xref: /dragonfly/sys/netinet/tcp_subr.c (revision 556932ec)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. Neither the name of the University nor the names of its contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  *
62  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
63  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
64  */
65 
66 #include "opt_inet.h"
67 #include "opt_inet6.h"
68 #include "opt_tcpdebug.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/callout.h>
73 #include <sys/kernel.h>
74 #include <sys/sysctl.h>
75 #include <sys/malloc.h>
76 #include <sys/mpipe.h>
77 #include <sys/mbuf.h>
78 #ifdef INET6
79 #include <sys/domain.h>
80 #endif
81 #include <sys/proc.h>
82 #include <sys/priv.h>
83 #include <sys/socket.h>
84 #include <sys/socketops.h>
85 #include <sys/socketvar.h>
86 #include <sys/protosw.h>
87 #include <sys/random.h>
88 #include <sys/in_cksum.h>
89 #include <sys/ktr.h>
90 
91 #include <net/route.h>
92 #include <net/if.h>
93 #include <net/netisr2.h>
94 
95 #define	_IP_VHL
96 #include <netinet/in.h>
97 #include <netinet/in_systm.h>
98 #include <netinet/ip.h>
99 #include <netinet/ip6.h>
100 #include <netinet/in_pcb.h>
101 #include <netinet6/in6_pcb.h>
102 #include <netinet/in_var.h>
103 #include <netinet/ip_var.h>
104 #include <netinet6/ip6_var.h>
105 #include <netinet/ip_icmp.h>
106 #ifdef INET6
107 #include <netinet/icmp6.h>
108 #endif
109 #include <netinet/tcp.h>
110 #include <netinet/tcp_fsm.h>
111 #include <netinet/tcp_seq.h>
112 #include <netinet/tcp_timer.h>
113 #include <netinet/tcp_timer2.h>
114 #include <netinet/tcp_var.h>
115 #include <netinet6/tcp6_var.h>
116 #include <netinet/tcpip.h>
117 #ifdef TCPDEBUG
118 #include <netinet/tcp_debug.h>
119 #endif
120 #include <netinet6/ip6protosw.h>
121 
122 #include <sys/md5.h>
123 #include <machine/smp.h>
124 
125 #include <sys/msgport2.h>
126 #include <net/netmsg2.h>
127 
128 #if !defined(KTR_TCP)
129 #define KTR_TCP		KTR_ALL
130 #endif
131 /*
132 KTR_INFO_MASTER(tcp);
133 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
134 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
135 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
136 #define logtcp(name)	KTR_LOG(tcp_ ## name)
137 */
138 
139 #define TCP_IW_MAXSEGS_DFLT	4
140 #define TCP_IW_CAPSEGS_DFLT	4
141 
142 struct tcp_reass_pcpu {
143 	int			draining;
144 	struct netmsg_base	drain_nmsg;
145 } __cachealign;
146 
147 struct inpcbinfo tcbinfo[MAXCPU];
148 struct tcpcbackq tcpcbackq[MAXCPU];
149 struct tcp_reass_pcpu tcp_reassq[MAXCPU];
150 
151 int tcp_mssdflt = TCP_MSS;
152 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
153     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
154 
155 #ifdef INET6
156 int tcp_v6mssdflt = TCP6_MSS;
157 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
158     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
159 #endif
160 
161 /*
162  * Minimum MSS we accept and use. This prevents DoS attacks where
163  * we are forced to a ridiculous low MSS like 20 and send hundreds
164  * of packets instead of one. The effect scales with the available
165  * bandwidth and quickly saturates the CPU and network interface
166  * with packet generation and sending. Set to zero to disable MINMSS
167  * checking. This setting prevents us from sending too small packets.
168  */
169 int tcp_minmss = TCP_MINMSS;
170 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
171     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
172 
173 #if 0
174 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
175 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
176     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
177 #endif
178 
179 int tcp_do_rfc1323 = 1;
180 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
181     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
182 
183 static int tcp_tcbhashsize = 0;
184 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
185      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
186 
187 static int do_tcpdrain = 1;
188 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
189      "Enable tcp_drain routine for extra help when low on mbufs");
190 
191 static int icmp_may_rst = 1;
192 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
193     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
194 
195 /*
196  * Recommend 20 (6 times in two minutes)
197  *
198  * Lower values may cause the sequence space to cycle too quickly and lose
199  * its signed monotonically-increasing nature within the 2-minute TIMEDWAIT
200  * window.
201  */
202 static int tcp_isn_reseed_interval = 20;
203 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
204     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
205 
206 /*
207  * TCP bandwidth limiting sysctls.  The inflight limiter is now turned on
208  * by default, but with generous values which should allow maximal
209  * bandwidth.  In particular, the slop defaults to 50 (5 packets).
210  *
211  * The reason for doing this is that the limiter is the only mechanism we
212  * have which seems to do a really good job preventing receiver RX rings
213  * on network interfaces from getting blown out.  Even though GigE/10GigE
214  * is supposed to flow control it looks like either it doesn't actually
215  * do it or Open Source drivers do not properly enable it.
216  *
217  * People using the limiter to reduce bottlenecks on slower WAN connections
218  * should set the slop to 20 (2 packets).
219  */
220 static int tcp_inflight_enable = 1;
221 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
222     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
223 
224 static int tcp_inflight_debug = 0;
225 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
226     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
227 
228 /*
229  * NOTE: tcp_inflight_start is essentially the starting receive window
230  *	 for a connection.  If set too low then fetches over tcp
231  *	 connections will take noticably longer to ramp-up over
232  *	 high-latency connections.  6144 is too low for a default,
233  *	 use something more reasonable.
234  */
235 static int tcp_inflight_start = 33792;
236 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_start, CTLFLAG_RW,
237     &tcp_inflight_start, 0, "Start value for TCP inflight window");
238 
239 static int tcp_inflight_min = 6144;
240 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
241     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
242 
243 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
244 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
245     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
246 
247 static int tcp_inflight_stab = 50;
248 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
249     &tcp_inflight_stab, 0, "Fudge bw 1/10% (50=5%)");
250 
251 static int tcp_inflight_adjrtt = 2;
252 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_adjrtt, CTLFLAG_RW,
253     &tcp_inflight_adjrtt, 0, "Slop for rtt 1/(hz*32)");
254 
255 static int tcp_do_rfc3390 = 1;
256 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
257     &tcp_do_rfc3390, 0,
258     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
259 
260 static u_long tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
261 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwmaxsegs, CTLFLAG_RW,
262     &tcp_iw_maxsegs, 0, "TCP IW segments max");
263 
264 static u_long tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
265 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwcapsegs, CTLFLAG_RW,
266     &tcp_iw_capsegs, 0, "TCP IW segments");
267 
268 int tcp_low_rtobase = 1;
269 SYSCTL_INT(_net_inet_tcp, OID_AUTO, low_rtobase, CTLFLAG_RW,
270     &tcp_low_rtobase, 0, "Lowering the Initial RTO (RFC 6298)");
271 
272 static int tcp_do_ncr = 1;
273 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr, CTLFLAG_RW,
274     &tcp_do_ncr, 0, "Non-Congestion Robustness (RFC 4653)");
275 
276 int tcp_ncr_linklocal = 0;
277 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr_linklocal, CTLFLAG_RW,
278     &tcp_ncr_linklocal, 0,
279     "Enable Non-Congestion Robustness (RFC 4653) on link local network");
280 
281 int tcp_ncr_rxtthresh_max = 16;
282 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr_rxtthresh_max, CTLFLAG_RW,
283     &tcp_ncr_rxtthresh_max, 0,
284     "Non-Congestion Robustness (RFC 4653), DupThresh upper limit");
285 
286 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
287 static struct malloc_pipe tcptemp_mpipe;
288 
289 static void tcp_willblock(void);
290 static void tcp_notify (struct inpcb *, int);
291 
292 struct tcp_stats tcpstats_percpu[MAXCPU] __cachealign;
293 struct tcp_state_count tcpstate_count[MAXCPU] __cachealign;
294 
295 static void	tcp_drain_dispatch(netmsg_t nmsg);
296 
297 static int
298 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
299 {
300 	int cpu, error = 0;
301 
302 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
303 		if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
304 					sizeof(struct tcp_stats))))
305 			break;
306 		if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
307 				       sizeof(struct tcp_stats))))
308 			break;
309 	}
310 
311 	return (error);
312 }
313 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
314     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
315 
316 /*
317  * Target size of TCP PCB hash tables. Must be a power of two.
318  *
319  * Note that this can be overridden by the kernel environment
320  * variable net.inet.tcp.tcbhashsize
321  */
322 #ifndef TCBHASHSIZE
323 #define	TCBHASHSIZE	512
324 #endif
325 CTASSERT(powerof2(TCBHASHSIZE));
326 
327 /*
328  * This is the actual shape of what we allocate using the zone
329  * allocator.  Doing it this way allows us to protect both structures
330  * using the same generation count, and also eliminates the overhead
331  * of allocating tcpcbs separately.  By hiding the structure here,
332  * we avoid changing most of the rest of the code (although it needs
333  * to be changed, eventually, for greater efficiency).
334  */
335 #define	ALIGNMENT	32
336 #define	ALIGNM1		(ALIGNMENT - 1)
337 struct	inp_tp {
338 	union {
339 		struct	inpcb inp;
340 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
341 	} inp_tp_u;
342 	struct	tcpcb tcb;
343 	struct	tcp_callout inp_tp_rexmt;
344 	struct	tcp_callout inp_tp_persist;
345 	struct	tcp_callout inp_tp_keep;
346 	struct	tcp_callout inp_tp_2msl;
347 	struct	tcp_callout inp_tp_delack;
348 	struct	netmsg_tcp_timer inp_tp_timermsg;
349 	struct	netmsg_base inp_tp_sndmore;
350 };
351 #undef ALIGNMENT
352 #undef ALIGNM1
353 
354 /*
355  * Tcp initialization
356  */
357 void
358 tcp_init(void)
359 {
360 	struct inpcbportinfo *portinfo;
361 	struct inpcbinfo *ticb;
362 	int hashsize = TCBHASHSIZE, portinfo_hsize;
363 	int cpu;
364 
365 	/*
366 	 * note: tcptemp is used for keepalives, and it is ok for an
367 	 * allocation to fail so do not specify MPF_INT.
368 	 */
369 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
370 		    25, -1, 0, NULL, NULL, NULL);
371 
372 	tcp_delacktime = TCPTV_DELACK;
373 	tcp_keepinit = TCPTV_KEEP_INIT;
374 	tcp_keepidle = TCPTV_KEEP_IDLE;
375 	tcp_keepintvl = TCPTV_KEEPINTVL;
376 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
377 	tcp_msl = TCPTV_MSL;
378 	tcp_rexmit_min = TCPTV_MIN;
379 	if (tcp_rexmit_min < 1) /* if kern.hz is too low */
380 		tcp_rexmit_min = 1;
381 	tcp_rexmit_slop = TCPTV_CPU_VAR;
382 
383 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
384 	if (!powerof2(hashsize)) {
385 		kprintf("WARNING: TCB hash size not a power of 2\n");
386 		hashsize = TCBHASHSIZE; /* safe default */
387 	}
388 	tcp_tcbhashsize = hashsize;
389 
390 	portinfo_hsize = 65536 / netisr_ncpus;
391 	if (portinfo_hsize > hashsize)
392 		portinfo_hsize = hashsize;
393 
394 	portinfo = kmalloc(sizeof(*portinfo) * netisr_ncpus, M_PCB,
395 			   M_WAITOK | M_CACHEALIGN);
396 
397 	for (cpu = 0; cpu < netisr_ncpus; cpu++) {
398 		ticb = &tcbinfo[cpu];
399 		in_pcbinfo_init(ticb, cpu, FALSE);
400 		ticb->hashbase = hashinit(hashsize, M_PCB,
401 					  &ticb->hashmask);
402 		in_pcbportinfo_init(&portinfo[cpu], portinfo_hsize, cpu);
403 		in_pcbportinfo_set(ticb, portinfo, netisr_ncpus);
404 		ticb->wildcardhashbase = hashinit(hashsize, M_PCB,
405 						  &ticb->wildcardhashmask);
406 		ticb->localgrphashbase = hashinit(hashsize, M_PCB,
407 						  &ticb->localgrphashmask);
408 		ticb->ipi_size = sizeof(struct inp_tp);
409 		TAILQ_INIT(&tcpcbackq[cpu].head);
410 	}
411 
412 	tcp_reass_maxseg = nmbclusters / 16;
413 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
414 
415 #ifdef INET6
416 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
417 #else
418 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
419 #endif
420 	if (max_protohdr < TCP_MINPROTOHDR)
421 		max_protohdr = TCP_MINPROTOHDR;
422 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
423 		panic("tcp_init");
424 #undef TCP_MINPROTOHDR
425 
426 	/*
427 	 * Initialize TCP statistics counters for each CPU.
428 	 */
429 	for (cpu = 0; cpu < netisr_ncpus; ++cpu)
430 		bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
431 
432 	/*
433 	 * Initialize netmsgs for TCP drain
434 	 */
435 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
436 		netmsg_init(&tcp_reassq[cpu].drain_nmsg, NULL,
437 		    &netisr_adone_rport, MSGF_PRIORITY, tcp_drain_dispatch);
438 	}
439 
440 	syncache_init();
441 	netisr_register_rollup(tcp_willblock, NETISR_ROLLUP_PRIO_TCP);
442 }
443 
444 static void
445 tcp_willblock(void)
446 {
447 	struct tcpcb *tp;
448 	int cpu = mycpuid;
449 
450 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu].head)) != NULL) {
451 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
452 		tp->t_flags &= ~TF_ONOUTPUTQ;
453 		TAILQ_REMOVE(&tcpcbackq[cpu].head, tp, t_outputq);
454 		tcp_output(tp);
455 	}
456 }
457 
458 /*
459  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
460  * tcp_template used to store this data in mbufs, but we now recopy it out
461  * of the tcpcb each time to conserve mbufs.
462  */
463 void
464 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr, boolean_t tso)
465 {
466 	struct inpcb *inp = tp->t_inpcb;
467 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
468 
469 #ifdef INET6
470 	if (INP_ISIPV6(inp)) {
471 		struct ip6_hdr *ip6;
472 
473 		ip6 = (struct ip6_hdr *)ip_ptr;
474 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
475 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
476 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
477 			(IPV6_VERSION & IPV6_VERSION_MASK);
478 		ip6->ip6_nxt = IPPROTO_TCP;
479 		ip6->ip6_plen = sizeof(struct tcphdr);
480 		ip6->ip6_src = inp->in6p_laddr;
481 		ip6->ip6_dst = inp->in6p_faddr;
482 		tcp_hdr->th_sum = 0;
483 	} else
484 #endif
485 	{
486 		struct ip *ip = (struct ip *) ip_ptr;
487 		u_int plen;
488 
489 		ip->ip_vhl = IP_VHL_BORING;
490 		ip->ip_tos = 0;
491 		ip->ip_len = 0;
492 		ip->ip_id = 0;
493 		ip->ip_off = 0;
494 		ip->ip_ttl = 0;
495 		ip->ip_sum = 0;
496 		ip->ip_p = IPPROTO_TCP;
497 		ip->ip_src = inp->inp_laddr;
498 		ip->ip_dst = inp->inp_faddr;
499 
500 		if (tso)
501 			plen = htons(IPPROTO_TCP);
502 		else
503 			plen = htons(sizeof(struct tcphdr) + IPPROTO_TCP);
504 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
505 		    ip->ip_dst.s_addr, plen);
506 	}
507 
508 	tcp_hdr->th_sport = inp->inp_lport;
509 	tcp_hdr->th_dport = inp->inp_fport;
510 	tcp_hdr->th_seq = 0;
511 	tcp_hdr->th_ack = 0;
512 	tcp_hdr->th_x2 = 0;
513 	tcp_hdr->th_off = 5;
514 	tcp_hdr->th_flags = 0;
515 	tcp_hdr->th_win = 0;
516 	tcp_hdr->th_urp = 0;
517 }
518 
519 /*
520  * Create template to be used to send tcp packets on a connection.
521  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
522  * use for this function is in keepalives, which use tcp_respond.
523  */
524 struct tcptemp *
525 tcp_maketemplate(struct tcpcb *tp)
526 {
527 	struct tcptemp *tmp;
528 
529 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
530 		return (NULL);
531 	tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t, FALSE);
532 	return (tmp);
533 }
534 
535 void
536 tcp_freetemplate(struct tcptemp *tmp)
537 {
538 	mpipe_free(&tcptemp_mpipe, tmp);
539 }
540 
541 /*
542  * Send a single message to the TCP at address specified by
543  * the given TCP/IP header.  If m == NULL, then we make a copy
544  * of the tcpiphdr at ti and send directly to the addressed host.
545  * This is used to force keep alive messages out using the TCP
546  * template for a connection.  If flags are given then we send
547  * a message back to the TCP which originated the * segment ti,
548  * and discard the mbuf containing it and any other attached mbufs.
549  *
550  * In any case the ack and sequence number of the transmitted
551  * segment are as specified by the parameters.
552  *
553  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
554  */
555 void
556 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
557 	    tcp_seq ack, tcp_seq seq, int flags)
558 {
559 	int tlen;
560 	long win = 0;
561 	struct route *ro = NULL;
562 	struct route sro;
563 	struct ip *ip = ipgen;
564 	struct tcphdr *nth;
565 	int ipflags = 0;
566 	struct route_in6 *ro6 = NULL;
567 	struct route_in6 sro6;
568 	struct ip6_hdr *ip6 = ipgen;
569 	struct inpcb *inp = NULL;
570 	boolean_t use_tmpro = TRUE;
571 #ifdef INET6
572 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
573 #else
574 	const boolean_t isipv6 = FALSE;
575 #endif
576 
577 	if (tp != NULL) {
578 		inp = tp->t_inpcb;
579 		if (!(flags & TH_RST)) {
580 			win = ssb_space(&inp->inp_socket->so_rcv);
581 			if (win < 0)
582 				win = 0;
583 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
584 				win = (long)TCP_MAXWIN << tp->rcv_scale;
585 		}
586 		/*
587 		 * Don't use the route cache of a listen socket,
588 		 * it is not MPSAFE; use temporary route cache.
589 		 */
590 		if (tp->t_state != TCPS_LISTEN) {
591 			if (isipv6)
592 				ro6 = &inp->in6p_route;
593 			else
594 				ro = &inp->inp_route;
595 			use_tmpro = FALSE;
596 		}
597 	}
598 	if (use_tmpro) {
599 		if (isipv6) {
600 			ro6 = &sro6;
601 			bzero(ro6, sizeof *ro6);
602 		} else {
603 			ro = &sro;
604 			bzero(ro, sizeof *ro);
605 		}
606 	}
607 	if (m == NULL) {
608 		m = m_gethdr(M_NOWAIT, MT_HEADER);
609 		if (m == NULL)
610 			return;
611 		tlen = 0;
612 		m->m_data += max_linkhdr;
613 		if (isipv6) {
614 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
615 			ip6 = mtod(m, struct ip6_hdr *);
616 			nth = (struct tcphdr *)(ip6 + 1);
617 		} else {
618 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
619 			ip = mtod(m, struct ip *);
620 			nth = (struct tcphdr *)(ip + 1);
621 		}
622 		bcopy(th, nth, sizeof(struct tcphdr));
623 		flags = TH_ACK;
624 	} else {
625 		m_freem(m->m_next);
626 		m->m_next = NULL;
627 		m->m_data = (caddr_t)ipgen;
628 		/* m_len is set later */
629 		tlen = 0;
630 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
631 		if (isipv6) {
632 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
633 			nth = (struct tcphdr *)(ip6 + 1);
634 		} else {
635 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
636 			nth = (struct tcphdr *)(ip + 1);
637 		}
638 		if (th != nth) {
639 			/*
640 			 * this is usually a case when an extension header
641 			 * exists between the IPv6 header and the
642 			 * TCP header.
643 			 */
644 			nth->th_sport = th->th_sport;
645 			nth->th_dport = th->th_dport;
646 		}
647 		xchg(nth->th_dport, nth->th_sport, n_short);
648 #undef xchg
649 	}
650 	if (isipv6) {
651 		ip6->ip6_flow = 0;
652 		ip6->ip6_vfc = IPV6_VERSION;
653 		ip6->ip6_nxt = IPPROTO_TCP;
654 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
655 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
656 	} else {
657 		tlen += sizeof(struct tcpiphdr);
658 		ip->ip_len = htons(tlen);
659 		ip->ip_ttl = ip_defttl;
660 	}
661 	m->m_len = tlen;
662 	m->m_pkthdr.len = tlen;
663 	m->m_pkthdr.rcvif = NULL;
664 	nth->th_seq = htonl(seq);
665 	nth->th_ack = htonl(ack);
666 	nth->th_x2 = 0;
667 	nth->th_off = sizeof(struct tcphdr) >> 2;
668 	nth->th_flags = flags;
669 	if (tp != NULL)
670 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
671 	else
672 		nth->th_win = htons((u_short)win);
673 	nth->th_urp = 0;
674 	if (isipv6) {
675 		nth->th_sum = 0;
676 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
677 					sizeof(struct ip6_hdr),
678 					tlen - sizeof(struct ip6_hdr));
679 		ip6->ip6_hlim = in6_selecthlim(inp,
680 		    (ro6 && ro6->ro_rt) ? ro6->ro_rt->rt_ifp : NULL);
681 	} else {
682 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
683 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
684 		m->m_pkthdr.csum_flags = CSUM_TCP;
685 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
686 		m->m_pkthdr.csum_thlen = sizeof(struct tcphdr);
687 	}
688 #ifdef TCPDEBUG
689 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
690 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
691 #endif
692 	if (isipv6) {
693 		ip6_output(m, NULL, ro6, ipflags, NULL, NULL, inp);
694 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
695 			RTFREE(ro6->ro_rt);
696 			ro6->ro_rt = NULL;
697 		}
698 	} else {
699 		if (inp != NULL && (inp->inp_flags & INP_HASH))
700 			m_sethash(m, inp->inp_hashval);
701 		ipflags |= IP_DEBUGROUTE;
702 		ip_output(m, NULL, ro, ipflags, NULL, inp);
703 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
704 			RTFREE(ro->ro_rt);
705 			ro->ro_rt = NULL;
706 		}
707 	}
708 }
709 
710 /*
711  * Create a new TCP control block, making an
712  * empty reassembly queue and hooking it to the argument
713  * protocol control block.  The `inp' parameter must have
714  * come from the zone allocator set up in tcp_init().
715  */
716 void
717 tcp_newtcpcb(struct inpcb *inp)
718 {
719 	struct inp_tp *it;
720 	struct tcpcb *tp;
721 #ifdef INET6
722 	boolean_t isipv6 = INP_ISIPV6(inp);
723 #else
724 	const boolean_t isipv6 = FALSE;
725 #endif
726 
727 	it = (struct inp_tp *)inp;
728 	tp = &it->tcb;
729 	bzero(tp, sizeof(struct tcpcb));
730 	TAILQ_INIT(&tp->t_segq);
731 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
732 	tp->t_rxtthresh = tcprexmtthresh;
733 
734 	/* Set up our timeouts. */
735 	tp->tt_rexmt = &it->inp_tp_rexmt;
736 	tp->tt_persist = &it->inp_tp_persist;
737 	tp->tt_keep = &it->inp_tp_keep;
738 	tp->tt_2msl = &it->inp_tp_2msl;
739 	tp->tt_delack = &it->inp_tp_delack;
740 	tcp_inittimers(tp);
741 
742 	/*
743 	 * Zero out timer message.  We don't create it here,
744 	 * since the current CPU may not be the owner of this
745 	 * inpcb.
746 	 */
747 	tp->tt_msg = &it->inp_tp_timermsg;
748 	bzero(tp->tt_msg, sizeof(*tp->tt_msg));
749 
750 	tp->t_keepinit = tcp_keepinit;
751 	tp->t_keepidle = tcp_keepidle;
752 	tp->t_keepintvl = tcp_keepintvl;
753 	tp->t_keepcnt = tcp_keepcnt;
754 	tp->t_maxidle = tp->t_keepintvl * tp->t_keepcnt;
755 
756 	if (tcp_do_ncr)
757 		tp->t_flags |= TF_NCR;
758 	if (tcp_do_rfc1323)
759 		tp->t_flags |= (TF_REQ_SCALE | TF_REQ_TSTMP);
760 
761 	tp->t_inpcb = inp;	/* XXX */
762 	TCP_STATE_INIT(tp);
763 	/*
764 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
765 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
766 	 * reasonable initial retransmit time.
767 	 */
768 	tp->t_srtt = TCPTV_SRTTBASE;
769 	tp->t_rttvar =
770 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
771 	tp->t_rttmin = tcp_rexmit_min;
772 	tp->t_rxtcur = TCPTV_RTOBASE;
773 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
774 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
775 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
776 	tp->snd_last = ticks;
777 	tp->t_rcvtime = ticks;
778 	/*
779 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
780 	 * because the socket may be bound to an IPv6 wildcard address,
781 	 * which may match an IPv4-mapped IPv6 address.
782 	 */
783 	inp->inp_ip_ttl = ip_defttl;
784 	inp->inp_ppcb = tp;
785 	tcp_sack_tcpcb_init(tp);
786 
787 	tp->tt_sndmore = &it->inp_tp_sndmore;
788 	tcp_output_init(tp);
789 }
790 
791 /*
792  * Drop a TCP connection, reporting the specified error.
793  * If connection is synchronized, then send a RST to peer.
794  */
795 struct tcpcb *
796 tcp_drop(struct tcpcb *tp, int error)
797 {
798 	struct socket *so = tp->t_inpcb->inp_socket;
799 
800 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
801 		TCP_STATE_CHANGE(tp, TCPS_CLOSED);
802 		tcp_output(tp);
803 		tcpstat.tcps_drops++;
804 	} else
805 		tcpstat.tcps_conndrops++;
806 	if (error == ETIMEDOUT && tp->t_softerror)
807 		error = tp->t_softerror;
808 	so->so_error = error;
809 	return (tcp_close(tp));
810 }
811 
812 struct netmsg_listen_detach {
813 	struct netmsg_base	base;
814 	struct tcpcb		*nm_tp;
815 	struct tcpcb		*nm_tp_inh;
816 };
817 
818 static void
819 tcp_listen_detach_handler(netmsg_t msg)
820 {
821 	struct netmsg_listen_detach *nmsg = (struct netmsg_listen_detach *)msg;
822 	struct tcpcb *tp = nmsg->nm_tp;
823 	int cpu = mycpuid, nextcpu;
824 
825 	if (tp->t_flags & TF_LISTEN) {
826 		syncache_destroy(tp, nmsg->nm_tp_inh);
827 		tcp_pcbport_merge_oncpu(tp);
828 	}
829 
830 	in_pcbremwildcardhash_oncpu(tp->t_inpcb, &tcbinfo[cpu]);
831 
832 	nextcpu = cpu + 1;
833 	if (nextcpu < netisr_ncpus)
834 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &nmsg->base.lmsg);
835 	else
836 		lwkt_replymsg(&nmsg->base.lmsg, 0);
837 }
838 
839 /*
840  * Close a TCP control block:
841  *	discard all space held by the tcp
842  *	discard internet protocol block
843  *	wake up any sleepers
844  */
845 struct tcpcb *
846 tcp_close(struct tcpcb *tp)
847 {
848 	struct tseg_qent *q;
849 	struct inpcb *inp = tp->t_inpcb;
850 	struct inpcb *inp_inh = NULL;
851 	struct tcpcb *tp_inh = NULL;
852 	struct socket *so = inp->inp_socket;
853 	struct rtentry *rt;
854 	boolean_t dosavessthresh;
855 #ifdef INET6
856 	boolean_t isipv6 = INP_ISIPV6(inp);
857 #else
858 	const boolean_t isipv6 = FALSE;
859 #endif
860 
861 	if (tp->t_flags & TF_LISTEN) {
862 		/*
863 		 * Pending socket/syncache inheritance
864 		 *
865 		 * If this is a listen(2) socket, find another listen(2)
866 		 * socket in the same local group, which could inherit
867 		 * the syncache and sockets pending on the completion
868 		 * and incompletion queues.
869 		 *
870 		 * NOTE:
871 		 * Currently the inheritance could only happen on the
872 		 * listen(2) sockets w/ SO_REUSEPORT set.
873 		 */
874 		ASSERT_NETISR0;
875 		inp_inh = in_pcblocalgroup_last(&tcbinfo[0], inp);
876 		if (inp_inh != NULL)
877 			tp_inh = intotcpcb(inp_inh);
878 	}
879 
880 	/*
881 	 * INP_WILDCARD indicates that listen(2) has been called on
882 	 * this socket.  This implies:
883 	 * - A wildcard inp's hash is replicated for each protocol thread.
884 	 * - Syncache for this inp grows independently in each protocol
885 	 *   thread.
886 	 * - There is more than one cpu
887 	 *
888 	 * We have to chain a message to the rest of the protocol threads
889 	 * to cleanup the wildcard hash and the syncache.  The cleanup
890 	 * in the current protocol thread is defered till the end of this
891 	 * function (syncache_destroy and in_pcbdetach).
892 	 *
893 	 * NOTE:
894 	 * After cleanup the inp's hash and syncache entries, this inp will
895 	 * no longer be available to the rest of the protocol threads, so we
896 	 * are safe to whack the inp in the following code.
897 	 */
898 	if ((inp->inp_flags & INP_WILDCARD) && netisr_ncpus > 1) {
899 		struct netmsg_listen_detach nmsg;
900 
901 		KKASSERT(so->so_port == netisr_cpuport(0));
902 		ASSERT_NETISR0;
903 		KKASSERT(inp->inp_pcbinfo == &tcbinfo[0]);
904 
905 		netmsg_init(&nmsg.base, NULL, &curthread->td_msgport,
906 			    MSGF_PRIORITY, tcp_listen_detach_handler);
907 		nmsg.nm_tp = tp;
908 		nmsg.nm_tp_inh = tp_inh;
909 		lwkt_domsg(netisr_cpuport(1), &nmsg.base.lmsg, 0);
910 	}
911 
912 	TCP_STATE_TERM(tp);
913 
914 	/*
915 	 * Make sure that all of our timers are stopped before we
916 	 * delete the PCB.  For listen TCP socket (tp->tt_msg == NULL),
917 	 * timers are never used.  If timer message is never created
918 	 * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
919 	 */
920 	if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
921 		tcp_callout_terminate(tp, tp->tt_rexmt);
922 		tcp_callout_terminate(tp, tp->tt_persist);
923 		tcp_callout_terminate(tp, tp->tt_keep);
924 		tcp_callout_terminate(tp, tp->tt_2msl);
925 		tcp_callout_terminate(tp, tp->tt_delack);
926 	}
927 
928 	if (tp->t_flags & TF_ONOUTPUTQ) {
929 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
930 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu].head, tp, t_outputq);
931 		tp->t_flags &= ~TF_ONOUTPUTQ;
932 	}
933 
934 	/*
935 	 * If we got enough samples through the srtt filter,
936 	 * save the rtt and rttvar in the routing entry.
937 	 * 'Enough' is arbitrarily defined as the 16 samples.
938 	 * 16 samples is enough for the srtt filter to converge
939 	 * to within 5% of the correct value; fewer samples and
940 	 * we could save a very bogus rtt.
941 	 *
942 	 * Don't update the default route's characteristics and don't
943 	 * update anything that the user "locked".
944 	 */
945 	if (tp->t_rttupdated >= 16) {
946 		u_long i = 0;
947 
948 		if (isipv6) {
949 			struct sockaddr_in6 *sin6;
950 
951 			if ((rt = inp->in6p_route.ro_rt) == NULL)
952 				goto no_valid_rt;
953 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
954 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
955 				goto no_valid_rt;
956 		} else
957 			if ((rt = inp->inp_route.ro_rt) == NULL ||
958 			    ((struct sockaddr_in *)rt_key(rt))->
959 			     sin_addr.s_addr == INADDR_ANY)
960 				goto no_valid_rt;
961 
962 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
963 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
964 			if (rt->rt_rmx.rmx_rtt && i)
965 				/*
966 				 * filter this update to half the old & half
967 				 * the new values, converting scale.
968 				 * See route.h and tcp_var.h for a
969 				 * description of the scaling constants.
970 				 */
971 				rt->rt_rmx.rmx_rtt =
972 				    (rt->rt_rmx.rmx_rtt + i) / 2;
973 			else
974 				rt->rt_rmx.rmx_rtt = i;
975 			tcpstat.tcps_cachedrtt++;
976 		}
977 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
978 			i = tp->t_rttvar *
979 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
980 			if (rt->rt_rmx.rmx_rttvar && i)
981 				rt->rt_rmx.rmx_rttvar =
982 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
983 			else
984 				rt->rt_rmx.rmx_rttvar = i;
985 			tcpstat.tcps_cachedrttvar++;
986 		}
987 		/*
988 		 * The old comment here said:
989 		 * update the pipelimit (ssthresh) if it has been updated
990 		 * already or if a pipesize was specified & the threshhold
991 		 * got below half the pipesize.  I.e., wait for bad news
992 		 * before we start updating, then update on both good
993 		 * and bad news.
994 		 *
995 		 * But we want to save the ssthresh even if no pipesize is
996 		 * specified explicitly in the route, because such
997 		 * connections still have an implicit pipesize specified
998 		 * by the global tcp_sendspace.  In the absence of a reliable
999 		 * way to calculate the pipesize, it will have to do.
1000 		 */
1001 		i = tp->snd_ssthresh;
1002 		if (rt->rt_rmx.rmx_sendpipe != 0)
1003 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
1004 		else
1005 			dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
1006 		if (dosavessthresh ||
1007 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
1008 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
1009 			/*
1010 			 * convert the limit from user data bytes to
1011 			 * packets then to packet data bytes.
1012 			 */
1013 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
1014 			if (i < 2)
1015 				i = 2;
1016 			i *= tp->t_maxseg +
1017 			     (isipv6 ?
1018 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1019 			      sizeof(struct tcpiphdr));
1020 			if (rt->rt_rmx.rmx_ssthresh)
1021 				rt->rt_rmx.rmx_ssthresh =
1022 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
1023 			else
1024 				rt->rt_rmx.rmx_ssthresh = i;
1025 			tcpstat.tcps_cachedssthresh++;
1026 		}
1027 	}
1028 
1029 no_valid_rt:
1030 	/* free the reassembly queue, if any */
1031 	while((q = TAILQ_FIRST(&tp->t_segq)) != NULL) {
1032 		TAILQ_REMOVE(&tp->t_segq, q, tqe_q);
1033 		m_freem(q->tqe_m);
1034 		kfree(q, M_TSEGQ);
1035 		atomic_add_int(&tcp_reass_qsize, -1);
1036 	}
1037 	/* throw away SACK blocks in scoreboard*/
1038 	if (TCP_DO_SACK(tp))
1039 		tcp_sack_destroy(&tp->scb);
1040 
1041 	inp->inp_ppcb = NULL;
1042 	soisdisconnected(so);
1043 	/* note: pcb detached later on */
1044 
1045 	tcp_destroy_timermsg(tp);
1046 	tcp_output_cancel(tp);
1047 
1048 	if (tp->t_flags & TF_LISTEN) {
1049 		syncache_destroy(tp, tp_inh);
1050 		tcp_pcbport_merge_oncpu(tp);
1051 		tcp_pcbport_destroy(tp);
1052 		if (inp_inh != NULL && inp_inh->inp_socket != NULL) {
1053 			/*
1054 			 * Pending sockets inheritance only needs
1055 			 * to be done once in the current thread,
1056 			 * i.e. netisr0.
1057 			 */
1058 			soinherit(so, inp_inh->inp_socket);
1059 		}
1060 	}
1061 	KASSERT(tp->t_pcbport == NULL, ("tcpcb port cache is not destroyed"));
1062 
1063 	so_async_rcvd_drop(so);
1064 	/* Drop the reference for the asynchronized pru_rcvd */
1065 	sofree(so);
1066 
1067 	/*
1068 	 * NOTE:
1069 	 * - Remove self from listen tcpcb per-cpu port cache _before_
1070 	 *   pcbdetach.
1071 	 * - pcbdetach removes any wildcard hash entry on the current CPU.
1072 	 */
1073 	tcp_pcbport_remove(inp);
1074 #ifdef INET6
1075 	if (isipv6)
1076 		in6_pcbdetach(inp);
1077 	else
1078 #endif
1079 		in_pcbdetach(inp);
1080 
1081 	tcpstat.tcps_closed++;
1082 	return (NULL);
1083 }
1084 
1085 /*
1086  * Walk the tcpbs, if existing, and flush the reassembly queue,
1087  * if there is one...
1088  */
1089 static void
1090 tcp_drain_oncpu(struct inpcbinfo *pcbinfo)
1091 {
1092 	struct inpcbhead *head = &pcbinfo->pcblisthead;
1093 	struct inpcb *inpb;
1094 
1095 	/*
1096 	 * Since we run in netisr, it is MP safe, even if
1097 	 * we block during the inpcb list iteration, i.e.
1098 	 * we don't need to use inpcb marker here.
1099 	 */
1100 	ASSERT_NETISR_NCPUS(pcbinfo->cpu);
1101 
1102 	LIST_FOREACH(inpb, head, inp_list) {
1103 		struct tcpcb *tcpb;
1104 		struct tseg_qent *te;
1105 
1106 		if (inpb->inp_flags & INP_PLACEMARKER)
1107 			continue;
1108 
1109 		tcpb = intotcpcb(inpb);
1110 		KASSERT(tcpb != NULL, ("tcp_drain_oncpu: tcpb is NULL"));
1111 
1112 		if ((te = TAILQ_FIRST(&tcpb->t_segq)) != NULL) {
1113 			TAILQ_REMOVE(&tcpb->t_segq, te, tqe_q);
1114 			if (te->tqe_th->th_flags & TH_FIN)
1115 				tcpb->t_flags &= ~TF_QUEDFIN;
1116 			m_freem(te->tqe_m);
1117 			kfree(te, M_TSEGQ);
1118 			atomic_add_int(&tcp_reass_qsize, -1);
1119 			/* retry */
1120 		}
1121 	}
1122 }
1123 
1124 static void
1125 tcp_drain_dispatch(netmsg_t nmsg)
1126 {
1127 	crit_enter();
1128 	lwkt_replymsg(&nmsg->lmsg, 0);  /* reply ASAP */
1129 	crit_exit();
1130 
1131 	tcp_drain_oncpu(&tcbinfo[mycpuid]);
1132 	tcp_reassq[mycpuid].draining = 0;
1133 }
1134 
1135 static void
1136 tcp_drain_ipi(void *arg __unused)
1137 {
1138 	int cpu = mycpuid;
1139 	struct lwkt_msg *msg = &tcp_reassq[cpu].drain_nmsg.lmsg;
1140 
1141 	crit_enter();
1142 	if (msg->ms_flags & MSGF_DONE)
1143 		lwkt_sendmsg_oncpu(netisr_cpuport(cpu), msg);
1144 	crit_exit();
1145 }
1146 
1147 void
1148 tcp_drain(void)
1149 {
1150 	cpumask_t mask;
1151 	int cpu;
1152 
1153 	if (!do_tcpdrain)
1154 		return;
1155 
1156 	if (tcp_reass_qsize == 0)
1157 		return;
1158 
1159 	CPUMASK_ASSBMASK(mask, netisr_ncpus);
1160 	CPUMASK_ANDMASK(mask, smp_active_mask);
1161 
1162 	cpu = mycpuid;
1163 	if (IN_NETISR_NCPUS(cpu)) {
1164 		tcp_drain_oncpu(&tcbinfo[cpu]);
1165 		CPUMASK_NANDBIT(mask, cpu);
1166 	}
1167 
1168 	if (tcp_reass_qsize < netisr_ncpus) {
1169 		/* Does not worth the trouble. */
1170 		return;
1171 	}
1172 
1173 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
1174 		if (!CPUMASK_TESTBIT(mask, cpu))
1175 			continue;
1176 
1177 		if (tcp_reassq[cpu].draining) {
1178 			/* Draining; skip this cpu. */
1179 			CPUMASK_NANDBIT(mask, cpu);
1180 			continue;
1181 		}
1182 		tcp_reassq[cpu].draining = 1;
1183 	}
1184 
1185 	if (CPUMASK_TESTNZERO(mask))
1186 		lwkt_send_ipiq_mask(mask, tcp_drain_ipi, NULL);
1187 }
1188 
1189 /*
1190  * Notify a tcp user of an asynchronous error;
1191  * store error as soft error, but wake up user
1192  * (for now, won't do anything until can select for soft error).
1193  *
1194  * Do not wake up user since there currently is no mechanism for
1195  * reporting soft errors (yet - a kqueue filter may be added).
1196  */
1197 static void
1198 tcp_notify(struct inpcb *inp, int error)
1199 {
1200 	struct tcpcb *tp = intotcpcb(inp);
1201 
1202 	/*
1203 	 * Ignore some errors if we are hooked up.
1204 	 * If connection hasn't completed, has retransmitted several times,
1205 	 * and receives a second error, give up now.  This is better
1206 	 * than waiting a long time to establish a connection that
1207 	 * can never complete.
1208 	 */
1209 	if (tp->t_state == TCPS_ESTABLISHED &&
1210 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1211 	      error == EHOSTDOWN)) {
1212 		return;
1213 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1214 	    tp->t_softerror)
1215 		tcp_drop(tp, error);
1216 	else
1217 		tp->t_softerror = error;
1218 #if 0
1219 	wakeup(&so->so_timeo);
1220 	sorwakeup(so);
1221 	sowwakeup(so);
1222 #endif
1223 }
1224 
1225 static int
1226 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1227 {
1228 	int error, i, n;
1229 	struct inpcb *marker;
1230 	struct inpcb *inp;
1231 	int origcpu, ccpu;
1232 
1233 	error = 0;
1234 	n = 0;
1235 
1236 	/*
1237 	 * The process of preparing the TCB list is too time-consuming and
1238 	 * resource-intensive to repeat twice on every request.
1239 	 */
1240 	if (req->oldptr == NULL) {
1241 		for (ccpu = 0; ccpu < netisr_ncpus; ++ccpu)
1242 			n += tcbinfo[ccpu].ipi_count;
1243 		req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1244 		return (0);
1245 	}
1246 
1247 	if (req->newptr != NULL)
1248 		return (EPERM);
1249 
1250 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1251 	marker->inp_flags |= INP_PLACEMARKER;
1252 
1253 	/*
1254 	 * OK, now we're committed to doing something.  Run the inpcb list
1255 	 * for each cpu in the system and construct the output.  Use a
1256 	 * list placemarker to deal with list changes occuring during
1257 	 * copyout blockages (but otherwise depend on being on the correct
1258 	 * cpu to avoid races).
1259 	 */
1260 	origcpu = mycpu->gd_cpuid;
1261 	for (ccpu = 0; ccpu < netisr_ncpus && error == 0; ++ccpu) {
1262 		caddr_t inp_ppcb;
1263 		struct xtcpcb xt;
1264 
1265 		lwkt_migratecpu(ccpu);
1266 
1267 		n = tcbinfo[ccpu].ipi_count;
1268 
1269 		LIST_INSERT_HEAD(&tcbinfo[ccpu].pcblisthead, marker, inp_list);
1270 		i = 0;
1271 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1272 			/*
1273 			 * process a snapshot of pcbs, ignoring placemarkers
1274 			 * and using our own to allow SYSCTL_OUT to block.
1275 			 */
1276 			LIST_REMOVE(marker, inp_list);
1277 			LIST_INSERT_AFTER(inp, marker, inp_list);
1278 
1279 			if (inp->inp_flags & INP_PLACEMARKER)
1280 				continue;
1281 			if (prison_xinpcb(req->td, inp))
1282 				continue;
1283 
1284 			xt.xt_len = sizeof xt;
1285 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1286 			inp_ppcb = inp->inp_ppcb;
1287 			if (inp_ppcb != NULL)
1288 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1289 			else
1290 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1291 			if (inp->inp_socket)
1292 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1293 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1294 				break;
1295 			++i;
1296 		}
1297 		LIST_REMOVE(marker, inp_list);
1298 		if (error == 0 && i < n) {
1299 			bzero(&xt, sizeof xt);
1300 			xt.xt_len = sizeof xt;
1301 			while (i < n) {
1302 				error = SYSCTL_OUT(req, &xt, sizeof xt);
1303 				if (error)
1304 					break;
1305 				++i;
1306 			}
1307 		}
1308 	}
1309 
1310 	/*
1311 	 * Make sure we are on the same cpu we were on originally, since
1312 	 * higher level callers expect this.  Also don't pollute caches with
1313 	 * migrated userland data by (eventually) returning to userland
1314 	 * on a different cpu.
1315 	 */
1316 	lwkt_migratecpu(origcpu);
1317 	kfree(marker, M_TEMP);
1318 	return (error);
1319 }
1320 
1321 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1322 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1323 
1324 static int
1325 tcp_getcred(SYSCTL_HANDLER_ARGS)
1326 {
1327 	struct sockaddr_in addrs[2];
1328 	struct ucred cred0, *cred = NULL;
1329 	struct inpcb *inp;
1330 	int cpu, origcpu, error;
1331 
1332 	error = priv_check(req->td, PRIV_ROOT);
1333 	if (error != 0)
1334 		return (error);
1335 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1336 	if (error != 0)
1337 		return (error);
1338 
1339 	origcpu = mycpuid;
1340 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1341 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1342 
1343 	lwkt_migratecpu(cpu);
1344 
1345 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1346 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1347 	if (inp == NULL || inp->inp_socket == NULL) {
1348 		error = ENOENT;
1349 	} else if (inp->inp_socket->so_cred != NULL) {
1350 		cred0 = *(inp->inp_socket->so_cred);
1351 		cred = &cred0;
1352 	}
1353 
1354 	lwkt_migratecpu(origcpu);
1355 
1356 	if (error)
1357 		return (error);
1358 
1359 	return SYSCTL_OUT(req, cred, sizeof(struct ucred));
1360 }
1361 
1362 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1363     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1364 
1365 #ifdef INET6
1366 static int
1367 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1368 {
1369 	struct sockaddr_in6 addrs[2];
1370 	struct inpcb *inp;
1371 	int error;
1372 
1373 	error = priv_check(req->td, PRIV_ROOT);
1374 	if (error != 0)
1375 		return (error);
1376 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1377 	if (error != 0)
1378 		return (error);
1379 	crit_enter();
1380 	inp = in6_pcblookup_hash(&tcbinfo[0],
1381 	    &addrs[1].sin6_addr, addrs[1].sin6_port,
1382 	    &addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1383 	if (inp == NULL || inp->inp_socket == NULL) {
1384 		error = ENOENT;
1385 		goto out;
1386 	}
1387 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1388 out:
1389 	crit_exit();
1390 	return (error);
1391 }
1392 
1393 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1394 	    0, 0,
1395 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1396 #endif
1397 
1398 struct netmsg_tcp_notify {
1399 	struct netmsg_base base;
1400 	inp_notify_t	nm_notify;
1401 	struct in_addr	nm_faddr;
1402 	int		nm_arg;
1403 };
1404 
1405 static void
1406 tcp_notifyall_oncpu(netmsg_t msg)
1407 {
1408 	struct netmsg_tcp_notify *nm = (struct netmsg_tcp_notify *)msg;
1409 	int nextcpu;
1410 
1411 	ASSERT_NETISR_NCPUS(mycpuid);
1412 
1413 	in_pcbnotifyall(&tcbinfo[mycpuid], nm->nm_faddr,
1414 			nm->nm_arg, nm->nm_notify);
1415 
1416 	nextcpu = mycpuid + 1;
1417 	if (nextcpu < netisr_ncpus)
1418 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &nm->base.lmsg);
1419 	else
1420 		lwkt_replymsg(&nm->base.lmsg, 0);
1421 }
1422 
1423 inp_notify_t
1424 tcp_get_inpnotify(int cmd, const struct sockaddr *sa,
1425     int *arg, struct ip **ip0, int *cpuid)
1426 {
1427 	struct ip *ip = *ip0;
1428 	struct in_addr faddr;
1429 	inp_notify_t notify = tcp_notify;
1430 
1431 	faddr = ((const struct sockaddr_in *)sa)->sin_addr;
1432 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1433 		return NULL;
1434 
1435 	*arg = inetctlerrmap[cmd];
1436 	if (cmd == PRC_QUENCH) {
1437 		notify = tcp_quench;
1438 	} else if (icmp_may_rst &&
1439 		   (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1440 		    cmd == PRC_UNREACH_PORT ||
1441 		    cmd == PRC_TIMXCEED_INTRANS) &&
1442 		   ip != NULL) {
1443 		notify = tcp_drop_syn_sent;
1444 	} else if (cmd == PRC_MSGSIZE) {
1445 		const struct icmp *icmp = (const struct icmp *)
1446 		    ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1447 
1448 		*arg = ntohs(icmp->icmp_nextmtu);
1449 		notify = tcp_mtudisc;
1450 	} else if (PRC_IS_REDIRECT(cmd)) {
1451 		ip = NULL;
1452 		notify = in_rtchange;
1453 	} else if (cmd == PRC_HOSTDEAD) {
1454 		ip = NULL;
1455 	} else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1456 		return NULL;
1457 	}
1458 
1459 	if (cpuid != NULL) {
1460 		if (ip == NULL) {
1461 			/* Go through all effective netisr CPUs. */
1462 			*cpuid = netisr_ncpus;
1463 		} else {
1464 			const struct tcphdr *th;
1465 
1466 			th = (const struct tcphdr *)
1467 			    ((caddr_t)ip + (IP_VHL_HL(ip->ip_vhl) << 2));
1468 			*cpuid = tcp_addrcpu(faddr.s_addr, th->th_dport,
1469 			    ip->ip_src.s_addr, th->th_sport);
1470 		}
1471 	}
1472 
1473 	*ip0 = ip;
1474 	return notify;
1475 }
1476 
1477 void
1478 tcp_ctlinput(netmsg_t msg)
1479 {
1480 	int cmd = msg->ctlinput.nm_cmd;
1481 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1482 	struct ip *ip = msg->ctlinput.nm_extra;
1483 	struct in_addr faddr;
1484 	inp_notify_t notify;
1485 	int arg, cpuid;
1486 
1487 	ASSERT_NETISR_NCPUS(mycpuid);
1488 
1489 	notify = tcp_get_inpnotify(cmd, sa, &arg, &ip, &cpuid);
1490 	if (notify == NULL)
1491 		goto done;
1492 
1493 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1494 	if (ip != NULL) {
1495 		const struct tcphdr *th;
1496 		struct inpcb *inp;
1497 
1498 		if (cpuid != mycpuid)
1499 			goto done;
1500 
1501 		th = (const struct tcphdr *)
1502 		    ((caddr_t)ip + (IP_VHL_HL(ip->ip_vhl) << 2));
1503 		inp = in_pcblookup_hash(&tcbinfo[mycpuid], faddr, th->th_dport,
1504 					ip->ip_src, th->th_sport, 0, NULL);
1505 		if (inp != NULL && inp->inp_socket != NULL) {
1506 			tcp_seq icmpseq = htonl(th->th_seq);
1507 			struct tcpcb *tp = intotcpcb(inp);
1508 
1509 			if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1510 			    SEQ_LT(icmpseq, tp->snd_max))
1511 				notify(inp, arg);
1512 		} else {
1513 			struct in_conninfo inc;
1514 
1515 			inc.inc_fport = th->th_dport;
1516 			inc.inc_lport = th->th_sport;
1517 			inc.inc_faddr = faddr;
1518 			inc.inc_laddr = ip->ip_src;
1519 #ifdef INET6
1520 			inc.inc_isipv6 = 0;
1521 #endif
1522 			syncache_unreach(&inc, th);
1523 		}
1524 	} else if (msg->ctlinput.nm_direct) {
1525 		if (cpuid != netisr_ncpus && cpuid != mycpuid)
1526 			goto done;
1527 
1528 		in_pcbnotifyall(&tcbinfo[mycpuid], faddr, arg, notify);
1529 	} else {
1530 		struct netmsg_tcp_notify *nm;
1531 
1532 		ASSERT_NETISR0;
1533 		nm = kmalloc(sizeof(*nm), M_LWKTMSG, M_INTWAIT);
1534 		netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1535 			    0, tcp_notifyall_oncpu);
1536 		nm->nm_faddr = faddr;
1537 		nm->nm_arg = arg;
1538 		nm->nm_notify = notify;
1539 
1540 		lwkt_sendmsg(netisr_cpuport(0), &nm->base.lmsg);
1541 	}
1542 done:
1543 	lwkt_replymsg(&msg->lmsg, 0);
1544 }
1545 
1546 #ifdef INET6
1547 
1548 void
1549 tcp6_ctlinput(netmsg_t msg)
1550 {
1551 	int cmd = msg->ctlinput.nm_cmd;
1552 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1553 	void *d = msg->ctlinput.nm_extra;
1554 	struct tcphdr th;
1555 	inp_notify_t notify = tcp_notify;
1556 	struct ip6_hdr *ip6;
1557 	struct mbuf *m;
1558 	struct ip6ctlparam *ip6cp = NULL;
1559 	const struct sockaddr_in6 *sa6_src = NULL;
1560 	int off;
1561 	struct tcp_portonly {
1562 		u_int16_t th_sport;
1563 		u_int16_t th_dport;
1564 	} *thp;
1565 	int arg;
1566 
1567 	if (sa->sa_family != AF_INET6 ||
1568 	    sa->sa_len != sizeof(struct sockaddr_in6)) {
1569 		goto out;
1570 	}
1571 
1572 	arg = 0;
1573 	if (cmd == PRC_QUENCH)
1574 		notify = tcp_quench;
1575 	else if (cmd == PRC_MSGSIZE) {
1576 		/*
1577 		 * The MTU can be passed via an icmp6 packet or directly
1578 		 * via ip6c_cmdarg.
1579 		 */
1580 		struct ip6ctlparam *ip6cp = d;
1581 
1582 		if (ip6cp->ip6c_icmp6) {
1583 			struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1584 			arg = ntohl(icmp6->icmp6_mtu);
1585 		} else if (ip6cp->ip6c_cmdarg) {
1586 			arg = *(uint32_t *)ip6cp->ip6c_cmdarg;
1587 		} else {
1588 			goto out;
1589 		}
1590 		notify = tcp_mtudisc;
1591 	} else if (!PRC_IS_REDIRECT(cmd) &&
1592 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1593 		goto out;
1594 	}
1595 
1596 	/*
1597 	 * If the parameter is from icmp6, decode it.  Note that in the
1598 	 * mtu shortcut case, the rest of the ip6ctlparam content is
1599 	 * 0 or NULL.
1600 	 */
1601 	if (d != NULL) {
1602 		ip6cp = (struct ip6ctlparam *)d;
1603 		m = ip6cp->ip6c_m;
1604 		ip6 = ip6cp->ip6c_ip6;
1605 		off = ip6cp->ip6c_off;
1606 		sa6_src = ip6cp->ip6c_src;
1607 	} else {
1608 		m = NULL;
1609 		ip6 = NULL;
1610 		off = 0;	/* fool gcc */
1611 		sa6_src = &sa6_any;
1612 	}
1613 
1614 	if (ip6 != NULL) {
1615 		struct in_conninfo inc;
1616 		/*
1617 		 * XXX: We assume that when IPV6 is non NULL,
1618 		 * M and OFF are valid.
1619 		 */
1620 
1621 		/* check if we can safely examine src and dst ports */
1622 		if (m->m_pkthdr.len < off + sizeof *thp)
1623 			goto out;
1624 
1625 		bzero(&th, sizeof th);
1626 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1627 
1628 		in6_pcbnotify(&tcbinfo[0], sa, th.th_dport,
1629 		    (struct sockaddr *)ip6cp->ip6c_src,
1630 		    th.th_sport, cmd, arg, notify);
1631 
1632 		inc.inc_fport = th.th_dport;
1633 		inc.inc_lport = th.th_sport;
1634 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1635 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1636 		inc.inc_isipv6 = 1;
1637 		syncache_unreach(&inc, &th);
1638 	} else {
1639 		in6_pcbnotify(&tcbinfo[0], sa, 0,
1640 		    (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1641 	}
1642 out:
1643 	lwkt_replymsg(&msg->ctlinput.base.lmsg, 0);
1644 }
1645 
1646 #endif
1647 
1648 /*
1649  * Following is where TCP initial sequence number generation occurs.
1650  *
1651  * There are two places where we must use initial sequence numbers:
1652  * 1.  In SYN-ACK packets.
1653  * 2.  In SYN packets.
1654  *
1655  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1656  * tcp_syncache.c for details.
1657  *
1658  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1659  * depends on this property.  In addition, these ISNs should be
1660  * unguessable so as to prevent connection hijacking.  To satisfy
1661  * the requirements of this situation, the algorithm outlined in
1662  * RFC 1948 is used to generate sequence numbers.
1663  *
1664  * Implementation details:
1665  *
1666  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1667  * between the seeding of isn_secret.  On every reseed we jump the
1668  * ISN by a lot.
1669  */
1670 struct tcp_isn {
1671 	u_char	secret[16];
1672 	MD5_CTX ctx;
1673 	int	last_reseed;
1674 	int	last_offset;
1675 } __cachealign;
1676 
1677 struct tcp_isn tcp_isn_ary[MAXCPU];
1678 
1679 tcp_seq
1680 tcp_new_isn(struct tcpcb *tp)
1681 {
1682 	struct tcp_isn *isn;
1683 	tcp_seq new_isn;
1684 	tcp_seq digest[16 / sizeof(tcp_seq)];
1685 	int n;
1686 
1687 	isn = &tcp_isn_ary[mycpuid];
1688 
1689 	/*
1690 	 * Reseed every 20 seconds.  6 reseeds per 2-minute interval in
1691 	 * order to retain our monotonic offset.
1692 	 *
1693 	 * The initial seed randomizes last_offset with all 32 bits.
1694 	 *
1695 	 * Note that the md5 digest is masked with 0x0FFFFFFF, so we must
1696 	 * add 1/16 of our full range (1/8 of our signed range) to ensure
1697 	 * monotonic operation.
1698 	 */
1699 	if (isn->last_reseed == 0 ||
1700 	    (u_int)(ticks - isn->last_reseed) > tcp_isn_reseed_interval * hz) {
1701 		if (isn->last_reseed == 0) {
1702 			read_random(&isn->last_offset,
1703 				    sizeof(isn->last_offset), 1);
1704 		}
1705 		read_random(&isn->secret, sizeof(isn->secret), 1);
1706 		isn->last_reseed = ticks;
1707 		isn->last_offset += 0x10000000;
1708 	}
1709 
1710 	/*
1711 	 * Compute the md5 hash, giving us a deterministic result for the
1712 	 * port/address pair for any given secret.
1713 	 */
1714 	MD5Init(&isn->ctx);
1715 	MD5Update(&isn->ctx, isn->secret, sizeof(isn->secret));
1716 	MD5Update(&isn->ctx, (u_char *)&tp->t_inpcb->inp_fport, 2);
1717 	MD5Update(&isn->ctx, (u_char *)&tp->t_inpcb->inp_lport, 2);
1718 #ifdef INET6
1719 	if (INP_ISIPV6(tp->t_inpcb)) {
1720 		MD5Update(&isn->ctx, (u_char *)&tp->t_inpcb->in6p_faddr,
1721 			  sizeof(struct in6_addr));
1722 		MD5Update(&isn->ctx, (u_char *)&tp->t_inpcb->in6p_laddr,
1723 			  sizeof(struct in6_addr));
1724 	} else
1725 #endif
1726 	{
1727 		MD5Update(&isn->ctx, (u_char *)&tp->t_inpcb->inp_faddr,
1728 			  sizeof(struct in_addr));
1729 		MD5Update(&isn->ctx, (u_char *)&tp->t_inpcb->inp_laddr,
1730 			  sizeof(struct in_addr));
1731 	}
1732 	MD5Final((char *)digest, &isn->ctx);
1733 
1734 	/*
1735 	 * Add a random component 0-1048575 plus advance by 1048576.
1736 	 *
1737 	 * The sequence space is simply too small, in modern times we also
1738 	 * must depend on the receive-side being a bit smarter when recycling
1739 	 * ports in TIME_WAIT.
1740 	 */
1741 	read_random(&n, sizeof(n), 1);
1742 	isn->last_offset += (n & 0x000FFFFF) + 0x00100000;
1743 	new_isn = (digest[0] & 0x0FFFFFFF) + isn->last_offset;
1744 
1745 	return (new_isn);
1746 }
1747 
1748 /*
1749  * When a source quench is received, close congestion window
1750  * to one segment.  We will gradually open it again as we proceed.
1751  */
1752 void
1753 tcp_quench(struct inpcb *inp, int error)
1754 {
1755 	struct tcpcb *tp = intotcpcb(inp);
1756 
1757 	KASSERT(tp != NULL, ("tcp_quench: tp is NULL"));
1758 	tp->snd_cwnd = tp->t_maxseg;
1759 	tp->snd_wacked = 0;
1760 }
1761 
1762 /*
1763  * When a specific ICMP unreachable message is received and the
1764  * connection state is SYN-SENT, drop the connection.  This behavior
1765  * is controlled by the icmp_may_rst sysctl.
1766  */
1767 void
1768 tcp_drop_syn_sent(struct inpcb *inp, int error)
1769 {
1770 	struct tcpcb *tp = intotcpcb(inp);
1771 
1772 	KASSERT(tp != NULL, ("tcp_drop_syn_sent: tp is NULL"));
1773 	if (tp->t_state == TCPS_SYN_SENT)
1774 		tcp_drop(tp, error);
1775 }
1776 
1777 /*
1778  * When a `need fragmentation' ICMP is received, update our idea of the MSS
1779  * based on the new value in the route.  Also nudge TCP to send something,
1780  * since we know the packet we just sent was dropped.
1781  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1782  */
1783 void
1784 tcp_mtudisc(struct inpcb *inp, int mtu)
1785 {
1786 	struct tcpcb *tp = intotcpcb(inp);
1787 	struct rtentry *rt;
1788 	struct socket *so = inp->inp_socket;
1789 	int maxopd, mss;
1790 #ifdef INET6
1791 	boolean_t isipv6 = INP_ISIPV6(inp);
1792 #else
1793 	const boolean_t isipv6 = FALSE;
1794 #endif
1795 
1796 	KASSERT(tp != NULL, ("tcp_mtudisc: tp is NULL"));
1797 
1798 	/*
1799 	 * If no MTU is provided in the ICMP message, use the
1800 	 * next lower likely value, as specified in RFC 1191.
1801 	 */
1802 	if (mtu == 0) {
1803 		int oldmtu;
1804 
1805 		oldmtu = tp->t_maxopd +
1806 		    (isipv6 ?
1807 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1808 		     sizeof(struct tcpiphdr));
1809 		mtu = ip_next_mtu(oldmtu, 0);
1810 	}
1811 
1812 	if (isipv6)
1813 		rt = tcp_rtlookup6(&inp->inp_inc);
1814 	else
1815 		rt = tcp_rtlookup(&inp->inp_inc);
1816 	if (rt != NULL) {
1817 		if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1818 			mtu = rt->rt_rmx.rmx_mtu;
1819 
1820 		maxopd = mtu -
1821 		    (isipv6 ?
1822 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1823 		     sizeof(struct tcpiphdr));
1824 
1825 		/*
1826 		 * XXX - The following conditional probably violates the TCP
1827 		 * spec.  The problem is that, since we don't know the
1828 		 * other end's MSS, we are supposed to use a conservative
1829 		 * default.  But, if we do that, then MTU discovery will
1830 		 * never actually take place, because the conservative
1831 		 * default is much less than the MTUs typically seen
1832 		 * on the Internet today.  For the moment, we'll sweep
1833 		 * this under the carpet.
1834 		 *
1835 		 * The conservative default might not actually be a problem
1836 		 * if the only case this occurs is when sending an initial
1837 		 * SYN with options and data to a host we've never talked
1838 		 * to before.  Then, they will reply with an MSS value which
1839 		 * will get recorded and the new parameters should get
1840 		 * recomputed.  For Further Study.
1841 		 */
1842 		if (rt->rt_rmx.rmx_mssopt  && rt->rt_rmx.rmx_mssopt < maxopd)
1843 			maxopd = rt->rt_rmx.rmx_mssopt;
1844 	} else
1845 		maxopd = mtu -
1846 		    (isipv6 ?
1847 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1848 		     sizeof(struct tcpiphdr));
1849 
1850 	if (tp->t_maxopd <= maxopd)
1851 		return;
1852 	tp->t_maxopd = maxopd;
1853 
1854 	mss = maxopd;
1855 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1856 			   (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1857 		mss -= TCPOLEN_TSTAMP_APPA;
1858 
1859 	/* round down to multiple of MCLBYTES */
1860 #if	(MCLBYTES & (MCLBYTES - 1)) == 0    /* test if MCLBYTES power of 2 */
1861 	if (mss > MCLBYTES)
1862 		mss &= ~(MCLBYTES - 1);
1863 #else
1864 	if (mss > MCLBYTES)
1865 		mss = rounddown(mss, MCLBYTES);
1866 #endif
1867 
1868 	if (so->so_snd.ssb_hiwat < mss)
1869 		mss = so->so_snd.ssb_hiwat;
1870 
1871 	tp->t_maxseg = mss;
1872 	tp->t_rtttime = 0;
1873 	tp->snd_nxt = tp->snd_una;
1874 	tcp_output(tp);
1875 	tcpstat.tcps_mturesent++;
1876 }
1877 
1878 /*
1879  * Look-up the routing entry to the peer of this inpcb.  If no route
1880  * is found and it cannot be allocated the return NULL.  This routine
1881  * is called by TCP routines that access the rmx structure and by tcp_mss
1882  * to get the interface MTU.
1883  */
1884 struct rtentry *
1885 tcp_rtlookup(struct in_conninfo *inc)
1886 {
1887 	struct route *ro = &inc->inc_route;
1888 
1889 	if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1890 		/* No route yet, so try to acquire one */
1891 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1892 			/*
1893 			 * unused portions of the structure MUST be zero'd
1894 			 * out because rtalloc() treats it as opaque data
1895 			 */
1896 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1897 			ro->ro_dst.sa_family = AF_INET;
1898 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1899 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1900 			    inc->inc_faddr;
1901 			rtalloc(ro);
1902 		}
1903 	}
1904 	return (ro->ro_rt);
1905 }
1906 
1907 #ifdef INET6
1908 struct rtentry *
1909 tcp_rtlookup6(struct in_conninfo *inc)
1910 {
1911 	struct route_in6 *ro6 = &inc->inc6_route;
1912 
1913 	if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1914 		/* No route yet, so try to acquire one */
1915 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1916 			/*
1917 			 * unused portions of the structure MUST be zero'd
1918 			 * out because rtalloc() treats it as opaque data
1919 			 */
1920 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1921 			ro6->ro_dst.sin6_family = AF_INET6;
1922 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1923 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1924 			rtalloc((struct route *)ro6);
1925 		}
1926 	}
1927 	return (ro6->ro_rt);
1928 }
1929 #endif
1930 
1931 /*
1932  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1933  *
1934  * This code attempts to calculate the bandwidth-delay product as a
1935  * means of determining the optimal window size to maximize bandwidth,
1936  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1937  * routers.  This code also does a fairly good job keeping RTTs in check
1938  * across slow links like modems.  We implement an algorithm which is very
1939  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1940  * transmitter side of a TCP connection and so only effects the transmit
1941  * side of the connection.
1942  *
1943  * BACKGROUND:  TCP makes no provision for the management of buffer space
1944  * at the end points or at the intermediate routers and switches.  A TCP
1945  * stream, whether using NewReno or not, will eventually buffer as
1946  * many packets as it is able and the only reason this typically works is
1947  * due to the fairly small default buffers made available for a connection
1948  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1949  * scaling it is now fairly easy for even a single TCP connection to blow-out
1950  * all available buffer space not only on the local interface, but on
1951  * intermediate routers and switches as well.  NewReno makes a misguided
1952  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1953  * then backing off, then steadily increasing the window again until another
1954  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1955  * is only made worse as network loads increase and the idea of intentionally
1956  * blowing out network buffers is, frankly, a terrible way to manage network
1957  * resources.
1958  *
1959  * It is far better to limit the transmit window prior to the failure
1960  * condition being achieved.  There are two general ways to do this:  First
1961  * you can 'scan' through different transmit window sizes and locate the
1962  * point where the RTT stops increasing, indicating that you have filled the
1963  * pipe, then scan backwards until you note that RTT stops decreasing, then
1964  * repeat ad-infinitum.  This method works in principle but has severe
1965  * implementation issues due to RTT variances, timer granularity, and
1966  * instability in the algorithm which can lead to many false positives and
1967  * create oscillations as well as interact badly with other TCP streams
1968  * implementing the same algorithm.
1969  *
1970  * The second method is to limit the window to the bandwidth delay product
1971  * of the link.  This is the method we implement.  RTT variances and our
1972  * own manipulation of the congestion window, bwnd, can potentially
1973  * destabilize the algorithm.  For this reason we have to stabilize the
1974  * elements used to calculate the window.  We do this by using the minimum
1975  * observed RTT, the long term average of the observed bandwidth, and
1976  * by adding two segments worth of slop.  It isn't perfect but it is able
1977  * to react to changing conditions and gives us a very stable basis on
1978  * which to extend the algorithm.
1979  */
1980 void
1981 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1982 {
1983 	u_long bw;
1984 	u_long ibw;
1985 	u_long bwnd;
1986 	int save_ticks;
1987 	int delta_ticks;
1988 
1989 	/*
1990 	 * If inflight_enable is disabled in the middle of a tcp connection,
1991 	 * make sure snd_bwnd is effectively disabled.
1992 	 */
1993 	if (!tcp_inflight_enable) {
1994 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1995 		tp->snd_bandwidth = 0;
1996 		return;
1997 	}
1998 
1999 	/*
2000 	 * Validate the delta time.  If a connection is new or has been idle
2001 	 * a long time we have to reset the bandwidth calculator.
2002 	 */
2003 	save_ticks = ticks;
2004 	cpu_ccfence();
2005 	delta_ticks = save_ticks - tp->t_bw_rtttime;
2006 	if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
2007 		tp->t_bw_rtttime = save_ticks;
2008 		tp->t_bw_rtseq = ack_seq;
2009 		if (tp->snd_bandwidth == 0)
2010 			tp->snd_bandwidth = tcp_inflight_start;
2011 		return;
2012 	}
2013 
2014 	/*
2015 	 * A delta of at least 1 tick is required.  Waiting 2 ticks will
2016 	 * result in better (bw) accuracy.  More than that and the ramp-up
2017 	 * will be too slow.
2018 	 */
2019 	if (delta_ticks == 0 || delta_ticks == 1)
2020 		return;
2021 
2022 	/*
2023 	 * Sanity check, plus ignore pure window update acks.
2024 	 */
2025 	if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
2026 		return;
2027 
2028 	/*
2029 	 * Figure out the bandwidth.  Due to the tick granularity this
2030 	 * is a very rough number and it MUST be averaged over a fairly
2031 	 * long period of time.  XXX we need to take into account a link
2032 	 * that is not using all available bandwidth, but for now our
2033 	 * slop will ramp us up if this case occurs and the bandwidth later
2034 	 * increases.
2035 	 */
2036 	ibw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
2037 	tp->t_bw_rtttime = save_ticks;
2038 	tp->t_bw_rtseq = ack_seq;
2039 	bw = ((int64_t)tp->snd_bandwidth * 15 + ibw) >> 4;
2040 
2041 	tp->snd_bandwidth = bw;
2042 
2043 	/*
2044 	 * Calculate the semi-static bandwidth delay product, plus two maximal
2045 	 * segments.  The additional slop puts us squarely in the sweet
2046 	 * spot and also handles the bandwidth run-up case.  Without the
2047 	 * slop we could be locking ourselves into a lower bandwidth.
2048 	 *
2049 	 * At very high speeds the bw calculation can become overly sensitive
2050 	 * and error prone when delta_ticks is low (e.g. usually 1).  To deal
2051 	 * with the problem the stab must be scaled to the bw.  A stab of 50
2052 	 * (the default) increases the bw for the purposes of the bwnd
2053 	 * calculation by 5%.
2054 	 *
2055 	 * Situations Handled:
2056 	 *	(1) Prevents over-queueing of packets on LANs, especially on
2057 	 *	    high speed LANs, allowing larger TCP buffers to be
2058 	 *	    specified, and also does a good job preventing
2059 	 *	    over-queueing of packets over choke points like modems
2060 	 *	    (at least for the transmit side).
2061 	 *
2062 	 *	(2) Is able to handle changing network loads (bandwidth
2063 	 *	    drops so bwnd drops, bandwidth increases so bwnd
2064 	 *	    increases).
2065 	 *
2066 	 *	(3) Theoretically should stabilize in the face of multiple
2067 	 *	    connections implementing the same algorithm (this may need
2068 	 *	    a little work).
2069 	 *
2070 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2071 	 *	    be adjusted with a sysctl but typically only needs to be on
2072 	 *	    very slow connections.  A value no smaller then 5 should
2073 	 *	    be used, but only reduce this default if you have no other
2074 	 *	    choice.
2075 	 */
2076 
2077 #define	USERTT	((tp->t_srtt + tp->t_rttvar) + tcp_inflight_adjrtt)
2078 	bw += bw * tcp_inflight_stab / 1000;
2079 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
2080 	       (int)tp->t_maxseg * 2;
2081 #undef USERTT
2082 
2083 	if (tcp_inflight_debug > 0) {
2084 		static int ltime;
2085 		if ((u_int)(save_ticks - ltime) >= hz / tcp_inflight_debug) {
2086 			ltime = save_ticks;
2087 			kprintf("%p ibw %ld bw %ld rttvar %d srtt %d "
2088 				"bwnd %ld delta %d snd_win %ld\n",
2089 				tp, ibw, bw, tp->t_rttvar, tp->t_srtt,
2090 				bwnd, delta_ticks, tp->snd_wnd);
2091 		}
2092 	}
2093 	if ((long)bwnd < tcp_inflight_min)
2094 		bwnd = tcp_inflight_min;
2095 	if (bwnd > tcp_inflight_max)
2096 		bwnd = tcp_inflight_max;
2097 	if ((long)bwnd < tp->t_maxseg * 2)
2098 		bwnd = tp->t_maxseg * 2;
2099 	tp->snd_bwnd = bwnd;
2100 }
2101 
2102 static void
2103 tcp_rmx_iwsegs(struct tcpcb *tp, u_long *maxsegs, u_long *capsegs)
2104 {
2105 	struct rtentry *rt;
2106 	struct inpcb *inp = tp->t_inpcb;
2107 #ifdef INET6
2108 	boolean_t isipv6 = INP_ISIPV6(inp);
2109 #else
2110 	const boolean_t isipv6 = FALSE;
2111 #endif
2112 
2113 	/* XXX */
2114 	if (tcp_iw_maxsegs < TCP_IW_MAXSEGS_DFLT)
2115 		tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
2116 	if (tcp_iw_capsegs < TCP_IW_CAPSEGS_DFLT)
2117 		tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
2118 
2119 	if (isipv6)
2120 		rt = tcp_rtlookup6(&inp->inp_inc);
2121 	else
2122 		rt = tcp_rtlookup(&inp->inp_inc);
2123 	if (rt == NULL ||
2124 	    rt->rt_rmx.rmx_iwmaxsegs < TCP_IW_MAXSEGS_DFLT ||
2125 	    rt->rt_rmx.rmx_iwcapsegs < TCP_IW_CAPSEGS_DFLT) {
2126 		*maxsegs = tcp_iw_maxsegs;
2127 		*capsegs = tcp_iw_capsegs;
2128 		return;
2129 	}
2130 	*maxsegs = rt->rt_rmx.rmx_iwmaxsegs;
2131 	*capsegs = rt->rt_rmx.rmx_iwcapsegs;
2132 }
2133 
2134 u_long
2135 tcp_initial_window(struct tcpcb *tp)
2136 {
2137 	if (tcp_do_rfc3390) {
2138 		/*
2139 		 * RFC3390:
2140 		 * "If the SYN or SYN/ACK is lost, the initial window
2141 		 *  used by a sender after a correctly transmitted SYN
2142 		 *  MUST be one segment consisting of MSS bytes."
2143 		 *
2144 		 * However, we do something a little bit more aggressive
2145 		 * then RFC3390 here:
2146 		 * - Only if time spent in the SYN or SYN|ACK retransmition
2147 		 *   >= 3 seconds, the IW is reduced.  We do this mainly
2148 		 *   because when RFC3390 is published, the initial RTO is
2149 		 *   still 3 seconds (the threshold we test here), while
2150 		 *   after RFC6298, the initial RTO is 1 second.  This
2151 		 *   behaviour probably still falls within the spirit of
2152 		 *   RFC3390.
2153 		 * - When IW is reduced, 2*MSS is used instead of 1*MSS.
2154 		 *   Mainly to avoid sender and receiver deadlock until
2155 		 *   delayed ACK timer expires.  And even RFC2581 does not
2156 		 *   try to reduce IW upon SYN or SYN|ACK retransmition
2157 		 *   timeout.
2158 		 *
2159 		 * See also:
2160 		 * http://tools.ietf.org/html/draft-ietf-tcpm-initcwnd-03
2161 		 */
2162 		if (tp->t_rxtsyn >= TCPTV_RTOBASE3) {
2163 			return (2 * tp->t_maxseg);
2164 		} else {
2165 			u_long maxsegs, capsegs;
2166 
2167 			tcp_rmx_iwsegs(tp, &maxsegs, &capsegs);
2168 			return min(maxsegs * tp->t_maxseg,
2169 				   max(2 * tp->t_maxseg, capsegs * 1460));
2170 		}
2171 	} else {
2172 		/*
2173 		 * Even RFC2581 (back to 1999) allows 2*SMSS IW.
2174 		 *
2175 		 * Mainly to avoid sender and receiver deadlock
2176 		 * until delayed ACK timer expires.
2177 		 */
2178 		return (2 * tp->t_maxseg);
2179 	}
2180 }
2181 
2182 #ifdef TCP_SIGNATURE
2183 /*
2184  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2185  *
2186  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2187  * When called from tcp_input(), we can be sure that th_sum has been
2188  * zeroed out and verified already.
2189  *
2190  * Return 0 if successful, otherwise return -1.
2191  *
2192  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2193  * search with the destination IP address, and a 'magic SPI' to be
2194  * determined by the application. This is hardcoded elsewhere to 1179
2195  * right now. Another branch of this code exists which uses the SPD to
2196  * specify per-application flows but it is unstable.
2197  */
2198 int
2199 tcpsignature_compute(
2200 	struct mbuf *m,		/* mbuf chain */
2201 	int len,		/* length of TCP data */
2202 	int optlen,		/* length of TCP options */
2203 	u_char *buf,		/* storage for MD5 digest */
2204 	u_int direction)	/* direction of flow */
2205 {
2206 	struct ippseudo ippseudo;
2207 	MD5_CTX ctx;
2208 	int doff;
2209 	struct ip *ip;
2210 	struct ipovly *ipovly;
2211 	struct secasvar *sav;
2212 	struct tcphdr *th;
2213 #ifdef INET6
2214 	struct ip6_hdr *ip6;
2215 	struct in6_addr in6;
2216 	uint32_t plen;
2217 	uint16_t nhdr;
2218 #endif /* INET6 */
2219 	u_short savecsum;
2220 
2221 	KASSERT(m != NULL, ("passed NULL mbuf. Game over."));
2222 	KASSERT(buf != NULL, ("passed NULL storage pointer for MD5 signature"));
2223 	/*
2224 	 * Extract the destination from the IP header in the mbuf.
2225 	 */
2226 	ip = mtod(m, struct ip *);
2227 #ifdef INET6
2228 	ip6 = NULL;     /* Make the compiler happy. */
2229 #endif /* INET6 */
2230 	/*
2231 	 * Look up an SADB entry which matches the address found in
2232 	 * the segment.
2233 	 */
2234 	switch (IP_VHL_V(ip->ip_vhl)) {
2235 	case IPVERSION:
2236 		sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src, (caddr_t)&ip->ip_dst,
2237 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2238 		break;
2239 #ifdef INET6
2240 	case (IPV6_VERSION >> 4):
2241 		ip6 = mtod(m, struct ip6_hdr *);
2242 		sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src, (caddr_t)&ip6->ip6_dst,
2243 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2244 		break;
2245 #endif /* INET6 */
2246 	default:
2247 		return (EINVAL);
2248 		/* NOTREACHED */
2249 		break;
2250 	}
2251 	if (sav == NULL) {
2252 		kprintf("%s: SADB lookup failed\n", __func__);
2253 		return (EINVAL);
2254 	}
2255 	MD5Init(&ctx);
2256 
2257 	/*
2258 	 * Step 1: Update MD5 hash with IP pseudo-header.
2259 	 *
2260 	 * XXX The ippseudo header MUST be digested in network byte order,
2261 	 * or else we'll fail the regression test. Assume all fields we've
2262 	 * been doing arithmetic on have been in host byte order.
2263 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2264 	 * tcp_output(), the underlying ip_len member has not yet been set.
2265 	 */
2266 	switch (IP_VHL_V(ip->ip_vhl)) {
2267 	case IPVERSION:
2268 		ipovly = (struct ipovly *)ip;
2269 		ippseudo.ippseudo_src = ipovly->ih_src;
2270 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2271 		ippseudo.ippseudo_pad = 0;
2272 		ippseudo.ippseudo_p = IPPROTO_TCP;
2273 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2274 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2275 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2276 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2277 		break;
2278 #ifdef INET6
2279 	/*
2280 	 * RFC 2385, 2.0  Proposal
2281 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2282 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2283 	 * extended next header value (to form 32 bits), and 32-bit segment
2284 	 * length.
2285 	 * Note: Upper-Layer Packet Length comes before Next Header.
2286 	 */
2287 	case (IPV6_VERSION >> 4):
2288 		in6 = ip6->ip6_src;
2289 		in6_clearscope(&in6);
2290 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2291 		in6 = ip6->ip6_dst;
2292 		in6_clearscope(&in6);
2293 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2294 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2295 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2296 		nhdr = 0;
2297 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2298 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2299 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2300 		nhdr = IPPROTO_TCP;
2301 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2302 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2303 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2304 		break;
2305 #endif /* INET6 */
2306 	default:
2307 		return (EINVAL);
2308 		/* NOTREACHED */
2309 		break;
2310 	}
2311 	/*
2312 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2313 	 * The TCP checksum must be set to zero.
2314 	 */
2315 	savecsum = th->th_sum;
2316 	th->th_sum = 0;
2317 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2318 	th->th_sum = savecsum;
2319 	/*
2320 	 * Step 3: Update MD5 hash with TCP segment data.
2321 	 *         Use m_apply() to avoid an early m_pullup().
2322 	 */
2323 	if (len > 0)
2324 		m_apply(m, doff, len, tcpsignature_apply, &ctx);
2325 	/*
2326 	 * Step 4: Update MD5 hash with shared secret.
2327 	 */
2328 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2329 	MD5Final(buf, &ctx);
2330 	key_sa_recordxfer(sav, m);
2331 	key_freesav(sav);
2332 	return (0);
2333 }
2334 
2335 int
2336 tcpsignature_apply(void *fstate, void *data, unsigned int len)
2337 {
2338 
2339 	MD5Update((MD5_CTX *)fstate, (unsigned char *)data, len);
2340 	return (0);
2341 }
2342 #endif /* TCP_SIGNATURE */
2343 
2344 static void
2345 tcp_drop_sysctl_dispatch(netmsg_t nmsg)
2346 {
2347 	struct lwkt_msg *lmsg = &nmsg->lmsg;
2348 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2349 	struct sockaddr_storage *addrs = lmsg->u.ms_resultp;
2350 	int error;
2351 	struct sockaddr_in *fin, *lin;
2352 #ifdef INET6
2353 	struct sockaddr_in6 *fin6, *lin6;
2354 	struct in6_addr f6, l6;
2355 #endif
2356 	struct inpcb *inp;
2357 
2358 	switch (addrs[0].ss_family) {
2359 #ifdef INET6
2360 	case AF_INET6:
2361 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2362 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2363 		error = in6_embedscope(&f6, fin6, NULL, NULL);
2364 		if (error)
2365 			goto done;
2366 		error = in6_embedscope(&l6, lin6, NULL, NULL);
2367 		if (error)
2368 			goto done;
2369 		inp = in6_pcblookup_hash(&tcbinfo[mycpuid], &f6,
2370 		    fin6->sin6_port, &l6, lin6->sin6_port, FALSE, NULL);
2371 		break;
2372 #endif
2373 #ifdef INET
2374 	case AF_INET:
2375 		fin = (struct sockaddr_in *)&addrs[0];
2376 		lin = (struct sockaddr_in *)&addrs[1];
2377 		inp = in_pcblookup_hash(&tcbinfo[mycpuid], fin->sin_addr,
2378 		    fin->sin_port, lin->sin_addr, lin->sin_port, FALSE, NULL);
2379 		break;
2380 #endif
2381 	default:
2382 		/*
2383 		 * Must not reach here, since the address family was
2384 		 * checked in sysctl handler.
2385 		 */
2386 		panic("unknown address family %d", addrs[0].ss_family);
2387 	}
2388 	if (inp != NULL) {
2389 		struct tcpcb *tp = intotcpcb(inp);
2390 
2391 		KASSERT((inp->inp_flags & INP_WILDCARD) == 0,
2392 		    ("in wildcard hash"));
2393 		KASSERT(tp != NULL, ("tcp_drop_sysctl_dispatch: tp is NULL"));
2394 		KASSERT((tp->t_flags & TF_LISTEN) == 0, ("listen socket"));
2395 		tcp_drop(tp, ECONNABORTED);
2396 		error = 0;
2397 	} else {
2398 		error = ESRCH;
2399 	}
2400 #ifdef INET6
2401 done:
2402 #endif
2403 	lwkt_replymsg(lmsg, error);
2404 }
2405 
2406 static int
2407 sysctl_tcp_drop(SYSCTL_HANDLER_ARGS)
2408 {
2409 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2410 	struct sockaddr_storage addrs[2];
2411 	struct sockaddr_in *fin, *lin;
2412 #ifdef INET6
2413 	struct sockaddr_in6 *fin6, *lin6;
2414 #endif
2415 	struct netmsg_base nmsg;
2416 	struct lwkt_msg *lmsg = &nmsg.lmsg;
2417 	struct lwkt_port *port = NULL;
2418 	int error;
2419 
2420 	fin = lin = NULL;
2421 #ifdef INET6
2422 	fin6 = lin6 = NULL;
2423 #endif
2424 	error = 0;
2425 
2426 	if (req->oldptr != NULL || req->oldlen != 0)
2427 		return (EINVAL);
2428 	if (req->newptr == NULL)
2429 		return (EPERM);
2430 	if (req->newlen < sizeof(addrs))
2431 		return (ENOMEM);
2432 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2433 	if (error)
2434 		return (error);
2435 
2436 	switch (addrs[0].ss_family) {
2437 #ifdef INET6
2438 	case AF_INET6:
2439 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2440 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2441 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2442 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2443 			return (EINVAL);
2444 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr) ||
2445 		    IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2446 			return (EADDRNOTAVAIL);
2447 #if 0
2448 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2449 		if (error)
2450 			return (error);
2451 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2452 		if (error)
2453 			return (error);
2454 #endif
2455 		port = tcp6_addrport();
2456 		break;
2457 #endif
2458 #ifdef INET
2459 	case AF_INET:
2460 		fin = (struct sockaddr_in *)&addrs[0];
2461 		lin = (struct sockaddr_in *)&addrs[1];
2462 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2463 		    lin->sin_len != sizeof(struct sockaddr_in))
2464 			return (EINVAL);
2465 		port = tcp_addrport(fin->sin_addr.s_addr, fin->sin_port,
2466 		    lin->sin_addr.s_addr, lin->sin_port);
2467 		break;
2468 #endif
2469 	default:
2470 		return (EINVAL);
2471 	}
2472 
2473 	netmsg_init(&nmsg, NULL, &curthread->td_msgport, 0,
2474 	    tcp_drop_sysctl_dispatch);
2475 	lmsg->u.ms_resultp = addrs;
2476 	return lwkt_domsg(port, lmsg, 0);
2477 }
2478 
2479 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, drop,
2480     CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP, NULL,
2481     0, sysctl_tcp_drop, "", "Drop TCP connection");
2482 
2483 static int
2484 sysctl_tcps_count(SYSCTL_HANDLER_ARGS)
2485 {
2486 	u_long state_count[TCP_NSTATES];
2487 	int cpu;
2488 
2489 	memset(state_count, 0, sizeof(state_count));
2490 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
2491 		int i;
2492 
2493 		for (i = 0; i < TCP_NSTATES; ++i)
2494 			state_count[i] += tcpstate_count[cpu].tcps_count[i];
2495 	}
2496 
2497 	return sysctl_handle_opaque(oidp, state_count, sizeof(state_count), req);
2498 }
2499 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, state_count,
2500     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
2501     sysctl_tcps_count, "LU", "TCP connection counts by state");
2502 
2503 void
2504 tcp_pcbport_create(struct tcpcb *tp)
2505 {
2506 	int cpu;
2507 
2508 	KASSERT((tp->t_flags & TF_LISTEN) && tp->t_state == TCPS_LISTEN,
2509 	    ("not a listen tcpcb"));
2510 
2511 	KASSERT(tp->t_pcbport == NULL, ("tcpcb port cache was created"));
2512 	tp->t_pcbport =
2513 		kmalloc(sizeof(struct tcp_pcbport) * netisr_ncpus,
2514 			M_PCB,
2515 			M_WAITOK | M_CACHEALIGN);
2516 
2517 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
2518 		struct inpcbport *phd;
2519 
2520 		phd = &tp->t_pcbport[cpu].t_phd;
2521 		LIST_INIT(&phd->phd_pcblist);
2522 		/* Though, not used ... */
2523 		phd->phd_port = tp->t_inpcb->inp_lport;
2524 	}
2525 }
2526 
2527 void
2528 tcp_pcbport_merge_oncpu(struct tcpcb *tp)
2529 {
2530 	struct inpcbport *phd;
2531 	struct inpcb *inp;
2532 	int cpu = mycpuid;
2533 
2534 	KASSERT(cpu < netisr_ncpus, ("invalid cpu%d", cpu));
2535 	phd = &tp->t_pcbport[cpu].t_phd;
2536 
2537 	while ((inp = LIST_FIRST(&phd->phd_pcblist)) != NULL) {
2538 		KASSERT(inp->inp_phd == phd && inp->inp_porthash == NULL,
2539 		    ("not on tcpcb port cache"));
2540 		LIST_REMOVE(inp, inp_portlist);
2541 		in_pcbinsporthash_lport(inp);
2542 		KASSERT(inp->inp_phd == tp->t_inpcb->inp_phd &&
2543 		    inp->inp_porthash == tp->t_inpcb->inp_porthash,
2544 		    ("tcpcb port cache merge failed"));
2545 	}
2546 }
2547 
2548 void
2549 tcp_pcbport_destroy(struct tcpcb *tp)
2550 {
2551 #ifdef INVARIANTS
2552 	int cpu;
2553 
2554 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
2555 		KASSERT(LIST_EMPTY(&tp->t_pcbport[cpu].t_phd.phd_pcblist),
2556 		    ("tcpcb port cache is not empty"));
2557 	}
2558 #endif
2559 	kfree(tp->t_pcbport, M_PCB);
2560 	tp->t_pcbport = NULL;
2561 }
2562