xref: /dragonfly/sys/netinet/tcp_subr.c (revision 77a6b00e)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. Neither the name of the University nor the names of its contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  *
62  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
63  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
64  */
65 
66 #include "opt_inet.h"
67 #include "opt_inet6.h"
68 #include "opt_tcpdebug.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/callout.h>
73 #include <sys/kernel.h>
74 #include <sys/sysctl.h>
75 #include <sys/malloc.h>
76 #include <sys/mpipe.h>
77 #include <sys/mbuf.h>
78 #ifdef INET6
79 #include <sys/domain.h>
80 #endif
81 #include <sys/proc.h>
82 #include <sys/priv.h>
83 #include <sys/socket.h>
84 #include <sys/socketops.h>
85 #include <sys/socketvar.h>
86 #include <sys/protosw.h>
87 #include <sys/random.h>
88 #include <sys/in_cksum.h>
89 #include <sys/ktr.h>
90 
91 #include <net/route.h>
92 #include <net/if.h>
93 #include <net/netisr2.h>
94 
95 #define	_IP_VHL
96 #include <netinet/in.h>
97 #include <netinet/in_systm.h>
98 #include <netinet/ip.h>
99 #include <netinet/ip6.h>
100 #include <netinet/in_pcb.h>
101 #include <netinet6/in6_pcb.h>
102 #include <netinet/in_var.h>
103 #include <netinet/ip_var.h>
104 #include <netinet6/ip6_var.h>
105 #include <netinet/ip_icmp.h>
106 #ifdef INET6
107 #include <netinet/icmp6.h>
108 #endif
109 #include <netinet/tcp.h>
110 #include <netinet/tcp_fsm.h>
111 #include <netinet/tcp_seq.h>
112 #include <netinet/tcp_timer.h>
113 #include <netinet/tcp_timer2.h>
114 #include <netinet/tcp_var.h>
115 #include <netinet6/tcp6_var.h>
116 #include <netinet/tcpip.h>
117 #ifdef TCPDEBUG
118 #include <netinet/tcp_debug.h>
119 #endif
120 #include <netinet6/ip6protosw.h>
121 
122 #include <sys/md5.h>
123 #include <machine/smp.h>
124 
125 #include <sys/msgport2.h>
126 #include <sys/mplock2.h>
127 #include <net/netmsg2.h>
128 
129 #if !defined(KTR_TCP)
130 #define KTR_TCP		KTR_ALL
131 #endif
132 /*
133 KTR_INFO_MASTER(tcp);
134 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
135 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
136 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
137 #define logtcp(name)	KTR_LOG(tcp_ ## name)
138 */
139 
140 #define TCP_IW_MAXSEGS_DFLT	4
141 #define TCP_IW_CAPSEGS_DFLT	4
142 
143 struct tcp_reass_pcpu {
144 	int			draining;
145 	struct netmsg_base	drain_nmsg;
146 } __cachealign;
147 
148 struct inpcbinfo tcbinfo[MAXCPU];
149 struct tcpcbackq tcpcbackq[MAXCPU];
150 struct tcp_reass_pcpu tcp_reassq[MAXCPU];
151 
152 int tcp_mssdflt = TCP_MSS;
153 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
154     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
155 
156 #ifdef INET6
157 int tcp_v6mssdflt = TCP6_MSS;
158 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
159     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
160 #endif
161 
162 /*
163  * Minimum MSS we accept and use. This prevents DoS attacks where
164  * we are forced to a ridiculous low MSS like 20 and send hundreds
165  * of packets instead of one. The effect scales with the available
166  * bandwidth and quickly saturates the CPU and network interface
167  * with packet generation and sending. Set to zero to disable MINMSS
168  * checking. This setting prevents us from sending too small packets.
169  */
170 int tcp_minmss = TCP_MINMSS;
171 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
172     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
173 
174 #if 0
175 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
176 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
177     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
178 #endif
179 
180 int tcp_do_rfc1323 = 1;
181 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
182     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
183 
184 static int tcp_tcbhashsize = 0;
185 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
186      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
187 
188 static int do_tcpdrain = 1;
189 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
190      "Enable tcp_drain routine for extra help when low on mbufs");
191 
192 static int icmp_may_rst = 1;
193 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
194     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
195 
196 /*
197  * Recommend 20 (6 times in two minutes)
198  *
199  * Lower values may cause the sequence space to cycle too quickly and lose
200  * its signed monotonically-increasing nature within the 2-minute TIMEDWAIT
201  * window.
202  */
203 static int tcp_isn_reseed_interval = 20;
204 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
205     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
206 
207 /*
208  * TCP bandwidth limiting sysctls.  The inflight limiter is now turned on
209  * by default, but with generous values which should allow maximal
210  * bandwidth.  In particular, the slop defaults to 50 (5 packets).
211  *
212  * The reason for doing this is that the limiter is the only mechanism we
213  * have which seems to do a really good job preventing receiver RX rings
214  * on network interfaces from getting blown out.  Even though GigE/10GigE
215  * is supposed to flow control it looks like either it doesn't actually
216  * do it or Open Source drivers do not properly enable it.
217  *
218  * People using the limiter to reduce bottlenecks on slower WAN connections
219  * should set the slop to 20 (2 packets).
220  */
221 static int tcp_inflight_enable = 1;
222 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
223     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
224 
225 static int tcp_inflight_debug = 0;
226 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
227     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
228 
229 /*
230  * NOTE: tcp_inflight_start is essentially the starting receive window
231  *	 for a connection.  If set too low then fetches over tcp
232  *	 connections will take noticably longer to ramp-up over
233  *	 high-latency connections.  6144 is too low for a default,
234  *	 use something more reasonable.
235  */
236 static int tcp_inflight_start = 33792;
237 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_start, CTLFLAG_RW,
238     &tcp_inflight_start, 0, "Start value for TCP inflight window");
239 
240 static int tcp_inflight_min = 6144;
241 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
242     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
243 
244 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
245 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
246     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
247 
248 static int tcp_inflight_stab = 50;
249 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
250     &tcp_inflight_stab, 0, "Fudge bw 1/10% (50=5%)");
251 
252 static int tcp_inflight_adjrtt = 2;
253 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_adjrtt, CTLFLAG_RW,
254     &tcp_inflight_adjrtt, 0, "Slop for rtt 1/(hz*32)");
255 
256 static int tcp_do_rfc3390 = 1;
257 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
258     &tcp_do_rfc3390, 0,
259     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
260 
261 static u_long tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
262 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwmaxsegs, CTLFLAG_RW,
263     &tcp_iw_maxsegs, 0, "TCP IW segments max");
264 
265 static u_long tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
266 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwcapsegs, CTLFLAG_RW,
267     &tcp_iw_capsegs, 0, "TCP IW segments");
268 
269 int tcp_low_rtobase = 1;
270 SYSCTL_INT(_net_inet_tcp, OID_AUTO, low_rtobase, CTLFLAG_RW,
271     &tcp_low_rtobase, 0, "Lowering the Initial RTO (RFC 6298)");
272 
273 static int tcp_do_ncr = 1;
274 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr, CTLFLAG_RW,
275     &tcp_do_ncr, 0, "Non-Congestion Robustness (RFC 4653)");
276 
277 int tcp_ncr_linklocal = 0;
278 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr_linklocal, CTLFLAG_RW,
279     &tcp_ncr_linklocal, 0,
280     "Enable Non-Congestion Robustness (RFC 4653) on link local network");
281 
282 int tcp_ncr_rxtthresh_max = 16;
283 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr_rxtthresh_max, CTLFLAG_RW,
284     &tcp_ncr_rxtthresh_max, 0,
285     "Non-Congestion Robustness (RFC 4653), DupThresh upper limit");
286 
287 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
288 static struct malloc_pipe tcptemp_mpipe;
289 
290 static void tcp_willblock(void);
291 static void tcp_notify (struct inpcb *, int);
292 
293 struct tcp_stats tcpstats_percpu[MAXCPU] __cachealign;
294 struct tcp_state_count tcpstate_count[MAXCPU] __cachealign;
295 
296 static void	tcp_drain_dispatch(netmsg_t nmsg);
297 
298 static int
299 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
300 {
301 	int cpu, error = 0;
302 
303 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
304 		if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
305 					sizeof(struct tcp_stats))))
306 			break;
307 		if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
308 				       sizeof(struct tcp_stats))))
309 			break;
310 	}
311 
312 	return (error);
313 }
314 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
315     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
316 
317 /*
318  * Target size of TCP PCB hash tables. Must be a power of two.
319  *
320  * Note that this can be overridden by the kernel environment
321  * variable net.inet.tcp.tcbhashsize
322  */
323 #ifndef TCBHASHSIZE
324 #define	TCBHASHSIZE	512
325 #endif
326 CTASSERT(powerof2(TCBHASHSIZE));
327 
328 /*
329  * This is the actual shape of what we allocate using the zone
330  * allocator.  Doing it this way allows us to protect both structures
331  * using the same generation count, and also eliminates the overhead
332  * of allocating tcpcbs separately.  By hiding the structure here,
333  * we avoid changing most of the rest of the code (although it needs
334  * to be changed, eventually, for greater efficiency).
335  */
336 #define	ALIGNMENT	32
337 #define	ALIGNM1		(ALIGNMENT - 1)
338 struct	inp_tp {
339 	union {
340 		struct	inpcb inp;
341 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
342 	} inp_tp_u;
343 	struct	tcpcb tcb;
344 	struct	tcp_callout inp_tp_rexmt;
345 	struct	tcp_callout inp_tp_persist;
346 	struct	tcp_callout inp_tp_keep;
347 	struct	tcp_callout inp_tp_2msl;
348 	struct	tcp_callout inp_tp_delack;
349 	struct	netmsg_tcp_timer inp_tp_timermsg;
350 	struct	netmsg_base inp_tp_sndmore;
351 };
352 #undef ALIGNMENT
353 #undef ALIGNM1
354 
355 /*
356  * Tcp initialization
357  */
358 void
359 tcp_init(void)
360 {
361 	struct inpcbportinfo *portinfo;
362 	struct inpcbinfo *ticb;
363 	int hashsize = TCBHASHSIZE, portinfo_hsize;
364 	int cpu;
365 
366 	/*
367 	 * note: tcptemp is used for keepalives, and it is ok for an
368 	 * allocation to fail so do not specify MPF_INT.
369 	 */
370 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
371 		    25, -1, 0, NULL, NULL, NULL);
372 
373 	tcp_delacktime = TCPTV_DELACK;
374 	tcp_keepinit = TCPTV_KEEP_INIT;
375 	tcp_keepidle = TCPTV_KEEP_IDLE;
376 	tcp_keepintvl = TCPTV_KEEPINTVL;
377 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
378 	tcp_msl = TCPTV_MSL;
379 	tcp_rexmit_min = TCPTV_MIN;
380 	if (tcp_rexmit_min < 1) /* if kern.hz is too low */
381 		tcp_rexmit_min = 1;
382 	tcp_rexmit_slop = TCPTV_CPU_VAR;
383 
384 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
385 	if (!powerof2(hashsize)) {
386 		kprintf("WARNING: TCB hash size not a power of 2\n");
387 		hashsize = TCBHASHSIZE; /* safe default */
388 	}
389 	tcp_tcbhashsize = hashsize;
390 
391 	portinfo_hsize = 65536 / netisr_ncpus;
392 	if (portinfo_hsize > hashsize)
393 		portinfo_hsize = hashsize;
394 
395 	portinfo = kmalloc(sizeof(*portinfo) * netisr_ncpus, M_PCB,
396 			   M_WAITOK | M_CACHEALIGN);
397 
398 	for (cpu = 0; cpu < netisr_ncpus; cpu++) {
399 		ticb = &tcbinfo[cpu];
400 		in_pcbinfo_init(ticb, cpu, FALSE);
401 		ticb->hashbase = hashinit(hashsize, M_PCB,
402 					  &ticb->hashmask);
403 		in_pcbportinfo_init(&portinfo[cpu], portinfo_hsize, cpu);
404 		in_pcbportinfo_set(ticb, portinfo, netisr_ncpus);
405 		ticb->wildcardhashbase = hashinit(hashsize, M_PCB,
406 						  &ticb->wildcardhashmask);
407 		ticb->localgrphashbase = hashinit(hashsize, M_PCB,
408 						  &ticb->localgrphashmask);
409 		ticb->ipi_size = sizeof(struct inp_tp);
410 		TAILQ_INIT(&tcpcbackq[cpu].head);
411 	}
412 
413 	tcp_reass_maxseg = nmbclusters / 16;
414 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
415 
416 #ifdef INET6
417 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
418 #else
419 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
420 #endif
421 	if (max_protohdr < TCP_MINPROTOHDR)
422 		max_protohdr = TCP_MINPROTOHDR;
423 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
424 		panic("tcp_init");
425 #undef TCP_MINPROTOHDR
426 
427 	/*
428 	 * Initialize TCP statistics counters for each CPU.
429 	 */
430 	for (cpu = 0; cpu < netisr_ncpus; ++cpu)
431 		bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
432 
433 	/*
434 	 * Initialize netmsgs for TCP drain
435 	 */
436 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
437 		netmsg_init(&tcp_reassq[cpu].drain_nmsg, NULL,
438 		    &netisr_adone_rport, MSGF_PRIORITY, tcp_drain_dispatch);
439 	}
440 
441 	syncache_init();
442 	netisr_register_rollup(tcp_willblock, NETISR_ROLLUP_PRIO_TCP);
443 }
444 
445 static void
446 tcp_willblock(void)
447 {
448 	struct tcpcb *tp;
449 	int cpu = mycpuid;
450 
451 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu].head)) != NULL) {
452 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
453 		tp->t_flags &= ~TF_ONOUTPUTQ;
454 		TAILQ_REMOVE(&tcpcbackq[cpu].head, tp, t_outputq);
455 		tcp_output(tp);
456 	}
457 }
458 
459 /*
460  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
461  * tcp_template used to store this data in mbufs, but we now recopy it out
462  * of the tcpcb each time to conserve mbufs.
463  */
464 void
465 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr, boolean_t tso)
466 {
467 	struct inpcb *inp = tp->t_inpcb;
468 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
469 
470 #ifdef INET6
471 	if (INP_ISIPV6(inp)) {
472 		struct ip6_hdr *ip6;
473 
474 		ip6 = (struct ip6_hdr *)ip_ptr;
475 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
476 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
477 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
478 			(IPV6_VERSION & IPV6_VERSION_MASK);
479 		ip6->ip6_nxt = IPPROTO_TCP;
480 		ip6->ip6_plen = sizeof(struct tcphdr);
481 		ip6->ip6_src = inp->in6p_laddr;
482 		ip6->ip6_dst = inp->in6p_faddr;
483 		tcp_hdr->th_sum = 0;
484 	} else
485 #endif
486 	{
487 		struct ip *ip = (struct ip *) ip_ptr;
488 		u_int plen;
489 
490 		ip->ip_vhl = IP_VHL_BORING;
491 		ip->ip_tos = 0;
492 		ip->ip_len = 0;
493 		ip->ip_id = 0;
494 		ip->ip_off = 0;
495 		ip->ip_ttl = 0;
496 		ip->ip_sum = 0;
497 		ip->ip_p = IPPROTO_TCP;
498 		ip->ip_src = inp->inp_laddr;
499 		ip->ip_dst = inp->inp_faddr;
500 
501 		if (tso)
502 			plen = htons(IPPROTO_TCP);
503 		else
504 			plen = htons(sizeof(struct tcphdr) + IPPROTO_TCP);
505 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
506 		    ip->ip_dst.s_addr, plen);
507 	}
508 
509 	tcp_hdr->th_sport = inp->inp_lport;
510 	tcp_hdr->th_dport = inp->inp_fport;
511 	tcp_hdr->th_seq = 0;
512 	tcp_hdr->th_ack = 0;
513 	tcp_hdr->th_x2 = 0;
514 	tcp_hdr->th_off = 5;
515 	tcp_hdr->th_flags = 0;
516 	tcp_hdr->th_win = 0;
517 	tcp_hdr->th_urp = 0;
518 }
519 
520 /*
521  * Create template to be used to send tcp packets on a connection.
522  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
523  * use for this function is in keepalives, which use tcp_respond.
524  */
525 struct tcptemp *
526 tcp_maketemplate(struct tcpcb *tp)
527 {
528 	struct tcptemp *tmp;
529 
530 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
531 		return (NULL);
532 	tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t, FALSE);
533 	return (tmp);
534 }
535 
536 void
537 tcp_freetemplate(struct tcptemp *tmp)
538 {
539 	mpipe_free(&tcptemp_mpipe, tmp);
540 }
541 
542 /*
543  * Send a single message to the TCP at address specified by
544  * the given TCP/IP header.  If m == NULL, then we make a copy
545  * of the tcpiphdr at ti and send directly to the addressed host.
546  * This is used to force keep alive messages out using the TCP
547  * template for a connection.  If flags are given then we send
548  * a message back to the TCP which originated the * segment ti,
549  * and discard the mbuf containing it and any other attached mbufs.
550  *
551  * In any case the ack and sequence number of the transmitted
552  * segment are as specified by the parameters.
553  *
554  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
555  */
556 void
557 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
558 	    tcp_seq ack, tcp_seq seq, int flags)
559 {
560 	int tlen;
561 	long win = 0;
562 	struct route *ro = NULL;
563 	struct route sro;
564 	struct ip *ip = ipgen;
565 	struct tcphdr *nth;
566 	int ipflags = 0;
567 	struct route_in6 *ro6 = NULL;
568 	struct route_in6 sro6;
569 	struct ip6_hdr *ip6 = ipgen;
570 	struct inpcb *inp = NULL;
571 	boolean_t use_tmpro = TRUE;
572 #ifdef INET6
573 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
574 #else
575 	const boolean_t isipv6 = FALSE;
576 #endif
577 
578 	if (tp != NULL) {
579 		inp = tp->t_inpcb;
580 		if (!(flags & TH_RST)) {
581 			win = ssb_space(&inp->inp_socket->so_rcv);
582 			if (win < 0)
583 				win = 0;
584 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
585 				win = (long)TCP_MAXWIN << tp->rcv_scale;
586 		}
587 		/*
588 		 * Don't use the route cache of a listen socket,
589 		 * it is not MPSAFE; use temporary route cache.
590 		 */
591 		if (tp->t_state != TCPS_LISTEN) {
592 			if (isipv6)
593 				ro6 = &inp->in6p_route;
594 			else
595 				ro = &inp->inp_route;
596 			use_tmpro = FALSE;
597 		}
598 	}
599 	if (use_tmpro) {
600 		if (isipv6) {
601 			ro6 = &sro6;
602 			bzero(ro6, sizeof *ro6);
603 		} else {
604 			ro = &sro;
605 			bzero(ro, sizeof *ro);
606 		}
607 	}
608 	if (m == NULL) {
609 		m = m_gethdr(M_NOWAIT, MT_HEADER);
610 		if (m == NULL)
611 			return;
612 		tlen = 0;
613 		m->m_data += max_linkhdr;
614 		if (isipv6) {
615 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
616 			ip6 = mtod(m, struct ip6_hdr *);
617 			nth = (struct tcphdr *)(ip6 + 1);
618 		} else {
619 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
620 			ip = mtod(m, struct ip *);
621 			nth = (struct tcphdr *)(ip + 1);
622 		}
623 		bcopy(th, nth, sizeof(struct tcphdr));
624 		flags = TH_ACK;
625 	} else {
626 		m_freem(m->m_next);
627 		m->m_next = NULL;
628 		m->m_data = (caddr_t)ipgen;
629 		/* m_len is set later */
630 		tlen = 0;
631 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
632 		if (isipv6) {
633 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
634 			nth = (struct tcphdr *)(ip6 + 1);
635 		} else {
636 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
637 			nth = (struct tcphdr *)(ip + 1);
638 		}
639 		if (th != nth) {
640 			/*
641 			 * this is usually a case when an extension header
642 			 * exists between the IPv6 header and the
643 			 * TCP header.
644 			 */
645 			nth->th_sport = th->th_sport;
646 			nth->th_dport = th->th_dport;
647 		}
648 		xchg(nth->th_dport, nth->th_sport, n_short);
649 #undef xchg
650 	}
651 	if (isipv6) {
652 		ip6->ip6_flow = 0;
653 		ip6->ip6_vfc = IPV6_VERSION;
654 		ip6->ip6_nxt = IPPROTO_TCP;
655 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
656 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
657 	} else {
658 		tlen += sizeof(struct tcpiphdr);
659 		ip->ip_len = tlen;
660 		ip->ip_ttl = ip_defttl;
661 	}
662 	m->m_len = tlen;
663 	m->m_pkthdr.len = tlen;
664 	m->m_pkthdr.rcvif = NULL;
665 	nth->th_seq = htonl(seq);
666 	nth->th_ack = htonl(ack);
667 	nth->th_x2 = 0;
668 	nth->th_off = sizeof(struct tcphdr) >> 2;
669 	nth->th_flags = flags;
670 	if (tp != NULL)
671 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
672 	else
673 		nth->th_win = htons((u_short)win);
674 	nth->th_urp = 0;
675 	if (isipv6) {
676 		nth->th_sum = 0;
677 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
678 					sizeof(struct ip6_hdr),
679 					tlen - sizeof(struct ip6_hdr));
680 		ip6->ip6_hlim = in6_selecthlim(inp,
681 		    (ro6 && ro6->ro_rt) ? ro6->ro_rt->rt_ifp : NULL);
682 	} else {
683 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
684 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
685 		m->m_pkthdr.csum_flags = CSUM_TCP;
686 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
687 		m->m_pkthdr.csum_thlen = sizeof(struct tcphdr);
688 	}
689 #ifdef TCPDEBUG
690 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
691 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
692 #endif
693 	if (isipv6) {
694 		ip6_output(m, NULL, ro6, ipflags, NULL, NULL, inp);
695 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
696 			RTFREE(ro6->ro_rt);
697 			ro6->ro_rt = NULL;
698 		}
699 	} else {
700 		if (inp != NULL && (inp->inp_flags & INP_HASH))
701 			m_sethash(m, inp->inp_hashval);
702 		ipflags |= IP_DEBUGROUTE;
703 		ip_output(m, NULL, ro, ipflags, NULL, inp);
704 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
705 			RTFREE(ro->ro_rt);
706 			ro->ro_rt = NULL;
707 		}
708 	}
709 }
710 
711 /*
712  * Create a new TCP control block, making an
713  * empty reassembly queue and hooking it to the argument
714  * protocol control block.  The `inp' parameter must have
715  * come from the zone allocator set up in tcp_init().
716  */
717 void
718 tcp_newtcpcb(struct inpcb *inp)
719 {
720 	struct inp_tp *it;
721 	struct tcpcb *tp;
722 #ifdef INET6
723 	boolean_t isipv6 = INP_ISIPV6(inp);
724 #else
725 	const boolean_t isipv6 = FALSE;
726 #endif
727 
728 	it = (struct inp_tp *)inp;
729 	tp = &it->tcb;
730 	bzero(tp, sizeof(struct tcpcb));
731 	TAILQ_INIT(&tp->t_segq);
732 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
733 	tp->t_rxtthresh = tcprexmtthresh;
734 
735 	/* Set up our timeouts. */
736 	tp->tt_rexmt = &it->inp_tp_rexmt;
737 	tp->tt_persist = &it->inp_tp_persist;
738 	tp->tt_keep = &it->inp_tp_keep;
739 	tp->tt_2msl = &it->inp_tp_2msl;
740 	tp->tt_delack = &it->inp_tp_delack;
741 	tcp_inittimers(tp);
742 
743 	/*
744 	 * Zero out timer message.  We don't create it here,
745 	 * since the current CPU may not be the owner of this
746 	 * inpcb.
747 	 */
748 	tp->tt_msg = &it->inp_tp_timermsg;
749 	bzero(tp->tt_msg, sizeof(*tp->tt_msg));
750 
751 	tp->t_keepinit = tcp_keepinit;
752 	tp->t_keepidle = tcp_keepidle;
753 	tp->t_keepintvl = tcp_keepintvl;
754 	tp->t_keepcnt = tcp_keepcnt;
755 	tp->t_maxidle = tp->t_keepintvl * tp->t_keepcnt;
756 
757 	if (tcp_do_ncr)
758 		tp->t_flags |= TF_NCR;
759 	if (tcp_do_rfc1323)
760 		tp->t_flags |= (TF_REQ_SCALE | TF_REQ_TSTMP);
761 
762 	tp->t_inpcb = inp;	/* XXX */
763 	TCP_STATE_INIT(tp);
764 	/*
765 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
766 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
767 	 * reasonable initial retransmit time.
768 	 */
769 	tp->t_srtt = TCPTV_SRTTBASE;
770 	tp->t_rttvar =
771 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
772 	tp->t_rttmin = tcp_rexmit_min;
773 	tp->t_rxtcur = TCPTV_RTOBASE;
774 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
775 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
776 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
777 	tp->snd_last = ticks;
778 	tp->t_rcvtime = ticks;
779 	/*
780 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
781 	 * because the socket may be bound to an IPv6 wildcard address,
782 	 * which may match an IPv4-mapped IPv6 address.
783 	 */
784 	inp->inp_ip_ttl = ip_defttl;
785 	inp->inp_ppcb = tp;
786 	tcp_sack_tcpcb_init(tp);
787 
788 	tp->tt_sndmore = &it->inp_tp_sndmore;
789 	tcp_output_init(tp);
790 }
791 
792 /*
793  * Drop a TCP connection, reporting the specified error.
794  * If connection is synchronized, then send a RST to peer.
795  */
796 struct tcpcb *
797 tcp_drop(struct tcpcb *tp, int error)
798 {
799 	struct socket *so = tp->t_inpcb->inp_socket;
800 
801 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
802 		TCP_STATE_CHANGE(tp, TCPS_CLOSED);
803 		tcp_output(tp);
804 		tcpstat.tcps_drops++;
805 	} else
806 		tcpstat.tcps_conndrops++;
807 	if (error == ETIMEDOUT && tp->t_softerror)
808 		error = tp->t_softerror;
809 	so->so_error = error;
810 	return (tcp_close(tp));
811 }
812 
813 struct netmsg_listen_detach {
814 	struct netmsg_base	base;
815 	struct tcpcb		*nm_tp;
816 	struct tcpcb		*nm_tp_inh;
817 };
818 
819 static void
820 tcp_listen_detach_handler(netmsg_t msg)
821 {
822 	struct netmsg_listen_detach *nmsg = (struct netmsg_listen_detach *)msg;
823 	struct tcpcb *tp = nmsg->nm_tp;
824 	int cpu = mycpuid, nextcpu;
825 
826 	if (tp->t_flags & TF_LISTEN) {
827 		syncache_destroy(tp, nmsg->nm_tp_inh);
828 		tcp_pcbport_merge_oncpu(tp);
829 	}
830 
831 	in_pcbremwildcardhash_oncpu(tp->t_inpcb, &tcbinfo[cpu]);
832 
833 	nextcpu = cpu + 1;
834 	if (nextcpu < netisr_ncpus)
835 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &nmsg->base.lmsg);
836 	else
837 		lwkt_replymsg(&nmsg->base.lmsg, 0);
838 }
839 
840 /*
841  * Close a TCP control block:
842  *	discard all space held by the tcp
843  *	discard internet protocol block
844  *	wake up any sleepers
845  */
846 struct tcpcb *
847 tcp_close(struct tcpcb *tp)
848 {
849 	struct tseg_qent *q;
850 	struct inpcb *inp = tp->t_inpcb;
851 	struct inpcb *inp_inh = NULL;
852 	struct tcpcb *tp_inh = NULL;
853 	struct socket *so = inp->inp_socket;
854 	struct rtentry *rt;
855 	boolean_t dosavessthresh;
856 #ifdef INET6
857 	boolean_t isipv6 = INP_ISIPV6(inp);
858 #else
859 	const boolean_t isipv6 = FALSE;
860 #endif
861 
862 	if (tp->t_flags & TF_LISTEN) {
863 		/*
864 		 * Pending socket/syncache inheritance
865 		 *
866 		 * If this is a listen(2) socket, find another listen(2)
867 		 * socket in the same local group, which could inherit
868 		 * the syncache and sockets pending on the completion
869 		 * and incompletion queues.
870 		 *
871 		 * NOTE:
872 		 * Currently the inheritance could only happen on the
873 		 * listen(2) sockets w/ SO_REUSEPORT set.
874 		 */
875 		ASSERT_NETISR0;
876 		inp_inh = in_pcblocalgroup_last(&tcbinfo[0], inp);
877 		if (inp_inh != NULL)
878 			tp_inh = intotcpcb(inp_inh);
879 	}
880 
881 	/*
882 	 * INP_WILDCARD indicates that listen(2) has been called on
883 	 * this socket.  This implies:
884 	 * - A wildcard inp's hash is replicated for each protocol thread.
885 	 * - Syncache for this inp grows independently in each protocol
886 	 *   thread.
887 	 * - There is more than one cpu
888 	 *
889 	 * We have to chain a message to the rest of the protocol threads
890 	 * to cleanup the wildcard hash and the syncache.  The cleanup
891 	 * in the current protocol thread is defered till the end of this
892 	 * function (syncache_destroy and in_pcbdetach).
893 	 *
894 	 * NOTE:
895 	 * After cleanup the inp's hash and syncache entries, this inp will
896 	 * no longer be available to the rest of the protocol threads, so we
897 	 * are safe to whack the inp in the following code.
898 	 */
899 	if ((inp->inp_flags & INP_WILDCARD) && netisr_ncpus > 1) {
900 		struct netmsg_listen_detach nmsg;
901 
902 		KKASSERT(so->so_port == netisr_cpuport(0));
903 		ASSERT_NETISR0;
904 		KKASSERT(inp->inp_pcbinfo == &tcbinfo[0]);
905 
906 		netmsg_init(&nmsg.base, NULL, &curthread->td_msgport,
907 			    MSGF_PRIORITY, tcp_listen_detach_handler);
908 		nmsg.nm_tp = tp;
909 		nmsg.nm_tp_inh = tp_inh;
910 		lwkt_domsg(netisr_cpuport(1), &nmsg.base.lmsg, 0);
911 	}
912 
913 	TCP_STATE_TERM(tp);
914 
915 	/*
916 	 * Make sure that all of our timers are stopped before we
917 	 * delete the PCB.  For listen TCP socket (tp->tt_msg == NULL),
918 	 * timers are never used.  If timer message is never created
919 	 * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
920 	 */
921 	if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
922 		tcp_callout_terminate(tp, tp->tt_rexmt);
923 		tcp_callout_terminate(tp, tp->tt_persist);
924 		tcp_callout_terminate(tp, tp->tt_keep);
925 		tcp_callout_terminate(tp, tp->tt_2msl);
926 		tcp_callout_terminate(tp, tp->tt_delack);
927 	}
928 
929 	if (tp->t_flags & TF_ONOUTPUTQ) {
930 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
931 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu].head, tp, t_outputq);
932 		tp->t_flags &= ~TF_ONOUTPUTQ;
933 	}
934 
935 	/*
936 	 * If we got enough samples through the srtt filter,
937 	 * save the rtt and rttvar in the routing entry.
938 	 * 'Enough' is arbitrarily defined as the 16 samples.
939 	 * 16 samples is enough for the srtt filter to converge
940 	 * to within 5% of the correct value; fewer samples and
941 	 * we could save a very bogus rtt.
942 	 *
943 	 * Don't update the default route's characteristics and don't
944 	 * update anything that the user "locked".
945 	 */
946 	if (tp->t_rttupdated >= 16) {
947 		u_long i = 0;
948 
949 		if (isipv6) {
950 			struct sockaddr_in6 *sin6;
951 
952 			if ((rt = inp->in6p_route.ro_rt) == NULL)
953 				goto no_valid_rt;
954 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
955 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
956 				goto no_valid_rt;
957 		} else
958 			if ((rt = inp->inp_route.ro_rt) == NULL ||
959 			    ((struct sockaddr_in *)rt_key(rt))->
960 			     sin_addr.s_addr == INADDR_ANY)
961 				goto no_valid_rt;
962 
963 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
964 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
965 			if (rt->rt_rmx.rmx_rtt && i)
966 				/*
967 				 * filter this update to half the old & half
968 				 * the new values, converting scale.
969 				 * See route.h and tcp_var.h for a
970 				 * description of the scaling constants.
971 				 */
972 				rt->rt_rmx.rmx_rtt =
973 				    (rt->rt_rmx.rmx_rtt + i) / 2;
974 			else
975 				rt->rt_rmx.rmx_rtt = i;
976 			tcpstat.tcps_cachedrtt++;
977 		}
978 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
979 			i = tp->t_rttvar *
980 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
981 			if (rt->rt_rmx.rmx_rttvar && i)
982 				rt->rt_rmx.rmx_rttvar =
983 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
984 			else
985 				rt->rt_rmx.rmx_rttvar = i;
986 			tcpstat.tcps_cachedrttvar++;
987 		}
988 		/*
989 		 * The old comment here said:
990 		 * update the pipelimit (ssthresh) if it has been updated
991 		 * already or if a pipesize was specified & the threshhold
992 		 * got below half the pipesize.  I.e., wait for bad news
993 		 * before we start updating, then update on both good
994 		 * and bad news.
995 		 *
996 		 * But we want to save the ssthresh even if no pipesize is
997 		 * specified explicitly in the route, because such
998 		 * connections still have an implicit pipesize specified
999 		 * by the global tcp_sendspace.  In the absence of a reliable
1000 		 * way to calculate the pipesize, it will have to do.
1001 		 */
1002 		i = tp->snd_ssthresh;
1003 		if (rt->rt_rmx.rmx_sendpipe != 0)
1004 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
1005 		else
1006 			dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
1007 		if (dosavessthresh ||
1008 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
1009 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
1010 			/*
1011 			 * convert the limit from user data bytes to
1012 			 * packets then to packet data bytes.
1013 			 */
1014 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
1015 			if (i < 2)
1016 				i = 2;
1017 			i *= tp->t_maxseg +
1018 			     (isipv6 ?
1019 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1020 			      sizeof(struct tcpiphdr));
1021 			if (rt->rt_rmx.rmx_ssthresh)
1022 				rt->rt_rmx.rmx_ssthresh =
1023 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
1024 			else
1025 				rt->rt_rmx.rmx_ssthresh = i;
1026 			tcpstat.tcps_cachedssthresh++;
1027 		}
1028 	}
1029 
1030 no_valid_rt:
1031 	/* free the reassembly queue, if any */
1032 	while((q = TAILQ_FIRST(&tp->t_segq)) != NULL) {
1033 		TAILQ_REMOVE(&tp->t_segq, q, tqe_q);
1034 		m_freem(q->tqe_m);
1035 		kfree(q, M_TSEGQ);
1036 		atomic_add_int(&tcp_reass_qsize, -1);
1037 	}
1038 	/* throw away SACK blocks in scoreboard*/
1039 	if (TCP_DO_SACK(tp))
1040 		tcp_sack_destroy(&tp->scb);
1041 
1042 	inp->inp_ppcb = NULL;
1043 	soisdisconnected(so);
1044 	/* note: pcb detached later on */
1045 
1046 	tcp_destroy_timermsg(tp);
1047 	tcp_output_cancel(tp);
1048 
1049 	if (tp->t_flags & TF_LISTEN) {
1050 		syncache_destroy(tp, tp_inh);
1051 		tcp_pcbport_merge_oncpu(tp);
1052 		tcp_pcbport_destroy(tp);
1053 		if (inp_inh != NULL && inp_inh->inp_socket != NULL) {
1054 			/*
1055 			 * Pending sockets inheritance only needs
1056 			 * to be done once in the current thread,
1057 			 * i.e. netisr0.
1058 			 */
1059 			soinherit(so, inp_inh->inp_socket);
1060 		}
1061 	}
1062 	KASSERT(tp->t_pcbport == NULL, ("tcpcb port cache is not destroyed"));
1063 
1064 	so_async_rcvd_drop(so);
1065 	/* Drop the reference for the asynchronized pru_rcvd */
1066 	sofree(so);
1067 
1068 	/*
1069 	 * NOTE:
1070 	 * - Remove self from listen tcpcb per-cpu port cache _before_
1071 	 *   pcbdetach.
1072 	 * - pcbdetach removes any wildcard hash entry on the current CPU.
1073 	 */
1074 	tcp_pcbport_remove(inp);
1075 #ifdef INET6
1076 	if (isipv6)
1077 		in6_pcbdetach(inp);
1078 	else
1079 #endif
1080 		in_pcbdetach(inp);
1081 
1082 	tcpstat.tcps_closed++;
1083 	return (NULL);
1084 }
1085 
1086 /*
1087  * Walk the tcpbs, if existing, and flush the reassembly queue,
1088  * if there is one...
1089  */
1090 static void
1091 tcp_drain_oncpu(struct inpcbinfo *pcbinfo)
1092 {
1093 	struct inpcbhead *head = &pcbinfo->pcblisthead;
1094 	struct inpcb *inpb;
1095 
1096 	/*
1097 	 * Since we run in netisr, it is MP safe, even if
1098 	 * we block during the inpcb list iteration, i.e.
1099 	 * we don't need to use inpcb marker here.
1100 	 */
1101 	ASSERT_NETISR_NCPUS(pcbinfo->cpu);
1102 
1103 	LIST_FOREACH(inpb, head, inp_list) {
1104 		struct tcpcb *tcpb;
1105 		struct tseg_qent *te;
1106 
1107 		if (inpb->inp_flags & INP_PLACEMARKER)
1108 			continue;
1109 
1110 		tcpb = intotcpcb(inpb);
1111 		KASSERT(tcpb != NULL, ("tcp_drain_oncpu: tcpb is NULL"));
1112 
1113 		if ((te = TAILQ_FIRST(&tcpb->t_segq)) != NULL) {
1114 			TAILQ_REMOVE(&tcpb->t_segq, te, tqe_q);
1115 			if (te->tqe_th->th_flags & TH_FIN)
1116 				tcpb->t_flags &= ~TF_QUEDFIN;
1117 			m_freem(te->tqe_m);
1118 			kfree(te, M_TSEGQ);
1119 			atomic_add_int(&tcp_reass_qsize, -1);
1120 			/* retry */
1121 		}
1122 	}
1123 }
1124 
1125 static void
1126 tcp_drain_dispatch(netmsg_t nmsg)
1127 {
1128 	crit_enter();
1129 	lwkt_replymsg(&nmsg->lmsg, 0);  /* reply ASAP */
1130 	crit_exit();
1131 
1132 	tcp_drain_oncpu(&tcbinfo[mycpuid]);
1133 	tcp_reassq[mycpuid].draining = 0;
1134 }
1135 
1136 static void
1137 tcp_drain_ipi(void *arg __unused)
1138 {
1139 	int cpu = mycpuid;
1140 	struct lwkt_msg *msg = &tcp_reassq[cpu].drain_nmsg.lmsg;
1141 
1142 	crit_enter();
1143 	if (msg->ms_flags & MSGF_DONE)
1144 		lwkt_sendmsg_oncpu(netisr_cpuport(cpu), msg);
1145 	crit_exit();
1146 }
1147 
1148 void
1149 tcp_drain(void)
1150 {
1151 	cpumask_t mask;
1152 	int cpu;
1153 
1154 	if (!do_tcpdrain)
1155 		return;
1156 
1157 	if (tcp_reass_qsize == 0)
1158 		return;
1159 
1160 	CPUMASK_ASSBMASK(mask, netisr_ncpus);
1161 	CPUMASK_ANDMASK(mask, smp_active_mask);
1162 
1163 	cpu = mycpuid;
1164 	if (IN_NETISR_NCPUS(cpu)) {
1165 		tcp_drain_oncpu(&tcbinfo[cpu]);
1166 		CPUMASK_NANDBIT(mask, cpu);
1167 	}
1168 
1169 	if (tcp_reass_qsize < netisr_ncpus) {
1170 		/* Does not worth the trouble. */
1171 		return;
1172 	}
1173 
1174 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
1175 		if (!CPUMASK_TESTBIT(mask, cpu))
1176 			continue;
1177 
1178 		if (tcp_reassq[cpu].draining) {
1179 			/* Draining; skip this cpu. */
1180 			CPUMASK_NANDBIT(mask, cpu);
1181 			continue;
1182 		}
1183 		tcp_reassq[cpu].draining = 1;
1184 	}
1185 
1186 	if (CPUMASK_TESTNZERO(mask))
1187 		lwkt_send_ipiq_mask(mask, tcp_drain_ipi, NULL);
1188 }
1189 
1190 /*
1191  * Notify a tcp user of an asynchronous error;
1192  * store error as soft error, but wake up user
1193  * (for now, won't do anything until can select for soft error).
1194  *
1195  * Do not wake up user since there currently is no mechanism for
1196  * reporting soft errors (yet - a kqueue filter may be added).
1197  */
1198 static void
1199 tcp_notify(struct inpcb *inp, int error)
1200 {
1201 	struct tcpcb *tp = intotcpcb(inp);
1202 
1203 	/*
1204 	 * Ignore some errors if we are hooked up.
1205 	 * If connection hasn't completed, has retransmitted several times,
1206 	 * and receives a second error, give up now.  This is better
1207 	 * than waiting a long time to establish a connection that
1208 	 * can never complete.
1209 	 */
1210 	if (tp->t_state == TCPS_ESTABLISHED &&
1211 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1212 	      error == EHOSTDOWN)) {
1213 		return;
1214 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1215 	    tp->t_softerror)
1216 		tcp_drop(tp, error);
1217 	else
1218 		tp->t_softerror = error;
1219 #if 0
1220 	wakeup(&so->so_timeo);
1221 	sorwakeup(so);
1222 	sowwakeup(so);
1223 #endif
1224 }
1225 
1226 static int
1227 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1228 {
1229 	int error, i, n;
1230 	struct inpcb *marker;
1231 	struct inpcb *inp;
1232 	int origcpu, ccpu;
1233 
1234 	error = 0;
1235 	n = 0;
1236 
1237 	/*
1238 	 * The process of preparing the TCB list is too time-consuming and
1239 	 * resource-intensive to repeat twice on every request.
1240 	 */
1241 	if (req->oldptr == NULL) {
1242 		for (ccpu = 0; ccpu < netisr_ncpus; ++ccpu)
1243 			n += tcbinfo[ccpu].ipi_count;
1244 		req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1245 		return (0);
1246 	}
1247 
1248 	if (req->newptr != NULL)
1249 		return (EPERM);
1250 
1251 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1252 	marker->inp_flags |= INP_PLACEMARKER;
1253 
1254 	/*
1255 	 * OK, now we're committed to doing something.  Run the inpcb list
1256 	 * for each cpu in the system and construct the output.  Use a
1257 	 * list placemarker to deal with list changes occuring during
1258 	 * copyout blockages (but otherwise depend on being on the correct
1259 	 * cpu to avoid races).
1260 	 */
1261 	origcpu = mycpu->gd_cpuid;
1262 	for (ccpu = 0; ccpu < netisr_ncpus && error == 0; ++ccpu) {
1263 		caddr_t inp_ppcb;
1264 		struct xtcpcb xt;
1265 
1266 		lwkt_migratecpu(ccpu);
1267 
1268 		n = tcbinfo[ccpu].ipi_count;
1269 
1270 		LIST_INSERT_HEAD(&tcbinfo[ccpu].pcblisthead, marker, inp_list);
1271 		i = 0;
1272 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1273 			/*
1274 			 * process a snapshot of pcbs, ignoring placemarkers
1275 			 * and using our own to allow SYSCTL_OUT to block.
1276 			 */
1277 			LIST_REMOVE(marker, inp_list);
1278 			LIST_INSERT_AFTER(inp, marker, inp_list);
1279 
1280 			if (inp->inp_flags & INP_PLACEMARKER)
1281 				continue;
1282 			if (prison_xinpcb(req->td, inp))
1283 				continue;
1284 
1285 			xt.xt_len = sizeof xt;
1286 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1287 			inp_ppcb = inp->inp_ppcb;
1288 			if (inp_ppcb != NULL)
1289 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1290 			else
1291 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1292 			if (inp->inp_socket)
1293 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1294 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1295 				break;
1296 			++i;
1297 		}
1298 		LIST_REMOVE(marker, inp_list);
1299 		if (error == 0 && i < n) {
1300 			bzero(&xt, sizeof xt);
1301 			xt.xt_len = sizeof xt;
1302 			while (i < n) {
1303 				error = SYSCTL_OUT(req, &xt, sizeof xt);
1304 				if (error)
1305 					break;
1306 				++i;
1307 			}
1308 		}
1309 	}
1310 
1311 	/*
1312 	 * Make sure we are on the same cpu we were on originally, since
1313 	 * higher level callers expect this.  Also don't pollute caches with
1314 	 * migrated userland data by (eventually) returning to userland
1315 	 * on a different cpu.
1316 	 */
1317 	lwkt_migratecpu(origcpu);
1318 	kfree(marker, M_TEMP);
1319 	return (error);
1320 }
1321 
1322 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1323 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1324 
1325 static int
1326 tcp_getcred(SYSCTL_HANDLER_ARGS)
1327 {
1328 	struct sockaddr_in addrs[2];
1329 	struct ucred cred0, *cred = NULL;
1330 	struct inpcb *inp;
1331 	int cpu, origcpu, error;
1332 
1333 	error = priv_check(req->td, PRIV_ROOT);
1334 	if (error != 0)
1335 		return (error);
1336 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1337 	if (error != 0)
1338 		return (error);
1339 
1340 	origcpu = mycpuid;
1341 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1342 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1343 
1344 	lwkt_migratecpu(cpu);
1345 
1346 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1347 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1348 	if (inp == NULL || inp->inp_socket == NULL) {
1349 		error = ENOENT;
1350 	} else if (inp->inp_socket->so_cred != NULL) {
1351 		cred0 = *(inp->inp_socket->so_cred);
1352 		cred = &cred0;
1353 	}
1354 
1355 	lwkt_migratecpu(origcpu);
1356 
1357 	if (error)
1358 		return (error);
1359 
1360 	return SYSCTL_OUT(req, cred, sizeof(struct ucred));
1361 }
1362 
1363 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1364     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1365 
1366 #ifdef INET6
1367 static int
1368 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1369 {
1370 	struct sockaddr_in6 addrs[2];
1371 	struct inpcb *inp;
1372 	int error;
1373 
1374 	error = priv_check(req->td, PRIV_ROOT);
1375 	if (error != 0)
1376 		return (error);
1377 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1378 	if (error != 0)
1379 		return (error);
1380 	crit_enter();
1381 	inp = in6_pcblookup_hash(&tcbinfo[0],
1382 	    &addrs[1].sin6_addr, addrs[1].sin6_port,
1383 	    &addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1384 	if (inp == NULL || inp->inp_socket == NULL) {
1385 		error = ENOENT;
1386 		goto out;
1387 	}
1388 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1389 out:
1390 	crit_exit();
1391 	return (error);
1392 }
1393 
1394 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1395 	    0, 0,
1396 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1397 #endif
1398 
1399 struct netmsg_tcp_notify {
1400 	struct netmsg_base base;
1401 	inp_notify_t	nm_notify;
1402 	struct in_addr	nm_faddr;
1403 	int		nm_arg;
1404 };
1405 
1406 static void
1407 tcp_notifyall_oncpu(netmsg_t msg)
1408 {
1409 	struct netmsg_tcp_notify *nm = (struct netmsg_tcp_notify *)msg;
1410 	int nextcpu;
1411 
1412 	ASSERT_NETISR_NCPUS(mycpuid);
1413 
1414 	in_pcbnotifyall(&tcbinfo[mycpuid], nm->nm_faddr,
1415 			nm->nm_arg, nm->nm_notify);
1416 
1417 	nextcpu = mycpuid + 1;
1418 	if (nextcpu < netisr_ncpus)
1419 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &nm->base.lmsg);
1420 	else
1421 		lwkt_replymsg(&nm->base.lmsg, 0);
1422 }
1423 
1424 inp_notify_t
1425 tcp_get_inpnotify(int cmd, const struct sockaddr *sa,
1426     int *arg, struct ip **ip0, int *cpuid)
1427 {
1428 	struct ip *ip = *ip0;
1429 	struct in_addr faddr;
1430 	inp_notify_t notify = tcp_notify;
1431 
1432 	faddr = ((const struct sockaddr_in *)sa)->sin_addr;
1433 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1434 		return NULL;
1435 
1436 	*arg = inetctlerrmap[cmd];
1437 	if (cmd == PRC_QUENCH) {
1438 		notify = tcp_quench;
1439 	} else if (icmp_may_rst &&
1440 		   (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1441 		    cmd == PRC_UNREACH_PORT ||
1442 		    cmd == PRC_TIMXCEED_INTRANS) &&
1443 		   ip != NULL) {
1444 		notify = tcp_drop_syn_sent;
1445 	} else if (cmd == PRC_MSGSIZE) {
1446 		const struct icmp *icmp = (const struct icmp *)
1447 		    ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1448 
1449 		*arg = ntohs(icmp->icmp_nextmtu);
1450 		notify = tcp_mtudisc;
1451 	} else if (PRC_IS_REDIRECT(cmd)) {
1452 		ip = NULL;
1453 		notify = in_rtchange;
1454 	} else if (cmd == PRC_HOSTDEAD) {
1455 		ip = NULL;
1456 	} else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1457 		return NULL;
1458 	}
1459 
1460 	if (cpuid != NULL) {
1461 		if (ip == NULL) {
1462 			/* Go through all effective netisr CPUs. */
1463 			*cpuid = netisr_ncpus;
1464 		} else {
1465 			const struct tcphdr *th;
1466 
1467 			th = (const struct tcphdr *)
1468 			    ((caddr_t)ip + (IP_VHL_HL(ip->ip_vhl) << 2));
1469 			*cpuid = tcp_addrcpu(faddr.s_addr, th->th_dport,
1470 			    ip->ip_src.s_addr, th->th_sport);
1471 		}
1472 	}
1473 
1474 	*ip0 = ip;
1475 	return notify;
1476 }
1477 
1478 void
1479 tcp_ctlinput(netmsg_t msg)
1480 {
1481 	int cmd = msg->ctlinput.nm_cmd;
1482 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1483 	struct ip *ip = msg->ctlinput.nm_extra;
1484 	struct in_addr faddr;
1485 	inp_notify_t notify;
1486 	int arg, cpuid;
1487 
1488 	ASSERT_NETISR_NCPUS(mycpuid);
1489 
1490 	notify = tcp_get_inpnotify(cmd, sa, &arg, &ip, &cpuid);
1491 	if (notify == NULL)
1492 		goto done;
1493 
1494 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1495 	if (ip != NULL) {
1496 		const struct tcphdr *th;
1497 		struct inpcb *inp;
1498 
1499 		if (cpuid != mycpuid)
1500 			goto done;
1501 
1502 		th = (const struct tcphdr *)
1503 		    ((caddr_t)ip + (IP_VHL_HL(ip->ip_vhl) << 2));
1504 		inp = in_pcblookup_hash(&tcbinfo[mycpuid], faddr, th->th_dport,
1505 					ip->ip_src, th->th_sport, 0, NULL);
1506 		if (inp != NULL && inp->inp_socket != NULL) {
1507 			tcp_seq icmpseq = htonl(th->th_seq);
1508 			struct tcpcb *tp = intotcpcb(inp);
1509 
1510 			if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1511 			    SEQ_LT(icmpseq, tp->snd_max))
1512 				notify(inp, arg);
1513 		} else {
1514 			struct in_conninfo inc;
1515 
1516 			inc.inc_fport = th->th_dport;
1517 			inc.inc_lport = th->th_sport;
1518 			inc.inc_faddr = faddr;
1519 			inc.inc_laddr = ip->ip_src;
1520 #ifdef INET6
1521 			inc.inc_isipv6 = 0;
1522 #endif
1523 			syncache_unreach(&inc, th);
1524 		}
1525 	} else if (msg->ctlinput.nm_direct) {
1526 		if (cpuid != netisr_ncpus && cpuid != mycpuid)
1527 			goto done;
1528 
1529 		in_pcbnotifyall(&tcbinfo[mycpuid], faddr, arg, notify);
1530 	} else {
1531 		struct netmsg_tcp_notify *nm;
1532 
1533 		ASSERT_NETISR0;
1534 		nm = kmalloc(sizeof(*nm), M_LWKTMSG, M_INTWAIT);
1535 		netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1536 			    0, tcp_notifyall_oncpu);
1537 		nm->nm_faddr = faddr;
1538 		nm->nm_arg = arg;
1539 		nm->nm_notify = notify;
1540 
1541 		lwkt_sendmsg(netisr_cpuport(0), &nm->base.lmsg);
1542 	}
1543 done:
1544 	lwkt_replymsg(&msg->lmsg, 0);
1545 }
1546 
1547 #ifdef INET6
1548 
1549 void
1550 tcp6_ctlinput(netmsg_t msg)
1551 {
1552 	int cmd = msg->ctlinput.nm_cmd;
1553 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1554 	void *d = msg->ctlinput.nm_extra;
1555 	struct tcphdr th;
1556 	inp_notify_t notify = tcp_notify;
1557 	struct ip6_hdr *ip6;
1558 	struct mbuf *m;
1559 	struct ip6ctlparam *ip6cp = NULL;
1560 	const struct sockaddr_in6 *sa6_src = NULL;
1561 	int off;
1562 	struct tcp_portonly {
1563 		u_int16_t th_sport;
1564 		u_int16_t th_dport;
1565 	} *thp;
1566 	int arg;
1567 
1568 	if (sa->sa_family != AF_INET6 ||
1569 	    sa->sa_len != sizeof(struct sockaddr_in6)) {
1570 		goto out;
1571 	}
1572 
1573 	arg = 0;
1574 	if (cmd == PRC_QUENCH)
1575 		notify = tcp_quench;
1576 	else if (cmd == PRC_MSGSIZE) {
1577 		struct ip6ctlparam *ip6cp = d;
1578 		struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1579 
1580 		arg = ntohl(icmp6->icmp6_mtu);
1581 		notify = tcp_mtudisc;
1582 	} else if (!PRC_IS_REDIRECT(cmd) &&
1583 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1584 		goto out;
1585 	}
1586 
1587 	/* if the parameter is from icmp6, decode it. */
1588 	if (d != NULL) {
1589 		ip6cp = (struct ip6ctlparam *)d;
1590 		m = ip6cp->ip6c_m;
1591 		ip6 = ip6cp->ip6c_ip6;
1592 		off = ip6cp->ip6c_off;
1593 		sa6_src = ip6cp->ip6c_src;
1594 	} else {
1595 		m = NULL;
1596 		ip6 = NULL;
1597 		off = 0;	/* fool gcc */
1598 		sa6_src = &sa6_any;
1599 	}
1600 
1601 	if (ip6 != NULL) {
1602 		struct in_conninfo inc;
1603 		/*
1604 		 * XXX: We assume that when IPV6 is non NULL,
1605 		 * M and OFF are valid.
1606 		 */
1607 
1608 		/* check if we can safely examine src and dst ports */
1609 		if (m->m_pkthdr.len < off + sizeof *thp)
1610 			goto out;
1611 
1612 		bzero(&th, sizeof th);
1613 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1614 
1615 		in6_pcbnotify(&tcbinfo[0], sa, th.th_dport,
1616 		    (struct sockaddr *)ip6cp->ip6c_src,
1617 		    th.th_sport, cmd, arg, notify);
1618 
1619 		inc.inc_fport = th.th_dport;
1620 		inc.inc_lport = th.th_sport;
1621 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1622 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1623 		inc.inc_isipv6 = 1;
1624 		syncache_unreach(&inc, &th);
1625 	} else {
1626 		in6_pcbnotify(&tcbinfo[0], sa, 0,
1627 		    (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1628 	}
1629 out:
1630 	lwkt_replymsg(&msg->ctlinput.base.lmsg, 0);
1631 }
1632 
1633 #endif
1634 
1635 /*
1636  * Following is where TCP initial sequence number generation occurs.
1637  *
1638  * There are two places where we must use initial sequence numbers:
1639  * 1.  In SYN-ACK packets.
1640  * 2.  In SYN packets.
1641  *
1642  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1643  * tcp_syncache.c for details.
1644  *
1645  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1646  * depends on this property.  In addition, these ISNs should be
1647  * unguessable so as to prevent connection hijacking.  To satisfy
1648  * the requirements of this situation, the algorithm outlined in
1649  * RFC 1948 is used to generate sequence numbers.
1650  *
1651  * Implementation details:
1652  *
1653  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1654  * between the seeding of isn_secret.  On every reseed we jump the
1655  * ISN by a lot.
1656  */
1657 struct tcp_isn {
1658 	u_char	secret[16];
1659 	MD5_CTX ctx;
1660 	int	last_reseed;
1661 	int	last_offset;
1662 } __cachealign;
1663 
1664 struct tcp_isn tcp_isn_ary[MAXCPU];
1665 
1666 tcp_seq
1667 tcp_new_isn(struct tcpcb *tp)
1668 {
1669 	struct tcp_isn *isn;
1670 	tcp_seq new_isn;
1671 	tcp_seq digest[16 / sizeof(tcp_seq)];
1672 	int n;
1673 
1674 	isn = &tcp_isn_ary[mycpuid];
1675 
1676 	/*
1677 	 * Reseed every 20 seconds.  6 reseeds per 2-minute interval in
1678 	 * order to retain our monotonic offset.
1679 	 *
1680 	 * The initial seed randomizes last_offset with all 32 bits.
1681 	 *
1682 	 * Note that the md5 digest is masked with 0x0FFFFFFF, so we must
1683 	 * add 1/16 of our full range (1/8 of our signed range) to ensure
1684 	 * monotonic operation.
1685 	 */
1686 	if (isn->last_reseed == 0 ||
1687 	    (u_int)(ticks - isn->last_reseed) > tcp_isn_reseed_interval * hz) {
1688 		if (isn->last_reseed == 0) {
1689 			read_random(&isn->last_offset,
1690 				    sizeof(isn->last_offset), 1);
1691 		}
1692 		read_random(&isn->secret, sizeof(isn->secret), 1);
1693 		isn->last_reseed = ticks;
1694 		isn->last_offset += 0x10000000;
1695 	}
1696 
1697 	/*
1698 	 * Compute the md5 hash, giving us a deterministic result for the
1699 	 * port/address pair for any given secret.
1700 	 */
1701 	MD5Init(&isn->ctx);
1702 	MD5Update(&isn->ctx, isn->secret, sizeof(isn->secret));
1703 	MD5Update(&isn->ctx, (u_char *)&tp->t_inpcb->inp_fport, 2);
1704 	MD5Update(&isn->ctx, (u_char *)&tp->t_inpcb->inp_lport, 2);
1705 #ifdef INET6
1706 	if (INP_ISIPV6(tp->t_inpcb)) {
1707 		MD5Update(&isn->ctx, (u_char *)&tp->t_inpcb->in6p_faddr,
1708 			  sizeof(struct in6_addr));
1709 		MD5Update(&isn->ctx, (u_char *)&tp->t_inpcb->in6p_laddr,
1710 			  sizeof(struct in6_addr));
1711 	} else
1712 #endif
1713 	{
1714 		MD5Update(&isn->ctx, (u_char *)&tp->t_inpcb->inp_faddr,
1715 			  sizeof(struct in_addr));
1716 		MD5Update(&isn->ctx, (u_char *)&tp->t_inpcb->inp_laddr,
1717 			  sizeof(struct in_addr));
1718 	}
1719 	MD5Final((char *)digest, &isn->ctx);
1720 
1721 	/*
1722 	 * Add a random component 0-1048575 plus advance by 1048576.
1723 	 *
1724 	 * The sequence space is simply too small, in modern times we also
1725 	 * must depend on the receive-side being a bit smarter when recycling
1726 	 * ports in TIME_WAIT.
1727 	 */
1728 	read_random(&n, sizeof(n), 1);
1729 	isn->last_offset += (n & 0x000FFFFF) + 0x00100000;
1730 	new_isn = (digest[0] & 0x0FFFFFFF) + isn->last_offset;
1731 
1732 	return (new_isn);
1733 }
1734 
1735 /*
1736  * When a source quench is received, close congestion window
1737  * to one segment.  We will gradually open it again as we proceed.
1738  */
1739 void
1740 tcp_quench(struct inpcb *inp, int error)
1741 {
1742 	struct tcpcb *tp = intotcpcb(inp);
1743 
1744 	KASSERT(tp != NULL, ("tcp_quench: tp is NULL"));
1745 	tp->snd_cwnd = tp->t_maxseg;
1746 	tp->snd_wacked = 0;
1747 }
1748 
1749 /*
1750  * When a specific ICMP unreachable message is received and the
1751  * connection state is SYN-SENT, drop the connection.  This behavior
1752  * is controlled by the icmp_may_rst sysctl.
1753  */
1754 void
1755 tcp_drop_syn_sent(struct inpcb *inp, int error)
1756 {
1757 	struct tcpcb *tp = intotcpcb(inp);
1758 
1759 	KASSERT(tp != NULL, ("tcp_drop_syn_sent: tp is NULL"));
1760 	if (tp->t_state == TCPS_SYN_SENT)
1761 		tcp_drop(tp, error);
1762 }
1763 
1764 /*
1765  * When a `need fragmentation' ICMP is received, update our idea of the MSS
1766  * based on the new value in the route.  Also nudge TCP to send something,
1767  * since we know the packet we just sent was dropped.
1768  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1769  */
1770 void
1771 tcp_mtudisc(struct inpcb *inp, int mtu)
1772 {
1773 	struct tcpcb *tp = intotcpcb(inp);
1774 	struct rtentry *rt;
1775 	struct socket *so = inp->inp_socket;
1776 	int maxopd, mss;
1777 #ifdef INET6
1778 	boolean_t isipv6 = INP_ISIPV6(inp);
1779 #else
1780 	const boolean_t isipv6 = FALSE;
1781 #endif
1782 
1783 	KASSERT(tp != NULL, ("tcp_mtudisc: tp is NULL"));
1784 
1785 	/*
1786 	 * If no MTU is provided in the ICMP message, use the
1787 	 * next lower likely value, as specified in RFC 1191.
1788 	 */
1789 	if (mtu == 0) {
1790 		int oldmtu;
1791 
1792 		oldmtu = tp->t_maxopd +
1793 		    (isipv6 ?
1794 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1795 		     sizeof(struct tcpiphdr));
1796 		mtu = ip_next_mtu(oldmtu, 0);
1797 	}
1798 
1799 	if (isipv6)
1800 		rt = tcp_rtlookup6(&inp->inp_inc);
1801 	else
1802 		rt = tcp_rtlookup(&inp->inp_inc);
1803 	if (rt != NULL) {
1804 		if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1805 			mtu = rt->rt_rmx.rmx_mtu;
1806 
1807 		maxopd = mtu -
1808 		    (isipv6 ?
1809 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1810 		     sizeof(struct tcpiphdr));
1811 
1812 		/*
1813 		 * XXX - The following conditional probably violates the TCP
1814 		 * spec.  The problem is that, since we don't know the
1815 		 * other end's MSS, we are supposed to use a conservative
1816 		 * default.  But, if we do that, then MTU discovery will
1817 		 * never actually take place, because the conservative
1818 		 * default is much less than the MTUs typically seen
1819 		 * on the Internet today.  For the moment, we'll sweep
1820 		 * this under the carpet.
1821 		 *
1822 		 * The conservative default might not actually be a problem
1823 		 * if the only case this occurs is when sending an initial
1824 		 * SYN with options and data to a host we've never talked
1825 		 * to before.  Then, they will reply with an MSS value which
1826 		 * will get recorded and the new parameters should get
1827 		 * recomputed.  For Further Study.
1828 		 */
1829 		if (rt->rt_rmx.rmx_mssopt  && rt->rt_rmx.rmx_mssopt < maxopd)
1830 			maxopd = rt->rt_rmx.rmx_mssopt;
1831 	} else
1832 		maxopd = mtu -
1833 		    (isipv6 ?
1834 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1835 		     sizeof(struct tcpiphdr));
1836 
1837 	if (tp->t_maxopd <= maxopd)
1838 		return;
1839 	tp->t_maxopd = maxopd;
1840 
1841 	mss = maxopd;
1842 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1843 			   (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1844 		mss -= TCPOLEN_TSTAMP_APPA;
1845 
1846 	/* round down to multiple of MCLBYTES */
1847 #if	(MCLBYTES & (MCLBYTES - 1)) == 0    /* test if MCLBYTES power of 2 */
1848 	if (mss > MCLBYTES)
1849 		mss &= ~(MCLBYTES - 1);
1850 #else
1851 	if (mss > MCLBYTES)
1852 		mss = rounddown(mss, MCLBYTES);
1853 #endif
1854 
1855 	if (so->so_snd.ssb_hiwat < mss)
1856 		mss = so->so_snd.ssb_hiwat;
1857 
1858 	tp->t_maxseg = mss;
1859 	tp->t_rtttime = 0;
1860 	tp->snd_nxt = tp->snd_una;
1861 	tcp_output(tp);
1862 	tcpstat.tcps_mturesent++;
1863 }
1864 
1865 /*
1866  * Look-up the routing entry to the peer of this inpcb.  If no route
1867  * is found and it cannot be allocated the return NULL.  This routine
1868  * is called by TCP routines that access the rmx structure and by tcp_mss
1869  * to get the interface MTU.
1870  */
1871 struct rtentry *
1872 tcp_rtlookup(struct in_conninfo *inc)
1873 {
1874 	struct route *ro = &inc->inc_route;
1875 
1876 	if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1877 		/* No route yet, so try to acquire one */
1878 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1879 			/*
1880 			 * unused portions of the structure MUST be zero'd
1881 			 * out because rtalloc() treats it as opaque data
1882 			 */
1883 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1884 			ro->ro_dst.sa_family = AF_INET;
1885 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1886 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1887 			    inc->inc_faddr;
1888 			rtalloc(ro);
1889 		}
1890 	}
1891 	return (ro->ro_rt);
1892 }
1893 
1894 #ifdef INET6
1895 struct rtentry *
1896 tcp_rtlookup6(struct in_conninfo *inc)
1897 {
1898 	struct route_in6 *ro6 = &inc->inc6_route;
1899 
1900 	if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1901 		/* No route yet, so try to acquire one */
1902 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1903 			/*
1904 			 * unused portions of the structure MUST be zero'd
1905 			 * out because rtalloc() treats it as opaque data
1906 			 */
1907 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1908 			ro6->ro_dst.sin6_family = AF_INET6;
1909 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1910 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1911 			rtalloc((struct route *)ro6);
1912 		}
1913 	}
1914 	return (ro6->ro_rt);
1915 }
1916 #endif
1917 
1918 /*
1919  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1920  *
1921  * This code attempts to calculate the bandwidth-delay product as a
1922  * means of determining the optimal window size to maximize bandwidth,
1923  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1924  * routers.  This code also does a fairly good job keeping RTTs in check
1925  * across slow links like modems.  We implement an algorithm which is very
1926  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1927  * transmitter side of a TCP connection and so only effects the transmit
1928  * side of the connection.
1929  *
1930  * BACKGROUND:  TCP makes no provision for the management of buffer space
1931  * at the end points or at the intermediate routers and switches.  A TCP
1932  * stream, whether using NewReno or not, will eventually buffer as
1933  * many packets as it is able and the only reason this typically works is
1934  * due to the fairly small default buffers made available for a connection
1935  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1936  * scaling it is now fairly easy for even a single TCP connection to blow-out
1937  * all available buffer space not only on the local interface, but on
1938  * intermediate routers and switches as well.  NewReno makes a misguided
1939  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1940  * then backing off, then steadily increasing the window again until another
1941  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1942  * is only made worse as network loads increase and the idea of intentionally
1943  * blowing out network buffers is, frankly, a terrible way to manage network
1944  * resources.
1945  *
1946  * It is far better to limit the transmit window prior to the failure
1947  * condition being achieved.  There are two general ways to do this:  First
1948  * you can 'scan' through different transmit window sizes and locate the
1949  * point where the RTT stops increasing, indicating that you have filled the
1950  * pipe, then scan backwards until you note that RTT stops decreasing, then
1951  * repeat ad-infinitum.  This method works in principle but has severe
1952  * implementation issues due to RTT variances, timer granularity, and
1953  * instability in the algorithm which can lead to many false positives and
1954  * create oscillations as well as interact badly with other TCP streams
1955  * implementing the same algorithm.
1956  *
1957  * The second method is to limit the window to the bandwidth delay product
1958  * of the link.  This is the method we implement.  RTT variances and our
1959  * own manipulation of the congestion window, bwnd, can potentially
1960  * destabilize the algorithm.  For this reason we have to stabilize the
1961  * elements used to calculate the window.  We do this by using the minimum
1962  * observed RTT, the long term average of the observed bandwidth, and
1963  * by adding two segments worth of slop.  It isn't perfect but it is able
1964  * to react to changing conditions and gives us a very stable basis on
1965  * which to extend the algorithm.
1966  */
1967 void
1968 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1969 {
1970 	u_long bw;
1971 	u_long ibw;
1972 	u_long bwnd;
1973 	int save_ticks;
1974 	int delta_ticks;
1975 
1976 	/*
1977 	 * If inflight_enable is disabled in the middle of a tcp connection,
1978 	 * make sure snd_bwnd is effectively disabled.
1979 	 */
1980 	if (!tcp_inflight_enable) {
1981 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1982 		tp->snd_bandwidth = 0;
1983 		return;
1984 	}
1985 
1986 	/*
1987 	 * Validate the delta time.  If a connection is new or has been idle
1988 	 * a long time we have to reset the bandwidth calculator.
1989 	 */
1990 	save_ticks = ticks;
1991 	cpu_ccfence();
1992 	delta_ticks = save_ticks - tp->t_bw_rtttime;
1993 	if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1994 		tp->t_bw_rtttime = save_ticks;
1995 		tp->t_bw_rtseq = ack_seq;
1996 		if (tp->snd_bandwidth == 0)
1997 			tp->snd_bandwidth = tcp_inflight_start;
1998 		return;
1999 	}
2000 
2001 	/*
2002 	 * A delta of at least 1 tick is required.  Waiting 2 ticks will
2003 	 * result in better (bw) accuracy.  More than that and the ramp-up
2004 	 * will be too slow.
2005 	 */
2006 	if (delta_ticks == 0 || delta_ticks == 1)
2007 		return;
2008 
2009 	/*
2010 	 * Sanity check, plus ignore pure window update acks.
2011 	 */
2012 	if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
2013 		return;
2014 
2015 	/*
2016 	 * Figure out the bandwidth.  Due to the tick granularity this
2017 	 * is a very rough number and it MUST be averaged over a fairly
2018 	 * long period of time.  XXX we need to take into account a link
2019 	 * that is not using all available bandwidth, but for now our
2020 	 * slop will ramp us up if this case occurs and the bandwidth later
2021 	 * increases.
2022 	 */
2023 	ibw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
2024 	tp->t_bw_rtttime = save_ticks;
2025 	tp->t_bw_rtseq = ack_seq;
2026 	bw = ((int64_t)tp->snd_bandwidth * 15 + ibw) >> 4;
2027 
2028 	tp->snd_bandwidth = bw;
2029 
2030 	/*
2031 	 * Calculate the semi-static bandwidth delay product, plus two maximal
2032 	 * segments.  The additional slop puts us squarely in the sweet
2033 	 * spot and also handles the bandwidth run-up case.  Without the
2034 	 * slop we could be locking ourselves into a lower bandwidth.
2035 	 *
2036 	 * At very high speeds the bw calculation can become overly sensitive
2037 	 * and error prone when delta_ticks is low (e.g. usually 1).  To deal
2038 	 * with the problem the stab must be scaled to the bw.  A stab of 50
2039 	 * (the default) increases the bw for the purposes of the bwnd
2040 	 * calculation by 5%.
2041 	 *
2042 	 * Situations Handled:
2043 	 *	(1) Prevents over-queueing of packets on LANs, especially on
2044 	 *	    high speed LANs, allowing larger TCP buffers to be
2045 	 *	    specified, and also does a good job preventing
2046 	 *	    over-queueing of packets over choke points like modems
2047 	 *	    (at least for the transmit side).
2048 	 *
2049 	 *	(2) Is able to handle changing network loads (bandwidth
2050 	 *	    drops so bwnd drops, bandwidth increases so bwnd
2051 	 *	    increases).
2052 	 *
2053 	 *	(3) Theoretically should stabilize in the face of multiple
2054 	 *	    connections implementing the same algorithm (this may need
2055 	 *	    a little work).
2056 	 *
2057 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2058 	 *	    be adjusted with a sysctl but typically only needs to be on
2059 	 *	    very slow connections.  A value no smaller then 5 should
2060 	 *	    be used, but only reduce this default if you have no other
2061 	 *	    choice.
2062 	 */
2063 
2064 #define	USERTT	((tp->t_srtt + tp->t_rttvar) + tcp_inflight_adjrtt)
2065 	bw += bw * tcp_inflight_stab / 1000;
2066 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
2067 	       (int)tp->t_maxseg * 2;
2068 #undef USERTT
2069 
2070 	if (tcp_inflight_debug > 0) {
2071 		static int ltime;
2072 		if ((u_int)(save_ticks - ltime) >= hz / tcp_inflight_debug) {
2073 			ltime = save_ticks;
2074 			kprintf("%p ibw %ld bw %ld rttvar %d srtt %d "
2075 				"bwnd %ld delta %d snd_win %ld\n",
2076 				tp, ibw, bw, tp->t_rttvar, tp->t_srtt,
2077 				bwnd, delta_ticks, tp->snd_wnd);
2078 		}
2079 	}
2080 	if ((long)bwnd < tcp_inflight_min)
2081 		bwnd = tcp_inflight_min;
2082 	if (bwnd > tcp_inflight_max)
2083 		bwnd = tcp_inflight_max;
2084 	if ((long)bwnd < tp->t_maxseg * 2)
2085 		bwnd = tp->t_maxseg * 2;
2086 	tp->snd_bwnd = bwnd;
2087 }
2088 
2089 static void
2090 tcp_rmx_iwsegs(struct tcpcb *tp, u_long *maxsegs, u_long *capsegs)
2091 {
2092 	struct rtentry *rt;
2093 	struct inpcb *inp = tp->t_inpcb;
2094 #ifdef INET6
2095 	boolean_t isipv6 = INP_ISIPV6(inp);
2096 #else
2097 	const boolean_t isipv6 = FALSE;
2098 #endif
2099 
2100 	/* XXX */
2101 	if (tcp_iw_maxsegs < TCP_IW_MAXSEGS_DFLT)
2102 		tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
2103 	if (tcp_iw_capsegs < TCP_IW_CAPSEGS_DFLT)
2104 		tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
2105 
2106 	if (isipv6)
2107 		rt = tcp_rtlookup6(&inp->inp_inc);
2108 	else
2109 		rt = tcp_rtlookup(&inp->inp_inc);
2110 	if (rt == NULL ||
2111 	    rt->rt_rmx.rmx_iwmaxsegs < TCP_IW_MAXSEGS_DFLT ||
2112 	    rt->rt_rmx.rmx_iwcapsegs < TCP_IW_CAPSEGS_DFLT) {
2113 		*maxsegs = tcp_iw_maxsegs;
2114 		*capsegs = tcp_iw_capsegs;
2115 		return;
2116 	}
2117 	*maxsegs = rt->rt_rmx.rmx_iwmaxsegs;
2118 	*capsegs = rt->rt_rmx.rmx_iwcapsegs;
2119 }
2120 
2121 u_long
2122 tcp_initial_window(struct tcpcb *tp)
2123 {
2124 	if (tcp_do_rfc3390) {
2125 		/*
2126 		 * RFC3390:
2127 		 * "If the SYN or SYN/ACK is lost, the initial window
2128 		 *  used by a sender after a correctly transmitted SYN
2129 		 *  MUST be one segment consisting of MSS bytes."
2130 		 *
2131 		 * However, we do something a little bit more aggressive
2132 		 * then RFC3390 here:
2133 		 * - Only if time spent in the SYN or SYN|ACK retransmition
2134 		 *   >= 3 seconds, the IW is reduced.  We do this mainly
2135 		 *   because when RFC3390 is published, the initial RTO is
2136 		 *   still 3 seconds (the threshold we test here), while
2137 		 *   after RFC6298, the initial RTO is 1 second.  This
2138 		 *   behaviour probably still falls within the spirit of
2139 		 *   RFC3390.
2140 		 * - When IW is reduced, 2*MSS is used instead of 1*MSS.
2141 		 *   Mainly to avoid sender and receiver deadlock until
2142 		 *   delayed ACK timer expires.  And even RFC2581 does not
2143 		 *   try to reduce IW upon SYN or SYN|ACK retransmition
2144 		 *   timeout.
2145 		 *
2146 		 * See also:
2147 		 * http://tools.ietf.org/html/draft-ietf-tcpm-initcwnd-03
2148 		 */
2149 		if (tp->t_rxtsyn >= TCPTV_RTOBASE3) {
2150 			return (2 * tp->t_maxseg);
2151 		} else {
2152 			u_long maxsegs, capsegs;
2153 
2154 			tcp_rmx_iwsegs(tp, &maxsegs, &capsegs);
2155 			return min(maxsegs * tp->t_maxseg,
2156 				   max(2 * tp->t_maxseg, capsegs * 1460));
2157 		}
2158 	} else {
2159 		/*
2160 		 * Even RFC2581 (back to 1999) allows 2*SMSS IW.
2161 		 *
2162 		 * Mainly to avoid sender and receiver deadlock
2163 		 * until delayed ACK timer expires.
2164 		 */
2165 		return (2 * tp->t_maxseg);
2166 	}
2167 }
2168 
2169 #ifdef TCP_SIGNATURE
2170 /*
2171  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2172  *
2173  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2174  * When called from tcp_input(), we can be sure that th_sum has been
2175  * zeroed out and verified already.
2176  *
2177  * Return 0 if successful, otherwise return -1.
2178  *
2179  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2180  * search with the destination IP address, and a 'magic SPI' to be
2181  * determined by the application. This is hardcoded elsewhere to 1179
2182  * right now. Another branch of this code exists which uses the SPD to
2183  * specify per-application flows but it is unstable.
2184  */
2185 int
2186 tcpsignature_compute(
2187 	struct mbuf *m,		/* mbuf chain */
2188 	int len,		/* length of TCP data */
2189 	int optlen,		/* length of TCP options */
2190 	u_char *buf,		/* storage for MD5 digest */
2191 	u_int direction)	/* direction of flow */
2192 {
2193 	struct ippseudo ippseudo;
2194 	MD5_CTX ctx;
2195 	int doff;
2196 	struct ip *ip;
2197 	struct ipovly *ipovly;
2198 	struct secasvar *sav;
2199 	struct tcphdr *th;
2200 #ifdef INET6
2201 	struct ip6_hdr *ip6;
2202 	struct in6_addr in6;
2203 	uint32_t plen;
2204 	uint16_t nhdr;
2205 #endif /* INET6 */
2206 	u_short savecsum;
2207 
2208 	KASSERT(m != NULL, ("passed NULL mbuf. Game over."));
2209 	KASSERT(buf != NULL, ("passed NULL storage pointer for MD5 signature"));
2210 	/*
2211 	 * Extract the destination from the IP header in the mbuf.
2212 	 */
2213 	ip = mtod(m, struct ip *);
2214 #ifdef INET6
2215 	ip6 = NULL;     /* Make the compiler happy. */
2216 #endif /* INET6 */
2217 	/*
2218 	 * Look up an SADB entry which matches the address found in
2219 	 * the segment.
2220 	 */
2221 	switch (IP_VHL_V(ip->ip_vhl)) {
2222 	case IPVERSION:
2223 		sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src, (caddr_t)&ip->ip_dst,
2224 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2225 		break;
2226 #ifdef INET6
2227 	case (IPV6_VERSION >> 4):
2228 		ip6 = mtod(m, struct ip6_hdr *);
2229 		sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src, (caddr_t)&ip6->ip6_dst,
2230 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2231 		break;
2232 #endif /* INET6 */
2233 	default:
2234 		return (EINVAL);
2235 		/* NOTREACHED */
2236 		break;
2237 	}
2238 	if (sav == NULL) {
2239 		kprintf("%s: SADB lookup failed\n", __func__);
2240 		return (EINVAL);
2241 	}
2242 	MD5Init(&ctx);
2243 
2244 	/*
2245 	 * Step 1: Update MD5 hash with IP pseudo-header.
2246 	 *
2247 	 * XXX The ippseudo header MUST be digested in network byte order,
2248 	 * or else we'll fail the regression test. Assume all fields we've
2249 	 * been doing arithmetic on have been in host byte order.
2250 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2251 	 * tcp_output(), the underlying ip_len member has not yet been set.
2252 	 */
2253 	switch (IP_VHL_V(ip->ip_vhl)) {
2254 	case IPVERSION:
2255 		ipovly = (struct ipovly *)ip;
2256 		ippseudo.ippseudo_src = ipovly->ih_src;
2257 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2258 		ippseudo.ippseudo_pad = 0;
2259 		ippseudo.ippseudo_p = IPPROTO_TCP;
2260 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2261 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2262 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2263 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2264 		break;
2265 #ifdef INET6
2266 	/*
2267 	 * RFC 2385, 2.0  Proposal
2268 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2269 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2270 	 * extended next header value (to form 32 bits), and 32-bit segment
2271 	 * length.
2272 	 * Note: Upper-Layer Packet Length comes before Next Header.
2273 	 */
2274 	case (IPV6_VERSION >> 4):
2275 		in6 = ip6->ip6_src;
2276 		in6_clearscope(&in6);
2277 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2278 		in6 = ip6->ip6_dst;
2279 		in6_clearscope(&in6);
2280 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2281 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2282 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2283 		nhdr = 0;
2284 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2285 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2286 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2287 		nhdr = IPPROTO_TCP;
2288 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2289 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2290 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2291 		break;
2292 #endif /* INET6 */
2293 	default:
2294 		return (EINVAL);
2295 		/* NOTREACHED */
2296 		break;
2297 	}
2298 	/*
2299 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2300 	 * The TCP checksum must be set to zero.
2301 	 */
2302 	savecsum = th->th_sum;
2303 	th->th_sum = 0;
2304 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2305 	th->th_sum = savecsum;
2306 	/*
2307 	 * Step 3: Update MD5 hash with TCP segment data.
2308 	 *         Use m_apply() to avoid an early m_pullup().
2309 	 */
2310 	if (len > 0)
2311 		m_apply(m, doff, len, tcpsignature_apply, &ctx);
2312 	/*
2313 	 * Step 4: Update MD5 hash with shared secret.
2314 	 */
2315 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2316 	MD5Final(buf, &ctx);
2317 	key_sa_recordxfer(sav, m);
2318 	key_freesav(sav);
2319 	return (0);
2320 }
2321 
2322 int
2323 tcpsignature_apply(void *fstate, void *data, unsigned int len)
2324 {
2325 
2326 	MD5Update((MD5_CTX *)fstate, (unsigned char *)data, len);
2327 	return (0);
2328 }
2329 #endif /* TCP_SIGNATURE */
2330 
2331 static void
2332 tcp_drop_sysctl_dispatch(netmsg_t nmsg)
2333 {
2334 	struct lwkt_msg *lmsg = &nmsg->lmsg;
2335 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2336 	struct sockaddr_storage *addrs = lmsg->u.ms_resultp;
2337 	int error;
2338 	struct sockaddr_in *fin, *lin;
2339 #ifdef INET6
2340 	struct sockaddr_in6 *fin6, *lin6;
2341 	struct in6_addr f6, l6;
2342 #endif
2343 	struct inpcb *inp;
2344 
2345 	switch (addrs[0].ss_family) {
2346 #ifdef INET6
2347 	case AF_INET6:
2348 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2349 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2350 		error = in6_embedscope(&f6, fin6, NULL, NULL);
2351 		if (error)
2352 			goto done;
2353 		error = in6_embedscope(&l6, lin6, NULL, NULL);
2354 		if (error)
2355 			goto done;
2356 		inp = in6_pcblookup_hash(&tcbinfo[mycpuid], &f6,
2357 		    fin6->sin6_port, &l6, lin6->sin6_port, FALSE, NULL);
2358 		break;
2359 #endif
2360 #ifdef INET
2361 	case AF_INET:
2362 		fin = (struct sockaddr_in *)&addrs[0];
2363 		lin = (struct sockaddr_in *)&addrs[1];
2364 		inp = in_pcblookup_hash(&tcbinfo[mycpuid], fin->sin_addr,
2365 		    fin->sin_port, lin->sin_addr, lin->sin_port, FALSE, NULL);
2366 		break;
2367 #endif
2368 	default:
2369 		/*
2370 		 * Must not reach here, since the address family was
2371 		 * checked in sysctl handler.
2372 		 */
2373 		panic("unknown address family %d", addrs[0].ss_family);
2374 	}
2375 	if (inp != NULL) {
2376 		struct tcpcb *tp = intotcpcb(inp);
2377 
2378 		KASSERT((inp->inp_flags & INP_WILDCARD) == 0,
2379 		    ("in wildcard hash"));
2380 		KASSERT(tp != NULL, ("tcp_drop_sysctl_dispatch: tp is NULL"));
2381 		KASSERT((tp->t_flags & TF_LISTEN) == 0, ("listen socket"));
2382 		tcp_drop(tp, ECONNABORTED);
2383 		error = 0;
2384 	} else {
2385 		error = ESRCH;
2386 	}
2387 #ifdef INET6
2388 done:
2389 #endif
2390 	lwkt_replymsg(lmsg, error);
2391 }
2392 
2393 static int
2394 sysctl_tcp_drop(SYSCTL_HANDLER_ARGS)
2395 {
2396 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2397 	struct sockaddr_storage addrs[2];
2398 	struct sockaddr_in *fin, *lin;
2399 #ifdef INET6
2400 	struct sockaddr_in6 *fin6, *lin6;
2401 #endif
2402 	struct netmsg_base nmsg;
2403 	struct lwkt_msg *lmsg = &nmsg.lmsg;
2404 	struct lwkt_port *port = NULL;
2405 	int error;
2406 
2407 	fin = lin = NULL;
2408 #ifdef INET6
2409 	fin6 = lin6 = NULL;
2410 #endif
2411 	error = 0;
2412 
2413 	if (req->oldptr != NULL || req->oldlen != 0)
2414 		return (EINVAL);
2415 	if (req->newptr == NULL)
2416 		return (EPERM);
2417 	if (req->newlen < sizeof(addrs))
2418 		return (ENOMEM);
2419 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2420 	if (error)
2421 		return (error);
2422 
2423 	switch (addrs[0].ss_family) {
2424 #ifdef INET6
2425 	case AF_INET6:
2426 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2427 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2428 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2429 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2430 			return (EINVAL);
2431 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr) ||
2432 		    IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2433 			return (EADDRNOTAVAIL);
2434 #if 0
2435 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2436 		if (error)
2437 			return (error);
2438 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2439 		if (error)
2440 			return (error);
2441 #endif
2442 		port = tcp6_addrport();
2443 		break;
2444 #endif
2445 #ifdef INET
2446 	case AF_INET:
2447 		fin = (struct sockaddr_in *)&addrs[0];
2448 		lin = (struct sockaddr_in *)&addrs[1];
2449 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2450 		    lin->sin_len != sizeof(struct sockaddr_in))
2451 			return (EINVAL);
2452 		port = tcp_addrport(fin->sin_addr.s_addr, fin->sin_port,
2453 		    lin->sin_addr.s_addr, lin->sin_port);
2454 		break;
2455 #endif
2456 	default:
2457 		return (EINVAL);
2458 	}
2459 
2460 	netmsg_init(&nmsg, NULL, &curthread->td_msgport, 0,
2461 	    tcp_drop_sysctl_dispatch);
2462 	lmsg->u.ms_resultp = addrs;
2463 	return lwkt_domsg(port, lmsg, 0);
2464 }
2465 
2466 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, drop,
2467     CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP, NULL,
2468     0, sysctl_tcp_drop, "", "Drop TCP connection");
2469 
2470 static int
2471 sysctl_tcps_count(SYSCTL_HANDLER_ARGS)
2472 {
2473 	u_long state_count[TCP_NSTATES];
2474 	int cpu;
2475 
2476 	memset(state_count, 0, sizeof(state_count));
2477 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
2478 		int i;
2479 
2480 		for (i = 0; i < TCP_NSTATES; ++i)
2481 			state_count[i] += tcpstate_count[cpu].tcps_count[i];
2482 	}
2483 
2484 	return sysctl_handle_opaque(oidp, state_count, sizeof(state_count), req);
2485 }
2486 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, state_count,
2487     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
2488     sysctl_tcps_count, "LU", "TCP connection counts by state");
2489 
2490 void
2491 tcp_pcbport_create(struct tcpcb *tp)
2492 {
2493 	int cpu;
2494 
2495 	KASSERT((tp->t_flags & TF_LISTEN) && tp->t_state == TCPS_LISTEN,
2496 	    ("not a listen tcpcb"));
2497 
2498 	KASSERT(tp->t_pcbport == NULL, ("tcpcb port cache was created"));
2499 	tp->t_pcbport =
2500 		kmalloc(sizeof(struct tcp_pcbport) * netisr_ncpus,
2501 			M_PCB,
2502 			M_WAITOK | M_CACHEALIGN);
2503 
2504 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
2505 		struct inpcbport *phd;
2506 
2507 		phd = &tp->t_pcbport[cpu].t_phd;
2508 		LIST_INIT(&phd->phd_pcblist);
2509 		/* Though, not used ... */
2510 		phd->phd_port = tp->t_inpcb->inp_lport;
2511 	}
2512 }
2513 
2514 void
2515 tcp_pcbport_merge_oncpu(struct tcpcb *tp)
2516 {
2517 	struct inpcbport *phd;
2518 	struct inpcb *inp;
2519 	int cpu = mycpuid;
2520 
2521 	KASSERT(cpu < netisr_ncpus, ("invalid cpu%d", cpu));
2522 	phd = &tp->t_pcbport[cpu].t_phd;
2523 
2524 	while ((inp = LIST_FIRST(&phd->phd_pcblist)) != NULL) {
2525 		KASSERT(inp->inp_phd == phd && inp->inp_porthash == NULL,
2526 		    ("not on tcpcb port cache"));
2527 		LIST_REMOVE(inp, inp_portlist);
2528 		in_pcbinsporthash_lport(inp);
2529 		KASSERT(inp->inp_phd == tp->t_inpcb->inp_phd &&
2530 		    inp->inp_porthash == tp->t_inpcb->inp_porthash,
2531 		    ("tcpcb port cache merge failed"));
2532 	}
2533 }
2534 
2535 void
2536 tcp_pcbport_destroy(struct tcpcb *tp)
2537 {
2538 #ifdef INVARIANTS
2539 	int cpu;
2540 
2541 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
2542 		KASSERT(LIST_EMPTY(&tp->t_pcbport[cpu].t_phd.phd_pcblist),
2543 		    ("tcpcb port cache is not empty"));
2544 	}
2545 #endif
2546 	kfree(tp->t_pcbport, M_PCB);
2547 	tp->t_pcbport = NULL;
2548 }
2549