xref: /dragonfly/sys/netinet/tcp_subr.c (revision 61c0377f)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. Neither the name of the University nor the names of its contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  *
62  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
63  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
64  */
65 
66 #include "opt_compat.h"
67 #include "opt_inet.h"
68 #include "opt_inet6.h"
69 #include "opt_ipsec.h"
70 #include "opt_tcpdebug.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/callout.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/malloc.h>
78 #include <sys/mpipe.h>
79 #include <sys/mbuf.h>
80 #ifdef INET6
81 #include <sys/domain.h>
82 #endif
83 #include <sys/proc.h>
84 #include <sys/priv.h>
85 #include <sys/socket.h>
86 #include <sys/socketops.h>
87 #include <sys/socketvar.h>
88 #include <sys/protosw.h>
89 #include <sys/random.h>
90 #include <sys/in_cksum.h>
91 #include <sys/ktr.h>
92 
93 #include <net/route.h>
94 #include <net/if.h>
95 #include <net/netisr2.h>
96 
97 #define	_IP_VHL
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/ip.h>
101 #include <netinet/ip6.h>
102 #include <netinet/in_pcb.h>
103 #include <netinet6/in6_pcb.h>
104 #include <netinet/in_var.h>
105 #include <netinet/ip_var.h>
106 #include <netinet6/ip6_var.h>
107 #include <netinet/ip_icmp.h>
108 #ifdef INET6
109 #include <netinet/icmp6.h>
110 #endif
111 #include <netinet/tcp.h>
112 #include <netinet/tcp_fsm.h>
113 #include <netinet/tcp_seq.h>
114 #include <netinet/tcp_timer.h>
115 #include <netinet/tcp_timer2.h>
116 #include <netinet/tcp_var.h>
117 #include <netinet6/tcp6_var.h>
118 #include <netinet/tcpip.h>
119 #ifdef TCPDEBUG
120 #include <netinet/tcp_debug.h>
121 #endif
122 #include <netinet6/ip6protosw.h>
123 
124 #ifdef IPSEC
125 #include <netinet6/ipsec.h>
126 #include <netproto/key/key.h>
127 #ifdef INET6
128 #include <netinet6/ipsec6.h>
129 #endif
130 #endif
131 
132 #ifdef FAST_IPSEC
133 #include <netproto/ipsec/ipsec.h>
134 #ifdef INET6
135 #include <netproto/ipsec/ipsec6.h>
136 #endif
137 #define	IPSEC
138 #endif
139 
140 #include <sys/md5.h>
141 #include <machine/smp.h>
142 
143 #include <sys/msgport2.h>
144 #include <sys/mplock2.h>
145 #include <net/netmsg2.h>
146 
147 #if !defined(KTR_TCP)
148 #define KTR_TCP		KTR_ALL
149 #endif
150 /*
151 KTR_INFO_MASTER(tcp);
152 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
153 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
154 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
155 #define logtcp(name)	KTR_LOG(tcp_ ## name)
156 */
157 
158 #define TCP_IW_MAXSEGS_DFLT	4
159 #define TCP_IW_CAPSEGS_DFLT	3
160 
161 struct inpcbinfo tcbinfo[MAXCPU];
162 struct tcpcbackqhead tcpcbackq[MAXCPU];
163 
164 int tcp_mssdflt = TCP_MSS;
165 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
166     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
167 
168 #ifdef INET6
169 int tcp_v6mssdflt = TCP6_MSS;
170 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
171     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
172 #endif
173 
174 /*
175  * Minimum MSS we accept and use. This prevents DoS attacks where
176  * we are forced to a ridiculous low MSS like 20 and send hundreds
177  * of packets instead of one. The effect scales with the available
178  * bandwidth and quickly saturates the CPU and network interface
179  * with packet generation and sending. Set to zero to disable MINMSS
180  * checking. This setting prevents us from sending too small packets.
181  */
182 int tcp_minmss = TCP_MINMSS;
183 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
184     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
185 
186 #if 0
187 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
188 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
189     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
190 #endif
191 
192 int tcp_do_rfc1323 = 1;
193 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
194     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
195 
196 static int tcp_tcbhashsize = 0;
197 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
198      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
199 
200 static int do_tcpdrain = 1;
201 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
202      "Enable tcp_drain routine for extra help when low on mbufs");
203 
204 static int icmp_may_rst = 1;
205 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
206     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
207 
208 static int tcp_isn_reseed_interval = 0;
209 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
210     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
211 
212 /*
213  * TCP bandwidth limiting sysctls.  The inflight limiter is now turned on
214  * by default, but with generous values which should allow maximal
215  * bandwidth.  In particular, the slop defaults to 50 (5 packets).
216  *
217  * The reason for doing this is that the limiter is the only mechanism we
218  * have which seems to do a really good job preventing receiver RX rings
219  * on network interfaces from getting blown out.  Even though GigE/10GigE
220  * is supposed to flow control it looks like either it doesn't actually
221  * do it or Open Source drivers do not properly enable it.
222  *
223  * People using the limiter to reduce bottlenecks on slower WAN connections
224  * should set the slop to 20 (2 packets).
225  */
226 static int tcp_inflight_enable = 1;
227 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
228     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
229 
230 static int tcp_inflight_debug = 0;
231 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
232     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
233 
234 static int tcp_inflight_min = 6144;
235 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
236     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
237 
238 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
239 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
240     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
241 
242 static int tcp_inflight_stab = 50;
243 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
244     &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 3 packets)");
245 
246 static int tcp_do_rfc3390 = 1;
247 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
248     &tcp_do_rfc3390, 0,
249     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
250 
251 static u_long tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
252 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwmaxsegs, CTLFLAG_RW,
253     &tcp_iw_maxsegs, 0, "TCP IW segments max");
254 
255 static u_long tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
256 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwcapsegs, CTLFLAG_RW,
257     &tcp_iw_capsegs, 0, "TCP IW segments");
258 
259 int tcp_low_rtobase = 1;
260 SYSCTL_INT(_net_inet_tcp, OID_AUTO, low_rtobase, CTLFLAG_RW,
261     &tcp_low_rtobase, 0, "Lowering the Initial RTO (RFC 6298)");
262 
263 static int tcp_do_ncr = 1;
264 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr, CTLFLAG_RW,
265     &tcp_do_ncr, 0, "Non-Congestion Robustness (RFC 4653)");
266 
267 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
268 static struct malloc_pipe tcptemp_mpipe;
269 
270 static void tcp_willblock(void);
271 static void tcp_notify (struct inpcb *, int);
272 
273 struct tcp_stats tcpstats_percpu[MAXCPU] __cachealign;
274 
275 static int
276 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
277 {
278 	int cpu, error = 0;
279 
280 	for (cpu = 0; cpu < ncpus; ++cpu) {
281 		if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
282 					sizeof(struct tcp_stats))))
283 			break;
284 		if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
285 				       sizeof(struct tcp_stats))))
286 			break;
287 	}
288 
289 	return (error);
290 }
291 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
292     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
293 
294 /*
295  * Target size of TCP PCB hash tables. Must be a power of two.
296  *
297  * Note that this can be overridden by the kernel environment
298  * variable net.inet.tcp.tcbhashsize
299  */
300 #ifndef TCBHASHSIZE
301 #define	TCBHASHSIZE	512
302 #endif
303 
304 /*
305  * This is the actual shape of what we allocate using the zone
306  * allocator.  Doing it this way allows us to protect both structures
307  * using the same generation count, and also eliminates the overhead
308  * of allocating tcpcbs separately.  By hiding the structure here,
309  * we avoid changing most of the rest of the code (although it needs
310  * to be changed, eventually, for greater efficiency).
311  */
312 #define	ALIGNMENT	32
313 #define	ALIGNM1		(ALIGNMENT - 1)
314 struct	inp_tp {
315 	union {
316 		struct	inpcb inp;
317 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
318 	} inp_tp_u;
319 	struct	tcpcb tcb;
320 	struct	tcp_callout inp_tp_rexmt;
321 	struct	tcp_callout inp_tp_persist;
322 	struct	tcp_callout inp_tp_keep;
323 	struct	tcp_callout inp_tp_2msl;
324 	struct	tcp_callout inp_tp_delack;
325 	struct	netmsg_tcp_timer inp_tp_timermsg;
326 	struct	netmsg_base inp_tp_sndmore;
327 };
328 #undef ALIGNMENT
329 #undef ALIGNM1
330 
331 /*
332  * Tcp initialization
333  */
334 void
335 tcp_init(void)
336 {
337 	struct inpcbportinfo *portinfo;
338 	struct inpcbinfo *ticb;
339 	int hashsize = TCBHASHSIZE;
340 	int cpu;
341 
342 	/*
343 	 * note: tcptemp is used for keepalives, and it is ok for an
344 	 * allocation to fail so do not specify MPF_INT.
345 	 */
346 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
347 		    25, -1, 0, NULL, NULL, NULL);
348 
349 	tcp_delacktime = TCPTV_DELACK;
350 	tcp_keepinit = TCPTV_KEEP_INIT;
351 	tcp_keepidle = TCPTV_KEEP_IDLE;
352 	tcp_keepintvl = TCPTV_KEEPINTVL;
353 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
354 	tcp_msl = TCPTV_MSL;
355 	tcp_rexmit_min = TCPTV_MIN;
356 	tcp_rexmit_slop = TCPTV_CPU_VAR;
357 
358 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
359 	if (!powerof2(hashsize)) {
360 		kprintf("WARNING: TCB hash size not a power of 2\n");
361 		hashsize = 512; /* safe default */
362 	}
363 	tcp_tcbhashsize = hashsize;
364 
365 	portinfo = kmalloc_cachealign(sizeof(*portinfo) * ncpus2, M_PCB,
366 	    M_WAITOK);
367 
368 	for (cpu = 0; cpu < ncpus2; cpu++) {
369 		ticb = &tcbinfo[cpu];
370 		in_pcbinfo_init(ticb);
371 		ticb->cpu = cpu;
372 		ticb->hashbase = hashinit(hashsize, M_PCB,
373 					  &ticb->hashmask);
374 		in_pcbportinfo_init(&portinfo[cpu], hashsize, TRUE, cpu);
375 		ticb->portinfo = portinfo;
376 		ticb->portinfo_mask = ncpus2_mask;
377 		ticb->wildcardhashbase = hashinit(hashsize, M_PCB,
378 						  &ticb->wildcardhashmask);
379 		ticb->localgrphashbase = hashinit(hashsize, M_PCB,
380 						  &ticb->localgrphashmask);
381 		ticb->ipi_size = sizeof(struct inp_tp);
382 		TAILQ_INIT(&tcpcbackq[cpu]);
383 	}
384 
385 	tcp_reass_maxseg = nmbclusters / 16;
386 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
387 
388 #ifdef INET6
389 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
390 #else
391 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
392 #endif
393 	if (max_protohdr < TCP_MINPROTOHDR)
394 		max_protohdr = TCP_MINPROTOHDR;
395 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
396 		panic("tcp_init");
397 #undef TCP_MINPROTOHDR
398 
399 	/*
400 	 * Initialize TCP statistics counters for each CPU.
401 	 */
402 	for (cpu = 0; cpu < ncpus; ++cpu) {
403 		bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
404 	}
405 
406 	syncache_init();
407 	netisr_register_rollup(tcp_willblock, NETISR_ROLLUP_PRIO_TCP);
408 }
409 
410 static void
411 tcp_willblock(void)
412 {
413 	struct tcpcb *tp;
414 	int cpu = mycpu->gd_cpuid;
415 
416 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
417 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
418 		tp->t_flags &= ~TF_ONOUTPUTQ;
419 		TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
420 		tcp_output(tp);
421 	}
422 }
423 
424 /*
425  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
426  * tcp_template used to store this data in mbufs, but we now recopy it out
427  * of the tcpcb each time to conserve mbufs.
428  */
429 void
430 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr, boolean_t tso)
431 {
432 	struct inpcb *inp = tp->t_inpcb;
433 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
434 
435 #ifdef INET6
436 	if (inp->inp_vflag & INP_IPV6) {
437 		struct ip6_hdr *ip6;
438 
439 		ip6 = (struct ip6_hdr *)ip_ptr;
440 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
441 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
442 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
443 			(IPV6_VERSION & IPV6_VERSION_MASK);
444 		ip6->ip6_nxt = IPPROTO_TCP;
445 		ip6->ip6_plen = sizeof(struct tcphdr);
446 		ip6->ip6_src = inp->in6p_laddr;
447 		ip6->ip6_dst = inp->in6p_faddr;
448 		tcp_hdr->th_sum = 0;
449 	} else
450 #endif
451 	{
452 		struct ip *ip = (struct ip *) ip_ptr;
453 		u_int plen;
454 
455 		ip->ip_vhl = IP_VHL_BORING;
456 		ip->ip_tos = 0;
457 		ip->ip_len = 0;
458 		ip->ip_id = 0;
459 		ip->ip_off = 0;
460 		ip->ip_ttl = 0;
461 		ip->ip_sum = 0;
462 		ip->ip_p = IPPROTO_TCP;
463 		ip->ip_src = inp->inp_laddr;
464 		ip->ip_dst = inp->inp_faddr;
465 
466 		if (tso)
467 			plen = htons(IPPROTO_TCP);
468 		else
469 			plen = htons(sizeof(struct tcphdr) + IPPROTO_TCP);
470 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
471 		    ip->ip_dst.s_addr, plen);
472 	}
473 
474 	tcp_hdr->th_sport = inp->inp_lport;
475 	tcp_hdr->th_dport = inp->inp_fport;
476 	tcp_hdr->th_seq = 0;
477 	tcp_hdr->th_ack = 0;
478 	tcp_hdr->th_x2 = 0;
479 	tcp_hdr->th_off = 5;
480 	tcp_hdr->th_flags = 0;
481 	tcp_hdr->th_win = 0;
482 	tcp_hdr->th_urp = 0;
483 }
484 
485 /*
486  * Create template to be used to send tcp packets on a connection.
487  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
488  * use for this function is in keepalives, which use tcp_respond.
489  */
490 struct tcptemp *
491 tcp_maketemplate(struct tcpcb *tp)
492 {
493 	struct tcptemp *tmp;
494 
495 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
496 		return (NULL);
497 	tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t, FALSE);
498 	return (tmp);
499 }
500 
501 void
502 tcp_freetemplate(struct tcptemp *tmp)
503 {
504 	mpipe_free(&tcptemp_mpipe, tmp);
505 }
506 
507 /*
508  * Send a single message to the TCP at address specified by
509  * the given TCP/IP header.  If m == NULL, then we make a copy
510  * of the tcpiphdr at ti and send directly to the addressed host.
511  * This is used to force keep alive messages out using the TCP
512  * template for a connection.  If flags are given then we send
513  * a message back to the TCP which originated the * segment ti,
514  * and discard the mbuf containing it and any other attached mbufs.
515  *
516  * In any case the ack and sequence number of the transmitted
517  * segment are as specified by the parameters.
518  *
519  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
520  */
521 void
522 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
523 	    tcp_seq ack, tcp_seq seq, int flags)
524 {
525 	int tlen;
526 	int win = 0;
527 	struct route *ro = NULL;
528 	struct route sro;
529 	struct ip *ip = ipgen;
530 	struct tcphdr *nth;
531 	int ipflags = 0;
532 	struct route_in6 *ro6 = NULL;
533 	struct route_in6 sro6;
534 	struct ip6_hdr *ip6 = ipgen;
535 	boolean_t use_tmpro = TRUE;
536 #ifdef INET6
537 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
538 #else
539 	const boolean_t isipv6 = FALSE;
540 #endif
541 
542 	if (tp != NULL) {
543 		if (!(flags & TH_RST)) {
544 			win = ssb_space(&tp->t_inpcb->inp_socket->so_rcv);
545 			if (win < 0)
546 				win = 0;
547 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
548 				win = (long)TCP_MAXWIN << tp->rcv_scale;
549 		}
550 		/*
551 		 * Don't use the route cache of a listen socket,
552 		 * it is not MPSAFE; use temporary route cache.
553 		 */
554 		if (tp->t_state != TCPS_LISTEN) {
555 			if (isipv6)
556 				ro6 = &tp->t_inpcb->in6p_route;
557 			else
558 				ro = &tp->t_inpcb->inp_route;
559 			use_tmpro = FALSE;
560 		}
561 	}
562 	if (use_tmpro) {
563 		if (isipv6) {
564 			ro6 = &sro6;
565 			bzero(ro6, sizeof *ro6);
566 		} else {
567 			ro = &sro;
568 			bzero(ro, sizeof *ro);
569 		}
570 	}
571 	if (m == NULL) {
572 		m = m_gethdr(MB_DONTWAIT, MT_HEADER);
573 		if (m == NULL)
574 			return;
575 		tlen = 0;
576 		m->m_data += max_linkhdr;
577 		if (isipv6) {
578 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
579 			ip6 = mtod(m, struct ip6_hdr *);
580 			nth = (struct tcphdr *)(ip6 + 1);
581 		} else {
582 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
583 			ip = mtod(m, struct ip *);
584 			nth = (struct tcphdr *)(ip + 1);
585 		}
586 		bcopy(th, nth, sizeof(struct tcphdr));
587 		flags = TH_ACK;
588 	} else {
589 		m_freem(m->m_next);
590 		m->m_next = NULL;
591 		m->m_data = (caddr_t)ipgen;
592 		/* m_len is set later */
593 		tlen = 0;
594 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
595 		if (isipv6) {
596 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
597 			nth = (struct tcphdr *)(ip6 + 1);
598 		} else {
599 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
600 			nth = (struct tcphdr *)(ip + 1);
601 		}
602 		if (th != nth) {
603 			/*
604 			 * this is usually a case when an extension header
605 			 * exists between the IPv6 header and the
606 			 * TCP header.
607 			 */
608 			nth->th_sport = th->th_sport;
609 			nth->th_dport = th->th_dport;
610 		}
611 		xchg(nth->th_dport, nth->th_sport, n_short);
612 #undef xchg
613 	}
614 	if (isipv6) {
615 		ip6->ip6_flow = 0;
616 		ip6->ip6_vfc = IPV6_VERSION;
617 		ip6->ip6_nxt = IPPROTO_TCP;
618 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
619 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
620 	} else {
621 		tlen += sizeof(struct tcpiphdr);
622 		ip->ip_len = tlen;
623 		ip->ip_ttl = ip_defttl;
624 	}
625 	m->m_len = tlen;
626 	m->m_pkthdr.len = tlen;
627 	m->m_pkthdr.rcvif = NULL;
628 	nth->th_seq = htonl(seq);
629 	nth->th_ack = htonl(ack);
630 	nth->th_x2 = 0;
631 	nth->th_off = sizeof(struct tcphdr) >> 2;
632 	nth->th_flags = flags;
633 	if (tp != NULL)
634 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
635 	else
636 		nth->th_win = htons((u_short)win);
637 	nth->th_urp = 0;
638 	if (isipv6) {
639 		nth->th_sum = 0;
640 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
641 					sizeof(struct ip6_hdr),
642 					tlen - sizeof(struct ip6_hdr));
643 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
644 					       (ro6 && ro6->ro_rt) ?
645 						ro6->ro_rt->rt_ifp : NULL);
646 	} else {
647 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
648 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
649 		m->m_pkthdr.csum_flags = CSUM_TCP;
650 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
651 		m->m_pkthdr.csum_thlen = sizeof(struct tcphdr);
652 	}
653 #ifdef TCPDEBUG
654 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
655 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
656 #endif
657 	if (isipv6) {
658 		ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
659 			   tp ? tp->t_inpcb : NULL);
660 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
661 			RTFREE(ro6->ro_rt);
662 			ro6->ro_rt = NULL;
663 		}
664 	} else {
665 		ipflags |= IP_DEBUGROUTE;
666 		ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
667 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
668 			RTFREE(ro->ro_rt);
669 			ro->ro_rt = NULL;
670 		}
671 	}
672 }
673 
674 /*
675  * Create a new TCP control block, making an
676  * empty reassembly queue and hooking it to the argument
677  * protocol control block.  The `inp' parameter must have
678  * come from the zone allocator set up in tcp_init().
679  */
680 struct tcpcb *
681 tcp_newtcpcb(struct inpcb *inp)
682 {
683 	struct inp_tp *it;
684 	struct tcpcb *tp;
685 #ifdef INET6
686 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
687 #else
688 	const boolean_t isipv6 = FALSE;
689 #endif
690 
691 	it = (struct inp_tp *)inp;
692 	tp = &it->tcb;
693 	bzero(tp, sizeof(struct tcpcb));
694 	TAILQ_INIT(&tp->t_segq);
695 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
696 	tp->t_rxtthresh = tcprexmtthresh;
697 
698 	/* Set up our timeouts. */
699 	tp->tt_rexmt = &it->inp_tp_rexmt;
700 	tp->tt_persist = &it->inp_tp_persist;
701 	tp->tt_keep = &it->inp_tp_keep;
702 	tp->tt_2msl = &it->inp_tp_2msl;
703 	tp->tt_delack = &it->inp_tp_delack;
704 	tcp_inittimers(tp);
705 
706 	/*
707 	 * Zero out timer message.  We don't create it here,
708 	 * since the current CPU may not be the owner of this
709 	 * inpcb.
710 	 */
711 	tp->tt_msg = &it->inp_tp_timermsg;
712 	bzero(tp->tt_msg, sizeof(*tp->tt_msg));
713 
714 	tp->t_keepinit = tcp_keepinit;
715 	tp->t_keepidle = tcp_keepidle;
716 	tp->t_keepintvl = tcp_keepintvl;
717 	tp->t_keepcnt = tcp_keepcnt;
718 	tp->t_maxidle = tp->t_keepintvl * tp->t_keepcnt;
719 
720 	if (tcp_do_ncr)
721 		tp->t_flags |= TF_NCR;
722 	if (tcp_do_rfc1323)
723 		tp->t_flags |= (TF_REQ_SCALE | TF_REQ_TSTMP);
724 
725 	tp->t_inpcb = inp;	/* XXX */
726 	tp->t_state = TCPS_CLOSED;
727 	/*
728 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
729 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
730 	 * reasonable initial retransmit time.
731 	 */
732 	tp->t_srtt = TCPTV_SRTTBASE;
733 	tp->t_rttvar =
734 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
735 	tp->t_rttmin = tcp_rexmit_min;
736 	tp->t_rxtcur = TCPTV_RTOBASE;
737 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
738 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
739 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
740 	tp->snd_last = ticks;
741 	tp->t_rcvtime = ticks;
742 	/*
743 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
744 	 * because the socket may be bound to an IPv6 wildcard address,
745 	 * which may match an IPv4-mapped IPv6 address.
746 	 */
747 	inp->inp_ip_ttl = ip_defttl;
748 	inp->inp_ppcb = tp;
749 	tcp_sack_tcpcb_init(tp);
750 
751 	tp->tt_sndmore = &it->inp_tp_sndmore;
752 	tcp_output_init(tp);
753 
754 	return (tp);		/* XXX */
755 }
756 
757 /*
758  * Drop a TCP connection, reporting the specified error.
759  * If connection is synchronized, then send a RST to peer.
760  */
761 struct tcpcb *
762 tcp_drop(struct tcpcb *tp, int error)
763 {
764 	struct socket *so = tp->t_inpcb->inp_socket;
765 
766 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
767 		tp->t_state = TCPS_CLOSED;
768 		tcp_output(tp);
769 		tcpstat.tcps_drops++;
770 	} else
771 		tcpstat.tcps_conndrops++;
772 	if (error == ETIMEDOUT && tp->t_softerror)
773 		error = tp->t_softerror;
774 	so->so_error = error;
775 	return (tcp_close(tp));
776 }
777 
778 struct netmsg_listen_detach {
779 	struct netmsg_base	base;
780 	struct tcpcb		*nm_tp;
781 	struct tcpcb		*nm_tp_inh;
782 };
783 
784 static void
785 tcp_listen_detach_handler(netmsg_t msg)
786 {
787 	struct netmsg_listen_detach *nmsg = (struct netmsg_listen_detach *)msg;
788 	struct tcpcb *tp = nmsg->nm_tp;
789 	int cpu = mycpuid, nextcpu;
790 
791 	if (tp->t_flags & TF_LISTEN)
792 		syncache_destroy(tp, nmsg->nm_tp_inh);
793 
794 	in_pcbremwildcardhash_oncpu(tp->t_inpcb, &tcbinfo[cpu]);
795 
796 	nextcpu = cpu + 1;
797 	if (nextcpu < ncpus2)
798 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &nmsg->base.lmsg);
799 	else
800 		lwkt_replymsg(&nmsg->base.lmsg, 0);
801 }
802 
803 /*
804  * Close a TCP control block:
805  *	discard all space held by the tcp
806  *	discard internet protocol block
807  *	wake up any sleepers
808  */
809 struct tcpcb *
810 tcp_close(struct tcpcb *tp)
811 {
812 	struct tseg_qent *q;
813 	struct inpcb *inp = tp->t_inpcb;
814 	struct inpcb *inp_inh = NULL;
815 	struct tcpcb *tp_inh = NULL;
816 	struct socket *so = inp->inp_socket;
817 	struct rtentry *rt;
818 	boolean_t dosavessthresh;
819 #ifdef INET6
820 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
821 	boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
822 #else
823 	const boolean_t isipv6 = FALSE;
824 #endif
825 
826 	if (tp->t_flags & TF_LISTEN) {
827 		/*
828 		 * Pending socket/syncache inheritance
829 		 *
830 		 * If this is a listen(2) socket, find another listen(2)
831 		 * socket in the same local group, which could inherit
832 		 * the syncache and sockets pending on the completion
833 		 * and incompletion queues.
834 		 *
835 		 * NOTE:
836 		 * Currently the inheritance could only happen on the
837 		 * listen(2) sockets w/ SO_REUSEPORT set.
838 		 */
839 		KASSERT(&curthread->td_msgport == netisr_cpuport(0),
840 		    ("listen socket close not in netisr0"));
841 		inp_inh = in_pcblocalgroup_last(&tcbinfo[0], inp);
842 		if (inp_inh != NULL)
843 			tp_inh = intotcpcb(inp_inh);
844 	}
845 
846 	/*
847 	 * INP_WILDCARD_MP indicates that listen(2) has been called on
848 	 * this socket.  This implies:
849 	 * - A wildcard inp's hash is replicated for each protocol thread.
850 	 * - Syncache for this inp grows independently in each protocol
851 	 *   thread.
852 	 * - There is more than one cpu
853 	 *
854 	 * We have to chain a message to the rest of the protocol threads
855 	 * to cleanup the wildcard hash and the syncache.  The cleanup
856 	 * in the current protocol thread is defered till the end of this
857 	 * function.
858 	 *
859 	 * NOTE:
860 	 * After cleanup the inp's hash and syncache entries, this inp will
861 	 * no longer be available to the rest of the protocol threads, so we
862 	 * are safe to whack the inp in the following code.
863 	 */
864 	if (inp->inp_flags & INP_WILDCARD_MP) {
865 		struct netmsg_listen_detach nmsg;
866 
867 		KKASSERT(so->so_port == netisr_cpuport(0));
868 		KKASSERT(&curthread->td_msgport == netisr_cpuport(0));
869 		KKASSERT(inp->inp_pcbinfo == &tcbinfo[0]);
870 
871 		netmsg_init(&nmsg.base, NULL, &curthread->td_msgport,
872 			    MSGF_PRIORITY, tcp_listen_detach_handler);
873 		nmsg.nm_tp = tp;
874 		nmsg.nm_tp_inh = tp_inh;
875 		lwkt_domsg(netisr_cpuport(1), &nmsg.base.lmsg, 0);
876 
877 		inp->inp_flags &= ~INP_WILDCARD_MP;
878 	}
879 
880 	KKASSERT(tp->t_state != TCPS_TERMINATING);
881 	tp->t_state = TCPS_TERMINATING;
882 
883 	/*
884 	 * Make sure that all of our timers are stopped before we
885 	 * delete the PCB.  For listen TCP socket (tp->tt_msg == NULL),
886 	 * timers are never used.  If timer message is never created
887 	 * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
888 	 */
889 	if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
890 		tcp_callout_stop(tp, tp->tt_rexmt);
891 		tcp_callout_stop(tp, tp->tt_persist);
892 		tcp_callout_stop(tp, tp->tt_keep);
893 		tcp_callout_stop(tp, tp->tt_2msl);
894 		tcp_callout_stop(tp, tp->tt_delack);
895 	}
896 
897 	if (tp->t_flags & TF_ONOUTPUTQ) {
898 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
899 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
900 		tp->t_flags &= ~TF_ONOUTPUTQ;
901 	}
902 
903 	/*
904 	 * If we got enough samples through the srtt filter,
905 	 * save the rtt and rttvar in the routing entry.
906 	 * 'Enough' is arbitrarily defined as the 16 samples.
907 	 * 16 samples is enough for the srtt filter to converge
908 	 * to within 5% of the correct value; fewer samples and
909 	 * we could save a very bogus rtt.
910 	 *
911 	 * Don't update the default route's characteristics and don't
912 	 * update anything that the user "locked".
913 	 */
914 	if (tp->t_rttupdated >= 16) {
915 		u_long i = 0;
916 
917 		if (isipv6) {
918 			struct sockaddr_in6 *sin6;
919 
920 			if ((rt = inp->in6p_route.ro_rt) == NULL)
921 				goto no_valid_rt;
922 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
923 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
924 				goto no_valid_rt;
925 		} else
926 			if ((rt = inp->inp_route.ro_rt) == NULL ||
927 			    ((struct sockaddr_in *)rt_key(rt))->
928 			     sin_addr.s_addr == INADDR_ANY)
929 				goto no_valid_rt;
930 
931 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
932 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
933 			if (rt->rt_rmx.rmx_rtt && i)
934 				/*
935 				 * filter this update to half the old & half
936 				 * the new values, converting scale.
937 				 * See route.h and tcp_var.h for a
938 				 * description of the scaling constants.
939 				 */
940 				rt->rt_rmx.rmx_rtt =
941 				    (rt->rt_rmx.rmx_rtt + i) / 2;
942 			else
943 				rt->rt_rmx.rmx_rtt = i;
944 			tcpstat.tcps_cachedrtt++;
945 		}
946 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
947 			i = tp->t_rttvar *
948 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
949 			if (rt->rt_rmx.rmx_rttvar && i)
950 				rt->rt_rmx.rmx_rttvar =
951 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
952 			else
953 				rt->rt_rmx.rmx_rttvar = i;
954 			tcpstat.tcps_cachedrttvar++;
955 		}
956 		/*
957 		 * The old comment here said:
958 		 * update the pipelimit (ssthresh) if it has been updated
959 		 * already or if a pipesize was specified & the threshhold
960 		 * got below half the pipesize.  I.e., wait for bad news
961 		 * before we start updating, then update on both good
962 		 * and bad news.
963 		 *
964 		 * But we want to save the ssthresh even if no pipesize is
965 		 * specified explicitly in the route, because such
966 		 * connections still have an implicit pipesize specified
967 		 * by the global tcp_sendspace.  In the absence of a reliable
968 		 * way to calculate the pipesize, it will have to do.
969 		 */
970 		i = tp->snd_ssthresh;
971 		if (rt->rt_rmx.rmx_sendpipe != 0)
972 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
973 		else
974 			dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
975 		if (dosavessthresh ||
976 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
977 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
978 			/*
979 			 * convert the limit from user data bytes to
980 			 * packets then to packet data bytes.
981 			 */
982 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
983 			if (i < 2)
984 				i = 2;
985 			i *= tp->t_maxseg +
986 			     (isipv6 ?
987 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
988 			      sizeof(struct tcpiphdr));
989 			if (rt->rt_rmx.rmx_ssthresh)
990 				rt->rt_rmx.rmx_ssthresh =
991 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
992 			else
993 				rt->rt_rmx.rmx_ssthresh = i;
994 			tcpstat.tcps_cachedssthresh++;
995 		}
996 	}
997 
998 no_valid_rt:
999 	/* free the reassembly queue, if any */
1000 	while((q = TAILQ_FIRST(&tp->t_segq)) != NULL) {
1001 		TAILQ_REMOVE(&tp->t_segq, q, tqe_q);
1002 		m_freem(q->tqe_m);
1003 		kfree(q, M_TSEGQ);
1004 		atomic_add_int(&tcp_reass_qsize, -1);
1005 	}
1006 	/* throw away SACK blocks in scoreboard*/
1007 	if (TCP_DO_SACK(tp))
1008 		tcp_sack_destroy(&tp->scb);
1009 
1010 	inp->inp_ppcb = NULL;
1011 	soisdisconnected(so);
1012 	/* note: pcb detached later on */
1013 
1014 	tcp_destroy_timermsg(tp);
1015 	tcp_output_cancel(tp);
1016 
1017 	if (tp->t_flags & TF_LISTEN) {
1018 		syncache_destroy(tp, tp_inh);
1019 		if (inp_inh != NULL && inp_inh->inp_socket != NULL) {
1020 			/*
1021 			 * Pending sockets inheritance only needs
1022 			 * to be done once in the current thread,
1023 			 * i.e. netisr0.
1024 			 */
1025 			soinherit(so, inp_inh->inp_socket);
1026 		}
1027 	}
1028 
1029 	so_async_rcvd_drop(so);
1030 	/* Drop the reference for the asynchronized pru_rcvd */
1031 	sofree(so);
1032 
1033 	/*
1034 	 * NOTE:
1035 	 * pcbdetach removes any wildcard hash entry on the current CPU.
1036 	 */
1037 #ifdef INET6
1038 	if (isafinet6)
1039 		in6_pcbdetach(inp);
1040 	else
1041 #endif
1042 		in_pcbdetach(inp);
1043 
1044 	tcpstat.tcps_closed++;
1045 	return (NULL);
1046 }
1047 
1048 static __inline void
1049 tcp_drain_oncpu(struct inpcbhead *head)
1050 {
1051 	struct inpcb *marker;
1052 	struct inpcb *inpb;
1053 	struct tcpcb *tcpb;
1054 	struct tseg_qent *te;
1055 
1056 	/*
1057 	 * Allows us to block while running the list
1058 	 */
1059 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1060 	marker->inp_flags |= INP_PLACEMARKER;
1061 	LIST_INSERT_HEAD(head, marker, inp_list);
1062 
1063 	while ((inpb = LIST_NEXT(marker, inp_list)) != NULL) {
1064 		if ((inpb->inp_flags & INP_PLACEMARKER) == 0 &&
1065 		    (tcpb = intotcpcb(inpb)) != NULL &&
1066 		    (te = TAILQ_FIRST(&tcpb->t_segq)) != NULL) {
1067 			TAILQ_REMOVE(&tcpb->t_segq, te, tqe_q);
1068 			if (te->tqe_th->th_flags & TH_FIN)
1069 				tcpb->t_flags &= ~TF_QUEDFIN;
1070 			m_freem(te->tqe_m);
1071 			kfree(te, M_TSEGQ);
1072 			atomic_add_int(&tcp_reass_qsize, -1);
1073 			/* retry */
1074 		} else {
1075 			LIST_REMOVE(marker, inp_list);
1076 			LIST_INSERT_AFTER(inpb, marker, inp_list);
1077 		}
1078 	}
1079 	LIST_REMOVE(marker, inp_list);
1080 	kfree(marker, M_TEMP);
1081 }
1082 
1083 struct netmsg_tcp_drain {
1084 	struct netmsg_base	base;
1085 	struct inpcbhead	*nm_head;
1086 };
1087 
1088 static void
1089 tcp_drain_handler(netmsg_t msg)
1090 {
1091 	struct netmsg_tcp_drain *nm = (void *)msg;
1092 
1093 	tcp_drain_oncpu(nm->nm_head);
1094 	lwkt_replymsg(&nm->base.lmsg, 0);
1095 }
1096 
1097 void
1098 tcp_drain(void)
1099 {
1100 	int cpu;
1101 
1102 	if (!do_tcpdrain)
1103 		return;
1104 
1105 	/*
1106 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1107 	 * if there is one...
1108 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1109 	 *	reassembly queue should be flushed, but in a situation
1110 	 *	where we're really low on mbufs, this is potentially
1111 	 *	useful.
1112 	 */
1113 	for (cpu = 0; cpu < ncpus2; cpu++) {
1114 		struct netmsg_tcp_drain *nm;
1115 
1116 		if (cpu == mycpu->gd_cpuid) {
1117 			tcp_drain_oncpu(&tcbinfo[cpu].pcblisthead);
1118 		} else {
1119 			nm = kmalloc(sizeof(struct netmsg_tcp_drain),
1120 				     M_LWKTMSG, M_NOWAIT);
1121 			if (nm == NULL)
1122 				continue;
1123 			netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1124 				    0, tcp_drain_handler);
1125 			nm->nm_head = &tcbinfo[cpu].pcblisthead;
1126 			lwkt_sendmsg(netisr_cpuport(cpu), &nm->base.lmsg);
1127 		}
1128 	}
1129 }
1130 
1131 /*
1132  * Notify a tcp user of an asynchronous error;
1133  * store error as soft error, but wake up user
1134  * (for now, won't do anything until can select for soft error).
1135  *
1136  * Do not wake up user since there currently is no mechanism for
1137  * reporting soft errors (yet - a kqueue filter may be added).
1138  */
1139 static void
1140 tcp_notify(struct inpcb *inp, int error)
1141 {
1142 	struct tcpcb *tp = intotcpcb(inp);
1143 
1144 	/*
1145 	 * Ignore some errors if we are hooked up.
1146 	 * If connection hasn't completed, has retransmitted several times,
1147 	 * and receives a second error, give up now.  This is better
1148 	 * than waiting a long time to establish a connection that
1149 	 * can never complete.
1150 	 */
1151 	if (tp->t_state == TCPS_ESTABLISHED &&
1152 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1153 	      error == EHOSTDOWN)) {
1154 		return;
1155 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1156 	    tp->t_softerror)
1157 		tcp_drop(tp, error);
1158 	else
1159 		tp->t_softerror = error;
1160 #if 0
1161 	wakeup(&so->so_timeo);
1162 	sorwakeup(so);
1163 	sowwakeup(so);
1164 #endif
1165 }
1166 
1167 static int
1168 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1169 {
1170 	int error, i, n;
1171 	struct inpcb *marker;
1172 	struct inpcb *inp;
1173 	globaldata_t gd;
1174 	int origcpu, ccpu;
1175 
1176 	error = 0;
1177 	n = 0;
1178 
1179 	/*
1180 	 * The process of preparing the TCB list is too time-consuming and
1181 	 * resource-intensive to repeat twice on every request.
1182 	 */
1183 	if (req->oldptr == NULL) {
1184 		for (ccpu = 0; ccpu < ncpus; ++ccpu) {
1185 			gd = globaldata_find(ccpu);
1186 			n += tcbinfo[gd->gd_cpuid].ipi_count;
1187 		}
1188 		req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1189 		return (0);
1190 	}
1191 
1192 	if (req->newptr != NULL)
1193 		return (EPERM);
1194 
1195 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1196 	marker->inp_flags |= INP_PLACEMARKER;
1197 
1198 	/*
1199 	 * OK, now we're committed to doing something.  Run the inpcb list
1200 	 * for each cpu in the system and construct the output.  Use a
1201 	 * list placemarker to deal with list changes occuring during
1202 	 * copyout blockages (but otherwise depend on being on the correct
1203 	 * cpu to avoid races).
1204 	 */
1205 	origcpu = mycpu->gd_cpuid;
1206 	for (ccpu = 1; ccpu <= ncpus && error == 0; ++ccpu) {
1207 		globaldata_t rgd;
1208 		caddr_t inp_ppcb;
1209 		struct xtcpcb xt;
1210 		int cpu_id;
1211 
1212 		cpu_id = (origcpu + ccpu) % ncpus;
1213 		if ((smp_active_mask & CPUMASK(cpu_id)) == 0)
1214 			continue;
1215 		rgd = globaldata_find(cpu_id);
1216 		lwkt_setcpu_self(rgd);
1217 
1218 		n = tcbinfo[cpu_id].ipi_count;
1219 
1220 		LIST_INSERT_HEAD(&tcbinfo[cpu_id].pcblisthead, marker, inp_list);
1221 		i = 0;
1222 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1223 			/*
1224 			 * process a snapshot of pcbs, ignoring placemarkers
1225 			 * and using our own to allow SYSCTL_OUT to block.
1226 			 */
1227 			LIST_REMOVE(marker, inp_list);
1228 			LIST_INSERT_AFTER(inp, marker, inp_list);
1229 
1230 			if (inp->inp_flags & INP_PLACEMARKER)
1231 				continue;
1232 			if (prison_xinpcb(req->td, inp))
1233 				continue;
1234 
1235 			xt.xt_len = sizeof xt;
1236 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1237 			inp_ppcb = inp->inp_ppcb;
1238 			if (inp_ppcb != NULL)
1239 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1240 			else
1241 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1242 			if (inp->inp_socket)
1243 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1244 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1245 				break;
1246 			++i;
1247 		}
1248 		LIST_REMOVE(marker, inp_list);
1249 		if (error == 0 && i < n) {
1250 			bzero(&xt, sizeof xt);
1251 			xt.xt_len = sizeof xt;
1252 			while (i < n) {
1253 				error = SYSCTL_OUT(req, &xt, sizeof xt);
1254 				if (error)
1255 					break;
1256 				++i;
1257 			}
1258 		}
1259 	}
1260 
1261 	/*
1262 	 * Make sure we are on the same cpu we were on originally, since
1263 	 * higher level callers expect this.  Also don't pollute caches with
1264 	 * migrated userland data by (eventually) returning to userland
1265 	 * on a different cpu.
1266 	 */
1267 	lwkt_setcpu_self(globaldata_find(origcpu));
1268 	kfree(marker, M_TEMP);
1269 	return (error);
1270 }
1271 
1272 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1273 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1274 
1275 static int
1276 tcp_getcred(SYSCTL_HANDLER_ARGS)
1277 {
1278 	struct sockaddr_in addrs[2];
1279 	struct inpcb *inp;
1280 	int cpu;
1281 	int error;
1282 
1283 	error = priv_check(req->td, PRIV_ROOT);
1284 	if (error != 0)
1285 		return (error);
1286 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1287 	if (error != 0)
1288 		return (error);
1289 	crit_enter();
1290 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1291 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1292 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1293 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1294 	if (inp == NULL || inp->inp_socket == NULL) {
1295 		error = ENOENT;
1296 		goto out;
1297 	}
1298 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1299 out:
1300 	crit_exit();
1301 	return (error);
1302 }
1303 
1304 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1305     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1306 
1307 #ifdef INET6
1308 static int
1309 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1310 {
1311 	struct sockaddr_in6 addrs[2];
1312 	struct inpcb *inp;
1313 	int error;
1314 	boolean_t mapped = FALSE;
1315 
1316 	error = priv_check(req->td, PRIV_ROOT);
1317 	if (error != 0)
1318 		return (error);
1319 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1320 	if (error != 0)
1321 		return (error);
1322 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1323 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1324 			mapped = TRUE;
1325 		else
1326 			return (EINVAL);
1327 	}
1328 	crit_enter();
1329 	if (mapped) {
1330 		inp = in_pcblookup_hash(&tcbinfo[0],
1331 		    *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1332 		    addrs[1].sin6_port,
1333 		    *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1334 		    addrs[0].sin6_port,
1335 		    0, NULL);
1336 	} else {
1337 		inp = in6_pcblookup_hash(&tcbinfo[0],
1338 		    &addrs[1].sin6_addr, addrs[1].sin6_port,
1339 		    &addrs[0].sin6_addr, addrs[0].sin6_port,
1340 		    0, NULL);
1341 	}
1342 	if (inp == NULL || inp->inp_socket == NULL) {
1343 		error = ENOENT;
1344 		goto out;
1345 	}
1346 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1347 out:
1348 	crit_exit();
1349 	return (error);
1350 }
1351 
1352 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1353 	    0, 0,
1354 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1355 #endif
1356 
1357 struct netmsg_tcp_notify {
1358 	struct netmsg_base base;
1359 	void		(*nm_notify)(struct inpcb *, int);
1360 	struct in_addr	nm_faddr;
1361 	int		nm_arg;
1362 };
1363 
1364 static void
1365 tcp_notifyall_oncpu(netmsg_t msg)
1366 {
1367 	struct netmsg_tcp_notify *nm = (struct netmsg_tcp_notify *)msg;
1368 	int nextcpu;
1369 
1370 	in_pcbnotifyall(&tcbinfo[mycpuid].pcblisthead, nm->nm_faddr,
1371 			nm->nm_arg, nm->nm_notify);
1372 
1373 	nextcpu = mycpuid + 1;
1374 	if (nextcpu < ncpus2)
1375 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &nm->base.lmsg);
1376 	else
1377 		lwkt_replymsg(&nm->base.lmsg, 0);
1378 }
1379 
1380 void
1381 tcp_ctlinput(netmsg_t msg)
1382 {
1383 	int cmd = msg->ctlinput.nm_cmd;
1384 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1385 	struct ip *ip = msg->ctlinput.nm_extra;
1386 	struct tcphdr *th;
1387 	struct in_addr faddr;
1388 	struct inpcb *inp;
1389 	struct tcpcb *tp;
1390 	void (*notify)(struct inpcb *, int) = tcp_notify;
1391 	tcp_seq icmpseq;
1392 	int arg, cpu;
1393 
1394 	if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1395 		goto done;
1396 	}
1397 
1398 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1399 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1400 		goto done;
1401 
1402 	arg = inetctlerrmap[cmd];
1403 	if (cmd == PRC_QUENCH) {
1404 		notify = tcp_quench;
1405 	} else if (icmp_may_rst &&
1406 		   (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1407 		    cmd == PRC_UNREACH_PORT ||
1408 		    cmd == PRC_TIMXCEED_INTRANS) &&
1409 		   ip != NULL) {
1410 		notify = tcp_drop_syn_sent;
1411 	} else if (cmd == PRC_MSGSIZE) {
1412 		struct icmp *icmp = (struct icmp *)
1413 		    ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1414 
1415 		arg = ntohs(icmp->icmp_nextmtu);
1416 		notify = tcp_mtudisc;
1417 	} else if (PRC_IS_REDIRECT(cmd)) {
1418 		ip = NULL;
1419 		notify = in_rtchange;
1420 	} else if (cmd == PRC_HOSTDEAD) {
1421 		ip = NULL;
1422 	}
1423 
1424 	if (ip != NULL) {
1425 		crit_enter();
1426 		th = (struct tcphdr *)((caddr_t)ip +
1427 				       (IP_VHL_HL(ip->ip_vhl) << 2));
1428 		cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
1429 				  ip->ip_src.s_addr, th->th_sport);
1430 		inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
1431 					ip->ip_src, th->th_sport, 0, NULL);
1432 		if ((inp != NULL) && (inp->inp_socket != NULL)) {
1433 			icmpseq = htonl(th->th_seq);
1434 			tp = intotcpcb(inp);
1435 			if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1436 			    SEQ_LT(icmpseq, tp->snd_max))
1437 				(*notify)(inp, arg);
1438 		} else {
1439 			struct in_conninfo inc;
1440 
1441 			inc.inc_fport = th->th_dport;
1442 			inc.inc_lport = th->th_sport;
1443 			inc.inc_faddr = faddr;
1444 			inc.inc_laddr = ip->ip_src;
1445 #ifdef INET6
1446 			inc.inc_isipv6 = 0;
1447 #endif
1448 			syncache_unreach(&inc, th);
1449 		}
1450 		crit_exit();
1451 	} else {
1452 		struct netmsg_tcp_notify *nm;
1453 
1454 		KKASSERT(&curthread->td_msgport == netisr_cpuport(0));
1455 		nm = kmalloc(sizeof(*nm), M_LWKTMSG, M_INTWAIT);
1456 		netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1457 			    0, tcp_notifyall_oncpu);
1458 		nm->nm_faddr = faddr;
1459 		nm->nm_arg = arg;
1460 		nm->nm_notify = notify;
1461 
1462 		lwkt_sendmsg(netisr_cpuport(0), &nm->base.lmsg);
1463 	}
1464 done:
1465 	lwkt_replymsg(&msg->lmsg, 0);
1466 }
1467 
1468 #ifdef INET6
1469 
1470 void
1471 tcp6_ctlinput(netmsg_t msg)
1472 {
1473 	int cmd = msg->ctlinput.nm_cmd;
1474 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1475 	void *d = msg->ctlinput.nm_extra;
1476 	struct tcphdr th;
1477 	void (*notify) (struct inpcb *, int) = tcp_notify;
1478 	struct ip6_hdr *ip6;
1479 	struct mbuf *m;
1480 	struct ip6ctlparam *ip6cp = NULL;
1481 	const struct sockaddr_in6 *sa6_src = NULL;
1482 	int off;
1483 	struct tcp_portonly {
1484 		u_int16_t th_sport;
1485 		u_int16_t th_dport;
1486 	} *thp;
1487 	int arg;
1488 
1489 	if (sa->sa_family != AF_INET6 ||
1490 	    sa->sa_len != sizeof(struct sockaddr_in6)) {
1491 		goto out;
1492 	}
1493 
1494 	arg = 0;
1495 	if (cmd == PRC_QUENCH)
1496 		notify = tcp_quench;
1497 	else if (cmd == PRC_MSGSIZE) {
1498 		struct ip6ctlparam *ip6cp = d;
1499 		struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1500 
1501 		arg = ntohl(icmp6->icmp6_mtu);
1502 		notify = tcp_mtudisc;
1503 	} else if (!PRC_IS_REDIRECT(cmd) &&
1504 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1505 		goto out;
1506 	}
1507 
1508 	/* if the parameter is from icmp6, decode it. */
1509 	if (d != NULL) {
1510 		ip6cp = (struct ip6ctlparam *)d;
1511 		m = ip6cp->ip6c_m;
1512 		ip6 = ip6cp->ip6c_ip6;
1513 		off = ip6cp->ip6c_off;
1514 		sa6_src = ip6cp->ip6c_src;
1515 	} else {
1516 		m = NULL;
1517 		ip6 = NULL;
1518 		off = 0;	/* fool gcc */
1519 		sa6_src = &sa6_any;
1520 	}
1521 
1522 	if (ip6 != NULL) {
1523 		struct in_conninfo inc;
1524 		/*
1525 		 * XXX: We assume that when IPV6 is non NULL,
1526 		 * M and OFF are valid.
1527 		 */
1528 
1529 		/* check if we can safely examine src and dst ports */
1530 		if (m->m_pkthdr.len < off + sizeof *thp)
1531 			goto out;
1532 
1533 		bzero(&th, sizeof th);
1534 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1535 
1536 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, th.th_dport,
1537 		    (struct sockaddr *)ip6cp->ip6c_src,
1538 		    th.th_sport, cmd, arg, notify);
1539 
1540 		inc.inc_fport = th.th_dport;
1541 		inc.inc_lport = th.th_sport;
1542 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1543 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1544 		inc.inc_isipv6 = 1;
1545 		syncache_unreach(&inc, &th);
1546 	} else {
1547 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, 0,
1548 		    (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1549 	}
1550 out:
1551 	lwkt_replymsg(&msg->ctlinput.base.lmsg, 0);
1552 }
1553 
1554 #endif
1555 
1556 /*
1557  * Following is where TCP initial sequence number generation occurs.
1558  *
1559  * There are two places where we must use initial sequence numbers:
1560  * 1.  In SYN-ACK packets.
1561  * 2.  In SYN packets.
1562  *
1563  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1564  * tcp_syncache.c for details.
1565  *
1566  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1567  * depends on this property.  In addition, these ISNs should be
1568  * unguessable so as to prevent connection hijacking.  To satisfy
1569  * the requirements of this situation, the algorithm outlined in
1570  * RFC 1948 is used to generate sequence numbers.
1571  *
1572  * Implementation details:
1573  *
1574  * Time is based off the system timer, and is corrected so that it
1575  * increases by one megabyte per second.  This allows for proper
1576  * recycling on high speed LANs while still leaving over an hour
1577  * before rollover.
1578  *
1579  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1580  * between seeding of isn_secret.  This is normally set to zero,
1581  * as reseeding should not be necessary.
1582  *
1583  */
1584 
1585 #define	ISN_BYTES_PER_SECOND 1048576
1586 
1587 u_char isn_secret[32];
1588 int isn_last_reseed;
1589 MD5_CTX isn_ctx;
1590 
1591 tcp_seq
1592 tcp_new_isn(struct tcpcb *tp)
1593 {
1594 	u_int32_t md5_buffer[4];
1595 	tcp_seq new_isn;
1596 
1597 	/* Seed if this is the first use, reseed if requested. */
1598 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1599 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1600 		< (u_int)ticks))) {
1601 		read_random_unlimited(&isn_secret, sizeof isn_secret);
1602 		isn_last_reseed = ticks;
1603 	}
1604 
1605 	/* Compute the md5 hash and return the ISN. */
1606 	MD5Init(&isn_ctx);
1607 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1608 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1609 #ifdef INET6
1610 	if (tp->t_inpcb->inp_vflag & INP_IPV6) {
1611 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1612 			  sizeof(struct in6_addr));
1613 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1614 			  sizeof(struct in6_addr));
1615 	} else
1616 #endif
1617 	{
1618 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1619 			  sizeof(struct in_addr));
1620 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1621 			  sizeof(struct in_addr));
1622 	}
1623 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1624 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1625 	new_isn = (tcp_seq) md5_buffer[0];
1626 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1627 	return (new_isn);
1628 }
1629 
1630 /*
1631  * When a source quench is received, close congestion window
1632  * to one segment.  We will gradually open it again as we proceed.
1633  */
1634 void
1635 tcp_quench(struct inpcb *inp, int error)
1636 {
1637 	struct tcpcb *tp = intotcpcb(inp);
1638 
1639 	if (tp != NULL) {
1640 		tp->snd_cwnd = tp->t_maxseg;
1641 		tp->snd_wacked = 0;
1642 	}
1643 }
1644 
1645 /*
1646  * When a specific ICMP unreachable message is received and the
1647  * connection state is SYN-SENT, drop the connection.  This behavior
1648  * is controlled by the icmp_may_rst sysctl.
1649  */
1650 void
1651 tcp_drop_syn_sent(struct inpcb *inp, int error)
1652 {
1653 	struct tcpcb *tp = intotcpcb(inp);
1654 
1655 	if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
1656 		tcp_drop(tp, error);
1657 }
1658 
1659 /*
1660  * When a `need fragmentation' ICMP is received, update our idea of the MSS
1661  * based on the new value in the route.  Also nudge TCP to send something,
1662  * since we know the packet we just sent was dropped.
1663  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1664  */
1665 void
1666 tcp_mtudisc(struct inpcb *inp, int mtu)
1667 {
1668 	struct tcpcb *tp = intotcpcb(inp);
1669 	struct rtentry *rt;
1670 	struct socket *so = inp->inp_socket;
1671 	int maxopd, mss;
1672 #ifdef INET6
1673 	boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1674 #else
1675 	const boolean_t isipv6 = FALSE;
1676 #endif
1677 
1678 	if (tp == NULL)
1679 		return;
1680 
1681 	/*
1682 	 * If no MTU is provided in the ICMP message, use the
1683 	 * next lower likely value, as specified in RFC 1191.
1684 	 */
1685 	if (mtu == 0) {
1686 		int oldmtu;
1687 
1688 		oldmtu = tp->t_maxopd +
1689 		    (isipv6 ?
1690 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1691 		     sizeof(struct tcpiphdr));
1692 		mtu = ip_next_mtu(oldmtu, 0);
1693 	}
1694 
1695 	if (isipv6)
1696 		rt = tcp_rtlookup6(&inp->inp_inc);
1697 	else
1698 		rt = tcp_rtlookup(&inp->inp_inc);
1699 	if (rt != NULL) {
1700 		if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1701 			mtu = rt->rt_rmx.rmx_mtu;
1702 
1703 		maxopd = mtu -
1704 		    (isipv6 ?
1705 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1706 		     sizeof(struct tcpiphdr));
1707 
1708 		/*
1709 		 * XXX - The following conditional probably violates the TCP
1710 		 * spec.  The problem is that, since we don't know the
1711 		 * other end's MSS, we are supposed to use a conservative
1712 		 * default.  But, if we do that, then MTU discovery will
1713 		 * never actually take place, because the conservative
1714 		 * default is much less than the MTUs typically seen
1715 		 * on the Internet today.  For the moment, we'll sweep
1716 		 * this under the carpet.
1717 		 *
1718 		 * The conservative default might not actually be a problem
1719 		 * if the only case this occurs is when sending an initial
1720 		 * SYN with options and data to a host we've never talked
1721 		 * to before.  Then, they will reply with an MSS value which
1722 		 * will get recorded and the new parameters should get
1723 		 * recomputed.  For Further Study.
1724 		 */
1725 		if (rt->rt_rmx.rmx_mssopt  && rt->rt_rmx.rmx_mssopt < maxopd)
1726 			maxopd = rt->rt_rmx.rmx_mssopt;
1727 	} else
1728 		maxopd = mtu -
1729 		    (isipv6 ?
1730 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1731 		     sizeof(struct tcpiphdr));
1732 
1733 	if (tp->t_maxopd <= maxopd)
1734 		return;
1735 	tp->t_maxopd = maxopd;
1736 
1737 	mss = maxopd;
1738 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1739 			   (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1740 		mss -= TCPOLEN_TSTAMP_APPA;
1741 
1742 	/* round down to multiple of MCLBYTES */
1743 #if	(MCLBYTES & (MCLBYTES - 1)) == 0    /* test if MCLBYTES power of 2 */
1744 	if (mss > MCLBYTES)
1745 		mss &= ~(MCLBYTES - 1);
1746 #else
1747 	if (mss > MCLBYTES)
1748 		mss = (mss / MCLBYTES) * MCLBYTES;
1749 #endif
1750 
1751 	if (so->so_snd.ssb_hiwat < mss)
1752 		mss = so->so_snd.ssb_hiwat;
1753 
1754 	tp->t_maxseg = mss;
1755 	tp->t_rtttime = 0;
1756 	tp->snd_nxt = tp->snd_una;
1757 	tcp_output(tp);
1758 	tcpstat.tcps_mturesent++;
1759 }
1760 
1761 /*
1762  * Look-up the routing entry to the peer of this inpcb.  If no route
1763  * is found and it cannot be allocated the return NULL.  This routine
1764  * is called by TCP routines that access the rmx structure and by tcp_mss
1765  * to get the interface MTU.
1766  */
1767 struct rtentry *
1768 tcp_rtlookup(struct in_conninfo *inc)
1769 {
1770 	struct route *ro = &inc->inc_route;
1771 
1772 	if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1773 		/* No route yet, so try to acquire one */
1774 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1775 			/*
1776 			 * unused portions of the structure MUST be zero'd
1777 			 * out because rtalloc() treats it as opaque data
1778 			 */
1779 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1780 			ro->ro_dst.sa_family = AF_INET;
1781 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1782 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1783 			    inc->inc_faddr;
1784 			rtalloc(ro);
1785 		}
1786 	}
1787 	return (ro->ro_rt);
1788 }
1789 
1790 #ifdef INET6
1791 struct rtentry *
1792 tcp_rtlookup6(struct in_conninfo *inc)
1793 {
1794 	struct route_in6 *ro6 = &inc->inc6_route;
1795 
1796 	if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1797 		/* No route yet, so try to acquire one */
1798 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1799 			/*
1800 			 * unused portions of the structure MUST be zero'd
1801 			 * out because rtalloc() treats it as opaque data
1802 			 */
1803 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1804 			ro6->ro_dst.sin6_family = AF_INET6;
1805 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1806 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1807 			rtalloc((struct route *)ro6);
1808 		}
1809 	}
1810 	return (ro6->ro_rt);
1811 }
1812 #endif
1813 
1814 #ifdef IPSEC
1815 /* compute ESP/AH header size for TCP, including outer IP header. */
1816 size_t
1817 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1818 {
1819 	struct inpcb *inp;
1820 	struct mbuf *m;
1821 	size_t hdrsiz;
1822 	struct ip *ip;
1823 	struct tcphdr *th;
1824 
1825 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1826 		return (0);
1827 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1828 	if (!m)
1829 		return (0);
1830 
1831 #ifdef INET6
1832 	if (inp->inp_vflag & INP_IPV6) {
1833 		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1834 
1835 		th = (struct tcphdr *)(ip6 + 1);
1836 		m->m_pkthdr.len = m->m_len =
1837 		    sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1838 		tcp_fillheaders(tp, ip6, th, FALSE);
1839 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1840 	} else
1841 #endif
1842 	{
1843 		ip = mtod(m, struct ip *);
1844 		th = (struct tcphdr *)(ip + 1);
1845 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1846 		tcp_fillheaders(tp, ip, th, FALSE);
1847 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1848 	}
1849 
1850 	m_free(m);
1851 	return (hdrsiz);
1852 }
1853 #endif
1854 
1855 /*
1856  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1857  *
1858  * This code attempts to calculate the bandwidth-delay product as a
1859  * means of determining the optimal window size to maximize bandwidth,
1860  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1861  * routers.  This code also does a fairly good job keeping RTTs in check
1862  * across slow links like modems.  We implement an algorithm which is very
1863  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1864  * transmitter side of a TCP connection and so only effects the transmit
1865  * side of the connection.
1866  *
1867  * BACKGROUND:  TCP makes no provision for the management of buffer space
1868  * at the end points or at the intermediate routers and switches.  A TCP
1869  * stream, whether using NewReno or not, will eventually buffer as
1870  * many packets as it is able and the only reason this typically works is
1871  * due to the fairly small default buffers made available for a connection
1872  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1873  * scaling it is now fairly easy for even a single TCP connection to blow-out
1874  * all available buffer space not only on the local interface, but on
1875  * intermediate routers and switches as well.  NewReno makes a misguided
1876  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1877  * then backing off, then steadily increasing the window again until another
1878  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1879  * is only made worse as network loads increase and the idea of intentionally
1880  * blowing out network buffers is, frankly, a terrible way to manage network
1881  * resources.
1882  *
1883  * It is far better to limit the transmit window prior to the failure
1884  * condition being achieved.  There are two general ways to do this:  First
1885  * you can 'scan' through different transmit window sizes and locate the
1886  * point where the RTT stops increasing, indicating that you have filled the
1887  * pipe, then scan backwards until you note that RTT stops decreasing, then
1888  * repeat ad-infinitum.  This method works in principle but has severe
1889  * implementation issues due to RTT variances, timer granularity, and
1890  * instability in the algorithm which can lead to many false positives and
1891  * create oscillations as well as interact badly with other TCP streams
1892  * implementing the same algorithm.
1893  *
1894  * The second method is to limit the window to the bandwidth delay product
1895  * of the link.  This is the method we implement.  RTT variances and our
1896  * own manipulation of the congestion window, bwnd, can potentially
1897  * destabilize the algorithm.  For this reason we have to stabilize the
1898  * elements used to calculate the window.  We do this by using the minimum
1899  * observed RTT, the long term average of the observed bandwidth, and
1900  * by adding two segments worth of slop.  It isn't perfect but it is able
1901  * to react to changing conditions and gives us a very stable basis on
1902  * which to extend the algorithm.
1903  */
1904 void
1905 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1906 {
1907 	u_long bw;
1908 	u_long bwnd;
1909 	int save_ticks;
1910 	int delta_ticks;
1911 
1912 	/*
1913 	 * If inflight_enable is disabled in the middle of a tcp connection,
1914 	 * make sure snd_bwnd is effectively disabled.
1915 	 */
1916 	if (!tcp_inflight_enable) {
1917 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1918 		tp->snd_bandwidth = 0;
1919 		return;
1920 	}
1921 
1922 	/*
1923 	 * Validate the delta time.  If a connection is new or has been idle
1924 	 * a long time we have to reset the bandwidth calculator.
1925 	 */
1926 	save_ticks = ticks;
1927 	delta_ticks = save_ticks - tp->t_bw_rtttime;
1928 	if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1929 		tp->t_bw_rtttime = ticks;
1930 		tp->t_bw_rtseq = ack_seq;
1931 		if (tp->snd_bandwidth == 0)
1932 			tp->snd_bandwidth = tcp_inflight_min;
1933 		return;
1934 	}
1935 	if (delta_ticks == 0)
1936 		return;
1937 
1938 	/*
1939 	 * Sanity check, plus ignore pure window update acks.
1940 	 */
1941 	if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1942 		return;
1943 
1944 	/*
1945 	 * Figure out the bandwidth.  Due to the tick granularity this
1946 	 * is a very rough number and it MUST be averaged over a fairly
1947 	 * long period of time.  XXX we need to take into account a link
1948 	 * that is not using all available bandwidth, but for now our
1949 	 * slop will ramp us up if this case occurs and the bandwidth later
1950 	 * increases.
1951 	 */
1952 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
1953 	tp->t_bw_rtttime = save_ticks;
1954 	tp->t_bw_rtseq = ack_seq;
1955 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1956 
1957 	tp->snd_bandwidth = bw;
1958 
1959 	/*
1960 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1961 	 * segments.  The additional slop puts us squarely in the sweet
1962 	 * spot and also handles the bandwidth run-up case.  Without the
1963 	 * slop we could be locking ourselves into a lower bandwidth.
1964 	 *
1965 	 * Situations Handled:
1966 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1967 	 *	    high speed LANs, allowing larger TCP buffers to be
1968 	 *	    specified, and also does a good job preventing
1969 	 *	    over-queueing of packets over choke points like modems
1970 	 *	    (at least for the transmit side).
1971 	 *
1972 	 *	(2) Is able to handle changing network loads (bandwidth
1973 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1974 	 *	    increases).
1975 	 *
1976 	 *	(3) Theoretically should stabilize in the face of multiple
1977 	 *	    connections implementing the same algorithm (this may need
1978 	 *	    a little work).
1979 	 *
1980 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1981 	 *	    be adjusted with a sysctl but typically only needs to be on
1982 	 *	    very slow connections.  A value no smaller then 5 should
1983 	 *	    be used, but only reduce this default if you have no other
1984 	 *	    choice.
1985 	 */
1986 
1987 #define	USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1988 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
1989 	       tcp_inflight_stab * (int)tp->t_maxseg / 10;
1990 #undef USERTT
1991 
1992 	if (tcp_inflight_debug > 0) {
1993 		static int ltime;
1994 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1995 			ltime = ticks;
1996 			kprintf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1997 				tp, bw, tp->t_rttbest, tp->t_srtt, bwnd);
1998 		}
1999 	}
2000 	if ((long)bwnd < tcp_inflight_min)
2001 		bwnd = tcp_inflight_min;
2002 	if (bwnd > tcp_inflight_max)
2003 		bwnd = tcp_inflight_max;
2004 	if ((long)bwnd < tp->t_maxseg * 2)
2005 		bwnd = tp->t_maxseg * 2;
2006 	tp->snd_bwnd = bwnd;
2007 }
2008 
2009 static void
2010 tcp_rmx_iwsegs(struct tcpcb *tp, u_long *maxsegs, u_long *capsegs)
2011 {
2012 	struct rtentry *rt;
2013 	struct inpcb *inp = tp->t_inpcb;
2014 #ifdef INET6
2015 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
2016 #else
2017 	const boolean_t isipv6 = FALSE;
2018 #endif
2019 
2020 	/* XXX */
2021 	if (tcp_iw_maxsegs < TCP_IW_MAXSEGS_DFLT)
2022 		tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
2023 	if (tcp_iw_capsegs < TCP_IW_CAPSEGS_DFLT)
2024 		tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
2025 
2026 	if (isipv6)
2027 		rt = tcp_rtlookup6(&inp->inp_inc);
2028 	else
2029 		rt = tcp_rtlookup(&inp->inp_inc);
2030 	if (rt == NULL ||
2031 	    rt->rt_rmx.rmx_iwmaxsegs < TCP_IW_MAXSEGS_DFLT ||
2032 	    rt->rt_rmx.rmx_iwcapsegs < TCP_IW_CAPSEGS_DFLT) {
2033 		*maxsegs = tcp_iw_maxsegs;
2034 		*capsegs = tcp_iw_capsegs;
2035 		return;
2036 	}
2037 	*maxsegs = rt->rt_rmx.rmx_iwmaxsegs;
2038 	*capsegs = rt->rt_rmx.rmx_iwcapsegs;
2039 }
2040 
2041 u_long
2042 tcp_initial_window(struct tcpcb *tp)
2043 {
2044 	if (tcp_do_rfc3390) {
2045 		/*
2046 		 * RFC3390:
2047 		 * "If the SYN or SYN/ACK is lost, the initial window
2048 		 *  used by a sender after a correctly transmitted SYN
2049 		 *  MUST be one segment consisting of MSS bytes."
2050 		 *
2051 		 * However, we do something a little bit more aggressive
2052 		 * then RFC3390 here:
2053 		 * - Only if time spent in the SYN or SYN|ACK retransmition
2054 		 *   >= 3 seconds, the IW is reduced.  We do this mainly
2055 		 *   because when RFC3390 is published, the initial RTO is
2056 		 *   still 3 seconds (the threshold we test here), while
2057 		 *   after RFC6298, the initial RTO is 1 second.  This
2058 		 *   behaviour probably still falls within the spirit of
2059 		 *   RFC3390.
2060 		 * - When IW is reduced, 2*MSS is used instead of 1*MSS.
2061 		 *   Mainly to avoid sender and receiver deadlock until
2062 		 *   delayed ACK timer expires.  And even RFC2581 does not
2063 		 *   try to reduce IW upon SYN or SYN|ACK retransmition
2064 		 *   timeout.
2065 		 *
2066 		 * See also:
2067 		 * http://tools.ietf.org/html/draft-ietf-tcpm-initcwnd-03
2068 		 */
2069 		if (tp->t_rxtsyn >= TCPTV_RTOBASE3) {
2070 			return (2 * tp->t_maxseg);
2071 		} else {
2072 			u_long maxsegs, capsegs;
2073 
2074 			tcp_rmx_iwsegs(tp, &maxsegs, &capsegs);
2075 			return min(maxsegs * tp->t_maxseg,
2076 				   max(2 * tp->t_maxseg, capsegs * 1460));
2077 		}
2078 	} else {
2079 		/*
2080 		 * Even RFC2581 (back to 1999) allows 2*SMSS IW.
2081 		 *
2082 		 * Mainly to avoid sender and receiver deadlock
2083 		 * until delayed ACK timer expires.
2084 		 */
2085 		return (2 * tp->t_maxseg);
2086 	}
2087 }
2088 
2089 #ifdef TCP_SIGNATURE
2090 /*
2091  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2092  *
2093  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2094  * When called from tcp_input(), we can be sure that th_sum has been
2095  * zeroed out and verified already.
2096  *
2097  * Return 0 if successful, otherwise return -1.
2098  *
2099  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2100  * search with the destination IP address, and a 'magic SPI' to be
2101  * determined by the application. This is hardcoded elsewhere to 1179
2102  * right now. Another branch of this code exists which uses the SPD to
2103  * specify per-application flows but it is unstable.
2104  */
2105 int
2106 tcpsignature_compute(
2107 	struct mbuf *m,		/* mbuf chain */
2108 	int len,		/* length of TCP data */
2109 	int optlen,		/* length of TCP options */
2110 	u_char *buf,		/* storage for MD5 digest */
2111 	u_int direction)	/* direction of flow */
2112 {
2113 	struct ippseudo ippseudo;
2114 	MD5_CTX ctx;
2115 	int doff;
2116 	struct ip *ip;
2117 	struct ipovly *ipovly;
2118 	struct secasvar *sav;
2119 	struct tcphdr *th;
2120 #ifdef INET6
2121 	struct ip6_hdr *ip6;
2122 	struct in6_addr in6;
2123 	uint32_t plen;
2124 	uint16_t nhdr;
2125 #endif /* INET6 */
2126 	u_short savecsum;
2127 
2128 	KASSERT(m != NULL, ("passed NULL mbuf. Game over."));
2129 	KASSERT(buf != NULL, ("passed NULL storage pointer for MD5 signature"));
2130 	/*
2131 	 * Extract the destination from the IP header in the mbuf.
2132 	 */
2133 	ip = mtod(m, struct ip *);
2134 #ifdef INET6
2135 	ip6 = NULL;     /* Make the compiler happy. */
2136 #endif /* INET6 */
2137 	/*
2138 	 * Look up an SADB entry which matches the address found in
2139 	 * the segment.
2140 	 */
2141 	switch (IP_VHL_V(ip->ip_vhl)) {
2142 	case IPVERSION:
2143 		sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src, (caddr_t)&ip->ip_dst,
2144 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2145 		break;
2146 #ifdef INET6
2147 	case (IPV6_VERSION >> 4):
2148 		ip6 = mtod(m, struct ip6_hdr *);
2149 		sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src, (caddr_t)&ip6->ip6_dst,
2150 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2151 		break;
2152 #endif /* INET6 */
2153 	default:
2154 		return (EINVAL);
2155 		/* NOTREACHED */
2156 		break;
2157 	}
2158 	if (sav == NULL) {
2159 		kprintf("%s: SADB lookup failed\n", __func__);
2160 		return (EINVAL);
2161 	}
2162 	MD5Init(&ctx);
2163 
2164 	/*
2165 	 * Step 1: Update MD5 hash with IP pseudo-header.
2166 	 *
2167 	 * XXX The ippseudo header MUST be digested in network byte order,
2168 	 * or else we'll fail the regression test. Assume all fields we've
2169 	 * been doing arithmetic on have been in host byte order.
2170 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2171 	 * tcp_output(), the underlying ip_len member has not yet been set.
2172 	 */
2173 	switch (IP_VHL_V(ip->ip_vhl)) {
2174 	case IPVERSION:
2175 		ipovly = (struct ipovly *)ip;
2176 		ippseudo.ippseudo_src = ipovly->ih_src;
2177 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2178 		ippseudo.ippseudo_pad = 0;
2179 		ippseudo.ippseudo_p = IPPROTO_TCP;
2180 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2181 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2182 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2183 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2184 		break;
2185 #ifdef INET6
2186 	/*
2187 	 * RFC 2385, 2.0  Proposal
2188 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2189 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2190 	 * extended next header value (to form 32 bits), and 32-bit segment
2191 	 * length.
2192 	 * Note: Upper-Layer Packet Length comes before Next Header.
2193 	 */
2194 	case (IPV6_VERSION >> 4):
2195 		in6 = ip6->ip6_src;
2196 		in6_clearscope(&in6);
2197 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2198 		in6 = ip6->ip6_dst;
2199 		in6_clearscope(&in6);
2200 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2201 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2202 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2203 		nhdr = 0;
2204 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2205 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2206 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2207 		nhdr = IPPROTO_TCP;
2208 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2209 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2210 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2211 		break;
2212 #endif /* INET6 */
2213 	default:
2214 		return (EINVAL);
2215 		/* NOTREACHED */
2216 		break;
2217 	}
2218 	/*
2219 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2220 	 * The TCP checksum must be set to zero.
2221 	 */
2222 	savecsum = th->th_sum;
2223 	th->th_sum = 0;
2224 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2225 	th->th_sum = savecsum;
2226 	/*
2227 	 * Step 3: Update MD5 hash with TCP segment data.
2228 	 *         Use m_apply() to avoid an early m_pullup().
2229 	 */
2230 	if (len > 0)
2231 		m_apply(m, doff, len, tcpsignature_apply, &ctx);
2232 	/*
2233 	 * Step 4: Update MD5 hash with shared secret.
2234 	 */
2235 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2236 	MD5Final(buf, &ctx);
2237 	key_sa_recordxfer(sav, m);
2238 	key_freesav(sav);
2239 	return (0);
2240 }
2241 
2242 int
2243 tcpsignature_apply(void *fstate, void *data, unsigned int len)
2244 {
2245 
2246 	MD5Update((MD5_CTX *)fstate, (unsigned char *)data, len);
2247 	return (0);
2248 }
2249 #endif /* TCP_SIGNATURE */
2250