1295 
1296 	error = priv_check(req->td, PRIV_ROOT);
1297 	if (error != 0)
1298 		return (error);
1299 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1300 	if (error != 0)
1301 		return (error);
1302 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1303 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1304 			mapped = TRUE;
1305 		else
1306 			return (EINVAL);
1307 	}
1308 	crit_enter();
1309 	if (mapped) {
1310 		inp = in_pcblookup_hash(&tcbinfo[0],
1311 		    *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1312 		    addrs[1].sin6_port,
1313 		    *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1314 		    addrs[0].sin6_port,
1315 		    0, NULL);
1316 	} else {
1317 		inp = in6_pcblookup_hash(&tcbinfo[0],
1318 		    &addrs[1].sin6_addr, addrs[1].sin6_port,
1319 		    &addrs[0].sin6_addr, addrs[0].sin6_port,
1320 		    0, NULL);
1321 	}
1322 	if (inp == NULL || inp->inp_socket == NULL) {
1323 		error = ENOENT;
1324 		goto out;
1325 	}
1326 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1327 out:
1328 	crit_exit();
1329 	return (error);
1330 }
1331 
1332 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1333 	    0, 0,
1334 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1335 #endif
1336 
1337 struct netmsg_tcp_notify {
1338 	struct netmsg_base base;
1339 	void		(*nm_notify)(struct inpcb *, int);
1340 	struct in_addr	nm_faddr;
1341 	int		nm_arg;
1342 };
1343 
1344 static void
1345 tcp_notifyall_oncpu(netmsg_t msg)
1346 {
1347 	struct netmsg_tcp_notify *nm = (struct netmsg_tcp_notify *)msg;
1348 	int nextcpu;
1349 
1350 	in_pcbnotifyall(&tcbinfo[mycpuid].pcblisthead, nm->nm_faddr,
1351 			nm->nm_arg, nm->nm_notify);
1352 
1353 	nextcpu = mycpuid + 1;
1354 	if (nextcpu < ncpus2)
1355 		lwkt_forwardmsg(cpu_portfn(nextcpu), &nm->base.lmsg);
1356 	else
1357 		lwkt_replymsg(&nm->base.lmsg, 0);
1358 }
1359 
1360 void
1361 tcp_ctlinput(netmsg_t msg)
1362 {
1363 	int cmd = msg->ctlinput.nm_cmd;
1364 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1365 	struct ip *ip = msg->ctlinput.nm_extra;
1366 	struct tcphdr *th;
1367 	struct in_addr faddr;
1368 	struct inpcb *inp;
1369 	struct tcpcb *tp;
1370 	void (*notify)(struct inpcb *, int) = tcp_notify;
1371 	tcp_seq icmpseq;
1372 	int arg, cpu;
1373 
1374 	if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1375 		goto done;
1376 	}
1377 
1378 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1379 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1380 		goto done;
1381 
1382 	arg = inetctlerrmap[cmd];
1383 	if (cmd == PRC_QUENCH) {
1384 		notify = tcp_quench;
1385 	} else if (icmp_may_rst &&
1386 		   (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1387 		    cmd == PRC_UNREACH_PORT ||
1388 		    cmd == PRC_TIMXCEED_INTRANS) &&
1389 		   ip != NULL) {
1390 		notify = tcp_drop_syn_sent;
1391 	} else if (cmd == PRC_MSGSIZE) {
1392 		struct icmp *icmp = (struct icmp *)
1393 		    ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1394 
1395 		arg = ntohs(icmp->icmp_nextmtu);
1396 		notify = tcp_mtudisc;
1397 	} else if (PRC_IS_REDIRECT(cmd)) {
1398 		ip = NULL;
1399 		notify = in_rtchange;
1400 	} else if (cmd == PRC_HOSTDEAD) {
1401 		ip = NULL;
1402 	}
1403 
1404 	if (ip != NULL) {
1405 		crit_enter();
1406 		th = (struct tcphdr *)((caddr_t)ip +
1407 				       (IP_VHL_HL(ip->ip_vhl) << 2));
1408 		cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
1409 				  ip->ip_src.s_addr, th->th_sport);
1410 		inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
1411 					ip->ip_src, th->th_sport, 0, NULL);
1412 		if ((inp != NULL) && (inp->inp_socket != NULL)) {
1413 			icmpseq = htonl(th->th_seq);
1414 			tp = intotcpcb(inp);
1415 			if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1416 			    SEQ_LT(icmpseq, tp->snd_max))
1417 				(*notify)(inp, arg);
1418 		} else {
1419 			struct in_conninfo inc;
1420 
1421 			inc.inc_fport = th->th_dport;
1422 			inc.inc_lport = th->th_sport;
1423 			inc.inc_faddr = faddr;
1424 			inc.inc_laddr = ip->ip_src;
1425 #ifdef INET6
1426 			inc.inc_isipv6 = 0;
1427 #endif
1428 			syncache_unreach(&inc, th);
1429 		}
1430 		crit_exit();
1431 	} else {
1432 		struct netmsg_tcp_notify *nm;
1433 
1434 		KKASSERT(&curthread->td_msgport == cpu_portfn(0));
1435 		nm = kmalloc(sizeof(*nm), M_LWKTMSG, M_INTWAIT);
1436 		netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1437 			    0, tcp_notifyall_oncpu);
1438 		nm->nm_faddr = faddr;
1439 		nm->nm_arg = arg;
1440 		nm->nm_notify = notify;
1441 
1442 		lwkt_sendmsg(cpu_portfn(0), &nm->base.lmsg);
1443 	}
1444 done:
1445 	lwkt_replymsg(&msg->lmsg, 0);
1446 }
1447 
1448 #ifdef INET6
1449 
1450 void
1451 tcp6_ctlinput(netmsg_t msg)
1452 {
1453 	int cmd = msg->ctlinput.nm_cmd;
1454 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1455 	void *d = msg->ctlinput.nm_extra;
1456 	struct tcphdr th;
1457 	void (*notify) (struct inpcb *, int) = tcp_notify;
1458 	struct ip6_hdr *ip6;
1459 	struct mbuf *m;
1460 	struct ip6ctlparam *ip6cp = NULL;
1461 	const struct sockaddr_in6 *sa6_src = NULL;
1462 	int off;
1463 	struct tcp_portonly {
1464 		u_int16_t th_sport;
1465 		u_int16_t th_dport;
1466 	} *thp;
1467 	int arg;
1468 
1469 	if (sa->sa_family != AF_INET6 ||
1470 	    sa->sa_len != sizeof(struct sockaddr_in6)) {
1471 		goto out;
1472 	}
1473 
1474 	arg = 0;
1475 	if (cmd == PRC_QUENCH)
1476 		notify = tcp_quench;
1477 	else if (cmd == PRC_MSGSIZE) {
1478 		struct ip6ctlparam *ip6cp = d;
1479 		struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1480 
1481 		arg = ntohl(icmp6->icmp6_mtu);
1482 		notify = tcp_mtudisc;
1483 	} else if (!PRC_IS_REDIRECT(cmd) &&
1484 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1485 		goto out;
1486 	}
1487 
1488 	/* if the parameter is from icmp6, decode it. */
1489 	if (d != NULL) {
1490 		ip6cp = (struct ip6ctlparam *)d;
1491 		m = ip6cp->ip6c_m;
1492 		ip6 = ip6cp->ip6c_ip6;
1493 		off = ip6cp->ip6c_off;
1494 		sa6_src = ip6cp->ip6c_src;
1495 	} else {
1496 		m = NULL;
1497 		ip6 = NULL;
1498 		off = 0;	/* fool gcc */
1499 		sa6_src = &sa6_any;
1500 	}
1501 
1502 	if (ip6 != NULL) {
1503 		struct in_conninfo inc;
1504 		/*
1505 		 * XXX: We assume that when IPV6 is non NULL,
1506 		 * M and OFF are valid.
1507 		 */
1508 
1509 		/* check if we can safely examine src and dst ports */
1510 		if (m->m_pkthdr.len < off + sizeof *thp)
1511 			goto out;
1512 
1513 		bzero(&th, sizeof th);
1514 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1515 
1516 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, th.th_dport,
1517 		    (struct sockaddr *)ip6cp->ip6c_src,
1518 		    th.th_sport, cmd, arg, notify);
1519 
1520 		inc.inc_fport = th.th_dport;
1521 		inc.inc_lport = th.th_sport;
1522 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1523 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1524 		inc.inc_isipv6 = 1;
1525 		syncache_unreach(&inc, &th);
1526 	} else {
1527 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, 0,
1528 		    (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1529 	}
1530 out:
1531 	lwkt_replymsg(&msg->ctlinput.base.lmsg, 0);
1532 }
1533 
1534 #endif
1535 
1536 /*
1537  * Following is where TCP initial sequence number generation occurs.
1538  *
1539  * There are two places where we must use initial sequence numbers:
1540  * 1.  In SYN-ACK packets.
1541  * 2.  In SYN packets.
1542  *
1543  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1544  * tcp_syncache.c for details.
1545  *
1546  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1547  * depends on this property.  In addition, these ISNs should be
1548  * unguessable so as to prevent connection hijacking.  To satisfy
1549  * the requirements of this situation, the algorithm outlined in
1550  * RFC 1948 is used to generate sequence numbers.
1551  *
1552  * Implementation details:
1553  *
1554  * Time is based off the system timer, and is corrected so that it
1555  * increases by one megabyte per second.  This allows for proper
1556  * recycling on high speed LANs while still leaving over an hour
1557  * before rollover.
1558  *
1559  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1560  * between seeding of isn_secret.  This is normally set to zero,
1561  * as reseeding should not be necessary.
1562  *
1563  */
1564 
1565 #define	ISN_BYTES_PER_SECOND 1048576
1566 
1567 u_char isn_secret[32];
1568 int isn_last_reseed;
1569 MD5_CTX isn_ctx;
1570 
1571 tcp_seq
1572 tcp_new_isn(struct tcpcb *tp)
1573 {
1574 	u_int32_t md5_buffer[4];
1575 	tcp_seq new_isn;
1576 
1577 	/* Seed if this is the first use, reseed if requested. */
1578 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1579 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1580 		< (u_int)ticks))) {
1581 		read_random_unlimited(&isn_secret, sizeof isn_secret);
1582 		isn_last_reseed = ticks;
1583 	}
1584 
1585 	/* Compute the md5 hash and return the ISN. */
1586 	MD5Init(&isn_ctx);
1587 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1588 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1589 #ifdef INET6
1590 	if (tp->t_inpcb->inp_vflag & INP_IPV6) {
1591 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1592 			  sizeof(struct in6_addr));
1593 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1594 			  sizeof(struct in6_addr));
1595 	} else
1596 #endif
1597 	{
1598 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1599 			  sizeof(struct in_addr));
1600 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1601 			  sizeof(struct in_addr));
1602 	}
1603 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1604 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1605 	new_isn = (tcp_seq) md5_buffer[0];
1606 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1607 	return (new_isn);
1608 }
1609 
1610 /*
1611  * When a source quench is received, close congestion window
1612  * to one segment.  We will gradually open it again as we proceed.
1613  */
1614 void
1615 tcp_quench(struct inpcb *inp, int error)
1616 {
1617 	struct tcpcb *tp = intotcpcb(inp);
1618 
1619 	if (tp != NULL) {
1620 		tp->snd_cwnd = tp->t_maxseg;
1621 		tp->snd_wacked = 0;
1622 	}
1623 }
1624 
1625 /*
1626  * When a specific ICMP unreachable message is received and the
1627  * connection state is SYN-SENT, drop the connection.  This behavior
1628  * is controlled by the icmp_may_rst sysctl.
1629  */
1630 void
1631 tcp_drop_syn_sent(struct inpcb *inp, int error)
1632 {
1633 	struct tcpcb *tp = intotcpcb(inp);
1634 
1635 	if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
1636 		tcp_drop(tp, error);
1637 }
1638 
1639 /*
1640  * When a `need fragmentation' ICMP is received, update our idea of the MSS
1641  * based on the new value in the route.  Also nudge TCP to send something,
1642  * since we know the packet we just sent was dropped.
1643  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1644  */
1645 void
1646 tcp_mtudisc(struct inpcb *inp, int mtu)
1647 {
1648 	struct tcpcb *tp = intotcpcb(inp);
1649 	struct rtentry *rt;
1650 	struct socket *so = inp->inp_socket;
1651 	int maxopd, mss;
1652 #ifdef INET6
1653 	boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1654 #else
1655 	const boolean_t isipv6 = FALSE;
1656 #endif
1657 
1658 	if (tp == NULL)
1659 		return;
1660 
1661 	/*
1662 	 * If no MTU is provided in the ICMP message, use the
1663 	 * next lower likely value, as specified in RFC 1191.
1664 	 */
1665 	if (mtu == 0) {
1666 		int oldmtu;
1667 
1668 		oldmtu = tp->t_maxopd +
1669 		    (isipv6 ?
1670 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1671 		     sizeof(struct tcpiphdr));
1672 		mtu = ip_next_mtu(oldmtu, 0);
1673 	}
1674 
1675 	if (isipv6)
1676 		rt = tcp_rtlookup6(&inp->inp_inc);
1677 	else
1678 		rt = tcp_rtlookup(&inp->inp_inc);
1679 	if (rt != NULL) {
1680 		if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1681 			mtu = rt->rt_rmx.rmx_mtu;
1682 
1683 		maxopd = mtu -
1684 		    (isipv6 ?
1685 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1686 		     sizeof(struct tcpiphdr));
1687 
1688 		/*
1689 		 * XXX - The following conditional probably violates the TCP
1690 		 * spec.  The problem is that, since we don't know the
1691 		 * other end's MSS, we are supposed to use a conservative
1692 		 * default.  But, if we do that, then MTU discovery will
1693 		 * never actually take place, because the conservative
1694 		 * default is much less than the MTUs typically seen
1695 		 * on the Internet today.  For the moment, we'll sweep
1696 		 * this under the carpet.
1697 		 *
1698 		 * The conservative default might not actually be a problem
1699 		 * if the only case this occurs is when sending an initial
1700 		 * SYN with options and data to a host we've never talked
1701 		 * to before.  Then, they will reply with an MSS value which
1702 		 * will get recorded and the new parameters should get
1703 		 * recomputed.  For Further Study.
1704 		 */
1705 		if (rt->rt_rmx.rmx_mssopt  && rt->rt_rmx.rmx_mssopt < maxopd)
1706 			maxopd = rt->rt_rmx.rmx_mssopt;
1707 	} else
1708 		maxopd = mtu -
1709 		    (isipv6 ?
1710 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1711 		     sizeof(struct tcpiphdr));
1712 
1713 	if (tp->t_maxopd <= maxopd)
1714 		return;
1715 	tp->t_maxopd = maxopd;
1716 
1717 	mss = maxopd;
1718 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1719 			   (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1720 		mss -= TCPOLEN_TSTAMP_APPA;
1721 
1722 	/* round down to multiple of MCLBYTES */
1723 #if	(MCLBYTES & (MCLBYTES - 1)) == 0    /* test if MCLBYTES power of 2 */
1724 	if (mss > MCLBYTES)
1725 		mss &= ~(MCLBYTES - 1);
1726 #else
1727 	if (mss > MCLBYTES)
1728 		mss = (mss / MCLBYTES) * MCLBYTES;
1729 #endif
1730 
1731 	if (so->so_snd.ssb_hiwat < mss)
1732 		mss = so->so_snd.ssb_hiwat;
1733 
1734 	tp->t_maxseg = mss;
1735 	tp->t_rtttime = 0;
1736 	tp->snd_nxt = tp->snd_una;
1737 	tcp_output(tp);
1738 	tcpstat.tcps_mturesent++;
1739 }
1740 
1741 /*
1742  * Look-up the routing entry to the peer of this inpcb.  If no route
1743  * is found and it cannot be allocated the return NULL.  This routine
1744  * is called by TCP routines that access the rmx structure and by tcp_mss
1745  * to get the interface MTU.
1746  */
1747 struct rtentry *
1748 tcp_rtlookup(struct in_conninfo *inc)
1749 {
1750 	struct route *ro = &inc->inc_route;
1751 
1752 	if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1753 		/* No route yet, so try to acquire one */
1754 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1755 			/*
1756 			 * unused portions of the structure MUST be zero'd
1757 			 * out because rtalloc() treats it as opaque data
1758 			 */
1759 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1760 			ro->ro_dst.sa_family = AF_INET;
1761 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1762 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1763 			    inc->inc_faddr;
1764 			rtalloc(ro);
1765 		}
1766 	}
1767 	return (ro->ro_rt);
1768 }
1769 
1770 #ifdef INET6
1771 struct rtentry *
1772 tcp_rtlookup6(struct in_conninfo *inc)
1773 {
1774 	struct route_in6 *ro6 = &inc->inc6_route;
1775 
1776 	if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1777 		/* No route yet, so try to acquire one */
1778 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1779 			/*
1780 			 * unused portions of the structure MUST be zero'd
1781 			 * out because rtalloc() treats it as opaque data
1782 			 */
1783 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1784 			ro6->ro_dst.sin6_family = AF_INET6;
1785 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1786 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1787 			rtalloc((struct route *)ro6);
1788 		}
1789 	}
1790 	return (ro6->ro_rt);
1791 }
1792 #endif
1793 
1794 #ifdef IPSEC
1795 /* compute ESP/AH header size for TCP, including outer IP header. */
1796 size_t
1797 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1798 {
1799 	struct inpcb *inp;
1800 	struct mbuf *m;
1801 	size_t hdrsiz;
1802 	struct ip *ip;
1803 	struct tcphdr *th;
1804 
1805 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1806 		return (0);
1807 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1808 	if (!m)
1809 		return (0);
1810 
1811 #ifdef INET6
1812 	if (inp->inp_vflag & INP_IPV6) {
1813 		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1814 
1815 		th = (struct tcphdr *)(ip6 + 1);
1816 		m->m_pkthdr.len = m->m_len =
1817 		    sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1818 		tcp_fillheaders(tp, ip6, th);
1819 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1820 	} else
1821 #endif
1822 	{
1823 		ip = mtod(m, struct ip *);
1824 		th = (struct tcphdr *)(ip + 1);
1825 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1826 		tcp_fillheaders(tp, ip, th);
1827 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1828 	}
1829 
1830 	m_free(m);
1831 	return (hdrsiz);
1832 }
1833 #endif
1834 
1835 /*
1836  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1837  *
1838  * This code attempts to calculate the bandwidth-delay product as a
1839  * means of determining the optimal window size to maximize bandwidth,
1840  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1841  * routers.  This code also does a fairly good job keeping RTTs in check
1842  * across slow links like modems.  We implement an algorithm which is very
1843  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1844  * transmitter side of a TCP connection and so only effects the transmit
1845  * side of the connection.
1846  *
1847  * BACKGROUND:  TCP makes no provision for the management of buffer space
1848  * at the end points or at the intermediate routers and switches.  A TCP
1849  * stream, whether using NewReno or not, will eventually buffer as
1850  * many packets as it is able and the only reason this typically works is
1851  * due to the fairly small default buffers made available for a connection
1852  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1853  * scaling it is now fairly easy for even a single TCP connection to blow-out
1854  * all available buffer space not only on the local interface, but on
1855  * intermediate routers and switches as well.  NewReno makes a misguided
1856  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1857  * then backing off, then steadily increasing the window again until another
1858  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1859  * is only made worse as network loads increase and the idea of intentionally
1860  * blowing out network buffers is, frankly, a terrible way to manage network
1861  * resources.
1862  *
1863  * It is far better to limit the transmit window prior to the failure
1864  * condition being achieved.  There are two general ways to do this:  First
1865  * you can 'scan' through different transmit window sizes and locate the
1866  * point where the RTT stops increasing, indicating that you have filled the
1867  * pipe, then scan backwards until you note that RTT stops decreasing, then
1868  * repeat ad-infinitum.  This method works in principle but has severe
1869  * implementation issues due to RTT variances, timer granularity, and
1870  * instability in the algorithm which can lead to many false positives and
1871  * create oscillations as well as interact badly with other TCP streams
1872  * implementing the same algorithm.
1873  *
1874  * The second method is to limit the window to the bandwidth delay product
1875  * of the link.  This is the method we implement.  RTT variances and our
1876  * own manipulation of the congestion window, bwnd, can potentially
1877  * destabilize the algorithm.  For this reason we have to stabilize the
1878  * elements used to calculate the window.  We do this by using the minimum
1879  * observed RTT, the long term average of the observed bandwidth, and
1880  * by adding two segments worth of slop.  It isn't perfect but it is able
1881  * to react to changing conditions and gives us a very stable basis on
1882  * which to extend the algorithm.
1883  */
1884 void
1885 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1886 {
1887 	u_long bw;
1888 	u_long bwnd;
1889 	int save_ticks;
1890 	int delta_ticks;
1891 
1892 	/*
1893 	 * If inflight_enable is disabled in the middle of a tcp connection,
1894 	 * make sure snd_bwnd is effectively disabled.
1895 	 */
1896 	if (!tcp_inflight_enable) {
1897 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1898 		tp->snd_bandwidth = 0;
1899 		return;
1900 	}
1901 
1902 	/*
1903 	 * Validate the delta time.  If a connection is new or has been idle
1904 	 * a long time we have to reset the bandwidth calculator.
1905 	 */
1906 	save_ticks = ticks;
1907 	delta_ticks = save_ticks - tp->t_bw_rtttime;
1908 	if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1909 		tp->t_bw_rtttime = ticks;
1910 		tp->t_bw_rtseq = ack_seq;
1911 		if (tp->snd_bandwidth == 0)
1912 			tp->snd_bandwidth = tcp_inflight_min;
1913 		return;
1914 	}
1915 	if (delta_ticks == 0)
1916 		return;
1917 
1918 	/*
1919 	 * Sanity check, plus ignore pure window update acks.
1920 	 */
1921 	if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1922 		return;
1923 
1924 	/*
1925 	 * Figure out the bandwidth.  Due to the tick granularity this
1926 	 * is a very rough number and it MUST be averaged over a fairly
1927 	 * long period of time.  XXX we need to take into account a link
1928 	 * that is not using all available bandwidth, but for now our
1929 	 * slop will ramp us up if this case occurs and the bandwidth later
1930 	 * increases.
1931 	 */
1932 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
1933 	tp->t_bw_rtttime = save_ticks;
1934 	tp->t_bw_rtseq = ack_seq;
1935 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1936 
1937 	tp->snd_bandwidth = bw;
1938 
1939 	/*
1940 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1941 	 * segments.  The additional slop puts us squarely in the sweet
1942 	 * spot and also handles the bandwidth run-up case.  Without the
1943 	 * slop we could be locking ourselves into a lower bandwidth.
1944 	 *
1945 	 * Situations Handled:
1946 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1947 	 *	    high speed LANs, allowing larger TCP buffers to be
1948 	 *	    specified, and also does a good job preventing
1949 	 *	    over-queueing of packets over choke points like modems
1950 	 *	    (at least for the transmit side).
1951 	 *
1952 	 *	(2) Is able to handle changing network loads (bandwidth
1953 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1954 	 *	    increases).
1955 	 *
1956 	 *	(3) Theoretically should stabilize in the face of multiple
1957 	 *	    connections implementing the same algorithm (this may need
1958 	 *	    a little work).
1959 	 *
1960 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1961 	 *	    be adjusted with a sysctl but typically only needs to be on
1962 	 *	    very slow connections.  A value no smaller then 5 should
1963 	 *	    be used, but only reduce this default if you have no other
1964 	 *	    choice.
1965 	 */
1966 
1967 #define	USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1968 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
1969 	       tcp_inflight_stab * (int)tp->t_maxseg / 10;
1970 #undef USERTT
1971 
1972 	if (tcp_inflight_debug > 0) {
1973 		static int ltime;
1974 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1975 			ltime = ticks;
1976 			kprintf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1977 				tp, bw, tp->t_rttbest, tp->t_srtt, bwnd);
1978 		}
1979 	}
1980 	if ((long)bwnd < tcp_inflight_min)
1981 		bwnd = tcp_inflight_min;
1982 	if (bwnd > tcp_inflight_max)
1983 		bwnd = tcp_inflight_max;
1984 	if ((long)bwnd < tp->t_maxseg * 2)
1985 		bwnd = tp->t_maxseg * 2;
1986 	tp->snd_bwnd = bwnd;
1987 }
1988 
1989 static void
1990 tcp_rmx_iwsegs(struct tcpcb *tp, u_long *maxsegs, u_long *capsegs)
1991 {
1992 	struct rtentry *rt;
1993 	struct inpcb *inp = tp->t_inpcb;
1994 #ifdef INET6
1995 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
1996 #else
1997 	const boolean_t isipv6 = FALSE;
1998 #endif
1999 
2000 	/* XXX */
2001 	if (tcp_iw_maxsegs < TCP_IW_MAXSEGS_DFLT)
2002 		tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
2003 	if (tcp_iw_capsegs < TCP_IW_CAPSEGS_DFLT)
2004 		tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
2005 
2006 	if (isipv6)
2007 		rt = tcp_rtlookup6(&inp->inp_inc);
2008 	else
2009 		rt = tcp_rtlookup(&inp->inp_inc);
2010 	if (rt == NULL ||
2011 	    rt->rt_rmx.rmx_iwmaxsegs < TCP_IW_MAXSEGS_DFLT ||
2012 	    rt->rt_rmx.rmx_iwcapsegs < TCP_IW_CAPSEGS_DFLT) {
2013 		*maxsegs = tcp_iw_maxsegs;
2014 		*capsegs = tcp_iw_capsegs;
2015 		return;
2016 	}
2017 	*maxsegs = rt->rt_rmx.rmx_iwmaxsegs;
2018 	*capsegs = rt->rt_rmx.rmx_iwcapsegs;
2019 }
2020 
2021 u_long
2022 tcp_initial_window(struct tcpcb *tp)
2023 {
2024 	if (tcp_do_rfc3390) {
2025 		/*
2026 		 * RFC3390:
2027 		 * "If the SYN or SYN/ACK is lost, the initial window
2028 		 *  used by a sender after a correctly transmitted SYN
2029 		 *  MUST be one segment consisting of MSS bytes."
2030 		 *
2031 		 * However, we do something a little bit more aggressive
2032 		 * then RFC3390 here:
2033 		 * - Only if time spent in the SYN or SYN|ACK retransmition
2034 		 *   >= 3 seconds, the IW is reduced.  We do this mainly
2035 		 *   because when RFC3390 is published, the initial RTO is
2036 		 *   still 3 seconds (the threshold we test here), while
2037 		 *   after RFC6298, the initial RTO is 1 second.  This
2038 		 *   behaviour probably still falls within the spirit of
2039 		 *   RFC3390.
2040 		 * - When IW is reduced, 2*MSS is used instead of 1*MSS.
2041 		 *   Mainly to avoid sender and receiver deadlock until
2042 		 *   delayed ACK timer expires.  And even RFC2581 does not
2043 		 *   try to reduce IW upon SYN or SYN|ACK retransmition
2044 		 *   timeout.
2045 		 *
2046 		 * See also:
2047 		 * http://tools.ietf.org/html/draft-ietf-tcpm-initcwnd-03
2048 		 */
2049 		if (tp->t_rxtsyn >= TCPTV_RTOBASE3) {
2050 			return (2 * tp->t_maxseg);
2051 		} else {
2052 			u_long maxsegs, capsegs;
2053 
2054 			tcp_rmx_iwsegs(tp, &maxsegs, &capsegs);
2055 			return min(maxsegs * tp->t_maxseg,
2056 				   max(2 * tp->t_maxseg, capsegs * 1460));
2057 		}
2058 	} else {
2059 		/*
2060 		 * Even RFC2581 (back to 1999) allows 2*SMSS IW.
2061 		 *
2062 		 * Mainly to avoid sender and receiver deadlock
2063 		 * until delayed ACK timer expires.
2064 		 */
2065 		return (2 * tp->t_maxseg);
2066 	}
2067 }
2068 
2069 #ifdef TCP_SIGNATURE
2070 /*
2071  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2072  *
2073  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2074  * When called from tcp_input(), we can be sure that th_sum has been
2075  * zeroed out and verified already.
2076  *
2077  * Return 0 if successful, otherwise return -1.
2078  *
2079  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2080  * search with the destination IP address, and a 'magic SPI' to be
2081  * determined by the application. This is hardcoded elsewhere to 1179
2082  * right now. Another branch of this code exists which uses the SPD to
2083  * specify per-application flows but it is unstable.
2084  */
2085 int
2086 tcpsignature_compute(
2087 	struct mbuf *m,		/* mbuf chain */
2088 	int len,		/* length of TCP data */
2089 	int optlen,		/* length of TCP options */
2090 	u_char *buf,		/* storage for MD5 digest */
2091 	u_int direction)	/* direction of flow */
2092 {
2093 	struct ippseudo ippseudo;
2094 	MD5_CTX ctx;
2095 	int doff;
2096 	struct ip *ip;
2097 	struct ipovly *ipovly;
2098 	struct secasvar *sav;
2099 	struct tcphdr *th;
2100 #ifdef INET6
2101 	struct ip6_hdr *ip6;
2102 	struct in6_addr in6;
2103 	uint32_t plen;
2104 	uint16_t nhdr;
2105 #endif /* INET6 */
2106 	u_short savecsum;
2107 
2108 	KASSERT(m != NULL, ("passed NULL mbuf. Game over."));
2109 	KASSERT(buf != NULL, ("passed NULL storage pointer for MD5 signature"));
2110 	/*
2111 	 * Extract the destination from the IP header in the mbuf.
2112 	 */
2113 	ip = mtod(m, struct ip *);
2114 #ifdef INET6
2115 	ip6 = NULL;     /* Make the compiler happy. */
2116 #endif /* INET6 */
2117 	/*
2118 	 * Look up an SADB entry which matches the address found in
2119 	 * the segment.
2120 	 */
2121 	switch (IP_VHL_V(ip->ip_vhl)) {
2122 	case IPVERSION:
2123 		sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src, (caddr_t)&ip->ip_dst,
2124 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2125 		break;
2126 #ifdef INET6
2127 	case (IPV6_VERSION >> 4):
2128 		ip6 = mtod(m, struct ip6_hdr *);
2129 		sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src, (caddr_t)&ip6->ip6_dst,
2130 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2131 		break;
2132 #endif /* INET6 */
2133 	default:
2134 		return (EINVAL);
2135 		/* NOTREACHED */
2136 		break;
2137 	}
2138 	if (sav == NULL) {
2139 		kprintf("%s: SADB lookup failed\n", __func__);
2140 		return (EINVAL);
2141 	}
2142 	MD5Init(&ctx);
2143 
2144 	/*
2145 	 * Step 1: Update MD5 hash with IP pseudo-header.
2146 	 *
2147 	 * XXX The ippseudo header MUST be digested in network byte order,
2148 	 * or else we'll fail the regression test. Assume all fields we've
2149 	 * been doing arithmetic on have been in host byte order.
2150 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2151 	 * tcp_output(), the underlying ip_len member has not yet been set.
2152 	 */
2153 	switch (IP_VHL_V(ip->ip_vhl)) {
2154 	case IPVERSION:
2155 		ipovly = (struct ipovly *)ip;
2156 		ippseudo.ippseudo_src = ipovly->ih_src;
2157 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2158 		ippseudo.ippseudo_pad = 0;
2159 		ippseudo.ippseudo_p = IPPROTO_TCP;
2160 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2161 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2162 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2163 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2164 		break;
2165 #ifdef INET6
2166 	/*
2167 	 * RFC 2385, 2.0  Proposal
2168 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2169 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2170 	 * extended next header value (to form 32 bits), and 32-bit segment
2171 	 * length.
2172 	 * Note: Upper-Layer Packet Length comes before Next Header.
2173 	 */
2174 	case (IPV6_VERSION >> 4):
2175 		in6 = ip6->ip6_src;
2176 		in6_clearscope(&in6);
2177 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2178 		in6 = ip6->ip6_dst;
2179 		in6_clearscope(&in6);
2180 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2181 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2182 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2183 		nhdr = 0;
2184 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2185 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2186 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2187 		nhdr = IPPROTO_TCP;
2188 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2189 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2190 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2191 		break;
2192 #endif /* INET6 */
2193 	default:
2194 		return (EINVAL);
2195 		/* NOTREACHED */
2196 		break;
2197 	}
2198 	/*
2199 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2200 	 * The TCP checksum must be set to zero.
2201 	 */
2202 	savecsum = th->th_sum;
2203 	th->th_sum = 0;
2204 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2205 	th->th_sum = savecsum;
2206 	/*
2207 	 * Step 3: Update MD5 hash with TCP segment data.
2208 	 *         Use m_apply() to avoid an early m_pullup().
2209 	 */
2210 	if (len > 0)
2211 		m_apply(m, doff, len, tcpsignature_apply, &ctx);
2212 	/*
2213 	 * Step 4: Update MD5 hash with shared secret.
2214 	 */
2215 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2216 	MD5Final(buf, &ctx);
2217 	key_sa_recordxfer(sav, m);
2218 	key_freesav(sav);
2219 	return (0);
2220 }
2221 
2222 int
2223 tcpsignature_apply(void *fstate, void *data, unsigned int len)
2224 {
2225 
2226 	MD5Update((MD5_CTX *)fstate, (unsigned char *)data, len);
2227 	return (0);
2228 }
2229 #endif /* TCP_SIGNATURE */
2230