xref: /dragonfly/sys/netinet/tcp_subr.c (revision 521a7b05)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
67  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
68  * $DragonFly: src/sys/netinet/tcp_subr.c,v 1.57 2007/04/22 01:13:14 dillon Exp $
69  */
70 
71 #include "opt_compat.h"
72 #include "opt_inet6.h"
73 #include "opt_ipsec.h"
74 #include "opt_tcpdebug.h"
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/callout.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 #include <sys/malloc.h>
82 #include <sys/mpipe.h>
83 #include <sys/mbuf.h>
84 #ifdef INET6
85 #include <sys/domain.h>
86 #endif
87 #include <sys/proc.h>
88 #include <sys/socket.h>
89 #include <sys/socketvar.h>
90 #include <sys/protosw.h>
91 #include <sys/random.h>
92 #include <sys/in_cksum.h>
93 #include <sys/ktr.h>
94 
95 #include <vm/vm_zone.h>
96 
97 #include <net/route.h>
98 #include <net/if.h>
99 #include <net/netisr.h>
100 
101 #define	_IP_VHL
102 #include <netinet/in.h>
103 #include <netinet/in_systm.h>
104 #include <netinet/ip.h>
105 #include <netinet/ip6.h>
106 #include <netinet/in_pcb.h>
107 #include <netinet6/in6_pcb.h>
108 #include <netinet/in_var.h>
109 #include <netinet/ip_var.h>
110 #include <netinet6/ip6_var.h>
111 #include <netinet/ip_icmp.h>
112 #ifdef INET6
113 #include <netinet/icmp6.h>
114 #endif
115 #include <netinet/tcp.h>
116 #include <netinet/tcp_fsm.h>
117 #include <netinet/tcp_seq.h>
118 #include <netinet/tcp_timer.h>
119 #include <netinet/tcp_var.h>
120 #include <netinet6/tcp6_var.h>
121 #include <netinet/tcpip.h>
122 #ifdef TCPDEBUG
123 #include <netinet/tcp_debug.h>
124 #endif
125 #include <netinet6/ip6protosw.h>
126 
127 #ifdef IPSEC
128 #include <netinet6/ipsec.h>
129 #ifdef INET6
130 #include <netinet6/ipsec6.h>
131 #endif
132 #endif
133 
134 #ifdef FAST_IPSEC
135 #include <netproto/ipsec/ipsec.h>
136 #ifdef INET6
137 #include <netproto/ipsec/ipsec6.h>
138 #endif
139 #define	IPSEC
140 #endif
141 
142 #include <sys/md5.h>
143 #include <sys/msgport2.h>
144 #include <machine/smp.h>
145 
146 #if !defined(KTR_TCP)
147 #define KTR_TCP		KTR_ALL
148 #endif
149 KTR_INFO_MASTER(tcp);
150 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
151 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
152 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
153 #define logtcp(name)	KTR_LOG(tcp_ ## name)
154 
155 struct inpcbinfo tcbinfo[MAXCPU];
156 struct tcpcbackqhead tcpcbackq[MAXCPU];
157 
158 int tcp_mssdflt = TCP_MSS;
159 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
160     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
161 
162 #ifdef INET6
163 int tcp_v6mssdflt = TCP6_MSS;
164 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
165     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
166 #endif
167 
168 #if 0
169 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
170 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
171     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
172 #endif
173 
174 int tcp_do_rfc1323 = 1;
175 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
176     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
177 
178 int tcp_do_rfc1644 = 0;
179 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
180     &tcp_do_rfc1644, 0, "Enable rfc1644 (TTCP) extensions");
181 
182 static int tcp_tcbhashsize = 0;
183 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
184      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
185 
186 static int do_tcpdrain = 1;
187 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
188      "Enable tcp_drain routine for extra help when low on mbufs");
189 
190 /* XXX JH */
191 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
192     &tcbinfo[0].ipi_count, 0, "Number of active PCBs");
193 
194 static int icmp_may_rst = 1;
195 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
196     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
197 
198 static int tcp_isn_reseed_interval = 0;
199 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
200     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
201 
202 /*
203  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
204  * 1024 exists only for debugging.  A good production default would be
205  * something like 6100.
206  */
207 static int tcp_inflight_enable = 0;
208 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
209     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
210 
211 static int tcp_inflight_debug = 0;
212 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
213     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
214 
215 static int tcp_inflight_min = 6144;
216 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
217     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
218 
219 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
220 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
221     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
222 
223 static int tcp_inflight_stab = 20;
224 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
225     &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 2 packets)");
226 
227 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
228 static struct malloc_pipe tcptemp_mpipe;
229 
230 static void tcp_willblock(void);
231 static void tcp_cleartaocache (void);
232 static void tcp_notify (struct inpcb *, int);
233 
234 struct tcp_stats tcpstats_percpu[MAXCPU];
235 #ifdef SMP
236 static int
237 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
238 {
239 	int cpu, error = 0;
240 
241 	for (cpu = 0; cpu < ncpus; ++cpu) {
242 		if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
243 					sizeof(struct tcp_stats))))
244 			break;
245 		if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
246 				       sizeof(struct tcp_stats))))
247 			break;
248 	}
249 
250 	return (error);
251 }
252 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
253     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
254 #else
255 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
256     &tcpstat, tcp_stats, "TCP statistics");
257 #endif
258 
259 /*
260  * Target size of TCP PCB hash tables. Must be a power of two.
261  *
262  * Note that this can be overridden by the kernel environment
263  * variable net.inet.tcp.tcbhashsize
264  */
265 #ifndef TCBHASHSIZE
266 #define	TCBHASHSIZE	512
267 #endif
268 
269 /*
270  * This is the actual shape of what we allocate using the zone
271  * allocator.  Doing it this way allows us to protect both structures
272  * using the same generation count, and also eliminates the overhead
273  * of allocating tcpcbs separately.  By hiding the structure here,
274  * we avoid changing most of the rest of the code (although it needs
275  * to be changed, eventually, for greater efficiency).
276  */
277 #define	ALIGNMENT	32
278 #define	ALIGNM1		(ALIGNMENT - 1)
279 struct	inp_tp {
280 	union {
281 		struct	inpcb inp;
282 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
283 	} inp_tp_u;
284 	struct	tcpcb tcb;
285 	struct	callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
286 	struct	callout inp_tp_delack;
287 };
288 #undef ALIGNMENT
289 #undef ALIGNM1
290 
291 /*
292  * Tcp initialization
293  */
294 void
295 tcp_init(void)
296 {
297 	struct inpcbporthead *porthashbase;
298 	u_long porthashmask;
299 	struct vm_zone *ipi_zone;
300 	int hashsize = TCBHASHSIZE;
301 	int cpu;
302 
303 	/*
304 	 * note: tcptemp is used for keepalives, and it is ok for an
305 	 * allocation to fail so do not specify MPF_INT.
306 	 */
307 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
308 		    25, -1, 0, NULL);
309 
310 	tcp_ccgen = 1;
311 	tcp_cleartaocache();
312 
313 	tcp_delacktime = TCPTV_DELACK;
314 	tcp_keepinit = TCPTV_KEEP_INIT;
315 	tcp_keepidle = TCPTV_KEEP_IDLE;
316 	tcp_keepintvl = TCPTV_KEEPINTVL;
317 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
318 	tcp_msl = TCPTV_MSL;
319 	tcp_rexmit_min = TCPTV_MIN;
320 	tcp_rexmit_slop = TCPTV_CPU_VAR;
321 
322 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
323 	if (!powerof2(hashsize)) {
324 		kprintf("WARNING: TCB hash size not a power of 2\n");
325 		hashsize = 512; /* safe default */
326 	}
327 	tcp_tcbhashsize = hashsize;
328 	porthashbase = hashinit(hashsize, M_PCB, &porthashmask);
329 	ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets,
330 			 ZONE_INTERRUPT, 0);
331 
332 	for (cpu = 0; cpu < ncpus2; cpu++) {
333 		in_pcbinfo_init(&tcbinfo[cpu]);
334 		tcbinfo[cpu].cpu = cpu;
335 		tcbinfo[cpu].hashbase = hashinit(hashsize, M_PCB,
336 		    &tcbinfo[cpu].hashmask);
337 		tcbinfo[cpu].porthashbase = porthashbase;
338 		tcbinfo[cpu].porthashmask = porthashmask;
339 		tcbinfo[cpu].wildcardhashbase = hashinit(hashsize, M_PCB,
340 		    &tcbinfo[cpu].wildcardhashmask);
341 		tcbinfo[cpu].ipi_zone = ipi_zone;
342 		TAILQ_INIT(&tcpcbackq[cpu]);
343 	}
344 
345 	tcp_reass_maxseg = nmbclusters / 16;
346 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
347 
348 #ifdef INET6
349 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
350 #else
351 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
352 #endif
353 	if (max_protohdr < TCP_MINPROTOHDR)
354 		max_protohdr = TCP_MINPROTOHDR;
355 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
356 		panic("tcp_init");
357 #undef TCP_MINPROTOHDR
358 
359 	/*
360 	 * Initialize TCP statistics counters for each CPU.
361 	 */
362 #ifdef SMP
363 	for (cpu = 0; cpu < ncpus; ++cpu) {
364 		bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
365 	}
366 #else
367 	bzero(&tcpstat, sizeof(struct tcp_stats));
368 #endif
369 
370 	syncache_init();
371 	tcp_sack_init();
372 	tcp_thread_init();
373 }
374 
375 void
376 tcpmsg_service_loop(void *dummy)
377 {
378 	struct netmsg *msg;
379 
380 	while ((msg = lwkt_waitport(&curthread->td_msgport, NULL))) {
381 		do {
382 			logtcp(rxmsg);
383 			msg->nm_lmsg.ms_cmd.cm_func(&msg->nm_lmsg);
384 		} while ((msg = lwkt_getport(&curthread->td_msgport)) != NULL);
385 		logtcp(delayed);
386 		tcp_willblock();
387 		logtcp(wait);
388 	}
389 }
390 
391 static void
392 tcp_willblock(void)
393 {
394 	struct tcpcb *tp;
395 	int cpu = mycpu->gd_cpuid;
396 
397 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
398 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
399 		tp->t_flags &= ~TF_ONOUTPUTQ;
400 		TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
401 		tcp_output(tp);
402 	}
403 }
404 
405 
406 /*
407  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
408  * tcp_template used to store this data in mbufs, but we now recopy it out
409  * of the tcpcb each time to conserve mbufs.
410  */
411 void
412 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr)
413 {
414 	struct inpcb *inp = tp->t_inpcb;
415 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
416 
417 #ifdef INET6
418 	if (inp->inp_vflag & INP_IPV6) {
419 		struct ip6_hdr *ip6;
420 
421 		ip6 = (struct ip6_hdr *)ip_ptr;
422 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
423 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
424 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
425 			(IPV6_VERSION & IPV6_VERSION_MASK);
426 		ip6->ip6_nxt = IPPROTO_TCP;
427 		ip6->ip6_plen = sizeof(struct tcphdr);
428 		ip6->ip6_src = inp->in6p_laddr;
429 		ip6->ip6_dst = inp->in6p_faddr;
430 		tcp_hdr->th_sum = 0;
431 	} else
432 #endif
433 	{
434 		struct ip *ip = (struct ip *) ip_ptr;
435 
436 		ip->ip_vhl = IP_VHL_BORING;
437 		ip->ip_tos = 0;
438 		ip->ip_len = 0;
439 		ip->ip_id = 0;
440 		ip->ip_off = 0;
441 		ip->ip_ttl = 0;
442 		ip->ip_sum = 0;
443 		ip->ip_p = IPPROTO_TCP;
444 		ip->ip_src = inp->inp_laddr;
445 		ip->ip_dst = inp->inp_faddr;
446 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
447 				    ip->ip_dst.s_addr,
448 				    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
449 	}
450 
451 	tcp_hdr->th_sport = inp->inp_lport;
452 	tcp_hdr->th_dport = inp->inp_fport;
453 	tcp_hdr->th_seq = 0;
454 	tcp_hdr->th_ack = 0;
455 	tcp_hdr->th_x2 = 0;
456 	tcp_hdr->th_off = 5;
457 	tcp_hdr->th_flags = 0;
458 	tcp_hdr->th_win = 0;
459 	tcp_hdr->th_urp = 0;
460 }
461 
462 /*
463  * Create template to be used to send tcp packets on a connection.
464  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
465  * use for this function is in keepalives, which use tcp_respond.
466  */
467 struct tcptemp *
468 tcp_maketemplate(struct tcpcb *tp)
469 {
470 	struct tcptemp *tmp;
471 
472 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
473 		return (NULL);
474 	tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t);
475 	return (tmp);
476 }
477 
478 void
479 tcp_freetemplate(struct tcptemp *tmp)
480 {
481 	mpipe_free(&tcptemp_mpipe, tmp);
482 }
483 
484 /*
485  * Send a single message to the TCP at address specified by
486  * the given TCP/IP header.  If m == NULL, then we make a copy
487  * of the tcpiphdr at ti and send directly to the addressed host.
488  * This is used to force keep alive messages out using the TCP
489  * template for a connection.  If flags are given then we send
490  * a message back to the TCP which originated the * segment ti,
491  * and discard the mbuf containing it and any other attached mbufs.
492  *
493  * In any case the ack and sequence number of the transmitted
494  * segment are as specified by the parameters.
495  *
496  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
497  */
498 void
499 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
500 	    tcp_seq ack, tcp_seq seq, int flags)
501 {
502 	int tlen;
503 	int win = 0;
504 	struct route *ro = NULL;
505 	struct route sro;
506 	struct ip *ip = ipgen;
507 	struct tcphdr *nth;
508 	int ipflags = 0;
509 	struct route_in6 *ro6 = NULL;
510 	struct route_in6 sro6;
511 	struct ip6_hdr *ip6 = ipgen;
512 #ifdef INET6
513 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
514 #else
515 	const boolean_t isipv6 = FALSE;
516 #endif
517 
518 	if (tp != NULL) {
519 		if (!(flags & TH_RST)) {
520 			win = ssb_space(&tp->t_inpcb->inp_socket->so_rcv);
521 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
522 				win = (long)TCP_MAXWIN << tp->rcv_scale;
523 		}
524 		if (isipv6)
525 			ro6 = &tp->t_inpcb->in6p_route;
526 		else
527 			ro = &tp->t_inpcb->inp_route;
528 	} else {
529 		if (isipv6) {
530 			ro6 = &sro6;
531 			bzero(ro6, sizeof *ro6);
532 		} else {
533 			ro = &sro;
534 			bzero(ro, sizeof *ro);
535 		}
536 	}
537 	if (m == NULL) {
538 		m = m_gethdr(MB_DONTWAIT, MT_HEADER);
539 		if (m == NULL)
540 			return;
541 		tlen = 0;
542 		m->m_data += max_linkhdr;
543 		if (isipv6) {
544 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
545 			ip6 = mtod(m, struct ip6_hdr *);
546 			nth = (struct tcphdr *)(ip6 + 1);
547 		} else {
548 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
549 			ip = mtod(m, struct ip *);
550 			nth = (struct tcphdr *)(ip + 1);
551 		}
552 		bcopy(th, nth, sizeof(struct tcphdr));
553 		flags = TH_ACK;
554 	} else {
555 		m_freem(m->m_next);
556 		m->m_next = NULL;
557 		m->m_data = (caddr_t)ipgen;
558 		/* m_len is set later */
559 		tlen = 0;
560 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
561 		if (isipv6) {
562 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
563 			nth = (struct tcphdr *)(ip6 + 1);
564 		} else {
565 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
566 			nth = (struct tcphdr *)(ip + 1);
567 		}
568 		if (th != nth) {
569 			/*
570 			 * this is usually a case when an extension header
571 			 * exists between the IPv6 header and the
572 			 * TCP header.
573 			 */
574 			nth->th_sport = th->th_sport;
575 			nth->th_dport = th->th_dport;
576 		}
577 		xchg(nth->th_dport, nth->th_sport, n_short);
578 #undef xchg
579 	}
580 	if (isipv6) {
581 		ip6->ip6_flow = 0;
582 		ip6->ip6_vfc = IPV6_VERSION;
583 		ip6->ip6_nxt = IPPROTO_TCP;
584 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
585 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
586 	} else {
587 		tlen += sizeof(struct tcpiphdr);
588 		ip->ip_len = tlen;
589 		ip->ip_ttl = ip_defttl;
590 	}
591 	m->m_len = tlen;
592 	m->m_pkthdr.len = tlen;
593 	m->m_pkthdr.rcvif = (struct ifnet *) NULL;
594 	nth->th_seq = htonl(seq);
595 	nth->th_ack = htonl(ack);
596 	nth->th_x2 = 0;
597 	nth->th_off = sizeof(struct tcphdr) >> 2;
598 	nth->th_flags = flags;
599 	if (tp != NULL)
600 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
601 	else
602 		nth->th_win = htons((u_short)win);
603 	nth->th_urp = 0;
604 	if (isipv6) {
605 		nth->th_sum = 0;
606 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
607 					sizeof(struct ip6_hdr),
608 					tlen - sizeof(struct ip6_hdr));
609 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
610 					       (ro6 && ro6->ro_rt) ?
611 						ro6->ro_rt->rt_ifp : NULL);
612 	} else {
613 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
614 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
615 		m->m_pkthdr.csum_flags = CSUM_TCP;
616 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
617 	}
618 #ifdef TCPDEBUG
619 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
620 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
621 #endif
622 	if (isipv6) {
623 		ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
624 			   tp ? tp->t_inpcb : NULL);
625 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
626 			RTFREE(ro6->ro_rt);
627 			ro6->ro_rt = NULL;
628 		}
629 	} else {
630 		ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
631 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
632 			RTFREE(ro->ro_rt);
633 			ro->ro_rt = NULL;
634 		}
635 	}
636 }
637 
638 /*
639  * Create a new TCP control block, making an
640  * empty reassembly queue and hooking it to the argument
641  * protocol control block.  The `inp' parameter must have
642  * come from the zone allocator set up in tcp_init().
643  */
644 struct tcpcb *
645 tcp_newtcpcb(struct inpcb *inp)
646 {
647 	struct inp_tp *it;
648 	struct tcpcb *tp;
649 #ifdef INET6
650 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
651 #else
652 	const boolean_t isipv6 = FALSE;
653 #endif
654 
655 	it = (struct inp_tp *)inp;
656 	tp = &it->tcb;
657 	bzero(tp, sizeof(struct tcpcb));
658 	LIST_INIT(&tp->t_segq);
659 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
660 
661 	/* Set up our timeouts. */
662 	callout_init(tp->tt_rexmt = &it->inp_tp_rexmt);
663 	callout_init(tp->tt_persist = &it->inp_tp_persist);
664 	callout_init(tp->tt_keep = &it->inp_tp_keep);
665 	callout_init(tp->tt_2msl = &it->inp_tp_2msl);
666 	callout_init(tp->tt_delack = &it->inp_tp_delack);
667 
668 	if (tcp_do_rfc1323)
669 		tp->t_flags = (TF_REQ_SCALE | TF_REQ_TSTMP);
670 	if (tcp_do_rfc1644)
671 		tp->t_flags |= TF_REQ_CC;
672 	tp->t_inpcb = inp;	/* XXX */
673 	tp->t_state = TCPS_CLOSED;
674 	/*
675 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
676 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
677 	 * reasonable initial retransmit time.
678 	 */
679 	tp->t_srtt = TCPTV_SRTTBASE;
680 	tp->t_rttvar =
681 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
682 	tp->t_rttmin = tcp_rexmit_min;
683 	tp->t_rxtcur = TCPTV_RTOBASE;
684 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
685 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
686 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
687 	tp->t_rcvtime = ticks;
688 	/*
689 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
690 	 * because the socket may be bound to an IPv6 wildcard address,
691 	 * which may match an IPv4-mapped IPv6 address.
692 	 */
693 	inp->inp_ip_ttl = ip_defttl;
694 	inp->inp_ppcb = tp;
695 	tcp_sack_tcpcb_init(tp);
696 	return (tp);		/* XXX */
697 }
698 
699 /*
700  * Drop a TCP connection, reporting the specified error.
701  * If connection is synchronized, then send a RST to peer.
702  */
703 struct tcpcb *
704 tcp_drop(struct tcpcb *tp, int error)
705 {
706 	struct socket *so = tp->t_inpcb->inp_socket;
707 
708 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
709 		tp->t_state = TCPS_CLOSED;
710 		tcp_output(tp);
711 		tcpstat.tcps_drops++;
712 	} else
713 		tcpstat.tcps_conndrops++;
714 	if (error == ETIMEDOUT && tp->t_softerror)
715 		error = tp->t_softerror;
716 	so->so_error = error;
717 	return (tcp_close(tp));
718 }
719 
720 #ifdef SMP
721 
722 struct netmsg_remwildcard {
723 	struct lwkt_msg		nm_lmsg;
724 	struct inpcb		*nm_inp;
725 	struct inpcbinfo	*nm_pcbinfo;
726 #if defined(INET6)
727 	int			nm_isinet6;
728 #else
729 	int			nm_unused01;
730 #endif
731 };
732 
733 /*
734  * Wildcard inpcb's on SMP boxes must be removed from all cpus before the
735  * inp can be detached.  We do this by cycling through the cpus, ending up
736  * on the cpu controlling the inp last and then doing the disconnect.
737  */
738 static int
739 in_pcbremwildcardhash_handler(struct lwkt_msg *msg0)
740 {
741 	struct netmsg_remwildcard *msg = (struct netmsg_remwildcard *)msg0;
742 	int cpu;
743 
744 	cpu = msg->nm_pcbinfo->cpu;
745 
746 	if (cpu == msg->nm_inp->inp_pcbinfo->cpu) {
747 		/* note: detach removes any wildcard hash entry */
748 #ifdef INET6
749 		if (msg->nm_isinet6)
750 			in6_pcbdetach(msg->nm_inp);
751 		else
752 #endif
753 			in_pcbdetach(msg->nm_inp);
754 		lwkt_replymsg(&msg->nm_lmsg, 0);
755 	} else {
756 		in_pcbremwildcardhash_oncpu(msg->nm_inp, msg->nm_pcbinfo);
757 		cpu = (cpu + 1) % ncpus2;
758 		msg->nm_pcbinfo = &tcbinfo[cpu];
759 		lwkt_forwardmsg(tcp_cport(cpu), &msg->nm_lmsg);
760 	}
761 	return (EASYNC);
762 }
763 
764 #endif
765 
766 /*
767  * Close a TCP control block:
768  *	discard all space held by the tcp
769  *	discard internet protocol block
770  *	wake up any sleepers
771  */
772 struct tcpcb *
773 tcp_close(struct tcpcb *tp)
774 {
775 	struct tseg_qent *q;
776 	struct inpcb *inp = tp->t_inpcb;
777 	struct socket *so = inp->inp_socket;
778 	struct rtentry *rt;
779 	boolean_t dosavessthresh;
780 #ifdef SMP
781 	int cpu;
782 #endif
783 #ifdef INET6
784 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
785 	boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
786 #else
787 	const boolean_t isipv6 = FALSE;
788 #endif
789 
790 	/*
791 	 * The tp is not instantly destroyed in the wildcard case.  Setting
792 	 * the state to TCPS_TERMINATING will prevent the TCP stack from
793 	 * messing with it, though it should be noted that this change may
794 	 * not take effect on other cpus until we have chained the wildcard
795 	 * hash removal.
796 	 *
797 	 * XXX we currently depend on the BGL to synchronize the tp->t_state
798 	 * update and prevent other tcp protocol threads from accepting new
799 	 * connections on the listen socket we might be trying to close down.
800 	 */
801 	KKASSERT(tp->t_state != TCPS_TERMINATING);
802 	tp->t_state = TCPS_TERMINATING;
803 
804 	/*
805 	 * Make sure that all of our timers are stopped before we
806 	 * delete the PCB.
807 	 */
808 	callout_stop(tp->tt_rexmt);
809 	callout_stop(tp->tt_persist);
810 	callout_stop(tp->tt_keep);
811 	callout_stop(tp->tt_2msl);
812 	callout_stop(tp->tt_delack);
813 
814 	if (tp->t_flags & TF_ONOUTPUTQ) {
815 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
816 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
817 		tp->t_flags &= ~TF_ONOUTPUTQ;
818 	}
819 
820 	/*
821 	 * If we got enough samples through the srtt filter,
822 	 * save the rtt and rttvar in the routing entry.
823 	 * 'Enough' is arbitrarily defined as the 16 samples.
824 	 * 16 samples is enough for the srtt filter to converge
825 	 * to within 5% of the correct value; fewer samples and
826 	 * we could save a very bogus rtt.
827 	 *
828 	 * Don't update the default route's characteristics and don't
829 	 * update anything that the user "locked".
830 	 */
831 	if (tp->t_rttupdated >= 16) {
832 		u_long i = 0;
833 
834 		if (isipv6) {
835 			struct sockaddr_in6 *sin6;
836 
837 			if ((rt = inp->in6p_route.ro_rt) == NULL)
838 				goto no_valid_rt;
839 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
840 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
841 				goto no_valid_rt;
842 		} else
843 			if ((rt = inp->inp_route.ro_rt) == NULL ||
844 			    ((struct sockaddr_in *)rt_key(rt))->
845 			     sin_addr.s_addr == INADDR_ANY)
846 				goto no_valid_rt;
847 
848 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
849 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
850 			if (rt->rt_rmx.rmx_rtt && i)
851 				/*
852 				 * filter this update to half the old & half
853 				 * the new values, converting scale.
854 				 * See route.h and tcp_var.h for a
855 				 * description of the scaling constants.
856 				 */
857 				rt->rt_rmx.rmx_rtt =
858 				    (rt->rt_rmx.rmx_rtt + i) / 2;
859 			else
860 				rt->rt_rmx.rmx_rtt = i;
861 			tcpstat.tcps_cachedrtt++;
862 		}
863 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
864 			i = tp->t_rttvar *
865 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
866 			if (rt->rt_rmx.rmx_rttvar && i)
867 				rt->rt_rmx.rmx_rttvar =
868 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
869 			else
870 				rt->rt_rmx.rmx_rttvar = i;
871 			tcpstat.tcps_cachedrttvar++;
872 		}
873 		/*
874 		 * The old comment here said:
875 		 * update the pipelimit (ssthresh) if it has been updated
876 		 * already or if a pipesize was specified & the threshhold
877 		 * got below half the pipesize.  I.e., wait for bad news
878 		 * before we start updating, then update on both good
879 		 * and bad news.
880 		 *
881 		 * But we want to save the ssthresh even if no pipesize is
882 		 * specified explicitly in the route, because such
883 		 * connections still have an implicit pipesize specified
884 		 * by the global tcp_sendspace.  In the absence of a reliable
885 		 * way to calculate the pipesize, it will have to do.
886 		 */
887 		i = tp->snd_ssthresh;
888 		if (rt->rt_rmx.rmx_sendpipe != 0)
889 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
890 		else
891 			dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
892 		if (dosavessthresh ||
893 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
894 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
895 			/*
896 			 * convert the limit from user data bytes to
897 			 * packets then to packet data bytes.
898 			 */
899 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
900 			if (i < 2)
901 				i = 2;
902 			i *= tp->t_maxseg +
903 			     (isipv6 ?
904 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
905 			      sizeof(struct tcpiphdr));
906 			if (rt->rt_rmx.rmx_ssthresh)
907 				rt->rt_rmx.rmx_ssthresh =
908 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
909 			else
910 				rt->rt_rmx.rmx_ssthresh = i;
911 			tcpstat.tcps_cachedssthresh++;
912 		}
913 	}
914 
915 no_valid_rt:
916 	/* free the reassembly queue, if any */
917 	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
918 		LIST_REMOVE(q, tqe_q);
919 		m_freem(q->tqe_m);
920 		FREE(q, M_TSEGQ);
921 		tcp_reass_qsize--;
922 	}
923 	/* throw away SACK blocks in scoreboard*/
924 	if (TCP_DO_SACK(tp))
925 		tcp_sack_cleanup(&tp->scb);
926 
927 	inp->inp_ppcb = NULL;
928 	soisdisconnected(so);
929 	/*
930 	 * Discard the inp.  In the SMP case a wildcard inp's hash (created
931 	 * by a listen socket or an INADDR_ANY udp socket) is replicated
932 	 * for each protocol thread and must be removed in the context of
933 	 * that thread.  This is accomplished by chaining the message
934 	 * through the cpus.
935 	 *
936 	 * If the inp is not wildcarded we simply detach, which will remove
937 	 * the any hashes still present for this inp.
938 	 */
939 #ifdef SMP
940 	if (inp->inp_flags & INP_WILDCARD_MP) {
941 		struct netmsg_remwildcard *msg;
942 
943 		cpu = (inp->inp_pcbinfo->cpu + 1) % ncpus2;
944 		msg = kmalloc(sizeof(struct netmsg_remwildcard),
945 			    M_LWKTMSG, M_INTWAIT);
946 		lwkt_initmsg(&msg->nm_lmsg, &netisr_afree_rport, 0,
947 		    lwkt_cmd_func(in_pcbremwildcardhash_handler),
948 		    lwkt_cmd_op_none);
949 #ifdef INET6
950 		msg->nm_isinet6 = isafinet6;
951 #endif
952 		msg->nm_inp = inp;
953 		msg->nm_pcbinfo = &tcbinfo[cpu];
954 		lwkt_sendmsg(tcp_cport(cpu), &msg->nm_lmsg);
955 	} else
956 #endif
957 	{
958 		/* note: detach removes any wildcard hash entry */
959 #ifdef INET6
960 		if (isafinet6)
961 			in6_pcbdetach(inp);
962 		else
963 #endif
964 			in_pcbdetach(inp);
965 	}
966 	tcpstat.tcps_closed++;
967 	return (NULL);
968 }
969 
970 static __inline void
971 tcp_drain_oncpu(struct inpcbhead *head)
972 {
973 	struct inpcb *inpb;
974 	struct tcpcb *tcpb;
975 	struct tseg_qent *te;
976 
977 	LIST_FOREACH(inpb, head, inp_list) {
978 		if (inpb->inp_flags & INP_PLACEMARKER)
979 			continue;
980 		if ((tcpb = intotcpcb(inpb))) {
981 			while ((te = LIST_FIRST(&tcpb->t_segq)) != NULL) {
982 				LIST_REMOVE(te, tqe_q);
983 				m_freem(te->tqe_m);
984 				FREE(te, M_TSEGQ);
985 				tcp_reass_qsize--;
986 			}
987 		}
988 	}
989 }
990 
991 #ifdef SMP
992 struct netmsg_tcp_drain {
993 	struct lwkt_msg		nm_lmsg;
994 	struct inpcbhead	*nm_head;
995 };
996 
997 static int
998 tcp_drain_handler(lwkt_msg_t lmsg)
999 {
1000 	struct netmsg_tcp_drain *nm = (void *)lmsg;
1001 
1002 	tcp_drain_oncpu(nm->nm_head);
1003 	lwkt_replymsg(lmsg, 0);
1004 	return(EASYNC);
1005 }
1006 #endif
1007 
1008 void
1009 tcp_drain(void)
1010 {
1011 #ifdef SMP
1012 	int cpu;
1013 #endif
1014 
1015 	if (!do_tcpdrain)
1016 		return;
1017 
1018 	/*
1019 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1020 	 * if there is one...
1021 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1022 	 *	reassembly queue should be flushed, but in a situation
1023 	 *	where we're really low on mbufs, this is potentially
1024 	 *	useful.
1025 	 */
1026 #ifdef SMP
1027 	for (cpu = 0; cpu < ncpus2; cpu++) {
1028 		struct netmsg_tcp_drain *msg;
1029 
1030 		if (cpu == mycpu->gd_cpuid) {
1031 			tcp_drain_oncpu(&tcbinfo[cpu].pcblisthead);
1032 		} else {
1033 			msg = kmalloc(sizeof(struct netmsg_tcp_drain),
1034 				    M_LWKTMSG, M_NOWAIT);
1035 			if (msg == NULL)
1036 				continue;
1037 			lwkt_initmsg(&msg->nm_lmsg, &netisr_afree_rport, 0,
1038 				lwkt_cmd_func(tcp_drain_handler),
1039 				lwkt_cmd_op_none);
1040 			msg->nm_head = &tcbinfo[cpu].pcblisthead;
1041 			lwkt_sendmsg(tcp_cport(cpu), &msg->nm_lmsg);
1042 		}
1043 	}
1044 #else
1045 	tcp_drain_oncpu(&tcbinfo[0].pcblisthead);
1046 #endif
1047 }
1048 
1049 /*
1050  * Notify a tcp user of an asynchronous error;
1051  * store error as soft error, but wake up user
1052  * (for now, won't do anything until can select for soft error).
1053  *
1054  * Do not wake up user since there currently is no mechanism for
1055  * reporting soft errors (yet - a kqueue filter may be added).
1056  */
1057 static void
1058 tcp_notify(struct inpcb *inp, int error)
1059 {
1060 	struct tcpcb *tp = intotcpcb(inp);
1061 
1062 	/*
1063 	 * Ignore some errors if we are hooked up.
1064 	 * If connection hasn't completed, has retransmitted several times,
1065 	 * and receives a second error, give up now.  This is better
1066 	 * than waiting a long time to establish a connection that
1067 	 * can never complete.
1068 	 */
1069 	if (tp->t_state == TCPS_ESTABLISHED &&
1070 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1071 	      error == EHOSTDOWN)) {
1072 		return;
1073 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1074 	    tp->t_softerror)
1075 		tcp_drop(tp, error);
1076 	else
1077 		tp->t_softerror = error;
1078 #if 0
1079 	wakeup(&so->so_timeo);
1080 	sorwakeup(so);
1081 	sowwakeup(so);
1082 #endif
1083 }
1084 
1085 static int
1086 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1087 {
1088 	int error, i, n;
1089 	struct inpcb *marker;
1090 	struct inpcb *inp;
1091 	inp_gen_t gencnt;
1092 	globaldata_t gd;
1093 	int origcpu, ccpu;
1094 
1095 	error = 0;
1096 	n = 0;
1097 
1098 	/*
1099 	 * The process of preparing the TCB list is too time-consuming and
1100 	 * resource-intensive to repeat twice on every request.
1101 	 */
1102 	if (req->oldptr == NULL) {
1103 		for (ccpu = 0; ccpu < ncpus; ++ccpu) {
1104 			gd = globaldata_find(ccpu);
1105 			n += tcbinfo[gd->gd_cpuid].ipi_count;
1106 		}
1107 		req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1108 		return (0);
1109 	}
1110 
1111 	if (req->newptr != NULL)
1112 		return (EPERM);
1113 
1114 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1115 	marker->inp_flags |= INP_PLACEMARKER;
1116 
1117 	/*
1118 	 * OK, now we're committed to doing something.  Run the inpcb list
1119 	 * for each cpu in the system and construct the output.  Use a
1120 	 * list placemarker to deal with list changes occuring during
1121 	 * copyout blockages (but otherwise depend on being on the correct
1122 	 * cpu to avoid races).
1123 	 */
1124 	origcpu = mycpu->gd_cpuid;
1125 	for (ccpu = 1; ccpu <= ncpus && error == 0; ++ccpu) {
1126 		globaldata_t rgd;
1127 		caddr_t inp_ppcb;
1128 		struct xtcpcb xt;
1129 		int cpu_id;
1130 
1131 		cpu_id = (origcpu + ccpu) % ncpus;
1132 		if ((smp_active_mask & (1 << cpu_id)) == 0)
1133 			continue;
1134 		rgd = globaldata_find(cpu_id);
1135 		lwkt_setcpu_self(rgd);
1136 
1137 		gencnt = tcbinfo[cpu_id].ipi_gencnt;
1138 		n = tcbinfo[cpu_id].ipi_count;
1139 
1140 		LIST_INSERT_HEAD(&tcbinfo[cpu_id].pcblisthead, marker, inp_list);
1141 		i = 0;
1142 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1143 			/*
1144 			 * process a snapshot of pcbs, ignoring placemarkers
1145 			 * and using our own to allow SYSCTL_OUT to block.
1146 			 */
1147 			LIST_REMOVE(marker, inp_list);
1148 			LIST_INSERT_AFTER(inp, marker, inp_list);
1149 
1150 			if (inp->inp_flags & INP_PLACEMARKER)
1151 				continue;
1152 			if (inp->inp_gencnt > gencnt)
1153 				continue;
1154 			if (prison_xinpcb(req->td, inp))
1155 				continue;
1156 
1157 			xt.xt_len = sizeof xt;
1158 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1159 			inp_ppcb = inp->inp_ppcb;
1160 			if (inp_ppcb != NULL)
1161 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1162 			else
1163 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1164 			if (inp->inp_socket)
1165 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1166 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1167 				break;
1168 			++i;
1169 		}
1170 		LIST_REMOVE(marker, inp_list);
1171 		if (error == 0 && i < n) {
1172 			bzero(&xt, sizeof xt);
1173 			xt.xt_len = sizeof xt;
1174 			while (i < n) {
1175 				error = SYSCTL_OUT(req, &xt, sizeof xt);
1176 				if (error)
1177 					break;
1178 				++i;
1179 			}
1180 		}
1181 	}
1182 
1183 	/*
1184 	 * Make sure we are on the same cpu we were on originally, since
1185 	 * higher level callers expect this.  Also don't pollute caches with
1186 	 * migrated userland data by (eventually) returning to userland
1187 	 * on a different cpu.
1188 	 */
1189 	lwkt_setcpu_self(globaldata_find(origcpu));
1190 	kfree(marker, M_TEMP);
1191 	return (error);
1192 }
1193 
1194 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1195 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1196 
1197 static int
1198 tcp_getcred(SYSCTL_HANDLER_ARGS)
1199 {
1200 	struct sockaddr_in addrs[2];
1201 	struct inpcb *inp;
1202 	int cpu;
1203 	int error;
1204 
1205 	error = suser(req->td);
1206 	if (error != 0)
1207 		return (error);
1208 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1209 	if (error != 0)
1210 		return (error);
1211 	crit_enter();
1212 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1213 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1214 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1215 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1216 	if (inp == NULL || inp->inp_socket == NULL) {
1217 		error = ENOENT;
1218 		goto out;
1219 	}
1220 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1221 out:
1222 	crit_exit();
1223 	return (error);
1224 }
1225 
1226 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1227     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1228 
1229 #ifdef INET6
1230 static int
1231 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1232 {
1233 	struct sockaddr_in6 addrs[2];
1234 	struct inpcb *inp;
1235 	int error;
1236 	boolean_t mapped = FALSE;
1237 
1238 	error = suser(req->td);
1239 	if (error != 0)
1240 		return (error);
1241 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1242 	if (error != 0)
1243 		return (error);
1244 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1245 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1246 			mapped = TRUE;
1247 		else
1248 			return (EINVAL);
1249 	}
1250 	crit_enter();
1251 	if (mapped) {
1252 		inp = in_pcblookup_hash(&tcbinfo[0],
1253 		    *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1254 		    addrs[1].sin6_port,
1255 		    *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1256 		    addrs[0].sin6_port,
1257 		    0, NULL);
1258 	} else {
1259 		inp = in6_pcblookup_hash(&tcbinfo[0],
1260 		    &addrs[1].sin6_addr, addrs[1].sin6_port,
1261 		    &addrs[0].sin6_addr, addrs[0].sin6_port,
1262 		    0, NULL);
1263 	}
1264 	if (inp == NULL || inp->inp_socket == NULL) {
1265 		error = ENOENT;
1266 		goto out;
1267 	}
1268 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1269 out:
1270 	crit_exit();
1271 	return (error);
1272 }
1273 
1274 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1275 	    0, 0,
1276 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1277 #endif
1278 
1279 void
1280 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1281 {
1282 	struct ip *ip = vip;
1283 	struct tcphdr *th;
1284 	struct in_addr faddr;
1285 	struct inpcb *inp;
1286 	struct tcpcb *tp;
1287 	void (*notify)(struct inpcb *, int) = tcp_notify;
1288 	tcp_seq icmpseq;
1289 	int arg, cpu;
1290 
1291 	if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1292 		return;
1293 	}
1294 
1295 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1296 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1297 		return;
1298 
1299 	arg = inetctlerrmap[cmd];
1300 	if (cmd == PRC_QUENCH) {
1301 		notify = tcp_quench;
1302 	} else if (icmp_may_rst &&
1303 		   (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1304 		    cmd == PRC_UNREACH_PORT ||
1305 		    cmd == PRC_TIMXCEED_INTRANS) &&
1306 		   ip != NULL) {
1307 		notify = tcp_drop_syn_sent;
1308 	} else if (cmd == PRC_MSGSIZE) {
1309 		struct icmp *icmp = (struct icmp *)
1310 		    ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1311 
1312 		arg = ntohs(icmp->icmp_nextmtu);
1313 		notify = tcp_mtudisc;
1314 	} else if (PRC_IS_REDIRECT(cmd)) {
1315 		ip = NULL;
1316 		notify = in_rtchange;
1317 	} else if (cmd == PRC_HOSTDEAD) {
1318 		ip = NULL;
1319 	}
1320 
1321 	if (ip != NULL) {
1322 		crit_enter();
1323 		th = (struct tcphdr *)((caddr_t)ip +
1324 				       (IP_VHL_HL(ip->ip_vhl) << 2));
1325 		cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
1326 				  ip->ip_src.s_addr, th->th_sport);
1327 		inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
1328 					ip->ip_src, th->th_sport, 0, NULL);
1329 		if ((inp != NULL) && (inp->inp_socket != NULL)) {
1330 			icmpseq = htonl(th->th_seq);
1331 			tp = intotcpcb(inp);
1332 			if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1333 			    SEQ_LT(icmpseq, tp->snd_max))
1334 				(*notify)(inp, arg);
1335 		} else {
1336 			struct in_conninfo inc;
1337 
1338 			inc.inc_fport = th->th_dport;
1339 			inc.inc_lport = th->th_sport;
1340 			inc.inc_faddr = faddr;
1341 			inc.inc_laddr = ip->ip_src;
1342 #ifdef INET6
1343 			inc.inc_isipv6 = 0;
1344 #endif
1345 			syncache_unreach(&inc, th);
1346 		}
1347 		crit_exit();
1348 	} else {
1349 		for (cpu = 0; cpu < ncpus2; cpu++) {
1350 			in_pcbnotifyall(&tcbinfo[cpu].pcblisthead, faddr, arg,
1351 					notify);
1352 		}
1353 	}
1354 }
1355 
1356 #ifdef INET6
1357 void
1358 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1359 {
1360 	struct tcphdr th;
1361 	void (*notify) (struct inpcb *, int) = tcp_notify;
1362 	struct ip6_hdr *ip6;
1363 	struct mbuf *m;
1364 	struct ip6ctlparam *ip6cp = NULL;
1365 	const struct sockaddr_in6 *sa6_src = NULL;
1366 	int off;
1367 	struct tcp_portonly {
1368 		u_int16_t th_sport;
1369 		u_int16_t th_dport;
1370 	} *thp;
1371 	int arg;
1372 
1373 	if (sa->sa_family != AF_INET6 ||
1374 	    sa->sa_len != sizeof(struct sockaddr_in6))
1375 		return;
1376 
1377 	arg = 0;
1378 	if (cmd == PRC_QUENCH)
1379 		notify = tcp_quench;
1380 	else if (cmd == PRC_MSGSIZE) {
1381 		struct ip6ctlparam *ip6cp = d;
1382 		struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1383 
1384 		arg = ntohl(icmp6->icmp6_mtu);
1385 		notify = tcp_mtudisc;
1386 	} else if (!PRC_IS_REDIRECT(cmd) &&
1387 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1388 		return;
1389 	}
1390 
1391 	/* if the parameter is from icmp6, decode it. */
1392 	if (d != NULL) {
1393 		ip6cp = (struct ip6ctlparam *)d;
1394 		m = ip6cp->ip6c_m;
1395 		ip6 = ip6cp->ip6c_ip6;
1396 		off = ip6cp->ip6c_off;
1397 		sa6_src = ip6cp->ip6c_src;
1398 	} else {
1399 		m = NULL;
1400 		ip6 = NULL;
1401 		off = 0;	/* fool gcc */
1402 		sa6_src = &sa6_any;
1403 	}
1404 
1405 	if (ip6 != NULL) {
1406 		struct in_conninfo inc;
1407 		/*
1408 		 * XXX: We assume that when IPV6 is non NULL,
1409 		 * M and OFF are valid.
1410 		 */
1411 
1412 		/* check if we can safely examine src and dst ports */
1413 		if (m->m_pkthdr.len < off + sizeof *thp)
1414 			return;
1415 
1416 		bzero(&th, sizeof th);
1417 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1418 
1419 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, th.th_dport,
1420 		    (struct sockaddr *)ip6cp->ip6c_src,
1421 		    th.th_sport, cmd, arg, notify);
1422 
1423 		inc.inc_fport = th.th_dport;
1424 		inc.inc_lport = th.th_sport;
1425 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1426 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1427 		inc.inc_isipv6 = 1;
1428 		syncache_unreach(&inc, &th);
1429 	} else
1430 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, 0,
1431 		    (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1432 }
1433 #endif
1434 
1435 /*
1436  * Following is where TCP initial sequence number generation occurs.
1437  *
1438  * There are two places where we must use initial sequence numbers:
1439  * 1.  In SYN-ACK packets.
1440  * 2.  In SYN packets.
1441  *
1442  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1443  * tcp_syncache.c for details.
1444  *
1445  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1446  * depends on this property.  In addition, these ISNs should be
1447  * unguessable so as to prevent connection hijacking.  To satisfy
1448  * the requirements of this situation, the algorithm outlined in
1449  * RFC 1948 is used to generate sequence numbers.
1450  *
1451  * Implementation details:
1452  *
1453  * Time is based off the system timer, and is corrected so that it
1454  * increases by one megabyte per second.  This allows for proper
1455  * recycling on high speed LANs while still leaving over an hour
1456  * before rollover.
1457  *
1458  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1459  * between seeding of isn_secret.  This is normally set to zero,
1460  * as reseeding should not be necessary.
1461  *
1462  */
1463 
1464 #define	ISN_BYTES_PER_SECOND 1048576
1465 
1466 u_char isn_secret[32];
1467 int isn_last_reseed;
1468 MD5_CTX isn_ctx;
1469 
1470 tcp_seq
1471 tcp_new_isn(struct tcpcb *tp)
1472 {
1473 	u_int32_t md5_buffer[4];
1474 	tcp_seq new_isn;
1475 
1476 	/* Seed if this is the first use, reseed if requested. */
1477 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1478 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1479 		< (u_int)ticks))) {
1480 		read_random_unlimited(&isn_secret, sizeof isn_secret);
1481 		isn_last_reseed = ticks;
1482 	}
1483 
1484 	/* Compute the md5 hash and return the ISN. */
1485 	MD5Init(&isn_ctx);
1486 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1487 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1488 #ifdef INET6
1489 	if (tp->t_inpcb->inp_vflag & INP_IPV6) {
1490 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1491 			  sizeof(struct in6_addr));
1492 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1493 			  sizeof(struct in6_addr));
1494 	} else
1495 #endif
1496 	{
1497 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1498 			  sizeof(struct in_addr));
1499 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1500 			  sizeof(struct in_addr));
1501 	}
1502 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1503 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1504 	new_isn = (tcp_seq) md5_buffer[0];
1505 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1506 	return (new_isn);
1507 }
1508 
1509 /*
1510  * When a source quench is received, close congestion window
1511  * to one segment.  We will gradually open it again as we proceed.
1512  */
1513 void
1514 tcp_quench(struct inpcb *inp, int error)
1515 {
1516 	struct tcpcb *tp = intotcpcb(inp);
1517 
1518 	if (tp != NULL) {
1519 		tp->snd_cwnd = tp->t_maxseg;
1520 		tp->snd_wacked = 0;
1521 	}
1522 }
1523 
1524 /*
1525  * When a specific ICMP unreachable message is received and the
1526  * connection state is SYN-SENT, drop the connection.  This behavior
1527  * is controlled by the icmp_may_rst sysctl.
1528  */
1529 void
1530 tcp_drop_syn_sent(struct inpcb *inp, int error)
1531 {
1532 	struct tcpcb *tp = intotcpcb(inp);
1533 
1534 	if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
1535 		tcp_drop(tp, error);
1536 }
1537 
1538 /*
1539  * When a `need fragmentation' ICMP is received, update our idea of the MSS
1540  * based on the new value in the route.  Also nudge TCP to send something,
1541  * since we know the packet we just sent was dropped.
1542  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1543  */
1544 void
1545 tcp_mtudisc(struct inpcb *inp, int mtu)
1546 {
1547 	struct tcpcb *tp = intotcpcb(inp);
1548 	struct rtentry *rt;
1549 	struct socket *so = inp->inp_socket;
1550 	int maxopd, mss;
1551 #ifdef INET6
1552 	boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1553 #else
1554 	const boolean_t isipv6 = FALSE;
1555 #endif
1556 
1557 	if (tp == NULL)
1558 		return;
1559 
1560 	/*
1561 	 * If no MTU is provided in the ICMP message, use the
1562 	 * next lower likely value, as specified in RFC 1191.
1563 	 */
1564 	if (mtu == 0) {
1565 		int oldmtu;
1566 
1567 		oldmtu = tp->t_maxopd +
1568 		    (isipv6 ?
1569 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1570 		     sizeof(struct tcpiphdr));
1571 		mtu = ip_next_mtu(oldmtu, 0);
1572 	}
1573 
1574 	if (isipv6)
1575 		rt = tcp_rtlookup6(&inp->inp_inc);
1576 	else
1577 		rt = tcp_rtlookup(&inp->inp_inc);
1578 	if (rt != NULL) {
1579 		struct rmxp_tao *taop = rmx_taop(rt->rt_rmx);
1580 
1581 		if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1582 			mtu = rt->rt_rmx.rmx_mtu;
1583 
1584 		maxopd = mtu -
1585 		    (isipv6 ?
1586 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1587 		     sizeof(struct tcpiphdr));
1588 
1589 		/*
1590 		 * XXX - The following conditional probably violates the TCP
1591 		 * spec.  The problem is that, since we don't know the
1592 		 * other end's MSS, we are supposed to use a conservative
1593 		 * default.  But, if we do that, then MTU discovery will
1594 		 * never actually take place, because the conservative
1595 		 * default is much less than the MTUs typically seen
1596 		 * on the Internet today.  For the moment, we'll sweep
1597 		 * this under the carpet.
1598 		 *
1599 		 * The conservative default might not actually be a problem
1600 		 * if the only case this occurs is when sending an initial
1601 		 * SYN with options and data to a host we've never talked
1602 		 * to before.  Then, they will reply with an MSS value which
1603 		 * will get recorded and the new parameters should get
1604 		 * recomputed.  For Further Study.
1605 		 */
1606 		if (taop->tao_mssopt != 0 && taop->tao_mssopt < maxopd)
1607 			maxopd = taop->tao_mssopt;
1608 	} else
1609 		maxopd = mtu -
1610 		    (isipv6 ?
1611 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1612 		     sizeof(struct tcpiphdr));
1613 
1614 	if (tp->t_maxopd <= maxopd)
1615 		return;
1616 	tp->t_maxopd = maxopd;
1617 
1618 	mss = maxopd;
1619 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1620 			   (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1621 		mss -= TCPOLEN_TSTAMP_APPA;
1622 
1623 	if ((tp->t_flags & (TF_REQ_CC | TF_RCVD_CC | TF_NOOPT)) ==
1624 			   (TF_REQ_CC | TF_RCVD_CC))
1625 		mss -= TCPOLEN_CC_APPA;
1626 
1627 	/* round down to multiple of MCLBYTES */
1628 #if	(MCLBYTES & (MCLBYTES - 1)) == 0    /* test if MCLBYTES power of 2 */
1629 	if (mss > MCLBYTES)
1630 		mss &= ~(MCLBYTES - 1);
1631 #else
1632 	if (mss > MCLBYTES)
1633 		mss = (mss / MCLBYTES) * MCLBYTES;
1634 #endif
1635 
1636 	if (so->so_snd.ssb_hiwat < mss)
1637 		mss = so->so_snd.ssb_hiwat;
1638 
1639 	tp->t_maxseg = mss;
1640 	tp->t_rtttime = 0;
1641 	tp->snd_nxt = tp->snd_una;
1642 	tcp_output(tp);
1643 	tcpstat.tcps_mturesent++;
1644 }
1645 
1646 /*
1647  * Look-up the routing entry to the peer of this inpcb.  If no route
1648  * is found and it cannot be allocated the return NULL.  This routine
1649  * is called by TCP routines that access the rmx structure and by tcp_mss
1650  * to get the interface MTU.
1651  */
1652 struct rtentry *
1653 tcp_rtlookup(struct in_conninfo *inc)
1654 {
1655 	struct route *ro = &inc->inc_route;
1656 
1657 	if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1658 		/* No route yet, so try to acquire one */
1659 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1660 			/*
1661 			 * unused portions of the structure MUST be zero'd
1662 			 * out because rtalloc() treats it as opaque data
1663 			 */
1664 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1665 			ro->ro_dst.sa_family = AF_INET;
1666 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1667 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1668 			    inc->inc_faddr;
1669 			rtalloc(ro);
1670 		}
1671 	}
1672 	return (ro->ro_rt);
1673 }
1674 
1675 #ifdef INET6
1676 struct rtentry *
1677 tcp_rtlookup6(struct in_conninfo *inc)
1678 {
1679 	struct route_in6 *ro6 = &inc->inc6_route;
1680 
1681 	if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1682 		/* No route yet, so try to acquire one */
1683 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1684 			/*
1685 			 * unused portions of the structure MUST be zero'd
1686 			 * out because rtalloc() treats it as opaque data
1687 			 */
1688 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1689 			ro6->ro_dst.sin6_family = AF_INET6;
1690 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1691 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1692 			rtalloc((struct route *)ro6);
1693 		}
1694 	}
1695 	return (ro6->ro_rt);
1696 }
1697 #endif
1698 
1699 #ifdef IPSEC
1700 /* compute ESP/AH header size for TCP, including outer IP header. */
1701 size_t
1702 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1703 {
1704 	struct inpcb *inp;
1705 	struct mbuf *m;
1706 	size_t hdrsiz;
1707 	struct ip *ip;
1708 	struct tcphdr *th;
1709 
1710 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1711 		return (0);
1712 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1713 	if (!m)
1714 		return (0);
1715 
1716 #ifdef INET6
1717 	if (inp->inp_vflag & INP_IPV6) {
1718 		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1719 
1720 		th = (struct tcphdr *)(ip6 + 1);
1721 		m->m_pkthdr.len = m->m_len =
1722 		    sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1723 		tcp_fillheaders(tp, ip6, th);
1724 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1725 	} else
1726 #endif
1727 	{
1728 		ip = mtod(m, struct ip *);
1729 		th = (struct tcphdr *)(ip + 1);
1730 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1731 		tcp_fillheaders(tp, ip, th);
1732 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1733 	}
1734 
1735 	m_free(m);
1736 	return (hdrsiz);
1737 }
1738 #endif
1739 
1740 /*
1741  * Return a pointer to the cached information about the remote host.
1742  * The cached information is stored in the protocol specific part of
1743  * the route metrics.
1744  */
1745 struct rmxp_tao *
1746 tcp_gettaocache(struct in_conninfo *inc)
1747 {
1748 	struct rtentry *rt;
1749 
1750 #ifdef INET6
1751 	if (inc->inc_isipv6)
1752 		rt = tcp_rtlookup6(inc);
1753 	else
1754 #endif
1755 		rt = tcp_rtlookup(inc);
1756 
1757 	/* Make sure this is a host route and is up. */
1758 	if (rt == NULL ||
1759 	    (rt->rt_flags & (RTF_UP | RTF_HOST)) != (RTF_UP | RTF_HOST))
1760 		return (NULL);
1761 
1762 	return (rmx_taop(rt->rt_rmx));
1763 }
1764 
1765 /*
1766  * Clear all the TAO cache entries, called from tcp_init.
1767  *
1768  * XXX
1769  * This routine is just an empty one, because we assume that the routing
1770  * routing tables are initialized at the same time when TCP, so there is
1771  * nothing in the cache left over.
1772  */
1773 static void
1774 tcp_cleartaocache(void)
1775 {
1776 }
1777 
1778 /*
1779  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1780  *
1781  * This code attempts to calculate the bandwidth-delay product as a
1782  * means of determining the optimal window size to maximize bandwidth,
1783  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1784  * routers.  This code also does a fairly good job keeping RTTs in check
1785  * across slow links like modems.  We implement an algorithm which is very
1786  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1787  * transmitter side of a TCP connection and so only effects the transmit
1788  * side of the connection.
1789  *
1790  * BACKGROUND:  TCP makes no provision for the management of buffer space
1791  * at the end points or at the intermediate routers and switches.  A TCP
1792  * stream, whether using NewReno or not, will eventually buffer as
1793  * many packets as it is able and the only reason this typically works is
1794  * due to the fairly small default buffers made available for a connection
1795  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1796  * scaling it is now fairly easy for even a single TCP connection to blow-out
1797  * all available buffer space not only on the local interface, but on
1798  * intermediate routers and switches as well.  NewReno makes a misguided
1799  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1800  * then backing off, then steadily increasing the window again until another
1801  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1802  * is only made worse as network loads increase and the idea of intentionally
1803  * blowing out network buffers is, frankly, a terrible way to manage network
1804  * resources.
1805  *
1806  * It is far better to limit the transmit window prior to the failure
1807  * condition being achieved.  There are two general ways to do this:  First
1808  * you can 'scan' through different transmit window sizes and locate the
1809  * point where the RTT stops increasing, indicating that you have filled the
1810  * pipe, then scan backwards until you note that RTT stops decreasing, then
1811  * repeat ad-infinitum.  This method works in principle but has severe
1812  * implementation issues due to RTT variances, timer granularity, and
1813  * instability in the algorithm which can lead to many false positives and
1814  * create oscillations as well as interact badly with other TCP streams
1815  * implementing the same algorithm.
1816  *
1817  * The second method is to limit the window to the bandwidth delay product
1818  * of the link.  This is the method we implement.  RTT variances and our
1819  * own manipulation of the congestion window, bwnd, can potentially
1820  * destabilize the algorithm.  For this reason we have to stabilize the
1821  * elements used to calculate the window.  We do this by using the minimum
1822  * observed RTT, the long term average of the observed bandwidth, and
1823  * by adding two segments worth of slop.  It isn't perfect but it is able
1824  * to react to changing conditions and gives us a very stable basis on
1825  * which to extend the algorithm.
1826  */
1827 void
1828 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1829 {
1830 	u_long bw;
1831 	u_long bwnd;
1832 	int save_ticks;
1833 	int delta_ticks;
1834 
1835 	/*
1836 	 * If inflight_enable is disabled in the middle of a tcp connection,
1837 	 * make sure snd_bwnd is effectively disabled.
1838 	 */
1839 	if (!tcp_inflight_enable) {
1840 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1841 		tp->snd_bandwidth = 0;
1842 		return;
1843 	}
1844 
1845 	/*
1846 	 * Validate the delta time.  If a connection is new or has been idle
1847 	 * a long time we have to reset the bandwidth calculator.
1848 	 */
1849 	save_ticks = ticks;
1850 	delta_ticks = save_ticks - tp->t_bw_rtttime;
1851 	if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1852 		tp->t_bw_rtttime = ticks;
1853 		tp->t_bw_rtseq = ack_seq;
1854 		if (tp->snd_bandwidth == 0)
1855 			tp->snd_bandwidth = tcp_inflight_min;
1856 		return;
1857 	}
1858 	if (delta_ticks == 0)
1859 		return;
1860 
1861 	/*
1862 	 * Sanity check, plus ignore pure window update acks.
1863 	 */
1864 	if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1865 		return;
1866 
1867 	/*
1868 	 * Figure out the bandwidth.  Due to the tick granularity this
1869 	 * is a very rough number and it MUST be averaged over a fairly
1870 	 * long period of time.  XXX we need to take into account a link
1871 	 * that is not using all available bandwidth, but for now our
1872 	 * slop will ramp us up if this case occurs and the bandwidth later
1873 	 * increases.
1874 	 */
1875 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
1876 	tp->t_bw_rtttime = save_ticks;
1877 	tp->t_bw_rtseq = ack_seq;
1878 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1879 
1880 	tp->snd_bandwidth = bw;
1881 
1882 	/*
1883 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1884 	 * segments.  The additional slop puts us squarely in the sweet
1885 	 * spot and also handles the bandwidth run-up case.  Without the
1886 	 * slop we could be locking ourselves into a lower bandwidth.
1887 	 *
1888 	 * Situations Handled:
1889 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1890 	 *	    high speed LANs, allowing larger TCP buffers to be
1891 	 *	    specified, and also does a good job preventing
1892 	 *	    over-queueing of packets over choke points like modems
1893 	 *	    (at least for the transmit side).
1894 	 *
1895 	 *	(2) Is able to handle changing network loads (bandwidth
1896 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1897 	 *	    increases).
1898 	 *
1899 	 *	(3) Theoretically should stabilize in the face of multiple
1900 	 *	    connections implementing the same algorithm (this may need
1901 	 *	    a little work).
1902 	 *
1903 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1904 	 *	    be adjusted with a sysctl but typically only needs to be on
1905 	 *	    very slow connections.  A value no smaller then 5 should
1906 	 *	    be used, but only reduce this default if you have no other
1907 	 *	    choice.
1908 	 */
1909 
1910 #define	USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1911 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
1912 	       tcp_inflight_stab * (int)tp->t_maxseg / 10;
1913 #undef USERTT
1914 
1915 	if (tcp_inflight_debug > 0) {
1916 		static int ltime;
1917 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1918 			ltime = ticks;
1919 			kprintf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1920 				tp, bw, tp->t_rttbest, tp->t_srtt, bwnd);
1921 		}
1922 	}
1923 	if ((long)bwnd < tcp_inflight_min)
1924 		bwnd = tcp_inflight_min;
1925 	if (bwnd > tcp_inflight_max)
1926 		bwnd = tcp_inflight_max;
1927 	if ((long)bwnd < tp->t_maxseg * 2)
1928 		bwnd = tp->t_maxseg * 2;
1929 	tp->snd_bwnd = bwnd;
1930 }
1931