xref: /dragonfly/sys/netinet/tcp_subr.c (revision 52f9f0d9)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
67  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
68  */
69 
70 #include "opt_compat.h"
71 #include "opt_inet.h"
72 #include "opt_inet6.h"
73 #include "opt_ipsec.h"
74 #include "opt_tcpdebug.h"
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/callout.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 #include <sys/malloc.h>
82 #include <sys/mpipe.h>
83 #include <sys/mbuf.h>
84 #ifdef INET6
85 #include <sys/domain.h>
86 #endif
87 #include <sys/proc.h>
88 #include <sys/priv.h>
89 #include <sys/socket.h>
90 #include <sys/socketvar.h>
91 #include <sys/protosw.h>
92 #include <sys/random.h>
93 #include <sys/in_cksum.h>
94 #include <sys/ktr.h>
95 
96 #include <net/route.h>
97 #include <net/if.h>
98 #include <net/netisr.h>
99 
100 #define	_IP_VHL
101 #include <netinet/in.h>
102 #include <netinet/in_systm.h>
103 #include <netinet/ip.h>
104 #include <netinet/ip6.h>
105 #include <netinet/in_pcb.h>
106 #include <netinet6/in6_pcb.h>
107 #include <netinet/in_var.h>
108 #include <netinet/ip_var.h>
109 #include <netinet6/ip6_var.h>
110 #include <netinet/ip_icmp.h>
111 #ifdef INET6
112 #include <netinet/icmp6.h>
113 #endif
114 #include <netinet/tcp.h>
115 #include <netinet/tcp_fsm.h>
116 #include <netinet/tcp_seq.h>
117 #include <netinet/tcp_timer.h>
118 #include <netinet/tcp_timer2.h>
119 #include <netinet/tcp_var.h>
120 #include <netinet6/tcp6_var.h>
121 #include <netinet/tcpip.h>
122 #ifdef TCPDEBUG
123 #include <netinet/tcp_debug.h>
124 #endif
125 #include <netinet6/ip6protosw.h>
126 
127 #ifdef IPSEC
128 #include <netinet6/ipsec.h>
129 #include <netproto/key/key.h>
130 #ifdef INET6
131 #include <netinet6/ipsec6.h>
132 #endif
133 #endif
134 
135 #ifdef FAST_IPSEC
136 #include <netproto/ipsec/ipsec.h>
137 #ifdef INET6
138 #include <netproto/ipsec/ipsec6.h>
139 #endif
140 #define	IPSEC
141 #endif
142 
143 #include <sys/md5.h>
144 #include <machine/smp.h>
145 
146 #include <sys/msgport2.h>
147 #include <sys/mplock2.h>
148 #include <net/netmsg2.h>
149 
150 #if !defined(KTR_TCP)
151 #define KTR_TCP		KTR_ALL
152 #endif
153 /*
154 KTR_INFO_MASTER(tcp);
155 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
156 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
157 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
158 #define logtcp(name)	KTR_LOG(tcp_ ## name)
159 */
160 
161 #define TCP_IW_MAXSEGS_DFLT	4
162 #define TCP_IW_CAPSEGS_DFLT	3
163 
164 struct inpcbinfo tcbinfo[MAXCPU];
165 struct tcpcbackqhead tcpcbackq[MAXCPU];
166 
167 static struct lwkt_token tcp_port_token =
168 		LWKT_TOKEN_INITIALIZER(tcp_port_token);
169 
170 int tcp_mssdflt = TCP_MSS;
171 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
172     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
173 
174 #ifdef INET6
175 int tcp_v6mssdflt = TCP6_MSS;
176 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
177     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
178 #endif
179 
180 /*
181  * Minimum MSS we accept and use. This prevents DoS attacks where
182  * we are forced to a ridiculous low MSS like 20 and send hundreds
183  * of packets instead of one. The effect scales with the available
184  * bandwidth and quickly saturates the CPU and network interface
185  * with packet generation and sending. Set to zero to disable MINMSS
186  * checking. This setting prevents us from sending too small packets.
187  */
188 int tcp_minmss = TCP_MINMSS;
189 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
190     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
191 
192 #if 0
193 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
194 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
195     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
196 #endif
197 
198 int tcp_do_rfc1323 = 1;
199 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
200     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
201 
202 static int tcp_tcbhashsize = 0;
203 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
204      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
205 
206 static int do_tcpdrain = 1;
207 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
208      "Enable tcp_drain routine for extra help when low on mbufs");
209 
210 static int icmp_may_rst = 1;
211 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
212     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
213 
214 static int tcp_isn_reseed_interval = 0;
215 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
216     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
217 
218 /*
219  * TCP bandwidth limiting sysctls.  The inflight limiter is now turned on
220  * by default, but with generous values which should allow maximal
221  * bandwidth.  In particular, the slop defaults to 50 (5 packets).
222  *
223  * The reason for doing this is that the limiter is the only mechanism we
224  * have which seems to do a really good job preventing receiver RX rings
225  * on network interfaces from getting blown out.  Even though GigE/10GigE
226  * is supposed to flow control it looks like either it doesn't actually
227  * do it or Open Source drivers do not properly enable it.
228  *
229  * People using the limiter to reduce bottlenecks on slower WAN connections
230  * should set the slop to 20 (2 packets).
231  */
232 static int tcp_inflight_enable = 1;
233 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
234     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
235 
236 static int tcp_inflight_debug = 0;
237 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
238     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
239 
240 static int tcp_inflight_min = 6144;
241 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
242     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
243 
244 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
245 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
246     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
247 
248 static int tcp_inflight_stab = 50;
249 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
250     &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 3 packets)");
251 
252 static int tcp_do_rfc3390 = 1;
253 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
254     &tcp_do_rfc3390, 0,
255     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
256 
257 static u_long tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
258 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwmaxsegs, CTLFLAG_RW,
259     &tcp_iw_maxsegs, 0, "TCP IW segments max");
260 
261 static u_long tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
262 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwcapsegs, CTLFLAG_RW,
263     &tcp_iw_capsegs, 0, "TCP IW segments");
264 
265 int tcp_low_rtobase = 1;
266 SYSCTL_INT(_net_inet_tcp, OID_AUTO, low_rtobase, CTLFLAG_RW,
267     &tcp_low_rtobase, 0, "Lowering the Initial RTO (RFC 6298)");
268 
269 static int tcp_do_ncr = 1;
270 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr, CTLFLAG_RW,
271     &tcp_do_ncr, 0, "Non-Congestion Robustness (RFC 4653)");
272 
273 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
274 static struct malloc_pipe tcptemp_mpipe;
275 
276 static void tcp_willblock(void);
277 static void tcp_notify (struct inpcb *, int);
278 
279 struct tcp_stats tcpstats_percpu[MAXCPU];
280 #ifdef SMP
281 static int
282 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
283 {
284 	int cpu, error = 0;
285 
286 	for (cpu = 0; cpu < ncpus; ++cpu) {
287 		if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
288 					sizeof(struct tcp_stats))))
289 			break;
290 		if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
291 				       sizeof(struct tcp_stats))))
292 			break;
293 	}
294 
295 	return (error);
296 }
297 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
298     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
299 #else
300 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
301     &tcpstat, tcp_stats, "TCP statistics");
302 #endif
303 
304 /*
305  * Target size of TCP PCB hash tables. Must be a power of two.
306  *
307  * Note that this can be overridden by the kernel environment
308  * variable net.inet.tcp.tcbhashsize
309  */
310 #ifndef TCBHASHSIZE
311 #define	TCBHASHSIZE	512
312 #endif
313 
314 /*
315  * This is the actual shape of what we allocate using the zone
316  * allocator.  Doing it this way allows us to protect both structures
317  * using the same generation count, and also eliminates the overhead
318  * of allocating tcpcbs separately.  By hiding the structure here,
319  * we avoid changing most of the rest of the code (although it needs
320  * to be changed, eventually, for greater efficiency).
321  */
322 #define	ALIGNMENT	32
323 #define	ALIGNM1		(ALIGNMENT - 1)
324 struct	inp_tp {
325 	union {
326 		struct	inpcb inp;
327 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
328 	} inp_tp_u;
329 	struct	tcpcb tcb;
330 	struct	tcp_callout inp_tp_rexmt;
331 	struct	tcp_callout inp_tp_persist;
332 	struct	tcp_callout inp_tp_keep;
333 	struct	tcp_callout inp_tp_2msl;
334 	struct	tcp_callout inp_tp_delack;
335 	struct	netmsg_tcp_timer inp_tp_timermsg;
336 };
337 #undef ALIGNMENT
338 #undef ALIGNM1
339 
340 /*
341  * Tcp initialization
342  */
343 void
344 tcp_init(void)
345 {
346 	struct inpcbporthead *porthashbase;
347 	struct inpcbinfo *ticb;
348 	u_long porthashmask;
349 	int hashsize = TCBHASHSIZE;
350 	int cpu;
351 
352 	/*
353 	 * note: tcptemp is used for keepalives, and it is ok for an
354 	 * allocation to fail so do not specify MPF_INT.
355 	 */
356 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
357 		    25, -1, 0, NULL, NULL, NULL);
358 
359 	tcp_delacktime = TCPTV_DELACK;
360 	tcp_keepinit = TCPTV_KEEP_INIT;
361 	tcp_keepidle = TCPTV_KEEP_IDLE;
362 	tcp_keepintvl = TCPTV_KEEPINTVL;
363 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
364 	tcp_msl = TCPTV_MSL;
365 	tcp_rexmit_min = TCPTV_MIN;
366 	tcp_rexmit_slop = TCPTV_CPU_VAR;
367 
368 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
369 	if (!powerof2(hashsize)) {
370 		kprintf("WARNING: TCB hash size not a power of 2\n");
371 		hashsize = 512; /* safe default */
372 	}
373 	tcp_tcbhashsize = hashsize;
374 	porthashbase = hashinit(hashsize, M_PCB, &porthashmask);
375 
376 	for (cpu = 0; cpu < ncpus2; cpu++) {
377 		ticb = &tcbinfo[cpu];
378 		in_pcbinfo_init(ticb);
379 		ticb->cpu = cpu;
380 		ticb->hashbase = hashinit(hashsize, M_PCB,
381 					  &ticb->hashmask);
382 		ticb->porthashbase = porthashbase;
383 		ticb->porthashmask = porthashmask;
384 		ticb->porttoken = &tcp_port_token;
385 #if 0
386 		ticb->porthashbase = hashinit(hashsize, M_PCB,
387 					      &ticb->porthashmask);
388 #endif
389 		ticb->wildcardhashbase = hashinit(hashsize, M_PCB,
390 						  &ticb->wildcardhashmask);
391 		ticb->ipi_size = sizeof(struct inp_tp);
392 		TAILQ_INIT(&tcpcbackq[cpu]);
393 	}
394 
395 	tcp_reass_maxseg = nmbclusters / 16;
396 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
397 
398 #ifdef INET6
399 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
400 #else
401 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
402 #endif
403 	if (max_protohdr < TCP_MINPROTOHDR)
404 		max_protohdr = TCP_MINPROTOHDR;
405 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
406 		panic("tcp_init");
407 #undef TCP_MINPROTOHDR
408 
409 	/*
410 	 * Initialize TCP statistics counters for each CPU.
411 	 */
412 #ifdef SMP
413 	for (cpu = 0; cpu < ncpus; ++cpu) {
414 		bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
415 	}
416 #else
417 	bzero(&tcpstat, sizeof(struct tcp_stats));
418 #endif
419 
420 	syncache_init();
421 	netisr_register_rollup(tcp_willblock);
422 }
423 
424 static void
425 tcp_willblock(void)
426 {
427 	struct tcpcb *tp;
428 	int cpu = mycpu->gd_cpuid;
429 
430 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
431 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
432 		tp->t_flags &= ~TF_ONOUTPUTQ;
433 		TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
434 		tcp_output(tp);
435 	}
436 }
437 
438 /*
439  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
440  * tcp_template used to store this data in mbufs, but we now recopy it out
441  * of the tcpcb each time to conserve mbufs.
442  */
443 void
444 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr)
445 {
446 	struct inpcb *inp = tp->t_inpcb;
447 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
448 
449 #ifdef INET6
450 	if (inp->inp_vflag & INP_IPV6) {
451 		struct ip6_hdr *ip6;
452 
453 		ip6 = (struct ip6_hdr *)ip_ptr;
454 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
455 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
456 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
457 			(IPV6_VERSION & IPV6_VERSION_MASK);
458 		ip6->ip6_nxt = IPPROTO_TCP;
459 		ip6->ip6_plen = sizeof(struct tcphdr);
460 		ip6->ip6_src = inp->in6p_laddr;
461 		ip6->ip6_dst = inp->in6p_faddr;
462 		tcp_hdr->th_sum = 0;
463 	} else
464 #endif
465 	{
466 		struct ip *ip = (struct ip *) ip_ptr;
467 
468 		ip->ip_vhl = IP_VHL_BORING;
469 		ip->ip_tos = 0;
470 		ip->ip_len = 0;
471 		ip->ip_id = 0;
472 		ip->ip_off = 0;
473 		ip->ip_ttl = 0;
474 		ip->ip_sum = 0;
475 		ip->ip_p = IPPROTO_TCP;
476 		ip->ip_src = inp->inp_laddr;
477 		ip->ip_dst = inp->inp_faddr;
478 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
479 				    ip->ip_dst.s_addr,
480 				    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
481 	}
482 
483 	tcp_hdr->th_sport = inp->inp_lport;
484 	tcp_hdr->th_dport = inp->inp_fport;
485 	tcp_hdr->th_seq = 0;
486 	tcp_hdr->th_ack = 0;
487 	tcp_hdr->th_x2 = 0;
488 	tcp_hdr->th_off = 5;
489 	tcp_hdr->th_flags = 0;
490 	tcp_hdr->th_win = 0;
491 	tcp_hdr->th_urp = 0;
492 }
493 
494 /*
495  * Create template to be used to send tcp packets on a connection.
496  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
497  * use for this function is in keepalives, which use tcp_respond.
498  */
499 struct tcptemp *
500 tcp_maketemplate(struct tcpcb *tp)
501 {
502 	struct tcptemp *tmp;
503 
504 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
505 		return (NULL);
506 	tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t);
507 	return (tmp);
508 }
509 
510 void
511 tcp_freetemplate(struct tcptemp *tmp)
512 {
513 	mpipe_free(&tcptemp_mpipe, tmp);
514 }
515 
516 /*
517  * Send a single message to the TCP at address specified by
518  * the given TCP/IP header.  If m == NULL, then we make a copy
519  * of the tcpiphdr at ti and send directly to the addressed host.
520  * This is used to force keep alive messages out using the TCP
521  * template for a connection.  If flags are given then we send
522  * a message back to the TCP which originated the * segment ti,
523  * and discard the mbuf containing it and any other attached mbufs.
524  *
525  * In any case the ack and sequence number of the transmitted
526  * segment are as specified by the parameters.
527  *
528  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
529  */
530 void
531 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
532 	    tcp_seq ack, tcp_seq seq, int flags)
533 {
534 	int tlen;
535 	int win = 0;
536 	struct route *ro = NULL;
537 	struct route sro;
538 	struct ip *ip = ipgen;
539 	struct tcphdr *nth;
540 	int ipflags = 0;
541 	struct route_in6 *ro6 = NULL;
542 	struct route_in6 sro6;
543 	struct ip6_hdr *ip6 = ipgen;
544 	boolean_t use_tmpro = TRUE;
545 #ifdef INET6
546 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
547 #else
548 	const boolean_t isipv6 = FALSE;
549 #endif
550 
551 	if (tp != NULL) {
552 		if (!(flags & TH_RST)) {
553 			win = ssb_space(&tp->t_inpcb->inp_socket->so_rcv);
554 			if (win < 0)
555 				win = 0;
556 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
557 				win = (long)TCP_MAXWIN << tp->rcv_scale;
558 		}
559 		/*
560 		 * Don't use the route cache of a listen socket,
561 		 * it is not MPSAFE; use temporary route cache.
562 		 */
563 		if (tp->t_state != TCPS_LISTEN) {
564 			if (isipv6)
565 				ro6 = &tp->t_inpcb->in6p_route;
566 			else
567 				ro = &tp->t_inpcb->inp_route;
568 			use_tmpro = FALSE;
569 		}
570 	}
571 	if (use_tmpro) {
572 		if (isipv6) {
573 			ro6 = &sro6;
574 			bzero(ro6, sizeof *ro6);
575 		} else {
576 			ro = &sro;
577 			bzero(ro, sizeof *ro);
578 		}
579 	}
580 	if (m == NULL) {
581 		m = m_gethdr(MB_DONTWAIT, MT_HEADER);
582 		if (m == NULL)
583 			return;
584 		tlen = 0;
585 		m->m_data += max_linkhdr;
586 		if (isipv6) {
587 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
588 			ip6 = mtod(m, struct ip6_hdr *);
589 			nth = (struct tcphdr *)(ip6 + 1);
590 		} else {
591 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
592 			ip = mtod(m, struct ip *);
593 			nth = (struct tcphdr *)(ip + 1);
594 		}
595 		bcopy(th, nth, sizeof(struct tcphdr));
596 		flags = TH_ACK;
597 	} else {
598 		m_freem(m->m_next);
599 		m->m_next = NULL;
600 		m->m_data = (caddr_t)ipgen;
601 		/* m_len is set later */
602 		tlen = 0;
603 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
604 		if (isipv6) {
605 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
606 			nth = (struct tcphdr *)(ip6 + 1);
607 		} else {
608 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
609 			nth = (struct tcphdr *)(ip + 1);
610 		}
611 		if (th != nth) {
612 			/*
613 			 * this is usually a case when an extension header
614 			 * exists between the IPv6 header and the
615 			 * TCP header.
616 			 */
617 			nth->th_sport = th->th_sport;
618 			nth->th_dport = th->th_dport;
619 		}
620 		xchg(nth->th_dport, nth->th_sport, n_short);
621 #undef xchg
622 	}
623 	if (isipv6) {
624 		ip6->ip6_flow = 0;
625 		ip6->ip6_vfc = IPV6_VERSION;
626 		ip6->ip6_nxt = IPPROTO_TCP;
627 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
628 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
629 	} else {
630 		tlen += sizeof(struct tcpiphdr);
631 		ip->ip_len = tlen;
632 		ip->ip_ttl = ip_defttl;
633 	}
634 	m->m_len = tlen;
635 	m->m_pkthdr.len = tlen;
636 	m->m_pkthdr.rcvif = NULL;
637 	nth->th_seq = htonl(seq);
638 	nth->th_ack = htonl(ack);
639 	nth->th_x2 = 0;
640 	nth->th_off = sizeof(struct tcphdr) >> 2;
641 	nth->th_flags = flags;
642 	if (tp != NULL)
643 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
644 	else
645 		nth->th_win = htons((u_short)win);
646 	nth->th_urp = 0;
647 	if (isipv6) {
648 		nth->th_sum = 0;
649 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
650 					sizeof(struct ip6_hdr),
651 					tlen - sizeof(struct ip6_hdr));
652 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
653 					       (ro6 && ro6->ro_rt) ?
654 						ro6->ro_rt->rt_ifp : NULL);
655 	} else {
656 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
657 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
658 		m->m_pkthdr.csum_flags = CSUM_TCP;
659 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
660 	}
661 #ifdef TCPDEBUG
662 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
663 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
664 #endif
665 	if (isipv6) {
666 		ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
667 			   tp ? tp->t_inpcb : NULL);
668 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
669 			RTFREE(ro6->ro_rt);
670 			ro6->ro_rt = NULL;
671 		}
672 	} else {
673 		ipflags |= IP_DEBUGROUTE;
674 		ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
675 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
676 			RTFREE(ro->ro_rt);
677 			ro->ro_rt = NULL;
678 		}
679 	}
680 }
681 
682 /*
683  * Create a new TCP control block, making an
684  * empty reassembly queue and hooking it to the argument
685  * protocol control block.  The `inp' parameter must have
686  * come from the zone allocator set up in tcp_init().
687  */
688 struct tcpcb *
689 tcp_newtcpcb(struct inpcb *inp)
690 {
691 	struct inp_tp *it;
692 	struct tcpcb *tp;
693 #ifdef INET6
694 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
695 #else
696 	const boolean_t isipv6 = FALSE;
697 #endif
698 
699 	it = (struct inp_tp *)inp;
700 	tp = &it->tcb;
701 	bzero(tp, sizeof(struct tcpcb));
702 	TAILQ_INIT(&tp->t_segq);
703 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
704 	tp->t_rxtthresh = tcprexmtthresh;
705 
706 	/* Set up our timeouts. */
707 	tp->tt_rexmt = &it->inp_tp_rexmt;
708 	tp->tt_persist = &it->inp_tp_persist;
709 	tp->tt_keep = &it->inp_tp_keep;
710 	tp->tt_2msl = &it->inp_tp_2msl;
711 	tp->tt_delack = &it->inp_tp_delack;
712 	tcp_inittimers(tp);
713 
714 	/*
715 	 * Zero out timer message.  We don't create it here,
716 	 * since the current CPU may not be the owner of this
717 	 * inpcb.
718 	 */
719 	tp->tt_msg = &it->inp_tp_timermsg;
720 	bzero(tp->tt_msg, sizeof(*tp->tt_msg));
721 
722 	tp->t_keepinit = tcp_keepinit;
723 	tp->t_keepidle = tcp_keepidle;
724 	tp->t_keepintvl = tcp_keepintvl;
725 	tp->t_keepcnt = tcp_keepcnt;
726 	tp->t_maxidle = tp->t_keepintvl * tp->t_keepcnt;
727 
728 	if (tcp_do_ncr)
729 		tp->t_flags |= TF_NCR;
730 	if (tcp_do_rfc1323)
731 		tp->t_flags |= (TF_REQ_SCALE | TF_REQ_TSTMP);
732 
733 	tp->t_inpcb = inp;	/* XXX */
734 	tp->t_state = TCPS_CLOSED;
735 	/*
736 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
737 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
738 	 * reasonable initial retransmit time.
739 	 */
740 	tp->t_srtt = TCPTV_SRTTBASE;
741 	tp->t_rttvar =
742 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
743 	tp->t_rttmin = tcp_rexmit_min;
744 	tp->t_rxtcur = TCPTV_RTOBASE;
745 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
746 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
747 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
748 	tp->snd_last = ticks;
749 	tp->t_rcvtime = ticks;
750 	/*
751 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
752 	 * because the socket may be bound to an IPv6 wildcard address,
753 	 * which may match an IPv4-mapped IPv6 address.
754 	 */
755 	inp->inp_ip_ttl = ip_defttl;
756 	inp->inp_ppcb = tp;
757 	tcp_sack_tcpcb_init(tp);
758 	return (tp);		/* XXX */
759 }
760 
761 /*
762  * Drop a TCP connection, reporting the specified error.
763  * If connection is synchronized, then send a RST to peer.
764  */
765 struct tcpcb *
766 tcp_drop(struct tcpcb *tp, int error)
767 {
768 	struct socket *so = tp->t_inpcb->inp_socket;
769 
770 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
771 		tp->t_state = TCPS_CLOSED;
772 		tcp_output(tp);
773 		tcpstat.tcps_drops++;
774 	} else
775 		tcpstat.tcps_conndrops++;
776 	if (error == ETIMEDOUT && tp->t_softerror)
777 		error = tp->t_softerror;
778 	so->so_error = error;
779 	return (tcp_close(tp));
780 }
781 
782 #ifdef SMP
783 
784 struct netmsg_listen_detach {
785 	struct netmsg_base	base;
786 	struct tcpcb		*nm_tp;
787 };
788 
789 static void
790 tcp_listen_detach_handler(netmsg_t msg)
791 {
792 	struct netmsg_listen_detach *nmsg = (struct netmsg_listen_detach *)msg;
793 	struct tcpcb *tp = nmsg->nm_tp;
794 	int cpu = mycpuid, nextcpu;
795 
796 	if (tp->t_flags & TF_LISTEN)
797 		syncache_destroy(tp);
798 
799 	in_pcbremwildcardhash_oncpu(tp->t_inpcb, &tcbinfo[cpu]);
800 
801 	nextcpu = cpu + 1;
802 	if (nextcpu < ncpus2)
803 		lwkt_forwardmsg(cpu_portfn(nextcpu), &nmsg->base.lmsg);
804 	else
805 		lwkt_replymsg(&nmsg->base.lmsg, 0);
806 }
807 
808 #endif
809 
810 /*
811  * Close a TCP control block:
812  *	discard all space held by the tcp
813  *	discard internet protocol block
814  *	wake up any sleepers
815  */
816 struct tcpcb *
817 tcp_close(struct tcpcb *tp)
818 {
819 	struct tseg_qent *q;
820 	struct inpcb *inp = tp->t_inpcb;
821 	struct socket *so = inp->inp_socket;
822 	struct rtentry *rt;
823 	boolean_t dosavessthresh;
824 #ifdef INET6
825 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
826 	boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
827 #else
828 	const boolean_t isipv6 = FALSE;
829 #endif
830 
831 #ifdef SMP
832 	/*
833 	 * INP_WILDCARD_MP indicates that listen(2) has been called on
834 	 * this socket.  This implies:
835 	 * - A wildcard inp's hash is replicated for each protocol thread.
836 	 * - Syncache for this inp grows independently in each protocol
837 	 *   thread.
838 	 * - There is more than one cpu
839 	 *
840 	 * We have to chain a message to the rest of the protocol threads
841 	 * to cleanup the wildcard hash and the syncache.  The cleanup
842 	 * in the current protocol thread is defered till the end of this
843 	 * function.
844 	 *
845 	 * NOTE:
846 	 * After cleanup the inp's hash and syncache entries, this inp will
847 	 * no longer be available to the rest of the protocol threads, so we
848 	 * are safe to whack the inp in the following code.
849 	 */
850 	if (inp->inp_flags & INP_WILDCARD_MP) {
851 		struct netmsg_listen_detach nmsg;
852 
853 		KKASSERT(so->so_port == cpu_portfn(0));
854 		KKASSERT(&curthread->td_msgport == cpu_portfn(0));
855 		KKASSERT(inp->inp_pcbinfo == &tcbinfo[0]);
856 
857 		netmsg_init(&nmsg.base, NULL, &curthread->td_msgport,
858 			    MSGF_PRIORITY, tcp_listen_detach_handler);
859 		nmsg.nm_tp = tp;
860 		lwkt_domsg(cpu_portfn(1), &nmsg.base.lmsg, 0);
861 
862 		inp->inp_flags &= ~INP_WILDCARD_MP;
863 	}
864 #endif
865 
866 	KKASSERT(tp->t_state != TCPS_TERMINATING);
867 	tp->t_state = TCPS_TERMINATING;
868 
869 	/*
870 	 * Make sure that all of our timers are stopped before we
871 	 * delete the PCB.  For listen TCP socket (tp->tt_msg == NULL),
872 	 * timers are never used.  If timer message is never created
873 	 * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
874 	 */
875 	if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
876 		tcp_callout_stop(tp, tp->tt_rexmt);
877 		tcp_callout_stop(tp, tp->tt_persist);
878 		tcp_callout_stop(tp, tp->tt_keep);
879 		tcp_callout_stop(tp, tp->tt_2msl);
880 		tcp_callout_stop(tp, tp->tt_delack);
881 	}
882 
883 	if (tp->t_flags & TF_ONOUTPUTQ) {
884 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
885 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
886 		tp->t_flags &= ~TF_ONOUTPUTQ;
887 	}
888 
889 	/*
890 	 * If we got enough samples through the srtt filter,
891 	 * save the rtt and rttvar in the routing entry.
892 	 * 'Enough' is arbitrarily defined as the 16 samples.
893 	 * 16 samples is enough for the srtt filter to converge
894 	 * to within 5% of the correct value; fewer samples and
895 	 * we could save a very bogus rtt.
896 	 *
897 	 * Don't update the default route's characteristics and don't
898 	 * update anything that the user "locked".
899 	 */
900 	if (tp->t_rttupdated >= 16) {
901 		u_long i = 0;
902 
903 		if (isipv6) {
904 			struct sockaddr_in6 *sin6;
905 
906 			if ((rt = inp->in6p_route.ro_rt) == NULL)
907 				goto no_valid_rt;
908 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
909 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
910 				goto no_valid_rt;
911 		} else
912 			if ((rt = inp->inp_route.ro_rt) == NULL ||
913 			    ((struct sockaddr_in *)rt_key(rt))->
914 			     sin_addr.s_addr == INADDR_ANY)
915 				goto no_valid_rt;
916 
917 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
918 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
919 			if (rt->rt_rmx.rmx_rtt && i)
920 				/*
921 				 * filter this update to half the old & half
922 				 * the new values, converting scale.
923 				 * See route.h and tcp_var.h for a
924 				 * description of the scaling constants.
925 				 */
926 				rt->rt_rmx.rmx_rtt =
927 				    (rt->rt_rmx.rmx_rtt + i) / 2;
928 			else
929 				rt->rt_rmx.rmx_rtt = i;
930 			tcpstat.tcps_cachedrtt++;
931 		}
932 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
933 			i = tp->t_rttvar *
934 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
935 			if (rt->rt_rmx.rmx_rttvar && i)
936 				rt->rt_rmx.rmx_rttvar =
937 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
938 			else
939 				rt->rt_rmx.rmx_rttvar = i;
940 			tcpstat.tcps_cachedrttvar++;
941 		}
942 		/*
943 		 * The old comment here said:
944 		 * update the pipelimit (ssthresh) if it has been updated
945 		 * already or if a pipesize was specified & the threshhold
946 		 * got below half the pipesize.  I.e., wait for bad news
947 		 * before we start updating, then update on both good
948 		 * and bad news.
949 		 *
950 		 * But we want to save the ssthresh even if no pipesize is
951 		 * specified explicitly in the route, because such
952 		 * connections still have an implicit pipesize specified
953 		 * by the global tcp_sendspace.  In the absence of a reliable
954 		 * way to calculate the pipesize, it will have to do.
955 		 */
956 		i = tp->snd_ssthresh;
957 		if (rt->rt_rmx.rmx_sendpipe != 0)
958 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
959 		else
960 			dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
961 		if (dosavessthresh ||
962 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
963 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
964 			/*
965 			 * convert the limit from user data bytes to
966 			 * packets then to packet data bytes.
967 			 */
968 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
969 			if (i < 2)
970 				i = 2;
971 			i *= tp->t_maxseg +
972 			     (isipv6 ?
973 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
974 			      sizeof(struct tcpiphdr));
975 			if (rt->rt_rmx.rmx_ssthresh)
976 				rt->rt_rmx.rmx_ssthresh =
977 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
978 			else
979 				rt->rt_rmx.rmx_ssthresh = i;
980 			tcpstat.tcps_cachedssthresh++;
981 		}
982 	}
983 
984 no_valid_rt:
985 	/* free the reassembly queue, if any */
986 	while((q = TAILQ_FIRST(&tp->t_segq)) != NULL) {
987 		TAILQ_REMOVE(&tp->t_segq, q, tqe_q);
988 		m_freem(q->tqe_m);
989 		kfree(q, M_TSEGQ);
990 		atomic_add_int(&tcp_reass_qsize, -1);
991 	}
992 	/* throw away SACK blocks in scoreboard*/
993 	if (TCP_DO_SACK(tp))
994 		tcp_sack_destroy(&tp->scb);
995 
996 	inp->inp_ppcb = NULL;
997 	soisdisconnected(so);
998 	/* note: pcb detached later on */
999 
1000 	tcp_destroy_timermsg(tp);
1001 
1002 	if (tp->t_flags & TF_LISTEN)
1003 		syncache_destroy(tp);
1004 
1005 	/*
1006 	 * NOTE:
1007 	 * pcbdetach removes any wildcard hash entry on the current CPU.
1008 	 */
1009 #ifdef INET6
1010 	if (isafinet6)
1011 		in6_pcbdetach(inp);
1012 	else
1013 #endif
1014 		in_pcbdetach(inp);
1015 
1016 	tcpstat.tcps_closed++;
1017 	return (NULL);
1018 }
1019 
1020 static __inline void
1021 tcp_drain_oncpu(struct inpcbhead *head)
1022 {
1023 	struct inpcb *marker;
1024 	struct inpcb *inpb;
1025 	struct tcpcb *tcpb;
1026 	struct tseg_qent *te;
1027 
1028 	/*
1029 	 * Allows us to block while running the list
1030 	 */
1031 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1032 	marker->inp_flags |= INP_PLACEMARKER;
1033 	LIST_INSERT_HEAD(head, marker, inp_list);
1034 
1035 	while ((inpb = LIST_NEXT(marker, inp_list)) != NULL) {
1036 		if ((inpb->inp_flags & INP_PLACEMARKER) == 0 &&
1037 		    (tcpb = intotcpcb(inpb)) != NULL &&
1038 		    (te = TAILQ_FIRST(&tcpb->t_segq)) != NULL) {
1039 			TAILQ_REMOVE(&tcpb->t_segq, te, tqe_q);
1040 			m_freem(te->tqe_m);
1041 			kfree(te, M_TSEGQ);
1042 			atomic_add_int(&tcp_reass_qsize, -1);
1043 			/* retry */
1044 		} else {
1045 			LIST_REMOVE(marker, inp_list);
1046 			LIST_INSERT_AFTER(inpb, marker, inp_list);
1047 		}
1048 	}
1049 	LIST_REMOVE(marker, inp_list);
1050 	kfree(marker, M_TEMP);
1051 }
1052 
1053 #ifdef SMP
1054 struct netmsg_tcp_drain {
1055 	struct netmsg_base	base;
1056 	struct inpcbhead	*nm_head;
1057 };
1058 
1059 static void
1060 tcp_drain_handler(netmsg_t msg)
1061 {
1062 	struct netmsg_tcp_drain *nm = (void *)msg;
1063 
1064 	tcp_drain_oncpu(nm->nm_head);
1065 	lwkt_replymsg(&nm->base.lmsg, 0);
1066 }
1067 #endif
1068 
1069 void
1070 tcp_drain(void)
1071 {
1072 #ifdef SMP
1073 	int cpu;
1074 #endif
1075 
1076 	if (!do_tcpdrain)
1077 		return;
1078 
1079 	/*
1080 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1081 	 * if there is one...
1082 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1083 	 *	reassembly queue should be flushed, but in a situation
1084 	 *	where we're really low on mbufs, this is potentially
1085 	 *	useful.
1086 	 */
1087 #ifdef SMP
1088 	for (cpu = 0; cpu < ncpus2; cpu++) {
1089 		struct netmsg_tcp_drain *nm;
1090 
1091 		if (cpu == mycpu->gd_cpuid) {
1092 			tcp_drain_oncpu(&tcbinfo[cpu].pcblisthead);
1093 		} else {
1094 			nm = kmalloc(sizeof(struct netmsg_tcp_drain),
1095 				     M_LWKTMSG, M_NOWAIT);
1096 			if (nm == NULL)
1097 				continue;
1098 			netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1099 				    0, tcp_drain_handler);
1100 			nm->nm_head = &tcbinfo[cpu].pcblisthead;
1101 			lwkt_sendmsg(cpu_portfn(cpu), &nm->base.lmsg);
1102 		}
1103 	}
1104 #else
1105 	tcp_drain_oncpu(&tcbinfo[0].pcblisthead);
1106 #endif
1107 }
1108 
1109 /*
1110  * Notify a tcp user of an asynchronous error;
1111  * store error as soft error, but wake up user
1112  * (for now, won't do anything until can select for soft error).
1113  *
1114  * Do not wake up user since there currently is no mechanism for
1115  * reporting soft errors (yet - a kqueue filter may be added).
1116  */
1117 static void
1118 tcp_notify(struct inpcb *inp, int error)
1119 {
1120 	struct tcpcb *tp = intotcpcb(inp);
1121 
1122 	/*
1123 	 * Ignore some errors if we are hooked up.
1124 	 * If connection hasn't completed, has retransmitted several times,
1125 	 * and receives a second error, give up now.  This is better
1126 	 * than waiting a long time to establish a connection that
1127 	 * can never complete.
1128 	 */
1129 	if (tp->t_state == TCPS_ESTABLISHED &&
1130 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1131 	      error == EHOSTDOWN)) {
1132 		return;
1133 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1134 	    tp->t_softerror)
1135 		tcp_drop(tp, error);
1136 	else
1137 		tp->t_softerror = error;
1138 #if 0
1139 	wakeup(&so->so_timeo);
1140 	sorwakeup(so);
1141 	sowwakeup(so);
1142 #endif
1143 }
1144 
1145 static int
1146 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1147 {
1148 	int error, i, n;
1149 	struct inpcb *marker;
1150 	struct inpcb *inp;
1151 	globaldata_t gd;
1152 	int origcpu, ccpu;
1153 
1154 	error = 0;
1155 	n = 0;
1156 
1157 	/*
1158 	 * The process of preparing the TCB list is too time-consuming and
1159 	 * resource-intensive to repeat twice on every request.
1160 	 */
1161 	if (req->oldptr == NULL) {
1162 		for (ccpu = 0; ccpu < ncpus; ++ccpu) {
1163 			gd = globaldata_find(ccpu);
1164 			n += tcbinfo[gd->gd_cpuid].ipi_count;
1165 		}
1166 		req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1167 		return (0);
1168 	}
1169 
1170 	if (req->newptr != NULL)
1171 		return (EPERM);
1172 
1173 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1174 	marker->inp_flags |= INP_PLACEMARKER;
1175 
1176 	/*
1177 	 * OK, now we're committed to doing something.  Run the inpcb list
1178 	 * for each cpu in the system and construct the output.  Use a
1179 	 * list placemarker to deal with list changes occuring during
1180 	 * copyout blockages (but otherwise depend on being on the correct
1181 	 * cpu to avoid races).
1182 	 */
1183 	origcpu = mycpu->gd_cpuid;
1184 	for (ccpu = 1; ccpu <= ncpus && error == 0; ++ccpu) {
1185 		globaldata_t rgd;
1186 		caddr_t inp_ppcb;
1187 		struct xtcpcb xt;
1188 		int cpu_id;
1189 
1190 		cpu_id = (origcpu + ccpu) % ncpus;
1191 		if ((smp_active_mask & CPUMASK(cpu_id)) == 0)
1192 			continue;
1193 		rgd = globaldata_find(cpu_id);
1194 		lwkt_setcpu_self(rgd);
1195 
1196 		n = tcbinfo[cpu_id].ipi_count;
1197 
1198 		LIST_INSERT_HEAD(&tcbinfo[cpu_id].pcblisthead, marker, inp_list);
1199 		i = 0;
1200 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1201 			/*
1202 			 * process a snapshot of pcbs, ignoring placemarkers
1203 			 * and using our own to allow SYSCTL_OUT to block.
1204 			 */
1205 			LIST_REMOVE(marker, inp_list);
1206 			LIST_INSERT_AFTER(inp, marker, inp_list);
1207 
1208 			if (inp->inp_flags & INP_PLACEMARKER)
1209 				continue;
1210 			if (prison_xinpcb(req->td, inp))
1211 				continue;
1212 
1213 			xt.xt_len = sizeof xt;
1214 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1215 			inp_ppcb = inp->inp_ppcb;
1216 			if (inp_ppcb != NULL)
1217 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1218 			else
1219 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1220 			if (inp->inp_socket)
1221 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1222 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1223 				break;
1224 			++i;
1225 		}
1226 		LIST_REMOVE(marker, inp_list);
1227 		if (error == 0 && i < n) {
1228 			bzero(&xt, sizeof xt);
1229 			xt.xt_len = sizeof xt;
1230 			while (i < n) {
1231 				error = SYSCTL_OUT(req, &xt, sizeof xt);
1232 				if (error)
1233 					break;
1234 				++i;
1235 			}
1236 		}
1237 	}
1238 
1239 	/*
1240 	 * Make sure we are on the same cpu we were on originally, since
1241 	 * higher level callers expect this.  Also don't pollute caches with
1242 	 * migrated userland data by (eventually) returning to userland
1243 	 * on a different cpu.
1244 	 */
1245 	lwkt_setcpu_self(globaldata_find(origcpu));
1246 	kfree(marker, M_TEMP);
1247 	return (error);
1248 }
1249 
1250 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1251 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1252 
1253 static int
1254 tcp_getcred(SYSCTL_HANDLER_ARGS)
1255 {
1256 	struct sockaddr_in addrs[2];
1257 	struct inpcb *inp;
1258 	int cpu;
1259 	int error;
1260 
1261 	error = priv_check(req->td, PRIV_ROOT);
1262 	if (error != 0)
1263 		return (error);
1264 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1265 	if (error != 0)
1266 		return (error);
1267 	crit_enter();
1268 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1269 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1270 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1271 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1272 	if (inp == NULL || inp->inp_socket == NULL) {
1273 		error = ENOENT;
1274 		goto out;
1275 	}
1276 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1277 out:
1278 	crit_exit();
1279 	return (error);
1280 }
1281 
1282 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1283     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1284 
1285 #ifdef INET6
1286 static int
1287 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1288 {
1289 	struct sockaddr_in6 addrs[2];
1290 	struct inpcb *inp;
1291 	int error;
1292 	boolean_t mapped = FALSE;
1293 
1294 	error = priv_check(req->td, PRIV_ROOT);
1295 	if (error != 0)
1296 		return (error);
1297 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1298 	if (error != 0)
1299 		return (error);
1300 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1301 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1302 			mapped = TRUE;
1303 		else
1304 			return (EINVAL);
1305 	}
1306 	crit_enter();
1307 	if (mapped) {
1308 		inp = in_pcblookup_hash(&tcbinfo[0],
1309 		    *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1310 		    addrs[1].sin6_port,
1311 		    *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1312 		    addrs[0].sin6_port,
1313 		    0, NULL);
1314 	} else {
1315 		inp = in6_pcblookup_hash(&tcbinfo[0],
1316 		    &addrs[1].sin6_addr, addrs[1].sin6_port,
1317 		    &addrs[0].sin6_addr, addrs[0].sin6_port,
1318 		    0, NULL);
1319 	}
1320 	if (inp == NULL || inp->inp_socket == NULL) {
1321 		error = ENOENT;
1322 		goto out;
1323 	}
1324 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1325 out:
1326 	crit_exit();
1327 	return (error);
1328 }
1329 
1330 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1331 	    0, 0,
1332 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1333 #endif
1334 
1335 struct netmsg_tcp_notify {
1336 	struct netmsg_base base;
1337 	void		(*nm_notify)(struct inpcb *, int);
1338 	struct in_addr	nm_faddr;
1339 	int		nm_arg;
1340 };
1341 
1342 static void
1343 tcp_notifyall_oncpu(netmsg_t msg)
1344 {
1345 	struct netmsg_tcp_notify *nm = (struct netmsg_tcp_notify *)msg;
1346 	int nextcpu;
1347 
1348 	in_pcbnotifyall(&tcbinfo[mycpuid].pcblisthead, nm->nm_faddr,
1349 			nm->nm_arg, nm->nm_notify);
1350 
1351 	nextcpu = mycpuid + 1;
1352 	if (nextcpu < ncpus2)
1353 		lwkt_forwardmsg(cpu_portfn(nextcpu), &nm->base.lmsg);
1354 	else
1355 		lwkt_replymsg(&nm->base.lmsg, 0);
1356 }
1357 
1358 void
1359 tcp_ctlinput(netmsg_t msg)
1360 {
1361 	int cmd = msg->ctlinput.nm_cmd;
1362 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1363 	struct ip *ip = msg->ctlinput.nm_extra;
1364 	struct tcphdr *th;
1365 	struct in_addr faddr;
1366 	struct inpcb *inp;
1367 	struct tcpcb *tp;
1368 	void (*notify)(struct inpcb *, int) = tcp_notify;
1369 	tcp_seq icmpseq;
1370 	int arg, cpu;
1371 
1372 	if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1373 		goto done;
1374 	}
1375 
1376 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1377 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1378 		goto done;
1379 
1380 	arg = inetctlerrmap[cmd];
1381 	if (cmd == PRC_QUENCH) {
1382 		notify = tcp_quench;
1383 	} else if (icmp_may_rst &&
1384 		   (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1385 		    cmd == PRC_UNREACH_PORT ||
1386 		    cmd == PRC_TIMXCEED_INTRANS) &&
1387 		   ip != NULL) {
1388 		notify = tcp_drop_syn_sent;
1389 	} else if (cmd == PRC_MSGSIZE) {
1390 		struct icmp *icmp = (struct icmp *)
1391 		    ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1392 
1393 		arg = ntohs(icmp->icmp_nextmtu);
1394 		notify = tcp_mtudisc;
1395 	} else if (PRC_IS_REDIRECT(cmd)) {
1396 		ip = NULL;
1397 		notify = in_rtchange;
1398 	} else if (cmd == PRC_HOSTDEAD) {
1399 		ip = NULL;
1400 	}
1401 
1402 	if (ip != NULL) {
1403 		crit_enter();
1404 		th = (struct tcphdr *)((caddr_t)ip +
1405 				       (IP_VHL_HL(ip->ip_vhl) << 2));
1406 		cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
1407 				  ip->ip_src.s_addr, th->th_sport);
1408 		inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
1409 					ip->ip_src, th->th_sport, 0, NULL);
1410 		if ((inp != NULL) && (inp->inp_socket != NULL)) {
1411 			icmpseq = htonl(th->th_seq);
1412 			tp = intotcpcb(inp);
1413 			if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1414 			    SEQ_LT(icmpseq, tp->snd_max))
1415 				(*notify)(inp, arg);
1416 		} else {
1417 			struct in_conninfo inc;
1418 
1419 			inc.inc_fport = th->th_dport;
1420 			inc.inc_lport = th->th_sport;
1421 			inc.inc_faddr = faddr;
1422 			inc.inc_laddr = ip->ip_src;
1423 #ifdef INET6
1424 			inc.inc_isipv6 = 0;
1425 #endif
1426 			syncache_unreach(&inc, th);
1427 		}
1428 		crit_exit();
1429 	} else {
1430 		struct netmsg_tcp_notify *nm;
1431 
1432 		KKASSERT(&curthread->td_msgport == cpu_portfn(0));
1433 		nm = kmalloc(sizeof(*nm), M_LWKTMSG, M_INTWAIT);
1434 		netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1435 			    0, tcp_notifyall_oncpu);
1436 		nm->nm_faddr = faddr;
1437 		nm->nm_arg = arg;
1438 		nm->nm_notify = notify;
1439 
1440 		lwkt_sendmsg(cpu_portfn(0), &nm->base.lmsg);
1441 	}
1442 done:
1443 	lwkt_replymsg(&msg->lmsg, 0);
1444 }
1445 
1446 #ifdef INET6
1447 
1448 void
1449 tcp6_ctlinput(netmsg_t msg)
1450 {
1451 	int cmd = msg->ctlinput.nm_cmd;
1452 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1453 	void *d = msg->ctlinput.nm_extra;
1454 	struct tcphdr th;
1455 	void (*notify) (struct inpcb *, int) = tcp_notify;
1456 	struct ip6_hdr *ip6;
1457 	struct mbuf *m;
1458 	struct ip6ctlparam *ip6cp = NULL;
1459 	const struct sockaddr_in6 *sa6_src = NULL;
1460 	int off;
1461 	struct tcp_portonly {
1462 		u_int16_t th_sport;
1463 		u_int16_t th_dport;
1464 	} *thp;
1465 	int arg;
1466 
1467 	if (sa->sa_family != AF_INET6 ||
1468 	    sa->sa_len != sizeof(struct sockaddr_in6)) {
1469 		goto out;
1470 	}
1471 
1472 	arg = 0;
1473 	if (cmd == PRC_QUENCH)
1474 		notify = tcp_quench;
1475 	else if (cmd == PRC_MSGSIZE) {
1476 		struct ip6ctlparam *ip6cp = d;
1477 		struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1478 
1479 		arg = ntohl(icmp6->icmp6_mtu);
1480 		notify = tcp_mtudisc;
1481 	} else if (!PRC_IS_REDIRECT(cmd) &&
1482 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1483 		goto out;
1484 	}
1485 
1486 	/* if the parameter is from icmp6, decode it. */
1487 	if (d != NULL) {
1488 		ip6cp = (struct ip6ctlparam *)d;
1489 		m = ip6cp->ip6c_m;
1490 		ip6 = ip6cp->ip6c_ip6;
1491 		off = ip6cp->ip6c_off;
1492 		sa6_src = ip6cp->ip6c_src;
1493 	} else {
1494 		m = NULL;
1495 		ip6 = NULL;
1496 		off = 0;	/* fool gcc */
1497 		sa6_src = &sa6_any;
1498 	}
1499 
1500 	if (ip6 != NULL) {
1501 		struct in_conninfo inc;
1502 		/*
1503 		 * XXX: We assume that when IPV6 is non NULL,
1504 		 * M and OFF are valid.
1505 		 */
1506 
1507 		/* check if we can safely examine src and dst ports */
1508 		if (m->m_pkthdr.len < off + sizeof *thp)
1509 			goto out;
1510 
1511 		bzero(&th, sizeof th);
1512 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1513 
1514 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, th.th_dport,
1515 		    (struct sockaddr *)ip6cp->ip6c_src,
1516 		    th.th_sport, cmd, arg, notify);
1517 
1518 		inc.inc_fport = th.th_dport;
1519 		inc.inc_lport = th.th_sport;
1520 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1521 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1522 		inc.inc_isipv6 = 1;
1523 		syncache_unreach(&inc, &th);
1524 	} else {
1525 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, 0,
1526 		    (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1527 	}
1528 out:
1529 	lwkt_replymsg(&msg->ctlinput.base.lmsg, 0);
1530 }
1531 
1532 #endif
1533 
1534 /*
1535  * Following is where TCP initial sequence number generation occurs.
1536  *
1537  * There are two places where we must use initial sequence numbers:
1538  * 1.  In SYN-ACK packets.
1539  * 2.  In SYN packets.
1540  *
1541  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1542  * tcp_syncache.c for details.
1543  *
1544  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1545  * depends on this property.  In addition, these ISNs should be
1546  * unguessable so as to prevent connection hijacking.  To satisfy
1547  * the requirements of this situation, the algorithm outlined in
1548  * RFC 1948 is used to generate sequence numbers.
1549  *
1550  * Implementation details:
1551  *
1552  * Time is based off the system timer, and is corrected so that it
1553  * increases by one megabyte per second.  This allows for proper
1554  * recycling on high speed LANs while still leaving over an hour
1555  * before rollover.
1556  *
1557  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1558  * between seeding of isn_secret.  This is normally set to zero,
1559  * as reseeding should not be necessary.
1560  *
1561  */
1562 
1563 #define	ISN_BYTES_PER_SECOND 1048576
1564 
1565 u_char isn_secret[32];
1566 int isn_last_reseed;
1567 MD5_CTX isn_ctx;
1568 
1569 tcp_seq
1570 tcp_new_isn(struct tcpcb *tp)
1571 {
1572 	u_int32_t md5_buffer[4];
1573 	tcp_seq new_isn;
1574 
1575 	/* Seed if this is the first use, reseed if requested. */
1576 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1577 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1578 		< (u_int)ticks))) {
1579 		read_random_unlimited(&isn_secret, sizeof isn_secret);
1580 		isn_last_reseed = ticks;
1581 	}
1582 
1583 	/* Compute the md5 hash and return the ISN. */
1584 	MD5Init(&isn_ctx);
1585 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1586 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1587 #ifdef INET6
1588 	if (tp->t_inpcb->inp_vflag & INP_IPV6) {
1589 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1590 			  sizeof(struct in6_addr));
1591 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1592 			  sizeof(struct in6_addr));
1593 	} else
1594 #endif
1595 	{
1596 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1597 			  sizeof(struct in_addr));
1598 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1599 			  sizeof(struct in_addr));
1600 	}
1601 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1602 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1603 	new_isn = (tcp_seq) md5_buffer[0];
1604 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1605 	return (new_isn);
1606 }
1607 
1608 /*
1609  * When a source quench is received, close congestion window
1610  * to one segment.  We will gradually open it again as we proceed.
1611  */
1612 void
1613 tcp_quench(struct inpcb *inp, int error)
1614 {
1615 	struct tcpcb *tp = intotcpcb(inp);
1616 
1617 	if (tp != NULL) {
1618 		tp->snd_cwnd = tp->t_maxseg;
1619 		tp->snd_wacked = 0;
1620 	}
1621 }
1622 
1623 /*
1624  * When a specific ICMP unreachable message is received and the
1625  * connection state is SYN-SENT, drop the connection.  This behavior
1626  * is controlled by the icmp_may_rst sysctl.
1627  */
1628 void
1629 tcp_drop_syn_sent(struct inpcb *inp, int error)
1630 {
1631 	struct tcpcb *tp = intotcpcb(inp);
1632 
1633 	if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
1634 		tcp_drop(tp, error);
1635 }
1636 
1637 /*
1638  * When a `need fragmentation' ICMP is received, update our idea of the MSS
1639  * based on the new value in the route.  Also nudge TCP to send something,
1640  * since we know the packet we just sent was dropped.
1641  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1642  */
1643 void
1644 tcp_mtudisc(struct inpcb *inp, int mtu)
1645 {
1646 	struct tcpcb *tp = intotcpcb(inp);
1647 	struct rtentry *rt;
1648 	struct socket *so = inp->inp_socket;
1649 	int maxopd, mss;
1650 #ifdef INET6
1651 	boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1652 #else
1653 	const boolean_t isipv6 = FALSE;
1654 #endif
1655 
1656 	if (tp == NULL)
1657 		return;
1658 
1659 	/*
1660 	 * If no MTU is provided in the ICMP message, use the
1661 	 * next lower likely value, as specified in RFC 1191.
1662 	 */
1663 	if (mtu == 0) {
1664 		int oldmtu;
1665 
1666 		oldmtu = tp->t_maxopd +
1667 		    (isipv6 ?
1668 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1669 		     sizeof(struct tcpiphdr));
1670 		mtu = ip_next_mtu(oldmtu, 0);
1671 	}
1672 
1673 	if (isipv6)
1674 		rt = tcp_rtlookup6(&inp->inp_inc);
1675 	else
1676 		rt = tcp_rtlookup(&inp->inp_inc);
1677 	if (rt != NULL) {
1678 		if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1679 			mtu = rt->rt_rmx.rmx_mtu;
1680 
1681 		maxopd = mtu -
1682 		    (isipv6 ?
1683 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1684 		     sizeof(struct tcpiphdr));
1685 
1686 		/*
1687 		 * XXX - The following conditional probably violates the TCP
1688 		 * spec.  The problem is that, since we don't know the
1689 		 * other end's MSS, we are supposed to use a conservative
1690 		 * default.  But, if we do that, then MTU discovery will
1691 		 * never actually take place, because the conservative
1692 		 * default is much less than the MTUs typically seen
1693 		 * on the Internet today.  For the moment, we'll sweep
1694 		 * this under the carpet.
1695 		 *
1696 		 * The conservative default might not actually be a problem
1697 		 * if the only case this occurs is when sending an initial
1698 		 * SYN with options and data to a host we've never talked
1699 		 * to before.  Then, they will reply with an MSS value which
1700 		 * will get recorded and the new parameters should get
1701 		 * recomputed.  For Further Study.
1702 		 */
1703 		if (rt->rt_rmx.rmx_mssopt  && rt->rt_rmx.rmx_mssopt < maxopd)
1704 			maxopd = rt->rt_rmx.rmx_mssopt;
1705 	} else
1706 		maxopd = mtu -
1707 		    (isipv6 ?
1708 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1709 		     sizeof(struct tcpiphdr));
1710 
1711 	if (tp->t_maxopd <= maxopd)
1712 		return;
1713 	tp->t_maxopd = maxopd;
1714 
1715 	mss = maxopd;
1716 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1717 			   (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1718 		mss -= TCPOLEN_TSTAMP_APPA;
1719 
1720 	/* round down to multiple of MCLBYTES */
1721 #if	(MCLBYTES & (MCLBYTES - 1)) == 0    /* test if MCLBYTES power of 2 */
1722 	if (mss > MCLBYTES)
1723 		mss &= ~(MCLBYTES - 1);
1724 #else
1725 	if (mss > MCLBYTES)
1726 		mss = (mss / MCLBYTES) * MCLBYTES;
1727 #endif
1728 
1729 	if (so->so_snd.ssb_hiwat < mss)
1730 		mss = so->so_snd.ssb_hiwat;
1731 
1732 	tp->t_maxseg = mss;
1733 	tp->t_rtttime = 0;
1734 	tp->snd_nxt = tp->snd_una;
1735 	tcp_output(tp);
1736 	tcpstat.tcps_mturesent++;
1737 }
1738 
1739 /*
1740  * Look-up the routing entry to the peer of this inpcb.  If no route
1741  * is found and it cannot be allocated the return NULL.  This routine
1742  * is called by TCP routines that access the rmx structure and by tcp_mss
1743  * to get the interface MTU.
1744  */
1745 struct rtentry *
1746 tcp_rtlookup(struct in_conninfo *inc)
1747 {
1748 	struct route *ro = &inc->inc_route;
1749 
1750 	if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1751 		/* No route yet, so try to acquire one */
1752 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1753 			/*
1754 			 * unused portions of the structure MUST be zero'd
1755 			 * out because rtalloc() treats it as opaque data
1756 			 */
1757 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1758 			ro->ro_dst.sa_family = AF_INET;
1759 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1760 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1761 			    inc->inc_faddr;
1762 			rtalloc(ro);
1763 		}
1764 	}
1765 	return (ro->ro_rt);
1766 }
1767 
1768 #ifdef INET6
1769 struct rtentry *
1770 tcp_rtlookup6(struct in_conninfo *inc)
1771 {
1772 	struct route_in6 *ro6 = &inc->inc6_route;
1773 
1774 	if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1775 		/* No route yet, so try to acquire one */
1776 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1777 			/*
1778 			 * unused portions of the structure MUST be zero'd
1779 			 * out because rtalloc() treats it as opaque data
1780 			 */
1781 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1782 			ro6->ro_dst.sin6_family = AF_INET6;
1783 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1784 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1785 			rtalloc((struct route *)ro6);
1786 		}
1787 	}
1788 	return (ro6->ro_rt);
1789 }
1790 #endif
1791 
1792 #ifdef IPSEC
1793 /* compute ESP/AH header size for TCP, including outer IP header. */
1794 size_t
1795 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1796 {
1797 	struct inpcb *inp;
1798 	struct mbuf *m;
1799 	size_t hdrsiz;
1800 	struct ip *ip;
1801 	struct tcphdr *th;
1802 
1803 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1804 		return (0);
1805 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1806 	if (!m)
1807 		return (0);
1808 
1809 #ifdef INET6
1810 	if (inp->inp_vflag & INP_IPV6) {
1811 		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1812 
1813 		th = (struct tcphdr *)(ip6 + 1);
1814 		m->m_pkthdr.len = m->m_len =
1815 		    sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1816 		tcp_fillheaders(tp, ip6, th);
1817 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1818 	} else
1819 #endif
1820 	{
1821 		ip = mtod(m, struct ip *);
1822 		th = (struct tcphdr *)(ip + 1);
1823 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1824 		tcp_fillheaders(tp, ip, th);
1825 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1826 	}
1827 
1828 	m_free(m);
1829 	return (hdrsiz);
1830 }
1831 #endif
1832 
1833 /*
1834  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1835  *
1836  * This code attempts to calculate the bandwidth-delay product as a
1837  * means of determining the optimal window size to maximize bandwidth,
1838  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1839  * routers.  This code also does a fairly good job keeping RTTs in check
1840  * across slow links like modems.  We implement an algorithm which is very
1841  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1842  * transmitter side of a TCP connection and so only effects the transmit
1843  * side of the connection.
1844  *
1845  * BACKGROUND:  TCP makes no provision for the management of buffer space
1846  * at the end points or at the intermediate routers and switches.  A TCP
1847  * stream, whether using NewReno or not, will eventually buffer as
1848  * many packets as it is able and the only reason this typically works is
1849  * due to the fairly small default buffers made available for a connection
1850  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1851  * scaling it is now fairly easy for even a single TCP connection to blow-out
1852  * all available buffer space not only on the local interface, but on
1853  * intermediate routers and switches as well.  NewReno makes a misguided
1854  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1855  * then backing off, then steadily increasing the window again until another
1856  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1857  * is only made worse as network loads increase and the idea of intentionally
1858  * blowing out network buffers is, frankly, a terrible way to manage network
1859  * resources.
1860  *
1861  * It is far better to limit the transmit window prior to the failure
1862  * condition being achieved.  There are two general ways to do this:  First
1863  * you can 'scan' through different transmit window sizes and locate the
1864  * point where the RTT stops increasing, indicating that you have filled the
1865  * pipe, then scan backwards until you note that RTT stops decreasing, then
1866  * repeat ad-infinitum.  This method works in principle but has severe
1867  * implementation issues due to RTT variances, timer granularity, and
1868  * instability in the algorithm which can lead to many false positives and
1869  * create oscillations as well as interact badly with other TCP streams
1870  * implementing the same algorithm.
1871  *
1872  * The second method is to limit the window to the bandwidth delay product
1873  * of the link.  This is the method we implement.  RTT variances and our
1874  * own manipulation of the congestion window, bwnd, can potentially
1875  * destabilize the algorithm.  For this reason we have to stabilize the
1876  * elements used to calculate the window.  We do this by using the minimum
1877  * observed RTT, the long term average of the observed bandwidth, and
1878  * by adding two segments worth of slop.  It isn't perfect but it is able
1879  * to react to changing conditions and gives us a very stable basis on
1880  * which to extend the algorithm.
1881  */
1882 void
1883 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1884 {
1885 	u_long bw;
1886 	u_long bwnd;
1887 	int save_ticks;
1888 	int delta_ticks;
1889 
1890 	/*
1891 	 * If inflight_enable is disabled in the middle of a tcp connection,
1892 	 * make sure snd_bwnd is effectively disabled.
1893 	 */
1894 	if (!tcp_inflight_enable) {
1895 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1896 		tp->snd_bandwidth = 0;
1897 		return;
1898 	}
1899 
1900 	/*
1901 	 * Validate the delta time.  If a connection is new or has been idle
1902 	 * a long time we have to reset the bandwidth calculator.
1903 	 */
1904 	save_ticks = ticks;
1905 	delta_ticks = save_ticks - tp->t_bw_rtttime;
1906 	if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1907 		tp->t_bw_rtttime = ticks;
1908 		tp->t_bw_rtseq = ack_seq;
1909 		if (tp->snd_bandwidth == 0)
1910 			tp->snd_bandwidth = tcp_inflight_min;
1911 		return;
1912 	}
1913 	if (delta_ticks == 0)
1914 		return;
1915 
1916 	/*
1917 	 * Sanity check, plus ignore pure window update acks.
1918 	 */
1919 	if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1920 		return;
1921 
1922 	/*
1923 	 * Figure out the bandwidth.  Due to the tick granularity this
1924 	 * is a very rough number and it MUST be averaged over a fairly
1925 	 * long period of time.  XXX we need to take into account a link
1926 	 * that is not using all available bandwidth, but for now our
1927 	 * slop will ramp us up if this case occurs and the bandwidth later
1928 	 * increases.
1929 	 */
1930 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
1931 	tp->t_bw_rtttime = save_ticks;
1932 	tp->t_bw_rtseq = ack_seq;
1933 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1934 
1935 	tp->snd_bandwidth = bw;
1936 
1937 	/*
1938 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1939 	 * segments.  The additional slop puts us squarely in the sweet
1940 	 * spot and also handles the bandwidth run-up case.  Without the
1941 	 * slop we could be locking ourselves into a lower bandwidth.
1942 	 *
1943 	 * Situations Handled:
1944 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1945 	 *	    high speed LANs, allowing larger TCP buffers to be
1946 	 *	    specified, and also does a good job preventing
1947 	 *	    over-queueing of packets over choke points like modems
1948 	 *	    (at least for the transmit side).
1949 	 *
1950 	 *	(2) Is able to handle changing network loads (bandwidth
1951 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1952 	 *	    increases).
1953 	 *
1954 	 *	(3) Theoretically should stabilize in the face of multiple
1955 	 *	    connections implementing the same algorithm (this may need
1956 	 *	    a little work).
1957 	 *
1958 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1959 	 *	    be adjusted with a sysctl but typically only needs to be on
1960 	 *	    very slow connections.  A value no smaller then 5 should
1961 	 *	    be used, but only reduce this default if you have no other
1962 	 *	    choice.
1963 	 */
1964 
1965 #define	USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1966 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
1967 	       tcp_inflight_stab * (int)tp->t_maxseg / 10;
1968 #undef USERTT
1969 
1970 	if (tcp_inflight_debug > 0) {
1971 		static int ltime;
1972 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1973 			ltime = ticks;
1974 			kprintf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1975 				tp, bw, tp->t_rttbest, tp->t_srtt, bwnd);
1976 		}
1977 	}
1978 	if ((long)bwnd < tcp_inflight_min)
1979 		bwnd = tcp_inflight_min;
1980 	if (bwnd > tcp_inflight_max)
1981 		bwnd = tcp_inflight_max;
1982 	if ((long)bwnd < tp->t_maxseg * 2)
1983 		bwnd = tp->t_maxseg * 2;
1984 	tp->snd_bwnd = bwnd;
1985 }
1986 
1987 static void
1988 tcp_rmx_iwsegs(struct tcpcb *tp, u_long *maxsegs, u_long *capsegs)
1989 {
1990 	struct rtentry *rt;
1991 	struct inpcb *inp = tp->t_inpcb;
1992 #ifdef INET6
1993 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
1994 #else
1995 	const boolean_t isipv6 = FALSE;
1996 #endif
1997 
1998 	/* XXX */
1999 	if (tcp_iw_maxsegs < TCP_IW_MAXSEGS_DFLT)
2000 		tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
2001 	if (tcp_iw_capsegs < TCP_IW_CAPSEGS_DFLT)
2002 		tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
2003 
2004 	if (isipv6)
2005 		rt = tcp_rtlookup6(&inp->inp_inc);
2006 	else
2007 		rt = tcp_rtlookup(&inp->inp_inc);
2008 	if (rt == NULL ||
2009 	    rt->rt_rmx.rmx_iwmaxsegs < TCP_IW_MAXSEGS_DFLT ||
2010 	    rt->rt_rmx.rmx_iwcapsegs < TCP_IW_CAPSEGS_DFLT) {
2011 		*maxsegs = tcp_iw_maxsegs;
2012 		*capsegs = tcp_iw_capsegs;
2013 		return;
2014 	}
2015 	*maxsegs = rt->rt_rmx.rmx_iwmaxsegs;
2016 	*capsegs = rt->rt_rmx.rmx_iwcapsegs;
2017 }
2018 
2019 u_long
2020 tcp_initial_window(struct tcpcb *tp)
2021 {
2022 	if (tcp_do_rfc3390) {
2023 		/*
2024 		 * RFC3390:
2025 		 * "If the SYN or SYN/ACK is lost, the initial window
2026 		 *  used by a sender after a correctly transmitted SYN
2027 		 *  MUST be one segment consisting of MSS bytes."
2028 		 *
2029 		 * However, we do something a little bit more aggressive
2030 		 * then RFC3390 here:
2031 		 * - Only if time spent in the SYN or SYN|ACK retransmition
2032 		 *   >= 3 seconds, the IW is reduced.  We do this mainly
2033 		 *   because when RFC3390 is published, the initial RTO is
2034 		 *   still 3 seconds (the threshold we test here), while
2035 		 *   after RFC6298, the initial RTO is 1 second.  This
2036 		 *   behaviour probably still falls within the spirit of
2037 		 *   RFC3390.
2038 		 * - When IW is reduced, 2*MSS is used instead of 1*MSS.
2039 		 *   Mainly to avoid sender and receiver deadlock until
2040 		 *   delayed ACK timer expires.  And even RFC2581 does not
2041 		 *   try to reduce IW upon SYN or SYN|ACK retransmition
2042 		 *   timeout.
2043 		 *
2044 		 * See also:
2045 		 * http://tools.ietf.org/html/draft-ietf-tcpm-initcwnd-03
2046 		 */
2047 		if (tp->t_rxtsyn >= TCPTV_RTOBASE3) {
2048 			return (2 * tp->t_maxseg);
2049 		} else {
2050 			u_long maxsegs, capsegs;
2051 
2052 			tcp_rmx_iwsegs(tp, &maxsegs, &capsegs);
2053 			return min(maxsegs * tp->t_maxseg,
2054 				   max(2 * tp->t_maxseg, capsegs * 1460));
2055 		}
2056 	} else {
2057 		/*
2058 		 * Even RFC2581 (back to 1999) allows 2*SMSS IW.
2059 		 *
2060 		 * Mainly to avoid sender and receiver deadlock
2061 		 * until delayed ACK timer expires.
2062 		 */
2063 		return (2 * tp->t_maxseg);
2064 	}
2065 }
2066 
2067 #ifdef TCP_SIGNATURE
2068 /*
2069  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2070  *
2071  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2072  * When called from tcp_input(), we can be sure that th_sum has been
2073  * zeroed out and verified already.
2074  *
2075  * Return 0 if successful, otherwise return -1.
2076  *
2077  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2078  * search with the destination IP address, and a 'magic SPI' to be
2079  * determined by the application. This is hardcoded elsewhere to 1179
2080  * right now. Another branch of this code exists which uses the SPD to
2081  * specify per-application flows but it is unstable.
2082  */
2083 int
2084 tcpsignature_compute(
2085 	struct mbuf *m,		/* mbuf chain */
2086 	int len,		/* length of TCP data */
2087 	int optlen,		/* length of TCP options */
2088 	u_char *buf,		/* storage for MD5 digest */
2089 	u_int direction)	/* direction of flow */
2090 {
2091 	struct ippseudo ippseudo;
2092 	MD5_CTX ctx;
2093 	int doff;
2094 	struct ip *ip;
2095 	struct ipovly *ipovly;
2096 	struct secasvar *sav;
2097 	struct tcphdr *th;
2098 #ifdef INET6
2099 	struct ip6_hdr *ip6;
2100 	struct in6_addr in6;
2101 	uint32_t plen;
2102 	uint16_t nhdr;
2103 #endif /* INET6 */
2104 	u_short savecsum;
2105 
2106 	KASSERT(m != NULL, ("passed NULL mbuf. Game over."));
2107 	KASSERT(buf != NULL, ("passed NULL storage pointer for MD5 signature"));
2108 	/*
2109 	 * Extract the destination from the IP header in the mbuf.
2110 	 */
2111 	ip = mtod(m, struct ip *);
2112 #ifdef INET6
2113 	ip6 = NULL;     /* Make the compiler happy. */
2114 #endif /* INET6 */
2115 	/*
2116 	 * Look up an SADB entry which matches the address found in
2117 	 * the segment.
2118 	 */
2119 	switch (IP_VHL_V(ip->ip_vhl)) {
2120 	case IPVERSION:
2121 		sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src, (caddr_t)&ip->ip_dst,
2122 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2123 		break;
2124 #ifdef INET6
2125 	case (IPV6_VERSION >> 4):
2126 		ip6 = mtod(m, struct ip6_hdr *);
2127 		sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src, (caddr_t)&ip6->ip6_dst,
2128 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2129 		break;
2130 #endif /* INET6 */
2131 	default:
2132 		return (EINVAL);
2133 		/* NOTREACHED */
2134 		break;
2135 	}
2136 	if (sav == NULL) {
2137 		kprintf("%s: SADB lookup failed\n", __func__);
2138 		return (EINVAL);
2139 	}
2140 	MD5Init(&ctx);
2141 
2142 	/*
2143 	 * Step 1: Update MD5 hash with IP pseudo-header.
2144 	 *
2145 	 * XXX The ippseudo header MUST be digested in network byte order,
2146 	 * or else we'll fail the regression test. Assume all fields we've
2147 	 * been doing arithmetic on have been in host byte order.
2148 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2149 	 * tcp_output(), the underlying ip_len member has not yet been set.
2150 	 */
2151 	switch (IP_VHL_V(ip->ip_vhl)) {
2152 	case IPVERSION:
2153 		ipovly = (struct ipovly *)ip;
2154 		ippseudo.ippseudo_src = ipovly->ih_src;
2155 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2156 		ippseudo.ippseudo_pad = 0;
2157 		ippseudo.ippseudo_p = IPPROTO_TCP;
2158 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2159 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2160 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2161 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2162 		break;
2163 #ifdef INET6
2164 	/*
2165 	 * RFC 2385, 2.0  Proposal
2166 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2167 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2168 	 * extended next header value (to form 32 bits), and 32-bit segment
2169 	 * length.
2170 	 * Note: Upper-Layer Packet Length comes before Next Header.
2171 	 */
2172 	case (IPV6_VERSION >> 4):
2173 		in6 = ip6->ip6_src;
2174 		in6_clearscope(&in6);
2175 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2176 		in6 = ip6->ip6_dst;
2177 		in6_clearscope(&in6);
2178 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2179 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2180 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2181 		nhdr = 0;
2182 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2183 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2184 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2185 		nhdr = IPPROTO_TCP;
2186 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2187 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2188 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2189 		break;
2190 #endif /* INET6 */
2191 	default:
2192 		return (EINVAL);
2193 		/* NOTREACHED */
2194 		break;
2195 	}
2196 	/*
2197 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2198 	 * The TCP checksum must be set to zero.
2199 	 */
2200 	savecsum = th->th_sum;
2201 	th->th_sum = 0;
2202 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2203 	th->th_sum = savecsum;
2204 	/*
2205 	 * Step 3: Update MD5 hash with TCP segment data.
2206 	 *         Use m_apply() to avoid an early m_pullup().
2207 	 */
2208 	if (len > 0)
2209 		m_apply(m, doff, len, tcpsignature_apply, &ctx);
2210 	/*
2211 	 * Step 4: Update MD5 hash with shared secret.
2212 	 */
2213 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2214 	MD5Final(buf, &ctx);
2215 	key_sa_recordxfer(sav, m);
2216 	key_freesav(sav);
2217 	return (0);
2218 }
2219 
2220 int
2221 tcpsignature_apply(void *fstate, void *data, unsigned int len)
2222 {
2223 
2224 	MD5Update((MD5_CTX *)fstate, (unsigned char *)data, len);
2225 	return (0);
2226 }
2227 #endif /* TCP_SIGNATURE */
2228