xref: /dragonfly/sys/netinet/tcp_subr.c (revision 7bc7e232)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
67  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
68  * $DragonFly: src/sys/netinet/tcp_subr.c,v 1.59 2007/07/06 11:59:03 sephe Exp $
69  */
70 
71 #include "opt_compat.h"
72 #include "opt_inet6.h"
73 #include "opt_ipsec.h"
74 #include "opt_tcpdebug.h"
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/callout.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 #include <sys/malloc.h>
82 #include <sys/mpipe.h>
83 #include <sys/mbuf.h>
84 #ifdef INET6
85 #include <sys/domain.h>
86 #endif
87 #include <sys/proc.h>
88 #include <sys/socket.h>
89 #include <sys/socketvar.h>
90 #include <sys/protosw.h>
91 #include <sys/random.h>
92 #include <sys/in_cksum.h>
93 #include <sys/ktr.h>
94 
95 #include <vm/vm_zone.h>
96 
97 #include <net/route.h>
98 #include <net/if.h>
99 #include <net/netisr.h>
100 
101 #define	_IP_VHL
102 #include <netinet/in.h>
103 #include <netinet/in_systm.h>
104 #include <netinet/ip.h>
105 #include <netinet/ip6.h>
106 #include <netinet/in_pcb.h>
107 #include <netinet6/in6_pcb.h>
108 #include <netinet/in_var.h>
109 #include <netinet/ip_var.h>
110 #include <netinet6/ip6_var.h>
111 #include <netinet/ip_icmp.h>
112 #ifdef INET6
113 #include <netinet/icmp6.h>
114 #endif
115 #include <netinet/tcp.h>
116 #include <netinet/tcp_fsm.h>
117 #include <netinet/tcp_seq.h>
118 #include <netinet/tcp_timer.h>
119 #include <netinet/tcp_var.h>
120 #include <netinet6/tcp6_var.h>
121 #include <netinet/tcpip.h>
122 #ifdef TCPDEBUG
123 #include <netinet/tcp_debug.h>
124 #endif
125 #include <netinet6/ip6protosw.h>
126 
127 #ifdef IPSEC
128 #include <netinet6/ipsec.h>
129 #ifdef INET6
130 #include <netinet6/ipsec6.h>
131 #endif
132 #endif
133 
134 #ifdef FAST_IPSEC
135 #include <netproto/ipsec/ipsec.h>
136 #ifdef INET6
137 #include <netproto/ipsec/ipsec6.h>
138 #endif
139 #define	IPSEC
140 #endif
141 
142 #include <sys/md5.h>
143 #include <sys/msgport2.h>
144 #include <machine/smp.h>
145 
146 #include <net/netmsg2.h>
147 
148 #if !defined(KTR_TCP)
149 #define KTR_TCP		KTR_ALL
150 #endif
151 KTR_INFO_MASTER(tcp);
152 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
153 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
154 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
155 #define logtcp(name)	KTR_LOG(tcp_ ## name)
156 
157 struct inpcbinfo tcbinfo[MAXCPU];
158 struct tcpcbackqhead tcpcbackq[MAXCPU];
159 
160 int tcp_mssdflt = TCP_MSS;
161 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
162     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
163 
164 #ifdef INET6
165 int tcp_v6mssdflt = TCP6_MSS;
166 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
167     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
168 #endif
169 
170 #if 0
171 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
172 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
173     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
174 #endif
175 
176 int tcp_do_rfc1323 = 1;
177 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
178     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
179 
180 int tcp_do_rfc1644 = 0;
181 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
182     &tcp_do_rfc1644, 0, "Enable rfc1644 (TTCP) extensions");
183 
184 static int tcp_tcbhashsize = 0;
185 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
186      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
187 
188 static int do_tcpdrain = 1;
189 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
190      "Enable tcp_drain routine for extra help when low on mbufs");
191 
192 /* XXX JH */
193 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
194     &tcbinfo[0].ipi_count, 0, "Number of active PCBs");
195 
196 static int icmp_may_rst = 1;
197 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
198     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
199 
200 static int tcp_isn_reseed_interval = 0;
201 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
202     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
203 
204 /*
205  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
206  * 1024 exists only for debugging.  A good production default would be
207  * something like 6100.
208  */
209 static int tcp_inflight_enable = 0;
210 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
211     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
212 
213 static int tcp_inflight_debug = 0;
214 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
215     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
216 
217 static int tcp_inflight_min = 6144;
218 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
219     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
220 
221 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
222 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
223     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
224 
225 static int tcp_inflight_stab = 20;
226 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
227     &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 2 packets)");
228 
229 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
230 static struct malloc_pipe tcptemp_mpipe;
231 
232 static void tcp_willblock(void);
233 static void tcp_cleartaocache (void);
234 static void tcp_notify (struct inpcb *, int);
235 
236 struct tcp_stats tcpstats_percpu[MAXCPU];
237 #ifdef SMP
238 static int
239 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
240 {
241 	int cpu, error = 0;
242 
243 	for (cpu = 0; cpu < ncpus; ++cpu) {
244 		if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
245 					sizeof(struct tcp_stats))))
246 			break;
247 		if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
248 				       sizeof(struct tcp_stats))))
249 			break;
250 	}
251 
252 	return (error);
253 }
254 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
255     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
256 #else
257 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
258     &tcpstat, tcp_stats, "TCP statistics");
259 #endif
260 
261 /*
262  * Target size of TCP PCB hash tables. Must be a power of two.
263  *
264  * Note that this can be overridden by the kernel environment
265  * variable net.inet.tcp.tcbhashsize
266  */
267 #ifndef TCBHASHSIZE
268 #define	TCBHASHSIZE	512
269 #endif
270 
271 /*
272  * This is the actual shape of what we allocate using the zone
273  * allocator.  Doing it this way allows us to protect both structures
274  * using the same generation count, and also eliminates the overhead
275  * of allocating tcpcbs separately.  By hiding the structure here,
276  * we avoid changing most of the rest of the code (although it needs
277  * to be changed, eventually, for greater efficiency).
278  */
279 #define	ALIGNMENT	32
280 #define	ALIGNM1		(ALIGNMENT - 1)
281 struct	inp_tp {
282 	union {
283 		struct	inpcb inp;
284 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
285 	} inp_tp_u;
286 	struct	tcpcb tcb;
287 	struct	callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
288 	struct	callout inp_tp_delack;
289 };
290 #undef ALIGNMENT
291 #undef ALIGNM1
292 
293 /*
294  * Tcp initialization
295  */
296 void
297 tcp_init(void)
298 {
299 	struct inpcbporthead *porthashbase;
300 	u_long porthashmask;
301 	struct vm_zone *ipi_zone;
302 	int hashsize = TCBHASHSIZE;
303 	int cpu;
304 
305 	/*
306 	 * note: tcptemp is used for keepalives, and it is ok for an
307 	 * allocation to fail so do not specify MPF_INT.
308 	 */
309 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
310 		    25, -1, 0, NULL);
311 
312 	tcp_ccgen = 1;
313 	tcp_cleartaocache();
314 
315 	tcp_delacktime = TCPTV_DELACK;
316 	tcp_keepinit = TCPTV_KEEP_INIT;
317 	tcp_keepidle = TCPTV_KEEP_IDLE;
318 	tcp_keepintvl = TCPTV_KEEPINTVL;
319 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
320 	tcp_msl = TCPTV_MSL;
321 	tcp_rexmit_min = TCPTV_MIN;
322 	tcp_rexmit_slop = TCPTV_CPU_VAR;
323 
324 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
325 	if (!powerof2(hashsize)) {
326 		kprintf("WARNING: TCB hash size not a power of 2\n");
327 		hashsize = 512; /* safe default */
328 	}
329 	tcp_tcbhashsize = hashsize;
330 	porthashbase = hashinit(hashsize, M_PCB, &porthashmask);
331 	ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets,
332 			 ZONE_INTERRUPT, 0);
333 
334 	for (cpu = 0; cpu < ncpus2; cpu++) {
335 		in_pcbinfo_init(&tcbinfo[cpu]);
336 		tcbinfo[cpu].cpu = cpu;
337 		tcbinfo[cpu].hashbase = hashinit(hashsize, M_PCB,
338 		    &tcbinfo[cpu].hashmask);
339 		tcbinfo[cpu].porthashbase = porthashbase;
340 		tcbinfo[cpu].porthashmask = porthashmask;
341 		tcbinfo[cpu].wildcardhashbase = hashinit(hashsize, M_PCB,
342 		    &tcbinfo[cpu].wildcardhashmask);
343 		tcbinfo[cpu].ipi_zone = ipi_zone;
344 		TAILQ_INIT(&tcpcbackq[cpu]);
345 	}
346 
347 	tcp_reass_maxseg = nmbclusters / 16;
348 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
349 
350 #ifdef INET6
351 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
352 #else
353 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
354 #endif
355 	if (max_protohdr < TCP_MINPROTOHDR)
356 		max_protohdr = TCP_MINPROTOHDR;
357 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
358 		panic("tcp_init");
359 #undef TCP_MINPROTOHDR
360 
361 	/*
362 	 * Initialize TCP statistics counters for each CPU.
363 	 */
364 #ifdef SMP
365 	for (cpu = 0; cpu < ncpus; ++cpu) {
366 		bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
367 	}
368 #else
369 	bzero(&tcpstat, sizeof(struct tcp_stats));
370 #endif
371 
372 	syncache_init();
373 	tcp_sack_init();
374 	tcp_thread_init();
375 }
376 
377 void
378 tcpmsg_service_loop(void *dummy)
379 {
380 	struct netmsg *msg;
381 
382 	while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) {
383 		do {
384 			logtcp(rxmsg);
385 			msg->nm_dispatch(msg);
386 		} while ((msg = lwkt_getport(&curthread->td_msgport)) != NULL);
387 		logtcp(delayed);
388 		tcp_willblock();
389 		logtcp(wait);
390 	}
391 }
392 
393 static void
394 tcp_willblock(void)
395 {
396 	struct tcpcb *tp;
397 	int cpu = mycpu->gd_cpuid;
398 
399 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
400 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
401 		tp->t_flags &= ~TF_ONOUTPUTQ;
402 		TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
403 		tcp_output(tp);
404 	}
405 }
406 
407 
408 /*
409  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
410  * tcp_template used to store this data in mbufs, but we now recopy it out
411  * of the tcpcb each time to conserve mbufs.
412  */
413 void
414 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr)
415 {
416 	struct inpcb *inp = tp->t_inpcb;
417 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
418 
419 #ifdef INET6
420 	if (inp->inp_vflag & INP_IPV6) {
421 		struct ip6_hdr *ip6;
422 
423 		ip6 = (struct ip6_hdr *)ip_ptr;
424 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
425 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
426 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
427 			(IPV6_VERSION & IPV6_VERSION_MASK);
428 		ip6->ip6_nxt = IPPROTO_TCP;
429 		ip6->ip6_plen = sizeof(struct tcphdr);
430 		ip6->ip6_src = inp->in6p_laddr;
431 		ip6->ip6_dst = inp->in6p_faddr;
432 		tcp_hdr->th_sum = 0;
433 	} else
434 #endif
435 	{
436 		struct ip *ip = (struct ip *) ip_ptr;
437 
438 		ip->ip_vhl = IP_VHL_BORING;
439 		ip->ip_tos = 0;
440 		ip->ip_len = 0;
441 		ip->ip_id = 0;
442 		ip->ip_off = 0;
443 		ip->ip_ttl = 0;
444 		ip->ip_sum = 0;
445 		ip->ip_p = IPPROTO_TCP;
446 		ip->ip_src = inp->inp_laddr;
447 		ip->ip_dst = inp->inp_faddr;
448 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
449 				    ip->ip_dst.s_addr,
450 				    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
451 	}
452 
453 	tcp_hdr->th_sport = inp->inp_lport;
454 	tcp_hdr->th_dport = inp->inp_fport;
455 	tcp_hdr->th_seq = 0;
456 	tcp_hdr->th_ack = 0;
457 	tcp_hdr->th_x2 = 0;
458 	tcp_hdr->th_off = 5;
459 	tcp_hdr->th_flags = 0;
460 	tcp_hdr->th_win = 0;
461 	tcp_hdr->th_urp = 0;
462 }
463 
464 /*
465  * Create template to be used to send tcp packets on a connection.
466  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
467  * use for this function is in keepalives, which use tcp_respond.
468  */
469 struct tcptemp *
470 tcp_maketemplate(struct tcpcb *tp)
471 {
472 	struct tcptemp *tmp;
473 
474 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
475 		return (NULL);
476 	tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t);
477 	return (tmp);
478 }
479 
480 void
481 tcp_freetemplate(struct tcptemp *tmp)
482 {
483 	mpipe_free(&tcptemp_mpipe, tmp);
484 }
485 
486 /*
487  * Send a single message to the TCP at address specified by
488  * the given TCP/IP header.  If m == NULL, then we make a copy
489  * of the tcpiphdr at ti and send directly to the addressed host.
490  * This is used to force keep alive messages out using the TCP
491  * template for a connection.  If flags are given then we send
492  * a message back to the TCP which originated the * segment ti,
493  * and discard the mbuf containing it and any other attached mbufs.
494  *
495  * In any case the ack and sequence number of the transmitted
496  * segment are as specified by the parameters.
497  *
498  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
499  */
500 void
501 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
502 	    tcp_seq ack, tcp_seq seq, int flags)
503 {
504 	int tlen;
505 	int win = 0;
506 	struct route *ro = NULL;
507 	struct route sro;
508 	struct ip *ip = ipgen;
509 	struct tcphdr *nth;
510 	int ipflags = 0;
511 	struct route_in6 *ro6 = NULL;
512 	struct route_in6 sro6;
513 	struct ip6_hdr *ip6 = ipgen;
514 #ifdef INET6
515 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
516 #else
517 	const boolean_t isipv6 = FALSE;
518 #endif
519 
520 	if (tp != NULL) {
521 		if (!(flags & TH_RST)) {
522 			win = ssb_space(&tp->t_inpcb->inp_socket->so_rcv);
523 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
524 				win = (long)TCP_MAXWIN << tp->rcv_scale;
525 		}
526 		if (isipv6)
527 			ro6 = &tp->t_inpcb->in6p_route;
528 		else
529 			ro = &tp->t_inpcb->inp_route;
530 	} else {
531 		if (isipv6) {
532 			ro6 = &sro6;
533 			bzero(ro6, sizeof *ro6);
534 		} else {
535 			ro = &sro;
536 			bzero(ro, sizeof *ro);
537 		}
538 	}
539 	if (m == NULL) {
540 		m = m_gethdr(MB_DONTWAIT, MT_HEADER);
541 		if (m == NULL)
542 			return;
543 		tlen = 0;
544 		m->m_data += max_linkhdr;
545 		if (isipv6) {
546 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
547 			ip6 = mtod(m, struct ip6_hdr *);
548 			nth = (struct tcphdr *)(ip6 + 1);
549 		} else {
550 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
551 			ip = mtod(m, struct ip *);
552 			nth = (struct tcphdr *)(ip + 1);
553 		}
554 		bcopy(th, nth, sizeof(struct tcphdr));
555 		flags = TH_ACK;
556 	} else {
557 		m_freem(m->m_next);
558 		m->m_next = NULL;
559 		m->m_data = (caddr_t)ipgen;
560 		/* m_len is set later */
561 		tlen = 0;
562 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
563 		if (isipv6) {
564 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
565 			nth = (struct tcphdr *)(ip6 + 1);
566 		} else {
567 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
568 			nth = (struct tcphdr *)(ip + 1);
569 		}
570 		if (th != nth) {
571 			/*
572 			 * this is usually a case when an extension header
573 			 * exists between the IPv6 header and the
574 			 * TCP header.
575 			 */
576 			nth->th_sport = th->th_sport;
577 			nth->th_dport = th->th_dport;
578 		}
579 		xchg(nth->th_dport, nth->th_sport, n_short);
580 #undef xchg
581 	}
582 	if (isipv6) {
583 		ip6->ip6_flow = 0;
584 		ip6->ip6_vfc = IPV6_VERSION;
585 		ip6->ip6_nxt = IPPROTO_TCP;
586 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
587 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
588 	} else {
589 		tlen += sizeof(struct tcpiphdr);
590 		ip->ip_len = tlen;
591 		ip->ip_ttl = ip_defttl;
592 	}
593 	m->m_len = tlen;
594 	m->m_pkthdr.len = tlen;
595 	m->m_pkthdr.rcvif = (struct ifnet *) NULL;
596 	nth->th_seq = htonl(seq);
597 	nth->th_ack = htonl(ack);
598 	nth->th_x2 = 0;
599 	nth->th_off = sizeof(struct tcphdr) >> 2;
600 	nth->th_flags = flags;
601 	if (tp != NULL)
602 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
603 	else
604 		nth->th_win = htons((u_short)win);
605 	nth->th_urp = 0;
606 	if (isipv6) {
607 		nth->th_sum = 0;
608 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
609 					sizeof(struct ip6_hdr),
610 					tlen - sizeof(struct ip6_hdr));
611 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
612 					       (ro6 && ro6->ro_rt) ?
613 						ro6->ro_rt->rt_ifp : NULL);
614 	} else {
615 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
616 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
617 		m->m_pkthdr.csum_flags = CSUM_TCP;
618 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
619 	}
620 #ifdef TCPDEBUG
621 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
622 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
623 #endif
624 	if (isipv6) {
625 		ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
626 			   tp ? tp->t_inpcb : NULL);
627 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
628 			RTFREE(ro6->ro_rt);
629 			ro6->ro_rt = NULL;
630 		}
631 	} else {
632 		ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
633 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
634 			RTFREE(ro->ro_rt);
635 			ro->ro_rt = NULL;
636 		}
637 	}
638 }
639 
640 /*
641  * Create a new TCP control block, making an
642  * empty reassembly queue and hooking it to the argument
643  * protocol control block.  The `inp' parameter must have
644  * come from the zone allocator set up in tcp_init().
645  */
646 struct tcpcb *
647 tcp_newtcpcb(struct inpcb *inp)
648 {
649 	struct inp_tp *it;
650 	struct tcpcb *tp;
651 #ifdef INET6
652 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
653 #else
654 	const boolean_t isipv6 = FALSE;
655 #endif
656 
657 	it = (struct inp_tp *)inp;
658 	tp = &it->tcb;
659 	bzero(tp, sizeof(struct tcpcb));
660 	LIST_INIT(&tp->t_segq);
661 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
662 
663 	/* Set up our timeouts. */
664 	callout_init(tp->tt_rexmt = &it->inp_tp_rexmt);
665 	callout_init(tp->tt_persist = &it->inp_tp_persist);
666 	callout_init(tp->tt_keep = &it->inp_tp_keep);
667 	callout_init(tp->tt_2msl = &it->inp_tp_2msl);
668 	callout_init(tp->tt_delack = &it->inp_tp_delack);
669 
670 	if (tcp_do_rfc1323)
671 		tp->t_flags = (TF_REQ_SCALE | TF_REQ_TSTMP);
672 	if (tcp_do_rfc1644)
673 		tp->t_flags |= TF_REQ_CC;
674 	tp->t_inpcb = inp;	/* XXX */
675 	tp->t_state = TCPS_CLOSED;
676 	/*
677 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
678 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
679 	 * reasonable initial retransmit time.
680 	 */
681 	tp->t_srtt = TCPTV_SRTTBASE;
682 	tp->t_rttvar =
683 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
684 	tp->t_rttmin = tcp_rexmit_min;
685 	tp->t_rxtcur = TCPTV_RTOBASE;
686 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
687 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
688 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
689 	tp->t_rcvtime = ticks;
690 	/*
691 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
692 	 * because the socket may be bound to an IPv6 wildcard address,
693 	 * which may match an IPv4-mapped IPv6 address.
694 	 */
695 	inp->inp_ip_ttl = ip_defttl;
696 	inp->inp_ppcb = tp;
697 	tcp_sack_tcpcb_init(tp);
698 	return (tp);		/* XXX */
699 }
700 
701 /*
702  * Drop a TCP connection, reporting the specified error.
703  * If connection is synchronized, then send a RST to peer.
704  */
705 struct tcpcb *
706 tcp_drop(struct tcpcb *tp, int error)
707 {
708 	struct socket *so = tp->t_inpcb->inp_socket;
709 
710 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
711 		tp->t_state = TCPS_CLOSED;
712 		tcp_output(tp);
713 		tcpstat.tcps_drops++;
714 	} else
715 		tcpstat.tcps_conndrops++;
716 	if (error == ETIMEDOUT && tp->t_softerror)
717 		error = tp->t_softerror;
718 	so->so_error = error;
719 	return (tcp_close(tp));
720 }
721 
722 #ifdef SMP
723 
724 struct netmsg_remwildcard {
725 	struct netmsg		nm_netmsg;
726 	struct inpcb		*nm_inp;
727 	struct inpcbinfo	*nm_pcbinfo;
728 #if defined(INET6)
729 	int			nm_isinet6;
730 #else
731 	int			nm_unused01;
732 #endif
733 };
734 
735 /*
736  * Wildcard inpcb's on SMP boxes must be removed from all cpus before the
737  * inp can be detached.  We do this by cycling through the cpus, ending up
738  * on the cpu controlling the inp last and then doing the disconnect.
739  */
740 static void
741 in_pcbremwildcardhash_handler(struct netmsg *msg0)
742 {
743 	struct netmsg_remwildcard *msg = (struct netmsg_remwildcard *)msg0;
744 	int cpu;
745 
746 	cpu = msg->nm_pcbinfo->cpu;
747 
748 	if (cpu == msg->nm_inp->inp_pcbinfo->cpu) {
749 		/* note: detach removes any wildcard hash entry */
750 #ifdef INET6
751 		if (msg->nm_isinet6)
752 			in6_pcbdetach(msg->nm_inp);
753 		else
754 #endif
755 			in_pcbdetach(msg->nm_inp);
756 		lwkt_replymsg(&msg->nm_netmsg.nm_lmsg, 0);
757 	} else {
758 		in_pcbremwildcardhash_oncpu(msg->nm_inp, msg->nm_pcbinfo);
759 		cpu = (cpu + 1) % ncpus2;
760 		msg->nm_pcbinfo = &tcbinfo[cpu];
761 		lwkt_forwardmsg(tcp_cport(cpu), &msg->nm_netmsg.nm_lmsg);
762 	}
763 }
764 
765 #endif
766 
767 /*
768  * Close a TCP control block:
769  *	discard all space held by the tcp
770  *	discard internet protocol block
771  *	wake up any sleepers
772  */
773 struct tcpcb *
774 tcp_close(struct tcpcb *tp)
775 {
776 	struct tseg_qent *q;
777 	struct inpcb *inp = tp->t_inpcb;
778 	struct socket *so = inp->inp_socket;
779 	struct rtentry *rt;
780 	boolean_t dosavessthresh;
781 #ifdef SMP
782 	int cpu;
783 #endif
784 #ifdef INET6
785 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
786 	boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
787 #else
788 	const boolean_t isipv6 = FALSE;
789 #endif
790 
791 	/*
792 	 * The tp is not instantly destroyed in the wildcard case.  Setting
793 	 * the state to TCPS_TERMINATING will prevent the TCP stack from
794 	 * messing with it, though it should be noted that this change may
795 	 * not take effect on other cpus until we have chained the wildcard
796 	 * hash removal.
797 	 *
798 	 * XXX we currently depend on the BGL to synchronize the tp->t_state
799 	 * update and prevent other tcp protocol threads from accepting new
800 	 * connections on the listen socket we might be trying to close down.
801 	 */
802 	KKASSERT(tp->t_state != TCPS_TERMINATING);
803 	tp->t_state = TCPS_TERMINATING;
804 
805 	/*
806 	 * Make sure that all of our timers are stopped before we
807 	 * delete the PCB.
808 	 */
809 	callout_stop(tp->tt_rexmt);
810 	callout_stop(tp->tt_persist);
811 	callout_stop(tp->tt_keep);
812 	callout_stop(tp->tt_2msl);
813 	callout_stop(tp->tt_delack);
814 
815 	if (tp->t_flags & TF_ONOUTPUTQ) {
816 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
817 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
818 		tp->t_flags &= ~TF_ONOUTPUTQ;
819 	}
820 
821 	/*
822 	 * If we got enough samples through the srtt filter,
823 	 * save the rtt and rttvar in the routing entry.
824 	 * 'Enough' is arbitrarily defined as the 16 samples.
825 	 * 16 samples is enough for the srtt filter to converge
826 	 * to within 5% of the correct value; fewer samples and
827 	 * we could save a very bogus rtt.
828 	 *
829 	 * Don't update the default route's characteristics and don't
830 	 * update anything that the user "locked".
831 	 */
832 	if (tp->t_rttupdated >= 16) {
833 		u_long i = 0;
834 
835 		if (isipv6) {
836 			struct sockaddr_in6 *sin6;
837 
838 			if ((rt = inp->in6p_route.ro_rt) == NULL)
839 				goto no_valid_rt;
840 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
841 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
842 				goto no_valid_rt;
843 		} else
844 			if ((rt = inp->inp_route.ro_rt) == NULL ||
845 			    ((struct sockaddr_in *)rt_key(rt))->
846 			     sin_addr.s_addr == INADDR_ANY)
847 				goto no_valid_rt;
848 
849 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
850 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
851 			if (rt->rt_rmx.rmx_rtt && i)
852 				/*
853 				 * filter this update to half the old & half
854 				 * the new values, converting scale.
855 				 * See route.h and tcp_var.h for a
856 				 * description of the scaling constants.
857 				 */
858 				rt->rt_rmx.rmx_rtt =
859 				    (rt->rt_rmx.rmx_rtt + i) / 2;
860 			else
861 				rt->rt_rmx.rmx_rtt = i;
862 			tcpstat.tcps_cachedrtt++;
863 		}
864 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
865 			i = tp->t_rttvar *
866 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
867 			if (rt->rt_rmx.rmx_rttvar && i)
868 				rt->rt_rmx.rmx_rttvar =
869 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
870 			else
871 				rt->rt_rmx.rmx_rttvar = i;
872 			tcpstat.tcps_cachedrttvar++;
873 		}
874 		/*
875 		 * The old comment here said:
876 		 * update the pipelimit (ssthresh) if it has been updated
877 		 * already or if a pipesize was specified & the threshhold
878 		 * got below half the pipesize.  I.e., wait for bad news
879 		 * before we start updating, then update on both good
880 		 * and bad news.
881 		 *
882 		 * But we want to save the ssthresh even if no pipesize is
883 		 * specified explicitly in the route, because such
884 		 * connections still have an implicit pipesize specified
885 		 * by the global tcp_sendspace.  In the absence of a reliable
886 		 * way to calculate the pipesize, it will have to do.
887 		 */
888 		i = tp->snd_ssthresh;
889 		if (rt->rt_rmx.rmx_sendpipe != 0)
890 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
891 		else
892 			dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
893 		if (dosavessthresh ||
894 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
895 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
896 			/*
897 			 * convert the limit from user data bytes to
898 			 * packets then to packet data bytes.
899 			 */
900 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
901 			if (i < 2)
902 				i = 2;
903 			i *= tp->t_maxseg +
904 			     (isipv6 ?
905 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
906 			      sizeof(struct tcpiphdr));
907 			if (rt->rt_rmx.rmx_ssthresh)
908 				rt->rt_rmx.rmx_ssthresh =
909 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
910 			else
911 				rt->rt_rmx.rmx_ssthresh = i;
912 			tcpstat.tcps_cachedssthresh++;
913 		}
914 	}
915 
916 no_valid_rt:
917 	/* free the reassembly queue, if any */
918 	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
919 		LIST_REMOVE(q, tqe_q);
920 		m_freem(q->tqe_m);
921 		FREE(q, M_TSEGQ);
922 		tcp_reass_qsize--;
923 	}
924 	/* throw away SACK blocks in scoreboard*/
925 	if (TCP_DO_SACK(tp))
926 		tcp_sack_cleanup(&tp->scb);
927 
928 	inp->inp_ppcb = NULL;
929 	soisdisconnected(so);
930 	/*
931 	 * Discard the inp.  In the SMP case a wildcard inp's hash (created
932 	 * by a listen socket or an INADDR_ANY udp socket) is replicated
933 	 * for each protocol thread and must be removed in the context of
934 	 * that thread.  This is accomplished by chaining the message
935 	 * through the cpus.
936 	 *
937 	 * If the inp is not wildcarded we simply detach, which will remove
938 	 * the any hashes still present for this inp.
939 	 */
940 #ifdef SMP
941 	if (inp->inp_flags & INP_WILDCARD_MP) {
942 		struct netmsg_remwildcard *msg;
943 
944 		cpu = (inp->inp_pcbinfo->cpu + 1) % ncpus2;
945 		msg = kmalloc(sizeof(struct netmsg_remwildcard),
946 			      M_LWKTMSG, M_INTWAIT);
947 		netmsg_init(&msg->nm_netmsg, &netisr_afree_rport, 0,
948 			    in_pcbremwildcardhash_handler);
949 #ifdef INET6
950 		msg->nm_isinet6 = isafinet6;
951 #endif
952 		msg->nm_inp = inp;
953 		msg->nm_pcbinfo = &tcbinfo[cpu];
954 		lwkt_sendmsg(tcp_cport(cpu), &msg->nm_netmsg.nm_lmsg);
955 	} else
956 #endif
957 	{
958 		/* note: detach removes any wildcard hash entry */
959 #ifdef INET6
960 		if (isafinet6)
961 			in6_pcbdetach(inp);
962 		else
963 #endif
964 			in_pcbdetach(inp);
965 	}
966 	tcpstat.tcps_closed++;
967 	return (NULL);
968 }
969 
970 static __inline void
971 tcp_drain_oncpu(struct inpcbhead *head)
972 {
973 	struct inpcb *inpb;
974 	struct tcpcb *tcpb;
975 	struct tseg_qent *te;
976 
977 	LIST_FOREACH(inpb, head, inp_list) {
978 		if (inpb->inp_flags & INP_PLACEMARKER)
979 			continue;
980 		if ((tcpb = intotcpcb(inpb))) {
981 			while ((te = LIST_FIRST(&tcpb->t_segq)) != NULL) {
982 				LIST_REMOVE(te, tqe_q);
983 				m_freem(te->tqe_m);
984 				FREE(te, M_TSEGQ);
985 				tcp_reass_qsize--;
986 			}
987 		}
988 	}
989 }
990 
991 #ifdef SMP
992 struct netmsg_tcp_drain {
993 	struct netmsg		nm_netmsg;
994 	struct inpcbhead	*nm_head;
995 };
996 
997 static void
998 tcp_drain_handler(netmsg_t netmsg)
999 {
1000 	struct netmsg_tcp_drain *nm = (void *)netmsg;
1001 
1002 	tcp_drain_oncpu(nm->nm_head);
1003 	lwkt_replymsg(&nm->nm_netmsg.nm_lmsg, 0);
1004 }
1005 #endif
1006 
1007 void
1008 tcp_drain(void)
1009 {
1010 #ifdef SMP
1011 	int cpu;
1012 #endif
1013 
1014 	if (!do_tcpdrain)
1015 		return;
1016 
1017 	/*
1018 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1019 	 * if there is one...
1020 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1021 	 *	reassembly queue should be flushed, but in a situation
1022 	 *	where we're really low on mbufs, this is potentially
1023 	 *	useful.
1024 	 */
1025 #ifdef SMP
1026 	for (cpu = 0; cpu < ncpus2; cpu++) {
1027 		struct netmsg_tcp_drain *msg;
1028 
1029 		if (cpu == mycpu->gd_cpuid) {
1030 			tcp_drain_oncpu(&tcbinfo[cpu].pcblisthead);
1031 		} else {
1032 			msg = kmalloc(sizeof(struct netmsg_tcp_drain),
1033 				    M_LWKTMSG, M_NOWAIT);
1034 			if (msg == NULL)
1035 				continue;
1036 			netmsg_init(&msg->nm_netmsg, &netisr_afree_rport, 0,
1037 				    tcp_drain_handler);
1038 			msg->nm_head = &tcbinfo[cpu].pcblisthead;
1039 			lwkt_sendmsg(tcp_cport(cpu), &msg->nm_netmsg.nm_lmsg);
1040 		}
1041 	}
1042 #else
1043 	tcp_drain_oncpu(&tcbinfo[0].pcblisthead);
1044 #endif
1045 }
1046 
1047 /*
1048  * Notify a tcp user of an asynchronous error;
1049  * store error as soft error, but wake up user
1050  * (for now, won't do anything until can select for soft error).
1051  *
1052  * Do not wake up user since there currently is no mechanism for
1053  * reporting soft errors (yet - a kqueue filter may be added).
1054  */
1055 static void
1056 tcp_notify(struct inpcb *inp, int error)
1057 {
1058 	struct tcpcb *tp = intotcpcb(inp);
1059 
1060 	/*
1061 	 * Ignore some errors if we are hooked up.
1062 	 * If connection hasn't completed, has retransmitted several times,
1063 	 * and receives a second error, give up now.  This is better
1064 	 * than waiting a long time to establish a connection that
1065 	 * can never complete.
1066 	 */
1067 	if (tp->t_state == TCPS_ESTABLISHED &&
1068 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1069 	      error == EHOSTDOWN)) {
1070 		return;
1071 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1072 	    tp->t_softerror)
1073 		tcp_drop(tp, error);
1074 	else
1075 		tp->t_softerror = error;
1076 #if 0
1077 	wakeup(&so->so_timeo);
1078 	sorwakeup(so);
1079 	sowwakeup(so);
1080 #endif
1081 }
1082 
1083 static int
1084 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1085 {
1086 	int error, i, n;
1087 	struct inpcb *marker;
1088 	struct inpcb *inp;
1089 	inp_gen_t gencnt;
1090 	globaldata_t gd;
1091 	int origcpu, ccpu;
1092 
1093 	error = 0;
1094 	n = 0;
1095 
1096 	/*
1097 	 * The process of preparing the TCB list is too time-consuming and
1098 	 * resource-intensive to repeat twice on every request.
1099 	 */
1100 	if (req->oldptr == NULL) {
1101 		for (ccpu = 0; ccpu < ncpus; ++ccpu) {
1102 			gd = globaldata_find(ccpu);
1103 			n += tcbinfo[gd->gd_cpuid].ipi_count;
1104 		}
1105 		req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1106 		return (0);
1107 	}
1108 
1109 	if (req->newptr != NULL)
1110 		return (EPERM);
1111 
1112 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1113 	marker->inp_flags |= INP_PLACEMARKER;
1114 
1115 	/*
1116 	 * OK, now we're committed to doing something.  Run the inpcb list
1117 	 * for each cpu in the system and construct the output.  Use a
1118 	 * list placemarker to deal with list changes occuring during
1119 	 * copyout blockages (but otherwise depend on being on the correct
1120 	 * cpu to avoid races).
1121 	 */
1122 	origcpu = mycpu->gd_cpuid;
1123 	for (ccpu = 1; ccpu <= ncpus && error == 0; ++ccpu) {
1124 		globaldata_t rgd;
1125 		caddr_t inp_ppcb;
1126 		struct xtcpcb xt;
1127 		int cpu_id;
1128 
1129 		cpu_id = (origcpu + ccpu) % ncpus;
1130 		if ((smp_active_mask & (1 << cpu_id)) == 0)
1131 			continue;
1132 		rgd = globaldata_find(cpu_id);
1133 		lwkt_setcpu_self(rgd);
1134 
1135 		gencnt = tcbinfo[cpu_id].ipi_gencnt;
1136 		n = tcbinfo[cpu_id].ipi_count;
1137 
1138 		LIST_INSERT_HEAD(&tcbinfo[cpu_id].pcblisthead, marker, inp_list);
1139 		i = 0;
1140 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1141 			/*
1142 			 * process a snapshot of pcbs, ignoring placemarkers
1143 			 * and using our own to allow SYSCTL_OUT to block.
1144 			 */
1145 			LIST_REMOVE(marker, inp_list);
1146 			LIST_INSERT_AFTER(inp, marker, inp_list);
1147 
1148 			if (inp->inp_flags & INP_PLACEMARKER)
1149 				continue;
1150 			if (inp->inp_gencnt > gencnt)
1151 				continue;
1152 			if (prison_xinpcb(req->td, inp))
1153 				continue;
1154 
1155 			xt.xt_len = sizeof xt;
1156 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1157 			inp_ppcb = inp->inp_ppcb;
1158 			if (inp_ppcb != NULL)
1159 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1160 			else
1161 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1162 			if (inp->inp_socket)
1163 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1164 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1165 				break;
1166 			++i;
1167 		}
1168 		LIST_REMOVE(marker, inp_list);
1169 		if (error == 0 && i < n) {
1170 			bzero(&xt, sizeof xt);
1171 			xt.xt_len = sizeof xt;
1172 			while (i < n) {
1173 				error = SYSCTL_OUT(req, &xt, sizeof xt);
1174 				if (error)
1175 					break;
1176 				++i;
1177 			}
1178 		}
1179 	}
1180 
1181 	/*
1182 	 * Make sure we are on the same cpu we were on originally, since
1183 	 * higher level callers expect this.  Also don't pollute caches with
1184 	 * migrated userland data by (eventually) returning to userland
1185 	 * on a different cpu.
1186 	 */
1187 	lwkt_setcpu_self(globaldata_find(origcpu));
1188 	kfree(marker, M_TEMP);
1189 	return (error);
1190 }
1191 
1192 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1193 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1194 
1195 static int
1196 tcp_getcred(SYSCTL_HANDLER_ARGS)
1197 {
1198 	struct sockaddr_in addrs[2];
1199 	struct inpcb *inp;
1200 	int cpu;
1201 	int error;
1202 
1203 	error = suser(req->td);
1204 	if (error != 0)
1205 		return (error);
1206 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1207 	if (error != 0)
1208 		return (error);
1209 	crit_enter();
1210 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1211 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1212 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1213 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1214 	if (inp == NULL || inp->inp_socket == NULL) {
1215 		error = ENOENT;
1216 		goto out;
1217 	}
1218 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1219 out:
1220 	crit_exit();
1221 	return (error);
1222 }
1223 
1224 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1225     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1226 
1227 #ifdef INET6
1228 static int
1229 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1230 {
1231 	struct sockaddr_in6 addrs[2];
1232 	struct inpcb *inp;
1233 	int error;
1234 	boolean_t mapped = FALSE;
1235 
1236 	error = suser(req->td);
1237 	if (error != 0)
1238 		return (error);
1239 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1240 	if (error != 0)
1241 		return (error);
1242 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1243 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1244 			mapped = TRUE;
1245 		else
1246 			return (EINVAL);
1247 	}
1248 	crit_enter();
1249 	if (mapped) {
1250 		inp = in_pcblookup_hash(&tcbinfo[0],
1251 		    *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1252 		    addrs[1].sin6_port,
1253 		    *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1254 		    addrs[0].sin6_port,
1255 		    0, NULL);
1256 	} else {
1257 		inp = in6_pcblookup_hash(&tcbinfo[0],
1258 		    &addrs[1].sin6_addr, addrs[1].sin6_port,
1259 		    &addrs[0].sin6_addr, addrs[0].sin6_port,
1260 		    0, NULL);
1261 	}
1262 	if (inp == NULL || inp->inp_socket == NULL) {
1263 		error = ENOENT;
1264 		goto out;
1265 	}
1266 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1267 out:
1268 	crit_exit();
1269 	return (error);
1270 }
1271 
1272 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1273 	    0, 0,
1274 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1275 #endif
1276 
1277 void
1278 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1279 {
1280 	struct ip *ip = vip;
1281 	struct tcphdr *th;
1282 	struct in_addr faddr;
1283 	struct inpcb *inp;
1284 	struct tcpcb *tp;
1285 	void (*notify)(struct inpcb *, int) = tcp_notify;
1286 	tcp_seq icmpseq;
1287 	int arg, cpu;
1288 
1289 	if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1290 		return;
1291 	}
1292 
1293 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1294 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1295 		return;
1296 
1297 	arg = inetctlerrmap[cmd];
1298 	if (cmd == PRC_QUENCH) {
1299 		notify = tcp_quench;
1300 	} else if (icmp_may_rst &&
1301 		   (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1302 		    cmd == PRC_UNREACH_PORT ||
1303 		    cmd == PRC_TIMXCEED_INTRANS) &&
1304 		   ip != NULL) {
1305 		notify = tcp_drop_syn_sent;
1306 	} else if (cmd == PRC_MSGSIZE) {
1307 		struct icmp *icmp = (struct icmp *)
1308 		    ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1309 
1310 		arg = ntohs(icmp->icmp_nextmtu);
1311 		notify = tcp_mtudisc;
1312 	} else if (PRC_IS_REDIRECT(cmd)) {
1313 		ip = NULL;
1314 		notify = in_rtchange;
1315 	} else if (cmd == PRC_HOSTDEAD) {
1316 		ip = NULL;
1317 	}
1318 
1319 	if (ip != NULL) {
1320 		crit_enter();
1321 		th = (struct tcphdr *)((caddr_t)ip +
1322 				       (IP_VHL_HL(ip->ip_vhl) << 2));
1323 		cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
1324 				  ip->ip_src.s_addr, th->th_sport);
1325 		inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
1326 					ip->ip_src, th->th_sport, 0, NULL);
1327 		if ((inp != NULL) && (inp->inp_socket != NULL)) {
1328 			icmpseq = htonl(th->th_seq);
1329 			tp = intotcpcb(inp);
1330 			if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1331 			    SEQ_LT(icmpseq, tp->snd_max))
1332 				(*notify)(inp, arg);
1333 		} else {
1334 			struct in_conninfo inc;
1335 
1336 			inc.inc_fport = th->th_dport;
1337 			inc.inc_lport = th->th_sport;
1338 			inc.inc_faddr = faddr;
1339 			inc.inc_laddr = ip->ip_src;
1340 #ifdef INET6
1341 			inc.inc_isipv6 = 0;
1342 #endif
1343 			syncache_unreach(&inc, th);
1344 		}
1345 		crit_exit();
1346 	} else {
1347 		for (cpu = 0; cpu < ncpus2; cpu++) {
1348 			in_pcbnotifyall(&tcbinfo[cpu].pcblisthead, faddr, arg,
1349 					notify);
1350 		}
1351 	}
1352 }
1353 
1354 #ifdef INET6
1355 void
1356 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1357 {
1358 	struct tcphdr th;
1359 	void (*notify) (struct inpcb *, int) = tcp_notify;
1360 	struct ip6_hdr *ip6;
1361 	struct mbuf *m;
1362 	struct ip6ctlparam *ip6cp = NULL;
1363 	const struct sockaddr_in6 *sa6_src = NULL;
1364 	int off;
1365 	struct tcp_portonly {
1366 		u_int16_t th_sport;
1367 		u_int16_t th_dport;
1368 	} *thp;
1369 	int arg;
1370 
1371 	if (sa->sa_family != AF_INET6 ||
1372 	    sa->sa_len != sizeof(struct sockaddr_in6))
1373 		return;
1374 
1375 	arg = 0;
1376 	if (cmd == PRC_QUENCH)
1377 		notify = tcp_quench;
1378 	else if (cmd == PRC_MSGSIZE) {
1379 		struct ip6ctlparam *ip6cp = d;
1380 		struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1381 
1382 		arg = ntohl(icmp6->icmp6_mtu);
1383 		notify = tcp_mtudisc;
1384 	} else if (!PRC_IS_REDIRECT(cmd) &&
1385 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1386 		return;
1387 	}
1388 
1389 	/* if the parameter is from icmp6, decode it. */
1390 	if (d != NULL) {
1391 		ip6cp = (struct ip6ctlparam *)d;
1392 		m = ip6cp->ip6c_m;
1393 		ip6 = ip6cp->ip6c_ip6;
1394 		off = ip6cp->ip6c_off;
1395 		sa6_src = ip6cp->ip6c_src;
1396 	} else {
1397 		m = NULL;
1398 		ip6 = NULL;
1399 		off = 0;	/* fool gcc */
1400 		sa6_src = &sa6_any;
1401 	}
1402 
1403 	if (ip6 != NULL) {
1404 		struct in_conninfo inc;
1405 		/*
1406 		 * XXX: We assume that when IPV6 is non NULL,
1407 		 * M and OFF are valid.
1408 		 */
1409 
1410 		/* check if we can safely examine src and dst ports */
1411 		if (m->m_pkthdr.len < off + sizeof *thp)
1412 			return;
1413 
1414 		bzero(&th, sizeof th);
1415 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1416 
1417 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, th.th_dport,
1418 		    (struct sockaddr *)ip6cp->ip6c_src,
1419 		    th.th_sport, cmd, arg, notify);
1420 
1421 		inc.inc_fport = th.th_dport;
1422 		inc.inc_lport = th.th_sport;
1423 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1424 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1425 		inc.inc_isipv6 = 1;
1426 		syncache_unreach(&inc, &th);
1427 	} else
1428 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, 0,
1429 		    (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1430 }
1431 #endif
1432 
1433 /*
1434  * Following is where TCP initial sequence number generation occurs.
1435  *
1436  * There are two places where we must use initial sequence numbers:
1437  * 1.  In SYN-ACK packets.
1438  * 2.  In SYN packets.
1439  *
1440  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1441  * tcp_syncache.c for details.
1442  *
1443  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1444  * depends on this property.  In addition, these ISNs should be
1445  * unguessable so as to prevent connection hijacking.  To satisfy
1446  * the requirements of this situation, the algorithm outlined in
1447  * RFC 1948 is used to generate sequence numbers.
1448  *
1449  * Implementation details:
1450  *
1451  * Time is based off the system timer, and is corrected so that it
1452  * increases by one megabyte per second.  This allows for proper
1453  * recycling on high speed LANs while still leaving over an hour
1454  * before rollover.
1455  *
1456  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1457  * between seeding of isn_secret.  This is normally set to zero,
1458  * as reseeding should not be necessary.
1459  *
1460  */
1461 
1462 #define	ISN_BYTES_PER_SECOND 1048576
1463 
1464 u_char isn_secret[32];
1465 int isn_last_reseed;
1466 MD5_CTX isn_ctx;
1467 
1468 tcp_seq
1469 tcp_new_isn(struct tcpcb *tp)
1470 {
1471 	u_int32_t md5_buffer[4];
1472 	tcp_seq new_isn;
1473 
1474 	/* Seed if this is the first use, reseed if requested. */
1475 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1476 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1477 		< (u_int)ticks))) {
1478 		read_random_unlimited(&isn_secret, sizeof isn_secret);
1479 		isn_last_reseed = ticks;
1480 	}
1481 
1482 	/* Compute the md5 hash and return the ISN. */
1483 	MD5Init(&isn_ctx);
1484 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1485 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1486 #ifdef INET6
1487 	if (tp->t_inpcb->inp_vflag & INP_IPV6) {
1488 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1489 			  sizeof(struct in6_addr));
1490 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1491 			  sizeof(struct in6_addr));
1492 	} else
1493 #endif
1494 	{
1495 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1496 			  sizeof(struct in_addr));
1497 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1498 			  sizeof(struct in_addr));
1499 	}
1500 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1501 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1502 	new_isn = (tcp_seq) md5_buffer[0];
1503 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1504 	return (new_isn);
1505 }
1506 
1507 /*
1508  * When a source quench is received, close congestion window
1509  * to one segment.  We will gradually open it again as we proceed.
1510  */
1511 void
1512 tcp_quench(struct inpcb *inp, int error)
1513 {
1514 	struct tcpcb *tp = intotcpcb(inp);
1515 
1516 	if (tp != NULL) {
1517 		tp->snd_cwnd = tp->t_maxseg;
1518 		tp->snd_wacked = 0;
1519 	}
1520 }
1521 
1522 /*
1523  * When a specific ICMP unreachable message is received and the
1524  * connection state is SYN-SENT, drop the connection.  This behavior
1525  * is controlled by the icmp_may_rst sysctl.
1526  */
1527 void
1528 tcp_drop_syn_sent(struct inpcb *inp, int error)
1529 {
1530 	struct tcpcb *tp = intotcpcb(inp);
1531 
1532 	if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
1533 		tcp_drop(tp, error);
1534 }
1535 
1536 /*
1537  * When a `need fragmentation' ICMP is received, update our idea of the MSS
1538  * based on the new value in the route.  Also nudge TCP to send something,
1539  * since we know the packet we just sent was dropped.
1540  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1541  */
1542 void
1543 tcp_mtudisc(struct inpcb *inp, int mtu)
1544 {
1545 	struct tcpcb *tp = intotcpcb(inp);
1546 	struct rtentry *rt;
1547 	struct socket *so = inp->inp_socket;
1548 	int maxopd, mss;
1549 #ifdef INET6
1550 	boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1551 #else
1552 	const boolean_t isipv6 = FALSE;
1553 #endif
1554 
1555 	if (tp == NULL)
1556 		return;
1557 
1558 	/*
1559 	 * If no MTU is provided in the ICMP message, use the
1560 	 * next lower likely value, as specified in RFC 1191.
1561 	 */
1562 	if (mtu == 0) {
1563 		int oldmtu;
1564 
1565 		oldmtu = tp->t_maxopd +
1566 		    (isipv6 ?
1567 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1568 		     sizeof(struct tcpiphdr));
1569 		mtu = ip_next_mtu(oldmtu, 0);
1570 	}
1571 
1572 	if (isipv6)
1573 		rt = tcp_rtlookup6(&inp->inp_inc);
1574 	else
1575 		rt = tcp_rtlookup(&inp->inp_inc);
1576 	if (rt != NULL) {
1577 		struct rmxp_tao *taop = rmx_taop(rt->rt_rmx);
1578 
1579 		if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1580 			mtu = rt->rt_rmx.rmx_mtu;
1581 
1582 		maxopd = mtu -
1583 		    (isipv6 ?
1584 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1585 		     sizeof(struct tcpiphdr));
1586 
1587 		/*
1588 		 * XXX - The following conditional probably violates the TCP
1589 		 * spec.  The problem is that, since we don't know the
1590 		 * other end's MSS, we are supposed to use a conservative
1591 		 * default.  But, if we do that, then MTU discovery will
1592 		 * never actually take place, because the conservative
1593 		 * default is much less than the MTUs typically seen
1594 		 * on the Internet today.  For the moment, we'll sweep
1595 		 * this under the carpet.
1596 		 *
1597 		 * The conservative default might not actually be a problem
1598 		 * if the only case this occurs is when sending an initial
1599 		 * SYN with options and data to a host we've never talked
1600 		 * to before.  Then, they will reply with an MSS value which
1601 		 * will get recorded and the new parameters should get
1602 		 * recomputed.  For Further Study.
1603 		 */
1604 		if (taop->tao_mssopt != 0 && taop->tao_mssopt < maxopd)
1605 			maxopd = taop->tao_mssopt;
1606 	} else
1607 		maxopd = mtu -
1608 		    (isipv6 ?
1609 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1610 		     sizeof(struct tcpiphdr));
1611 
1612 	if (tp->t_maxopd <= maxopd)
1613 		return;
1614 	tp->t_maxopd = maxopd;
1615 
1616 	mss = maxopd;
1617 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1618 			   (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1619 		mss -= TCPOLEN_TSTAMP_APPA;
1620 
1621 	if ((tp->t_flags & (TF_REQ_CC | TF_RCVD_CC | TF_NOOPT)) ==
1622 			   (TF_REQ_CC | TF_RCVD_CC))
1623 		mss -= TCPOLEN_CC_APPA;
1624 
1625 	/* round down to multiple of MCLBYTES */
1626 #if	(MCLBYTES & (MCLBYTES - 1)) == 0    /* test if MCLBYTES power of 2 */
1627 	if (mss > MCLBYTES)
1628 		mss &= ~(MCLBYTES - 1);
1629 #else
1630 	if (mss > MCLBYTES)
1631 		mss = (mss / MCLBYTES) * MCLBYTES;
1632 #endif
1633 
1634 	if (so->so_snd.ssb_hiwat < mss)
1635 		mss = so->so_snd.ssb_hiwat;
1636 
1637 	tp->t_maxseg = mss;
1638 	tp->t_rtttime = 0;
1639 	tp->snd_nxt = tp->snd_una;
1640 	tcp_output(tp);
1641 	tcpstat.tcps_mturesent++;
1642 }
1643 
1644 /*
1645  * Look-up the routing entry to the peer of this inpcb.  If no route
1646  * is found and it cannot be allocated the return NULL.  This routine
1647  * is called by TCP routines that access the rmx structure and by tcp_mss
1648  * to get the interface MTU.
1649  */
1650 struct rtentry *
1651 tcp_rtlookup(struct in_conninfo *inc)
1652 {
1653 	struct route *ro = &inc->inc_route;
1654 
1655 	if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1656 		/* No route yet, so try to acquire one */
1657 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1658 			/*
1659 			 * unused portions of the structure MUST be zero'd
1660 			 * out because rtalloc() treats it as opaque data
1661 			 */
1662 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1663 			ro->ro_dst.sa_family = AF_INET;
1664 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1665 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1666 			    inc->inc_faddr;
1667 			rtalloc(ro);
1668 		}
1669 	}
1670 	return (ro->ro_rt);
1671 }
1672 
1673 #ifdef INET6
1674 struct rtentry *
1675 tcp_rtlookup6(struct in_conninfo *inc)
1676 {
1677 	struct route_in6 *ro6 = &inc->inc6_route;
1678 
1679 	if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1680 		/* No route yet, so try to acquire one */
1681 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1682 			/*
1683 			 * unused portions of the structure MUST be zero'd
1684 			 * out because rtalloc() treats it as opaque data
1685 			 */
1686 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1687 			ro6->ro_dst.sin6_family = AF_INET6;
1688 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1689 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1690 			rtalloc((struct route *)ro6);
1691 		}
1692 	}
1693 	return (ro6->ro_rt);
1694 }
1695 #endif
1696 
1697 #ifdef IPSEC
1698 /* compute ESP/AH header size for TCP, including outer IP header. */
1699 size_t
1700 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1701 {
1702 	struct inpcb *inp;
1703 	struct mbuf *m;
1704 	size_t hdrsiz;
1705 	struct ip *ip;
1706 	struct tcphdr *th;
1707 
1708 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1709 		return (0);
1710 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1711 	if (!m)
1712 		return (0);
1713 
1714 #ifdef INET6
1715 	if (inp->inp_vflag & INP_IPV6) {
1716 		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1717 
1718 		th = (struct tcphdr *)(ip6 + 1);
1719 		m->m_pkthdr.len = m->m_len =
1720 		    sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1721 		tcp_fillheaders(tp, ip6, th);
1722 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1723 	} else
1724 #endif
1725 	{
1726 		ip = mtod(m, struct ip *);
1727 		th = (struct tcphdr *)(ip + 1);
1728 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1729 		tcp_fillheaders(tp, ip, th);
1730 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1731 	}
1732 
1733 	m_free(m);
1734 	return (hdrsiz);
1735 }
1736 #endif
1737 
1738 /*
1739  * Return a pointer to the cached information about the remote host.
1740  * The cached information is stored in the protocol specific part of
1741  * the route metrics.
1742  */
1743 struct rmxp_tao *
1744 tcp_gettaocache(struct in_conninfo *inc)
1745 {
1746 	struct rtentry *rt;
1747 
1748 #ifdef INET6
1749 	if (inc->inc_isipv6)
1750 		rt = tcp_rtlookup6(inc);
1751 	else
1752 #endif
1753 		rt = tcp_rtlookup(inc);
1754 
1755 	/* Make sure this is a host route and is up. */
1756 	if (rt == NULL ||
1757 	    (rt->rt_flags & (RTF_UP | RTF_HOST)) != (RTF_UP | RTF_HOST))
1758 		return (NULL);
1759 
1760 	return (rmx_taop(rt->rt_rmx));
1761 }
1762 
1763 /*
1764  * Clear all the TAO cache entries, called from tcp_init.
1765  *
1766  * XXX
1767  * This routine is just an empty one, because we assume that the routing
1768  * routing tables are initialized at the same time when TCP, so there is
1769  * nothing in the cache left over.
1770  */
1771 static void
1772 tcp_cleartaocache(void)
1773 {
1774 }
1775 
1776 /*
1777  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1778  *
1779  * This code attempts to calculate the bandwidth-delay product as a
1780  * means of determining the optimal window size to maximize bandwidth,
1781  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1782  * routers.  This code also does a fairly good job keeping RTTs in check
1783  * across slow links like modems.  We implement an algorithm which is very
1784  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1785  * transmitter side of a TCP connection and so only effects the transmit
1786  * side of the connection.
1787  *
1788  * BACKGROUND:  TCP makes no provision for the management of buffer space
1789  * at the end points or at the intermediate routers and switches.  A TCP
1790  * stream, whether using NewReno or not, will eventually buffer as
1791  * many packets as it is able and the only reason this typically works is
1792  * due to the fairly small default buffers made available for a connection
1793  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1794  * scaling it is now fairly easy for even a single TCP connection to blow-out
1795  * all available buffer space not only on the local interface, but on
1796  * intermediate routers and switches as well.  NewReno makes a misguided
1797  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1798  * then backing off, then steadily increasing the window again until another
1799  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1800  * is only made worse as network loads increase and the idea of intentionally
1801  * blowing out network buffers is, frankly, a terrible way to manage network
1802  * resources.
1803  *
1804  * It is far better to limit the transmit window prior to the failure
1805  * condition being achieved.  There are two general ways to do this:  First
1806  * you can 'scan' through different transmit window sizes and locate the
1807  * point where the RTT stops increasing, indicating that you have filled the
1808  * pipe, then scan backwards until you note that RTT stops decreasing, then
1809  * repeat ad-infinitum.  This method works in principle but has severe
1810  * implementation issues due to RTT variances, timer granularity, and
1811  * instability in the algorithm which can lead to many false positives and
1812  * create oscillations as well as interact badly with other TCP streams
1813  * implementing the same algorithm.
1814  *
1815  * The second method is to limit the window to the bandwidth delay product
1816  * of the link.  This is the method we implement.  RTT variances and our
1817  * own manipulation of the congestion window, bwnd, can potentially
1818  * destabilize the algorithm.  For this reason we have to stabilize the
1819  * elements used to calculate the window.  We do this by using the minimum
1820  * observed RTT, the long term average of the observed bandwidth, and
1821  * by adding two segments worth of slop.  It isn't perfect but it is able
1822  * to react to changing conditions and gives us a very stable basis on
1823  * which to extend the algorithm.
1824  */
1825 void
1826 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1827 {
1828 	u_long bw;
1829 	u_long bwnd;
1830 	int save_ticks;
1831 	int delta_ticks;
1832 
1833 	/*
1834 	 * If inflight_enable is disabled in the middle of a tcp connection,
1835 	 * make sure snd_bwnd is effectively disabled.
1836 	 */
1837 	if (!tcp_inflight_enable) {
1838 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1839 		tp->snd_bandwidth = 0;
1840 		return;
1841 	}
1842 
1843 	/*
1844 	 * Validate the delta time.  If a connection is new or has been idle
1845 	 * a long time we have to reset the bandwidth calculator.
1846 	 */
1847 	save_ticks = ticks;
1848 	delta_ticks = save_ticks - tp->t_bw_rtttime;
1849 	if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1850 		tp->t_bw_rtttime = ticks;
1851 		tp->t_bw_rtseq = ack_seq;
1852 		if (tp->snd_bandwidth == 0)
1853 			tp->snd_bandwidth = tcp_inflight_min;
1854 		return;
1855 	}
1856 	if (delta_ticks == 0)
1857 		return;
1858 
1859 	/*
1860 	 * Sanity check, plus ignore pure window update acks.
1861 	 */
1862 	if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1863 		return;
1864 
1865 	/*
1866 	 * Figure out the bandwidth.  Due to the tick granularity this
1867 	 * is a very rough number and it MUST be averaged over a fairly
1868 	 * long period of time.  XXX we need to take into account a link
1869 	 * that is not using all available bandwidth, but for now our
1870 	 * slop will ramp us up if this case occurs and the bandwidth later
1871 	 * increases.
1872 	 */
1873 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
1874 	tp->t_bw_rtttime = save_ticks;
1875 	tp->t_bw_rtseq = ack_seq;
1876 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1877 
1878 	tp->snd_bandwidth = bw;
1879 
1880 	/*
1881 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1882 	 * segments.  The additional slop puts us squarely in the sweet
1883 	 * spot and also handles the bandwidth run-up case.  Without the
1884 	 * slop we could be locking ourselves into a lower bandwidth.
1885 	 *
1886 	 * Situations Handled:
1887 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1888 	 *	    high speed LANs, allowing larger TCP buffers to be
1889 	 *	    specified, and also does a good job preventing
1890 	 *	    over-queueing of packets over choke points like modems
1891 	 *	    (at least for the transmit side).
1892 	 *
1893 	 *	(2) Is able to handle changing network loads (bandwidth
1894 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1895 	 *	    increases).
1896 	 *
1897 	 *	(3) Theoretically should stabilize in the face of multiple
1898 	 *	    connections implementing the same algorithm (this may need
1899 	 *	    a little work).
1900 	 *
1901 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1902 	 *	    be adjusted with a sysctl but typically only needs to be on
1903 	 *	    very slow connections.  A value no smaller then 5 should
1904 	 *	    be used, but only reduce this default if you have no other
1905 	 *	    choice.
1906 	 */
1907 
1908 #define	USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1909 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
1910 	       tcp_inflight_stab * (int)tp->t_maxseg / 10;
1911 #undef USERTT
1912 
1913 	if (tcp_inflight_debug > 0) {
1914 		static int ltime;
1915 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1916 			ltime = ticks;
1917 			kprintf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1918 				tp, bw, tp->t_rttbest, tp->t_srtt, bwnd);
1919 		}
1920 	}
1921 	if ((long)bwnd < tcp_inflight_min)
1922 		bwnd = tcp_inflight_min;
1923 	if (bwnd > tcp_inflight_max)
1924 		bwnd = tcp_inflight_max;
1925 	if ((long)bwnd < tp->t_maxseg * 2)
1926 		bwnd = tp->t_maxseg * 2;
1927 	tp->snd_bwnd = bwnd;
1928 }
1929