xref: /dragonfly/sys/netinet/tcp_subr.c (revision 611395e5)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
36  *
37  * License terms: all terms for the DragonFly license above plus the following:
38  *
39  * 4. All advertising materials mentioning features or use of this software
40  *    must display the following acknowledgement:
41  *
42  *	This product includes software developed by Jeffrey M. Hsu
43  *	for the DragonFly Project.
44  *
45  *    This requirement may be waived with permission from Jeffrey Hsu.
46  *    This requirement will sunset and may be removed on July 8 2005,
47  *    after which the standard DragonFly license (as shown above) will
48  *    apply.
49  */
50 
51 /*
52  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
53  *	The Regents of the University of California.  All rights reserved.
54  *
55  * Redistribution and use in source and binary forms, with or without
56  * modification, are permitted provided that the following conditions
57  * are met:
58  * 1. Redistributions of source code must retain the above copyright
59  *    notice, this list of conditions and the following disclaimer.
60  * 2. Redistributions in binary form must reproduce the above copyright
61  *    notice, this list of conditions and the following disclaimer in the
62  *    documentation and/or other materials provided with the distribution.
63  * 3. All advertising materials mentioning features or use of this software
64  *    must display the following acknowledgement:
65  *	This product includes software developed by the University of
66  *	California, Berkeley and its contributors.
67  * 4. Neither the name of the University nor the names of its contributors
68  *    may be used to endorse or promote products derived from this software
69  *    without specific prior written permission.
70  *
71  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
72  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
75  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81  * SUCH DAMAGE.
82  *
83  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
84  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
85  * $DragonFly: src/sys/netinet/tcp_subr.c,v 1.42 2004/12/20 11:03:16 joerg Exp $
86  */
87 
88 #include "opt_compat.h"
89 #include "opt_inet6.h"
90 #include "opt_ipsec.h"
91 #include "opt_tcpdebug.h"
92 
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/callout.h>
96 #include <sys/kernel.h>
97 #include <sys/sysctl.h>
98 #include <sys/malloc.h>
99 #include <sys/mpipe.h>
100 #include <sys/mbuf.h>
101 #ifdef INET6
102 #include <sys/domain.h>
103 #endif
104 #include <sys/proc.h>
105 #include <sys/socket.h>
106 #include <sys/socketvar.h>
107 #include <sys/protosw.h>
108 #include <sys/random.h>
109 #include <sys/in_cksum.h>
110 
111 #include <vm/vm_zone.h>
112 
113 #include <net/route.h>
114 #include <net/if.h>
115 #include <net/netisr.h>
116 
117 #define	_IP_VHL
118 #include <netinet/in.h>
119 #include <netinet/in_systm.h>
120 #include <netinet/ip.h>
121 #include <netinet/ip6.h>
122 #include <netinet/in_pcb.h>
123 #include <netinet6/in6_pcb.h>
124 #include <netinet/in_var.h>
125 #include <netinet/ip_var.h>
126 #include <netinet6/ip6_var.h>
127 #include <netinet/tcp.h>
128 #include <netinet/tcp_fsm.h>
129 #include <netinet/tcp_seq.h>
130 #include <netinet/tcp_timer.h>
131 #include <netinet/tcp_var.h>
132 #include <netinet6/tcp6_var.h>
133 #include <netinet/tcpip.h>
134 #ifdef TCPDEBUG
135 #include <netinet/tcp_debug.h>
136 #endif
137 #include <netinet6/ip6protosw.h>
138 
139 #ifdef IPSEC
140 #include <netinet6/ipsec.h>
141 #ifdef INET6
142 #include <netinet6/ipsec6.h>
143 #endif
144 #endif
145 
146 #ifdef FAST_IPSEC
147 #include <netproto/ipsec/ipsec.h>
148 #ifdef INET6
149 #include <netproto/ipsec/ipsec6.h>
150 #endif
151 #define	IPSEC
152 #endif
153 
154 #include <sys/md5.h>
155 
156 #include <sys/msgport2.h>
157 
158 #include <machine/smp.h>
159 
160 struct inpcbinfo tcbinfo[MAXCPU];
161 struct tcpcbackqhead tcpcbackq[MAXCPU];
162 
163 int tcp_mssdflt = TCP_MSS;
164 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
165     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
166 
167 #ifdef INET6
168 int tcp_v6mssdflt = TCP6_MSS;
169 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
170     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
171 #endif
172 
173 #if 0
174 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
175 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
176     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
177 #endif
178 
179 int tcp_do_rfc1323 = 1;
180 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
181     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
182 
183 int tcp_do_rfc1644 = 0;
184 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
185     &tcp_do_rfc1644, 0, "Enable rfc1644 (TTCP) extensions");
186 
187 static int tcp_tcbhashsize = 0;
188 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
189      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
190 
191 static int do_tcpdrain = 1;
192 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
193      "Enable tcp_drain routine for extra help when low on mbufs");
194 
195 /* XXX JH */
196 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
197     &tcbinfo[0].ipi_count, 0, "Number of active PCBs");
198 
199 static int icmp_may_rst = 1;
200 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
201     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
202 
203 static int tcp_isn_reseed_interval = 0;
204 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
205     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
206 
207 /*
208  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
209  * 1024 exists only for debugging.  A good production default would be
210  * something like 6100.
211  */
212 static int tcp_inflight_enable = 0;
213 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
214     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
215 
216 static int tcp_inflight_debug = 0;
217 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
218     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
219 
220 static int tcp_inflight_min = 6144;
221 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
222     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
223 
224 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
225 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
226     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
227 
228 static int tcp_inflight_stab = 20;
229 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
230     &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 2 packets)");
231 
232 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
233 static struct malloc_pipe tcptemp_mpipe;
234 
235 static void tcp_willblock(void);
236 static void tcp_cleartaocache (void);
237 static void tcp_notify (struct inpcb *, int);
238 
239 struct tcp_stats tcpstats_ary[MAXCPU];
240 #ifdef SMP
241 static int
242 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
243 {
244 	int cpu, error = 0;
245 
246 	for (cpu = 0; cpu < ncpus; ++cpu) {
247 		if ((error = SYSCTL_OUT(req, (void *)&tcpstats_ary[cpu],
248 					sizeof(struct tcp_stats))))
249 			break;
250 		if ((error = SYSCTL_IN(req, (void *)&tcpstats_ary[cpu],
251 				       sizeof(struct tcp_stats))))
252 			break;
253 	}
254 
255 	return (error);
256 }
257 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
258     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
259 #else
260 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
261     &tcpstat, tcp_stats, "TCP statistics");
262 #endif
263 
264 /*
265  * Target size of TCP PCB hash tables. Must be a power of two.
266  *
267  * Note that this can be overridden by the kernel environment
268  * variable net.inet.tcp.tcbhashsize
269  */
270 #ifndef TCBHASHSIZE
271 #define	TCBHASHSIZE	512
272 #endif
273 
274 /*
275  * This is the actual shape of what we allocate using the zone
276  * allocator.  Doing it this way allows us to protect both structures
277  * using the same generation count, and also eliminates the overhead
278  * of allocating tcpcbs separately.  By hiding the structure here,
279  * we avoid changing most of the rest of the code (although it needs
280  * to be changed, eventually, for greater efficiency).
281  */
282 #define	ALIGNMENT	32
283 #define	ALIGNM1		(ALIGNMENT - 1)
284 struct	inp_tp {
285 	union {
286 		struct	inpcb inp;
287 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
288 	} inp_tp_u;
289 	struct	tcpcb tcb;
290 	struct	callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
291 	struct	callout inp_tp_delack;
292 };
293 #undef ALIGNMENT
294 #undef ALIGNM1
295 
296 /*
297  * Tcp initialization
298  */
299 void
300 tcp_init()
301 {
302 	struct inpcbporthead *porthashbase;
303 	u_long porthashmask;
304 	struct vm_zone *ipi_zone;
305 	int hashsize = TCBHASHSIZE;
306 	int cpu;
307 
308 	/*
309 	 * note: tcptemp is used for keepalives, and it is ok for an
310 	 * allocation to fail so do not specify MPF_INT.
311 	 */
312 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
313 		    25, -1, 0, NULL);
314 
315 	tcp_ccgen = 1;
316 	tcp_cleartaocache();
317 
318 	tcp_delacktime = TCPTV_DELACK;
319 	tcp_keepinit = TCPTV_KEEP_INIT;
320 	tcp_keepidle = TCPTV_KEEP_IDLE;
321 	tcp_keepintvl = TCPTV_KEEPINTVL;
322 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
323 	tcp_msl = TCPTV_MSL;
324 	tcp_rexmit_min = TCPTV_MIN;
325 	tcp_rexmit_slop = TCPTV_CPU_VAR;
326 
327 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
328 	if (!powerof2(hashsize)) {
329 		printf("WARNING: TCB hash size not a power of 2\n");
330 		hashsize = 512; /* safe default */
331 	}
332 	tcp_tcbhashsize = hashsize;
333 	porthashbase = hashinit(hashsize, M_PCB, &porthashmask);
334 	ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets,
335 			 ZONE_INTERRUPT, 0);
336 
337 	for (cpu = 0; cpu < ncpus2; cpu++) {
338 		in_pcbinfo_init(&tcbinfo[cpu]);
339 		tcbinfo[cpu].cpu = cpu;
340 		tcbinfo[cpu].hashbase = hashinit(hashsize, M_PCB,
341 		    &tcbinfo[cpu].hashmask);
342 		tcbinfo[cpu].porthashbase = porthashbase;
343 		tcbinfo[cpu].porthashmask = porthashmask;
344 		tcbinfo[cpu].wildcardhashbase = hashinit(hashsize, M_PCB,
345 		    &tcbinfo[cpu].wildcardhashmask);
346 		tcbinfo[cpu].ipi_zone = ipi_zone;
347 		TAILQ_INIT(&tcpcbackq[cpu]);
348 	}
349 
350 	tcp_reass_maxseg = nmbclusters / 16;
351 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
352 
353 #ifdef INET6
354 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
355 #else
356 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
357 #endif
358 	if (max_protohdr < TCP_MINPROTOHDR)
359 		max_protohdr = TCP_MINPROTOHDR;
360 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
361 		panic("tcp_init");
362 #undef TCP_MINPROTOHDR
363 
364 	/*
365 	 * Initialize TCP statistics.
366 	 *
367 	 * It is layed out as an array which is has one element for UP,
368 	 * and SMP_MAXCPU elements for SMP.  This allows us to retain
369 	 * the access mechanism from userland for both UP and SMP.
370 	 */
371 #ifdef SMP
372 	for (cpu = 0; cpu < ncpus; ++cpu) {
373 		bzero(&tcpstats_ary[cpu], sizeof(struct tcp_stats));
374 	}
375 #else
376 	bzero(&tcpstat, sizeof(struct tcp_stats));
377 #endif
378 
379 	syncache_init();
380 	tcp_sack_init();
381 	tcp_thread_init();
382 }
383 
384 void
385 tcpmsg_service_loop(void *dummy)
386 {
387 	struct netmsg *msg;
388 
389 	while ((msg = lwkt_waitport(&curthread->td_msgport, NULL))) {
390 		do {
391 			msg->nm_lmsg.ms_cmd.cm_func(&msg->nm_lmsg);
392 		} while ((msg = lwkt_getport(&curthread->td_msgport)) != NULL);
393 		tcp_willblock();
394 	}
395 }
396 
397 static void
398 tcp_willblock(void)
399 {
400 	struct tcpcb *tp;
401 	int cpu = mycpu->gd_cpuid;
402 
403 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
404 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
405 		tp->t_flags &= ~TF_ONOUTPUTQ;
406 		TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
407 		tcp_output(tp);
408 	}
409 }
410 
411 
412 /*
413  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
414  * tcp_template used to store this data in mbufs, but we now recopy it out
415  * of the tcpcb each time to conserve mbufs.
416  */
417 void
418 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr)
419 {
420 	struct inpcb *inp = tp->t_inpcb;
421 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
422 
423 #ifdef INET6
424 	if (inp->inp_vflag & INP_IPV6) {
425 		struct ip6_hdr *ip6;
426 
427 		ip6 = (struct ip6_hdr *)ip_ptr;
428 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
429 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
430 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
431 			(IPV6_VERSION & IPV6_VERSION_MASK);
432 		ip6->ip6_nxt = IPPROTO_TCP;
433 		ip6->ip6_plen = sizeof(struct tcphdr);
434 		ip6->ip6_src = inp->in6p_laddr;
435 		ip6->ip6_dst = inp->in6p_faddr;
436 		tcp_hdr->th_sum = 0;
437 	} else
438 #endif
439 	{
440 		struct ip *ip = (struct ip *) ip_ptr;
441 
442 		ip->ip_vhl = IP_VHL_BORING;
443 		ip->ip_tos = 0;
444 		ip->ip_len = 0;
445 		ip->ip_id = 0;
446 		ip->ip_off = 0;
447 		ip->ip_ttl = 0;
448 		ip->ip_sum = 0;
449 		ip->ip_p = IPPROTO_TCP;
450 		ip->ip_src = inp->inp_laddr;
451 		ip->ip_dst = inp->inp_faddr;
452 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
453 				    ip->ip_dst.s_addr,
454 				    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
455 	}
456 
457 	tcp_hdr->th_sport = inp->inp_lport;
458 	tcp_hdr->th_dport = inp->inp_fport;
459 	tcp_hdr->th_seq = 0;
460 	tcp_hdr->th_ack = 0;
461 	tcp_hdr->th_x2 = 0;
462 	tcp_hdr->th_off = 5;
463 	tcp_hdr->th_flags = 0;
464 	tcp_hdr->th_win = 0;
465 	tcp_hdr->th_urp = 0;
466 }
467 
468 /*
469  * Create template to be used to send tcp packets on a connection.
470  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
471  * use for this function is in keepalives, which use tcp_respond.
472  */
473 struct tcptemp *
474 tcp_maketemplate(struct tcpcb *tp)
475 {
476 	struct tcptemp *tmp;
477 
478 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
479 		return (NULL);
480 	tcp_fillheaders(tp, (void *)&tmp->tt_ipgen, (void *)&tmp->tt_t);
481 	return (tmp);
482 }
483 
484 void
485 tcp_freetemplate(struct tcptemp *tmp)
486 {
487 	mpipe_free(&tcptemp_mpipe, tmp);
488 }
489 
490 /*
491  * Send a single message to the TCP at address specified by
492  * the given TCP/IP header.  If m == NULL, then we make a copy
493  * of the tcpiphdr at ti and send directly to the addressed host.
494  * This is used to force keep alive messages out using the TCP
495  * template for a connection.  If flags are given then we send
496  * a message back to the TCP which originated the * segment ti,
497  * and discard the mbuf containing it and any other attached mbufs.
498  *
499  * In any case the ack and sequence number of the transmitted
500  * segment are as specified by the parameters.
501  *
502  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
503  */
504 void
505 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
506 	    tcp_seq ack, tcp_seq seq, int flags)
507 {
508 	int tlen;
509 	int win = 0;
510 	struct route *ro = NULL;
511 	struct route sro;
512 	struct ip *ip = ipgen;
513 	struct tcphdr *nth;
514 	int ipflags = 0;
515 	struct route_in6 *ro6 = NULL;
516 	struct route_in6 sro6;
517 	struct ip6_hdr *ip6 = ipgen;
518 #ifdef INET6
519 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
520 #else
521 	const boolean_t isipv6 = FALSE;
522 #endif
523 
524 	if (tp != NULL) {
525 		if (!(flags & TH_RST)) {
526 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
527 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
528 				win = (long)TCP_MAXWIN << tp->rcv_scale;
529 		}
530 		if (isipv6)
531 			ro6 = &tp->t_inpcb->in6p_route;
532 		else
533 			ro = &tp->t_inpcb->inp_route;
534 	} else {
535 		if (isipv6) {
536 			ro6 = &sro6;
537 			bzero(ro6, sizeof *ro6);
538 		} else {
539 			ro = &sro;
540 			bzero(ro, sizeof *ro);
541 		}
542 	}
543 	if (m == NULL) {
544 		m = m_gethdr(MB_DONTWAIT, MT_HEADER);
545 		if (m == NULL)
546 			return;
547 		tlen = 0;
548 		m->m_data += max_linkhdr;
549 		if (isipv6) {
550 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
551 			ip6 = mtod(m, struct ip6_hdr *);
552 			nth = (struct tcphdr *)(ip6 + 1);
553 		} else {
554 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
555 			ip = mtod(m, struct ip *);
556 			nth = (struct tcphdr *)(ip + 1);
557 		}
558 		bcopy(th, nth, sizeof(struct tcphdr));
559 		flags = TH_ACK;
560 	} else {
561 		m_freem(m->m_next);
562 		m->m_next = NULL;
563 		m->m_data = (caddr_t)ipgen;
564 		/* m_len is set later */
565 		tlen = 0;
566 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
567 		if (isipv6) {
568 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
569 			nth = (struct tcphdr *)(ip6 + 1);
570 		} else {
571 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
572 			nth = (struct tcphdr *)(ip + 1);
573 		}
574 		if (th != nth) {
575 			/*
576 			 * this is usually a case when an extension header
577 			 * exists between the IPv6 header and the
578 			 * TCP header.
579 			 */
580 			nth->th_sport = th->th_sport;
581 			nth->th_dport = th->th_dport;
582 		}
583 		xchg(nth->th_dport, nth->th_sport, n_short);
584 #undef xchg
585 	}
586 	if (isipv6) {
587 		ip6->ip6_flow = 0;
588 		ip6->ip6_vfc = IPV6_VERSION;
589 		ip6->ip6_nxt = IPPROTO_TCP;
590 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
591 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
592 	} else {
593 		tlen += sizeof(struct tcpiphdr);
594 		ip->ip_len = tlen;
595 		ip->ip_ttl = ip_defttl;
596 	}
597 	m->m_len = tlen;
598 	m->m_pkthdr.len = tlen;
599 	m->m_pkthdr.rcvif = (struct ifnet *) NULL;
600 	nth->th_seq = htonl(seq);
601 	nth->th_ack = htonl(ack);
602 	nth->th_x2 = 0;
603 	nth->th_off = sizeof(struct tcphdr) >> 2;
604 	nth->th_flags = flags;
605 	if (tp != NULL)
606 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
607 	else
608 		nth->th_win = htons((u_short)win);
609 	nth->th_urp = 0;
610 	if (isipv6) {
611 		nth->th_sum = 0;
612 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
613 					sizeof(struct ip6_hdr),
614 					tlen - sizeof(struct ip6_hdr));
615 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
616 					       (ro6 && ro6->ro_rt) ?
617 					           ro6->ro_rt->rt_ifp : NULL);
618 	} else {
619 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
620 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
621 		m->m_pkthdr.csum_flags = CSUM_TCP;
622 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
623 	}
624 #ifdef TCPDEBUG
625 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
626 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
627 #endif
628 	if (isipv6) {
629 		(void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
630 				 tp ? tp->t_inpcb : NULL);
631 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
632 			RTFREE(ro6->ro_rt);
633 			ro6->ro_rt = NULL;
634 		}
635 	} else {
636 		(void)ip_output(m, NULL, ro, ipflags, NULL,
637 				tp ? tp->t_inpcb : NULL);
638 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
639 			RTFREE(ro->ro_rt);
640 			ro->ro_rt = NULL;
641 		}
642 	}
643 }
644 
645 /*
646  * Create a new TCP control block, making an
647  * empty reassembly queue and hooking it to the argument
648  * protocol control block.  The `inp' parameter must have
649  * come from the zone allocator set up in tcp_init().
650  */
651 struct tcpcb *
652 tcp_newtcpcb(struct inpcb *inp)
653 {
654 	struct inp_tp *it;
655 	struct tcpcb *tp;
656 #ifdef INET6
657 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
658 #else
659 	const boolean_t isipv6 = FALSE;
660 #endif
661 
662 	it = (struct inp_tp *)inp;
663 	tp = &it->tcb;
664 	bzero(tp, sizeof(struct tcpcb));
665 	LIST_INIT(&tp->t_segq);
666 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
667 
668 	/* Set up our timeouts. */
669 	callout_init(tp->tt_rexmt = &it->inp_tp_rexmt);
670 	callout_init(tp->tt_persist = &it->inp_tp_persist);
671 	callout_init(tp->tt_keep = &it->inp_tp_keep);
672 	callout_init(tp->tt_2msl = &it->inp_tp_2msl);
673 	callout_init(tp->tt_delack = &it->inp_tp_delack);
674 
675 	if (tcp_do_rfc1323)
676 		tp->t_flags = (TF_REQ_SCALE | TF_REQ_TSTMP);
677 	if (tcp_do_rfc1644)
678 		tp->t_flags |= TF_REQ_CC;
679 	tp->t_inpcb = inp;	/* XXX */
680 	tp->t_state = TCPS_CLOSED;
681 	/*
682 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
683 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
684 	 * reasonable initial retransmit time.
685 	 */
686 	tp->t_srtt = TCPTV_SRTTBASE;
687 	tp->t_rttvar =
688 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
689 	tp->t_rttmin = tcp_rexmit_min;
690 	tp->t_rxtcur = TCPTV_RTOBASE;
691 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
692 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
693 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
694 	tp->t_rcvtime = ticks;
695 	/*
696 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
697 	 * because the socket may be bound to an IPv6 wildcard address,
698 	 * which may match an IPv4-mapped IPv6 address.
699 	 */
700 	inp->inp_ip_ttl = ip_defttl;
701 	inp->inp_ppcb = (caddr_t)tp;
702 	tcp_sack_tcpcb_init(tp);
703 	return (tp);		/* XXX */
704 }
705 
706 /*
707  * Drop a TCP connection, reporting the specified error.
708  * If connection is synchronized, then send a RST to peer.
709  */
710 struct tcpcb *
711 tcp_drop(struct tcpcb *tp, int errno)
712 {
713 	struct socket *so = tp->t_inpcb->inp_socket;
714 
715 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
716 		tp->t_state = TCPS_CLOSED;
717 		(void) tcp_output(tp);
718 		tcpstat.tcps_drops++;
719 	} else
720 		tcpstat.tcps_conndrops++;
721 	if (errno == ETIMEDOUT && tp->t_softerror)
722 		errno = tp->t_softerror;
723 	so->so_error = errno;
724 	return (tcp_close(tp));
725 }
726 
727 #ifdef SMP
728 
729 struct netmsg_remwildcard {
730 	struct lwkt_msg		nm_lmsg;
731 	struct inpcb		*nm_inp;
732 	struct inpcbinfo	*nm_pcbinfo;
733 #if defined(INET6)
734 	int			nm_isinet6;
735 #else
736 	int			nm_unused01;
737 #endif
738 };
739 
740 /*
741  * Wildcard inpcb's on SMP boxes must be removed from all cpus before the
742  * inp can be detached.  We do this by cycling through the cpus, ending up
743  * on the cpu controlling the inp last and then doing the disconnect.
744  */
745 static int
746 in_pcbremwildcardhash_handler(struct lwkt_msg *msg0)
747 {
748 	struct netmsg_remwildcard *msg = (struct netmsg_remwildcard *)msg0;
749 	int cpu;
750 
751 	cpu = msg->nm_pcbinfo->cpu;
752 
753 	if (cpu == msg->nm_inp->inp_pcbinfo->cpu) {
754 		/* note: detach removes any wildcard hash entry */
755 #ifdef INET6
756 		if (msg->nm_isinet6)
757 			in6_pcbdetach(msg->nm_inp);
758 		else
759 #endif
760 			in_pcbdetach(msg->nm_inp);
761 		lwkt_replymsg(&msg->nm_lmsg, 0);
762 	} else {
763 		in_pcbremwildcardhash_oncpu(msg->nm_inp, msg->nm_pcbinfo);
764 		cpu = (cpu + 1) % ncpus2;
765 		msg->nm_pcbinfo = &tcbinfo[cpu];
766 		lwkt_forwardmsg(tcp_cport(cpu), &msg->nm_lmsg);
767 	}
768 	return (EASYNC);
769 }
770 
771 #endif
772 
773 /*
774  * Close a TCP control block:
775  *	discard all space held by the tcp
776  *	discard internet protocol block
777  *	wake up any sleepers
778  */
779 struct tcpcb *
780 tcp_close(struct tcpcb *tp)
781 {
782 	struct tseg_qent *q;
783 	struct inpcb *inp = tp->t_inpcb;
784 	struct socket *so = inp->inp_socket;
785 	struct rtentry *rt;
786 	boolean_t dosavessthresh;
787 #ifdef SMP
788 	int cpu;
789 #endif
790 #ifdef INET6
791 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
792 	boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
793 #else
794 	const boolean_t isipv6 = FALSE;
795 #endif
796 
797 	/*
798 	 * The tp is not instantly destroyed in the wildcard case.  Setting
799 	 * the state to TCPS_TERMINATING will prevent the TCP stack from
800 	 * messing with it, though it should be noted that this change may
801 	 * not take effect on other cpus until we have chained the wildcard
802 	 * hash removal.
803 	 *
804 	 * XXX we currently depend on the BGL to synchronize the tp->t_state
805 	 * update and prevent other tcp protocol threads from accepting new
806 	 * connections on the listen socket we might be trying to close down.
807 	 */
808 	KKASSERT(tp->t_state != TCPS_TERMINATING);
809 	tp->t_state = TCPS_TERMINATING;
810 
811 	/*
812 	 * Make sure that all of our timers are stopped before we
813 	 * delete the PCB.
814 	 */
815 	callout_stop(tp->tt_rexmt);
816 	callout_stop(tp->tt_persist);
817 	callout_stop(tp->tt_keep);
818 	callout_stop(tp->tt_2msl);
819 	callout_stop(tp->tt_delack);
820 
821 	if (tp->t_flags & TF_ONOUTPUTQ) {
822 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
823 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
824 		tp->t_flags &= ~TF_ONOUTPUTQ;
825 	}
826 
827 	/*
828 	 * If we got enough samples through the srtt filter,
829 	 * save the rtt and rttvar in the routing entry.
830 	 * 'Enough' is arbitrarily defined as the 16 samples.
831 	 * 16 samples is enough for the srtt filter to converge
832 	 * to within 5% of the correct value; fewer samples and
833 	 * we could save a very bogus rtt.
834 	 *
835 	 * Don't update the default route's characteristics and don't
836 	 * update anything that the user "locked".
837 	 */
838 	if (tp->t_rttupdated >= 16) {
839 		u_long i = 0;
840 
841 		if (isipv6) {
842 			struct sockaddr_in6 *sin6;
843 
844 			if ((rt = inp->in6p_route.ro_rt) == NULL)
845 				goto no_valid_rt;
846 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
847 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
848 				goto no_valid_rt;
849 		} else
850 			if ((rt = inp->inp_route.ro_rt) == NULL ||
851 			    ((struct sockaddr_in *)rt_key(rt))->
852 			     sin_addr.s_addr == INADDR_ANY)
853 				goto no_valid_rt;
854 
855 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
856 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
857 			if (rt->rt_rmx.rmx_rtt && i)
858 				/*
859 				 * filter this update to half the old & half
860 				 * the new values, converting scale.
861 				 * See route.h and tcp_var.h for a
862 				 * description of the scaling constants.
863 				 */
864 				rt->rt_rmx.rmx_rtt =
865 				    (rt->rt_rmx.rmx_rtt + i) / 2;
866 			else
867 				rt->rt_rmx.rmx_rtt = i;
868 			tcpstat.tcps_cachedrtt++;
869 		}
870 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
871 			i = tp->t_rttvar *
872 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
873 			if (rt->rt_rmx.rmx_rttvar && i)
874 				rt->rt_rmx.rmx_rttvar =
875 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
876 			else
877 				rt->rt_rmx.rmx_rttvar = i;
878 			tcpstat.tcps_cachedrttvar++;
879 		}
880 		/*
881 		 * The old comment here said:
882 		 * update the pipelimit (ssthresh) if it has been updated
883 		 * already or if a pipesize was specified & the threshhold
884 		 * got below half the pipesize.  I.e., wait for bad news
885 		 * before we start updating, then update on both good
886 		 * and bad news.
887 		 *
888 		 * But we want to save the ssthresh even if no pipesize is
889 		 * specified explicitly in the route, because such
890 		 * connections still have an implicit pipesize specified
891 		 * by the global tcp_sendspace.  In the absence of a reliable
892 		 * way to calculate the pipesize, it will have to do.
893 		 */
894 		i = tp->snd_ssthresh;
895 		if (rt->rt_rmx.rmx_sendpipe != 0)
896 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
897 		else
898 			dosavessthresh = (i < so->so_snd.sb_hiwat/2);
899 		if (dosavessthresh ||
900 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
901 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
902 			/*
903 			 * convert the limit from user data bytes to
904 			 * packets then to packet data bytes.
905 			 */
906 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
907 			if (i < 2)
908 				i = 2;
909 			i *= tp->t_maxseg +
910 			     (isipv6 ?
911 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
912 			      sizeof(struct tcpiphdr));
913 			if (rt->rt_rmx.rmx_ssthresh)
914 				rt->rt_rmx.rmx_ssthresh =
915 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
916 			else
917 				rt->rt_rmx.rmx_ssthresh = i;
918 			tcpstat.tcps_cachedssthresh++;
919 		}
920 	}
921 
922 no_valid_rt:
923 	/* free the reassembly queue, if any */
924 	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
925 		LIST_REMOVE(q, tqe_q);
926 		m_freem(q->tqe_m);
927 		FREE(q, M_TSEGQ);
928 		tcp_reass_qsize--;
929 	}
930 	/* throw away SACK blocks in scoreboard*/
931 	if (TCP_DO_SACK(tp))
932 		tcp_sack_cleanup(&tp->scb);
933 
934 	inp->inp_ppcb = NULL;
935 	soisdisconnected(so);
936 	/*
937 	 * Discard the inp.  In the SMP case a wildcard inp's hash (created
938 	 * by a listen socket or an INADDR_ANY udp socket) is replicated
939 	 * for each protocol thread and must be removed in the context of
940 	 * that thread.  This is accomplished by chaining the message
941 	 * through the cpus.
942 	 *
943 	 * If the inp is not wildcarded we simply detach, which will remove
944 	 * the any hashes still present for this inp.
945 	 */
946 #ifdef SMP
947 	if (inp->inp_flags & INP_WILDCARD_MP) {
948 		struct netmsg_remwildcard *msg;
949 
950 		cpu = (inp->inp_pcbinfo->cpu + 1) % ncpus2;
951 		msg = malloc(sizeof(struct netmsg_remwildcard),
952 			    M_LWKTMSG, M_INTWAIT);
953 		lwkt_initmsg(&msg->nm_lmsg, &netisr_afree_rport, 0,
954 		    lwkt_cmd_func(in_pcbremwildcardhash_handler),
955 		    lwkt_cmd_op_none);
956 #ifdef INET6
957 		msg->nm_isinet6 = isafinet6;
958 #endif
959 		msg->nm_inp = inp;
960 		msg->nm_pcbinfo = &tcbinfo[cpu];
961 		lwkt_sendmsg(tcp_cport(cpu), &msg->nm_lmsg);
962 	} else
963 #endif
964 	{
965 		/* note: detach removes any wildcard hash entry */
966 #ifdef INET6
967 		if (isafinet6)
968 			in6_pcbdetach(inp);
969 		else
970 #endif
971 			in_pcbdetach(inp);
972 	}
973 	tcpstat.tcps_closed++;
974 	return (NULL);
975 }
976 
977 static __inline void
978 tcp_drain_oncpu(struct inpcbhead *head)
979 {
980 	struct inpcb *inpb;
981 	struct tcpcb *tcpb;
982 	struct tseg_qent *te;
983 
984 	LIST_FOREACH(inpb, head, inp_list) {
985 		if (inpb->inp_flags & INP_PLACEMARKER)
986 			continue;
987 		if ((tcpb = intotcpcb(inpb))) {
988 			while ((te = LIST_FIRST(&tcpb->t_segq)) != NULL) {
989 				LIST_REMOVE(te, tqe_q);
990 				m_freem(te->tqe_m);
991 				FREE(te, M_TSEGQ);
992 				tcp_reass_qsize--;
993 			}
994 		}
995 	}
996 }
997 
998 #ifdef SMP
999 struct netmsg_tcp_drain {
1000 	struct lwkt_msg		nm_lmsg;
1001 	struct inpcbhead	*nm_head;
1002 };
1003 
1004 static int
1005 tcp_drain_handler(lwkt_msg_t lmsg)
1006 {
1007 	struct netmsg_tcp_drain *nm = (void *)lmsg;
1008 
1009 	tcp_drain_oncpu(nm->nm_head);
1010 	lwkt_replymsg(lmsg, 0);
1011 	return(EASYNC);
1012 }
1013 #endif
1014 
1015 void
1016 tcp_drain()
1017 {
1018 #ifdef SMP
1019 	int cpu;
1020 #endif
1021 
1022 	if (!do_tcpdrain)
1023 		return;
1024 
1025 	/*
1026 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1027 	 * if there is one...
1028 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1029 	 *	reassembly queue should be flushed, but in a situation
1030 	 *	where we're really low on mbufs, this is potentially
1031 	 *	useful.
1032 	 */
1033 #ifdef SMP
1034 	for (cpu = 0; cpu < ncpus2; cpu++) {
1035 		struct netmsg_tcp_drain *msg;
1036 
1037 		if (cpu == mycpu->gd_cpuid) {
1038 			tcp_drain_oncpu(&tcbinfo[cpu].pcblisthead);
1039 		} else {
1040 			msg = malloc(sizeof(struct netmsg_tcp_drain),
1041 				    M_LWKTMSG, M_NOWAIT);
1042 			if (msg == NULL)
1043 				continue;
1044 			lwkt_initmsg(&msg->nm_lmsg, &netisr_afree_rport, 0,
1045 				lwkt_cmd_func(tcp_drain_handler),
1046 				lwkt_cmd_op_none);
1047 			msg->nm_head = &tcbinfo[cpu].pcblisthead;
1048 			lwkt_sendmsg(tcp_cport(cpu), &msg->nm_lmsg);
1049 		}
1050 	}
1051 #else
1052 	tcp_drain_oncpu(&tcbinfo[0].pcblisthead);
1053 #endif
1054 }
1055 
1056 /*
1057  * Notify a tcp user of an asynchronous error;
1058  * store error as soft error, but wake up user
1059  * (for now, won't do anything until can select for soft error).
1060  *
1061  * Do not wake up user since there currently is no mechanism for
1062  * reporting soft errors (yet - a kqueue filter may be added).
1063  */
1064 static void
1065 tcp_notify(struct inpcb *inp, int error)
1066 {
1067 	struct tcpcb *tp = intotcpcb(inp);
1068 
1069 	/*
1070 	 * Ignore some errors if we are hooked up.
1071 	 * If connection hasn't completed, has retransmitted several times,
1072 	 * and receives a second error, give up now.  This is better
1073 	 * than waiting a long time to establish a connection that
1074 	 * can never complete.
1075 	 */
1076 	if (tp->t_state == TCPS_ESTABLISHED &&
1077 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1078 	      error == EHOSTDOWN)) {
1079 		return;
1080 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1081 	    tp->t_softerror)
1082 		tcp_drop(tp, error);
1083 	else
1084 		tp->t_softerror = error;
1085 #if 0
1086 	wakeup((caddr_t) &so->so_timeo);
1087 	sorwakeup(so);
1088 	sowwakeup(so);
1089 #endif
1090 }
1091 
1092 static int
1093 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1094 {
1095 	int error, i, n;
1096 	struct inpcb *marker;
1097 	struct inpcb *inp;
1098 	inp_gen_t gencnt;
1099 	globaldata_t gd;
1100 	int origcpu, ccpu;
1101 
1102 	error = 0;
1103 	n = 0;
1104 
1105 	/*
1106 	 * The process of preparing the TCB list is too time-consuming and
1107 	 * resource-intensive to repeat twice on every request.
1108 	 */
1109 	if (req->oldptr == NULL) {
1110 		for (ccpu = 0; ccpu < ncpus; ++ccpu) {
1111 			gd = globaldata_find(ccpu);
1112 			n += tcbinfo[gd->gd_cpuid].ipi_count;
1113 		}
1114 		req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1115 		return (0);
1116 	}
1117 
1118 	if (req->newptr != NULL)
1119 		return (EPERM);
1120 
1121 	marker = malloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1122 	marker->inp_flags |= INP_PLACEMARKER;
1123 
1124 	/*
1125 	 * OK, now we're committed to doing something.  Run the inpcb list
1126 	 * for each cpu in the system and construct the output.  Use a
1127 	 * list placemarker to deal with list changes occuring during
1128 	 * copyout blockages (but otherwise depend on being on the correct
1129 	 * cpu to avoid races).
1130 	 */
1131 	origcpu = mycpu->gd_cpuid;
1132 	for (ccpu = 1; ccpu <= ncpus && error == 0; ++ccpu) {
1133 		globaldata_t rgd;
1134 		caddr_t inp_ppcb;
1135 		struct xtcpcb xt;
1136 		int cpu_id;
1137 
1138 		cpu_id = (origcpu + ccpu) % ncpus;
1139 		if ((smp_active_mask & (1 << cpu_id)) == 0)
1140 			continue;
1141 		rgd = globaldata_find(cpu_id);
1142 		lwkt_setcpu_self(rgd);
1143 
1144 		/* indicate change of CPU */
1145 		cpu_mb1();
1146 
1147 		gencnt = tcbinfo[cpu_id].ipi_gencnt;
1148 		n = tcbinfo[cpu_id].ipi_count;
1149 
1150 		LIST_INSERT_HEAD(&tcbinfo[cpu_id].pcblisthead, marker, inp_list);
1151 		i = 0;
1152 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1153 			/*
1154 			 * process a snapshot of pcbs, ignoring placemarkers
1155 			 * and using our own to allow SYSCTL_OUT to block.
1156 			 */
1157 			LIST_REMOVE(marker, inp_list);
1158 			LIST_INSERT_AFTER(inp, marker, inp_list);
1159 
1160 			if (inp->inp_flags & INP_PLACEMARKER)
1161 				continue;
1162 			if (inp->inp_gencnt > gencnt)
1163 				continue;
1164 			if (prison_xinpcb(req->td, inp))
1165 				continue;
1166 
1167 			xt.xt_len = sizeof xt;
1168 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1169 			inp_ppcb = inp->inp_ppcb;
1170 			if (inp_ppcb != NULL)
1171 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1172 			else
1173 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1174 			if (inp->inp_socket)
1175 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1176 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1177 				break;
1178 			++i;
1179 		}
1180 		LIST_REMOVE(marker, inp_list);
1181 		if (error == 0 && i < n) {
1182 			bzero(&xt, sizeof(xt));
1183 			xt.xt_len = sizeof(xt);
1184 			while (i < n) {
1185 				error = SYSCTL_OUT(req, &xt, sizeof (xt));
1186 				if (error)
1187 					break;
1188 				++i;
1189 			}
1190 		}
1191 	}
1192 
1193 	/*
1194 	 * Make sure we are on the same cpu we were on originally, since
1195 	 * higher level callers expect this.  Also don't pollute caches with
1196 	 * migrated userland data by (eventually) returning to userland
1197 	 * on a different cpu.
1198 	 */
1199 	lwkt_setcpu_self(globaldata_find(origcpu));
1200 	free(marker, M_TEMP);
1201 	return (error);
1202 }
1203 
1204 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1205 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1206 
1207 static int
1208 tcp_getcred(SYSCTL_HANDLER_ARGS)
1209 {
1210 	struct sockaddr_in addrs[2];
1211 	struct inpcb *inp;
1212 	int cpu;
1213 	int error, s;
1214 
1215 	error = suser(req->td);
1216 	if (error != 0)
1217 		return (error);
1218 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1219 	if (error != 0)
1220 		return (error);
1221 	s = splnet();
1222 
1223 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1224 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1225 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1226 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1227 	if (inp == NULL || inp->inp_socket == NULL) {
1228 		error = ENOENT;
1229 		goto out;
1230 	}
1231 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1232 out:
1233 	splx(s);
1234 	return (error);
1235 }
1236 
1237 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1238     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1239 
1240 #ifdef INET6
1241 static int
1242 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1243 {
1244 	struct sockaddr_in6 addrs[2];
1245 	struct inpcb *inp;
1246 	int error, s;
1247 	boolean_t mapped = FALSE;
1248 
1249 	error = suser(req->td);
1250 	if (error != 0)
1251 		return (error);
1252 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1253 	if (error != 0)
1254 		return (error);
1255 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1256 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1257 			mapped = TRUE;
1258 		else
1259 			return (EINVAL);
1260 	}
1261 	s = splnet();
1262 	if (mapped) {
1263 		inp = in_pcblookup_hash(&tcbinfo[0],
1264 		    *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1265 		    addrs[1].sin6_port,
1266 		    *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1267 		    addrs[0].sin6_port,
1268 		    0, NULL);
1269 	} else {
1270 		inp = in6_pcblookup_hash(&tcbinfo[0],
1271 		    &addrs[1].sin6_addr, addrs[1].sin6_port,
1272 		    &addrs[0].sin6_addr, addrs[0].sin6_port,
1273 		    0, NULL);
1274 	}
1275 	if (inp == NULL || inp->inp_socket == NULL) {
1276 		error = ENOENT;
1277 		goto out;
1278 	}
1279 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1280 out:
1281 	splx(s);
1282 	return (error);
1283 }
1284 
1285 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1286 	    0, 0,
1287 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1288 #endif
1289 
1290 void
1291 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1292 {
1293 	struct ip *ip = vip;
1294 	struct tcphdr *th;
1295 	struct in_addr faddr;
1296 	struct inpcb *inp;
1297 	struct tcpcb *tp;
1298 	void (*notify)(struct inpcb *, int) = tcp_notify;
1299 	tcp_seq icmp_seq;
1300 	int cpu;
1301 	int s;
1302 
1303 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1304 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1305 		return;
1306 
1307 	if (cmd == PRC_QUENCH)
1308 		notify = tcp_quench;
1309 	else if (icmp_may_rst &&
1310 		 (cmd == PRC_UNREACH_ADMIN_PROHIB || cmd == PRC_UNREACH_PORT ||
1311 		  cmd == PRC_TIMXCEED_INTRANS) &&
1312 		 ip != NULL)
1313 		notify = tcp_drop_syn_sent;
1314 	else if (cmd == PRC_MSGSIZE)
1315 		notify = tcp_mtudisc;
1316 	else if (PRC_IS_REDIRECT(cmd)) {
1317 		ip = NULL;
1318 		notify = in_rtchange;
1319 	} else if (cmd == PRC_HOSTDEAD)
1320 		ip = NULL;
1321 	else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
1322 		return;
1323 	if (ip != NULL) {
1324 		s = splnet();
1325 		th = (struct tcphdr *)((caddr_t)ip +
1326 				       (IP_VHL_HL(ip->ip_vhl) << 2));
1327 		cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
1328 				  ip->ip_src.s_addr, th->th_sport);
1329 		inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
1330 					ip->ip_src, th->th_sport, 0, NULL);
1331 		if ((inp != NULL) && (inp->inp_socket != NULL)) {
1332 			icmp_seq = htonl(th->th_seq);
1333 			tp = intotcpcb(inp);
1334 			if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1335 			    SEQ_LT(icmp_seq, tp->snd_max))
1336 				(*notify)(inp, inetctlerrmap[cmd]);
1337 		} else {
1338 			struct in_conninfo inc;
1339 
1340 			inc.inc_fport = th->th_dport;
1341 			inc.inc_lport = th->th_sport;
1342 			inc.inc_faddr = faddr;
1343 			inc.inc_laddr = ip->ip_src;
1344 #ifdef INET6
1345 			inc.inc_isipv6 = 0;
1346 #endif
1347 			syncache_unreach(&inc, th);
1348 		}
1349 		splx(s);
1350 	} else {
1351 		for (cpu = 0; cpu < ncpus2; cpu++) {
1352 			in_pcbnotifyall(&tcbinfo[cpu].pcblisthead, faddr,
1353 					inetctlerrmap[cmd], notify);
1354 		}
1355 	}
1356 }
1357 
1358 #ifdef INET6
1359 void
1360 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1361 {
1362 	struct tcphdr th;
1363 	void (*notify) (struct inpcb *, int) = tcp_notify;
1364 	struct ip6_hdr *ip6;
1365 	struct mbuf *m;
1366 	struct ip6ctlparam *ip6cp = NULL;
1367 	const struct sockaddr_in6 *sa6_src = NULL;
1368 	int off;
1369 	struct tcp_portonly {
1370 		u_int16_t th_sport;
1371 		u_int16_t th_dport;
1372 	} *thp;
1373 
1374 	if (sa->sa_family != AF_INET6 ||
1375 	    sa->sa_len != sizeof(struct sockaddr_in6))
1376 		return;
1377 
1378 	if (cmd == PRC_QUENCH)
1379 		notify = tcp_quench;
1380 	else if (cmd == PRC_MSGSIZE)
1381 		notify = tcp_mtudisc;
1382 	else if (!PRC_IS_REDIRECT(cmd) &&
1383 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1384 		return;
1385 
1386 	/* if the parameter is from icmp6, decode it. */
1387 	if (d != NULL) {
1388 		ip6cp = (struct ip6ctlparam *)d;
1389 		m = ip6cp->ip6c_m;
1390 		ip6 = ip6cp->ip6c_ip6;
1391 		off = ip6cp->ip6c_off;
1392 		sa6_src = ip6cp->ip6c_src;
1393 	} else {
1394 		m = NULL;
1395 		ip6 = NULL;
1396 		off = 0;	/* fool gcc */
1397 		sa6_src = &sa6_any;
1398 	}
1399 
1400 	if (ip6 != NULL) {
1401 		struct in_conninfo inc;
1402 		/*
1403 		 * XXX: We assume that when IPV6 is non NULL,
1404 		 * M and OFF are valid.
1405 		 */
1406 
1407 		/* check if we can safely examine src and dst ports */
1408 		if (m->m_pkthdr.len < off + sizeof *thp)
1409 			return;
1410 
1411 		bzero(&th, sizeof th);
1412 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1413 
1414 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, th.th_dport,
1415 		    (struct sockaddr *)ip6cp->ip6c_src,
1416 		    th.th_sport, cmd, notify);
1417 
1418 		inc.inc_fport = th.th_dport;
1419 		inc.inc_lport = th.th_sport;
1420 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1421 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1422 		inc.inc_isipv6 = 1;
1423 		syncache_unreach(&inc, &th);
1424 	} else
1425 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, 0,
1426 		    (const struct sockaddr *)sa6_src, 0, cmd, notify);
1427 }
1428 #endif
1429 
1430 /*
1431  * Following is where TCP initial sequence number generation occurs.
1432  *
1433  * There are two places where we must use initial sequence numbers:
1434  * 1.  In SYN-ACK packets.
1435  * 2.  In SYN packets.
1436  *
1437  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1438  * tcp_syncache.c for details.
1439  *
1440  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1441  * depends on this property.  In addition, these ISNs should be
1442  * unguessable so as to prevent connection hijacking.  To satisfy
1443  * the requirements of this situation, the algorithm outlined in
1444  * RFC 1948 is used to generate sequence numbers.
1445  *
1446  * Implementation details:
1447  *
1448  * Time is based off the system timer, and is corrected so that it
1449  * increases by one megabyte per second.  This allows for proper
1450  * recycling on high speed LANs while still leaving over an hour
1451  * before rollover.
1452  *
1453  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1454  * between seeding of isn_secret.  This is normally set to zero,
1455  * as reseeding should not be necessary.
1456  *
1457  */
1458 
1459 #define	ISN_BYTES_PER_SECOND 1048576
1460 
1461 u_char isn_secret[32];
1462 int isn_last_reseed;
1463 MD5_CTX isn_ctx;
1464 
1465 tcp_seq
1466 tcp_new_isn(struct tcpcb *tp)
1467 {
1468 	u_int32_t md5_buffer[4];
1469 	tcp_seq new_isn;
1470 
1471 	/* Seed if this is the first use, reseed if requested. */
1472 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1473 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1474 		< (u_int)ticks))) {
1475 		read_random_unlimited(&isn_secret, sizeof isn_secret);
1476 		isn_last_reseed = ticks;
1477 	}
1478 
1479 	/* Compute the md5 hash and return the ISN. */
1480 	MD5Init(&isn_ctx);
1481 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1482 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1483 #ifdef INET6
1484 	if (tp->t_inpcb->inp_vflag & INP_IPV6) {
1485 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1486 			  sizeof(struct in6_addr));
1487 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1488 			  sizeof(struct in6_addr));
1489 	} else
1490 #endif
1491 	{
1492 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1493 			  sizeof(struct in_addr));
1494 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1495 			  sizeof(struct in_addr));
1496 	}
1497 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1498 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1499 	new_isn = (tcp_seq) md5_buffer[0];
1500 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1501 	return (new_isn);
1502 }
1503 
1504 /*
1505  * When a source quench is received, close congestion window
1506  * to one segment.  We will gradually open it again as we proceed.
1507  */
1508 void
1509 tcp_quench(struct inpcb *inp, int errno)
1510 {
1511 	struct tcpcb *tp = intotcpcb(inp);
1512 
1513 	if (tp != NULL)
1514 		tp->snd_cwnd = tp->t_maxseg;
1515 }
1516 
1517 /*
1518  * When a specific ICMP unreachable message is received and the
1519  * connection state is SYN-SENT, drop the connection.  This behavior
1520  * is controlled by the icmp_may_rst sysctl.
1521  */
1522 void
1523 tcp_drop_syn_sent(struct inpcb *inp, int errno)
1524 {
1525 	struct tcpcb *tp = intotcpcb(inp);
1526 
1527 	if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
1528 		tcp_drop(tp, errno);
1529 }
1530 
1531 /*
1532  * When `need fragmentation' ICMP is received, update our idea of the MSS
1533  * based on the new value in the route.  Also nudge TCP to send something,
1534  * since we know the packet we just sent was dropped.
1535  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1536  */
1537 void
1538 tcp_mtudisc(struct inpcb *inp, int errno)
1539 {
1540 	struct tcpcb *tp = intotcpcb(inp);
1541 	struct rtentry *rt;
1542 	struct rmxp_tao *taop;
1543 	struct socket *so = inp->inp_socket;
1544 	int offered;
1545 	int mss;
1546 #ifdef INET6
1547 	boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1548 #else
1549 	const boolean_t isipv6 = FALSE;
1550 #endif
1551 
1552 	if (tp != NULL) {
1553 		if (isipv6)
1554 			rt = tcp_rtlookup6(&inp->inp_inc);
1555 		else
1556 			rt = tcp_rtlookup(&inp->inp_inc);
1557 		if (rt == NULL || rt->rt_rmx.rmx_mtu == 0) {
1558 			tp->t_maxopd = tp->t_maxseg =
1559 			    isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
1560 			return;
1561 		}
1562 		taop = rmx_taop(rt->rt_rmx);
1563 		offered = taop->tao_mssopt;
1564 		mss = rt->rt_rmx.rmx_mtu -
1565 			(isipv6 ?
1566 			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1567 			 sizeof(struct tcpiphdr));
1568 
1569 		if (offered != 0)
1570 			mss = min(mss, offered);
1571 		/*
1572 		 * XXX - The above conditional probably violates the TCP
1573 		 * spec.  The problem is that, since we don't know the
1574 		 * other end's MSS, we are supposed to use a conservative
1575 		 * default.  But, if we do that, then MTU discovery will
1576 		 * never actually take place, because the conservative
1577 		 * default is much less than the MTUs typically seen
1578 		 * on the Internet today.  For the moment, we'll sweep
1579 		 * this under the carpet.
1580 		 *
1581 		 * The conservative default might not actually be a problem
1582 		 * if the only case this occurs is when sending an initial
1583 		 * SYN with options and data to a host we've never talked
1584 		 * to before.  Then, they will reply with an MSS value which
1585 		 * will get recorded and the new parameters should get
1586 		 * recomputed.  For Further Study.
1587 		 */
1588 		if (tp->t_maxopd <= mss)
1589 			return;
1590 		tp->t_maxopd = mss;
1591 
1592 		if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP &&
1593 		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1594 			mss -= TCPOLEN_TSTAMP_APPA;
1595 		if ((tp->t_flags & (TF_REQ_CC | TF_NOOPT)) == TF_REQ_CC &&
1596 		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1597 			mss -= TCPOLEN_CC_APPA;
1598 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1599 		if (mss > MCLBYTES)
1600 			mss &= ~(MCLBYTES - 1);
1601 #else
1602 		if (mss > MCLBYTES)
1603 			mss = mss / MCLBYTES * MCLBYTES;
1604 #endif
1605 		if (so->so_snd.sb_hiwat < mss)
1606 			mss = so->so_snd.sb_hiwat;
1607 
1608 		tp->t_maxseg = mss;
1609 
1610 		tcpstat.tcps_mturesent++;
1611 		tp->t_rtttime = 0;
1612 		tp->snd_nxt = tp->snd_una;
1613 		tcp_output(tp);
1614 	}
1615 }
1616 
1617 /*
1618  * Look-up the routing entry to the peer of this inpcb.  If no route
1619  * is found and it cannot be allocated the return NULL.  This routine
1620  * is called by TCP routines that access the rmx structure and by tcp_mss
1621  * to get the interface MTU.
1622  */
1623 struct rtentry *
1624 tcp_rtlookup(struct in_conninfo *inc)
1625 {
1626 	struct route *ro;
1627 	struct rtentry *rt;
1628 
1629 	ro = &inc->inc_route;
1630 	rt = ro->ro_rt;
1631 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1632 		/* No route yet, so try to acquire one */
1633 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1634 			/*
1635 			 * unused portions of the structure MUST be zero'd
1636 			 * out because rtalloc() treats it as opaque data
1637 			 */
1638 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1639 			ro->ro_dst.sa_family = AF_INET;
1640 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1641 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1642 			    inc->inc_faddr;
1643 			rtalloc(ro);
1644 			rt = ro->ro_rt;
1645 		}
1646 	}
1647 	return (rt);
1648 }
1649 
1650 #ifdef INET6
1651 struct rtentry *
1652 tcp_rtlookup6(struct in_conninfo *inc)
1653 {
1654 	struct route_in6 *ro6;
1655 	struct rtentry *rt;
1656 
1657 	ro6 = &inc->inc6_route;
1658 	rt = ro6->ro_rt;
1659 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1660 		/* No route yet, so try to acquire one */
1661 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1662 			/*
1663 			 * unused portions of the structure MUST be zero'd
1664 			 * out because rtalloc() treats it as opaque data
1665 			 */
1666 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1667 			ro6->ro_dst.sin6_family = AF_INET6;
1668 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1669 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1670 			rtalloc((struct route *)ro6);
1671 			rt = ro6->ro_rt;
1672 		}
1673 	}
1674 	return (rt);
1675 }
1676 #endif
1677 
1678 #ifdef IPSEC
1679 /* compute ESP/AH header size for TCP, including outer IP header. */
1680 size_t
1681 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1682 {
1683 	struct inpcb *inp;
1684 	struct mbuf *m;
1685 	size_t hdrsiz;
1686 	struct ip *ip;
1687 	struct tcphdr *th;
1688 
1689 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1690 		return (0);
1691 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1692 	if (!m)
1693 		return (0);
1694 
1695 #ifdef INET6
1696 	if (inp->inp_vflag & INP_IPV6) {
1697 		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1698 
1699 		th = (struct tcphdr *)(ip6 + 1);
1700 		m->m_pkthdr.len = m->m_len =
1701 		    sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1702 		tcp_fillheaders(tp, ip6, th);
1703 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1704 	} else
1705 #endif
1706 	{
1707 		ip = mtod(m, struct ip *);
1708 		th = (struct tcphdr *)(ip + 1);
1709 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1710 		tcp_fillheaders(tp, ip, th);
1711 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1712 	}
1713 
1714 	m_free(m);
1715 	return (hdrsiz);
1716 }
1717 #endif
1718 
1719 /*
1720  * Return a pointer to the cached information about the remote host.
1721  * The cached information is stored in the protocol specific part of
1722  * the route metrics.
1723  */
1724 struct rmxp_tao *
1725 tcp_gettaocache(struct in_conninfo *inc)
1726 {
1727 	struct rtentry *rt;
1728 
1729 #ifdef INET6
1730 	if (inc->inc_isipv6)
1731 		rt = tcp_rtlookup6(inc);
1732 	else
1733 #endif
1734 		rt = tcp_rtlookup(inc);
1735 
1736 	/* Make sure this is a host route and is up. */
1737 	if (rt == NULL ||
1738 	    (rt->rt_flags & (RTF_UP | RTF_HOST)) != (RTF_UP | RTF_HOST))
1739 		return (NULL);
1740 
1741 	return (rmx_taop(rt->rt_rmx));
1742 }
1743 
1744 /*
1745  * Clear all the TAO cache entries, called from tcp_init.
1746  *
1747  * XXX
1748  * This routine is just an empty one, because we assume that the routing
1749  * routing tables are initialized at the same time when TCP, so there is
1750  * nothing in the cache left over.
1751  */
1752 static void
1753 tcp_cleartaocache()
1754 {
1755 }
1756 
1757 /*
1758  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1759  *
1760  * This code attempts to calculate the bandwidth-delay product as a
1761  * means of determining the optimal window size to maximize bandwidth,
1762  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1763  * routers.  This code also does a fairly good job keeping RTTs in check
1764  * across slow links like modems.  We implement an algorithm which is very
1765  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1766  * transmitter side of a TCP connection and so only effects the transmit
1767  * side of the connection.
1768  *
1769  * BACKGROUND:  TCP makes no provision for the management of buffer space
1770  * at the end points or at the intermediate routers and switches.  A TCP
1771  * stream, whether using NewReno or not, will eventually buffer as
1772  * many packets as it is able and the only reason this typically works is
1773  * due to the fairly small default buffers made available for a connection
1774  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1775  * scaling it is now fairly easy for even a single TCP connection to blow-out
1776  * all available buffer space not only on the local interface, but on
1777  * intermediate routers and switches as well.  NewReno makes a misguided
1778  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1779  * then backing off, then steadily increasing the window again until another
1780  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1781  * is only made worse as network loads increase and the idea of intentionally
1782  * blowing out network buffers is, frankly, a terrible way to manage network
1783  * resources.
1784  *
1785  * It is far better to limit the transmit window prior to the failure
1786  * condition being achieved.  There are two general ways to do this:  First
1787  * you can 'scan' through different transmit window sizes and locate the
1788  * point where the RTT stops increasing, indicating that you have filled the
1789  * pipe, then scan backwards until you note that RTT stops decreasing, then
1790  * repeat ad-infinitum.  This method works in principle but has severe
1791  * implementation issues due to RTT variances, timer granularity, and
1792  * instability in the algorithm which can lead to many false positives and
1793  * create oscillations as well as interact badly with other TCP streams
1794  * implementing the same algorithm.
1795  *
1796  * The second method is to limit the window to the bandwidth delay product
1797  * of the link.  This is the method we implement.  RTT variances and our
1798  * own manipulation of the congestion window, bwnd, can potentially
1799  * destabilize the algorithm.  For this reason we have to stabilize the
1800  * elements used to calculate the window.  We do this by using the minimum
1801  * observed RTT, the long term average of the observed bandwidth, and
1802  * by adding two segments worth of slop.  It isn't perfect but it is able
1803  * to react to changing conditions and gives us a very stable basis on
1804  * which to extend the algorithm.
1805  */
1806 void
1807 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1808 {
1809 	u_long bw;
1810 	u_long bwnd;
1811 	int save_ticks;
1812 	int delta_ticks;
1813 
1814 	/*
1815 	 * If inflight_enable is disabled in the middle of a tcp connection,
1816 	 * make sure snd_bwnd is effectively disabled.
1817 	 */
1818 	if (!tcp_inflight_enable) {
1819 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1820 		tp->snd_bandwidth = 0;
1821 		return;
1822 	}
1823 
1824 	/*
1825 	 * Validate the delta time.  If a connection is new or has been idle
1826 	 * a long time we have to reset the bandwidth calculator.
1827 	 */
1828 	save_ticks = ticks;
1829 	delta_ticks = save_ticks - tp->t_bw_rtttime;
1830 	if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1831 		tp->t_bw_rtttime = ticks;
1832 		tp->t_bw_rtseq = ack_seq;
1833 		if (tp->snd_bandwidth == 0)
1834 			tp->snd_bandwidth = tcp_inflight_min;
1835 		return;
1836 	}
1837 	if (delta_ticks == 0)
1838 		return;
1839 
1840 	/*
1841 	 * Sanity check, plus ignore pure window update acks.
1842 	 */
1843 	if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1844 		return;
1845 
1846 	/*
1847 	 * Figure out the bandwidth.  Due to the tick granularity this
1848 	 * is a very rough number and it MUST be averaged over a fairly
1849 	 * long period of time.  XXX we need to take into account a link
1850 	 * that is not using all available bandwidth, but for now our
1851 	 * slop will ramp us up if this case occurs and the bandwidth later
1852 	 * increases.
1853 	 */
1854 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
1855 	tp->t_bw_rtttime = save_ticks;
1856 	tp->t_bw_rtseq = ack_seq;
1857 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1858 
1859 	tp->snd_bandwidth = bw;
1860 
1861 	/*
1862 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1863 	 * segments.  The additional slop puts us squarely in the sweet
1864 	 * spot and also handles the bandwidth run-up case.  Without the
1865 	 * slop we could be locking ourselves into a lower bandwidth.
1866 	 *
1867 	 * Situations Handled:
1868 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1869 	 *	    high speed LANs, allowing larger TCP buffers to be
1870 	 *	    specified, and also does a good job preventing
1871 	 *	    over-queueing of packets over choke points like modems
1872 	 *	    (at least for the transmit side).
1873 	 *
1874 	 *	(2) Is able to handle changing network loads (bandwidth
1875 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1876 	 *	    increases).
1877 	 *
1878 	 *	(3) Theoretically should stabilize in the face of multiple
1879 	 *	    connections implementing the same algorithm (this may need
1880 	 *	    a little work).
1881 	 *
1882 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1883 	 *	    be adjusted with a sysctl but typically only needs to be on
1884 	 *	    very slow connections.  A value no smaller then 5 should
1885 	 *	    be used, but only reduce this default if you have no other
1886 	 *	    choice.
1887 	 */
1888 
1889 #define	USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1890 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
1891 	       tcp_inflight_stab * (int)tp->t_maxseg / 10;
1892 #undef USERTT
1893 
1894 	if (tcp_inflight_debug > 0) {
1895 		static int ltime;
1896 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1897 			ltime = ticks;
1898 			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1899 				tp, bw, tp->t_rttbest, tp->t_srtt, bwnd);
1900 		}
1901 	}
1902 	if ((long)bwnd < tcp_inflight_min)
1903 		bwnd = tcp_inflight_min;
1904 	if (bwnd > tcp_inflight_max)
1905 		bwnd = tcp_inflight_max;
1906 	if ((long)bwnd < tp->t_maxseg * 2)
1907 		bwnd = tp->t_maxseg * 2;
1908 	tp->snd_bwnd = bwnd;
1909 }
1910