xref: /dragonfly/sys/netinet/tcp_subr.c (revision 7ec9f8e5)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. Neither the name of the University nor the names of its contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  *
62  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
63  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
64  */
65 
66 #include "opt_compat.h"
67 #include "opt_inet.h"
68 #include "opt_inet6.h"
69 #include "opt_ipsec.h"
70 #include "opt_tcpdebug.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/callout.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/malloc.h>
78 #include <sys/mpipe.h>
79 #include <sys/mbuf.h>
80 #ifdef INET6
81 #include <sys/domain.h>
82 #endif
83 #include <sys/proc.h>
84 #include <sys/priv.h>
85 #include <sys/socket.h>
86 #include <sys/socketops.h>
87 #include <sys/socketvar.h>
88 #include <sys/protosw.h>
89 #include <sys/random.h>
90 #include <sys/in_cksum.h>
91 #include <sys/ktr.h>
92 
93 #include <net/route.h>
94 #include <net/if.h>
95 #include <net/netisr2.h>
96 
97 #define	_IP_VHL
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/ip.h>
101 #include <netinet/ip6.h>
102 #include <netinet/in_pcb.h>
103 #include <netinet6/in6_pcb.h>
104 #include <netinet/in_var.h>
105 #include <netinet/ip_var.h>
106 #include <netinet6/ip6_var.h>
107 #include <netinet/ip_icmp.h>
108 #ifdef INET6
109 #include <netinet/icmp6.h>
110 #endif
111 #include <netinet/tcp.h>
112 #include <netinet/tcp_fsm.h>
113 #include <netinet/tcp_seq.h>
114 #include <netinet/tcp_timer.h>
115 #include <netinet/tcp_timer2.h>
116 #include <netinet/tcp_var.h>
117 #include <netinet6/tcp6_var.h>
118 #include <netinet/tcpip.h>
119 #ifdef TCPDEBUG
120 #include <netinet/tcp_debug.h>
121 #endif
122 #include <netinet6/ip6protosw.h>
123 
124 #ifdef IPSEC
125 #include <netinet6/ipsec.h>
126 #include <netproto/key/key.h>
127 #ifdef INET6
128 #include <netinet6/ipsec6.h>
129 #endif
130 #endif
131 
132 #ifdef FAST_IPSEC
133 #include <netproto/ipsec/ipsec.h>
134 #ifdef INET6
135 #include <netproto/ipsec/ipsec6.h>
136 #endif
137 #define	IPSEC
138 #endif
139 
140 #include <sys/md5.h>
141 #include <machine/smp.h>
142 
143 #include <sys/msgport2.h>
144 #include <sys/mplock2.h>
145 #include <net/netmsg2.h>
146 
147 #if !defined(KTR_TCP)
148 #define KTR_TCP		KTR_ALL
149 #endif
150 /*
151 KTR_INFO_MASTER(tcp);
152 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
153 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
154 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
155 #define logtcp(name)	KTR_LOG(tcp_ ## name)
156 */
157 
158 #define TCP_IW_MAXSEGS_DFLT	4
159 #define TCP_IW_CAPSEGS_DFLT	4
160 
161 struct inpcbinfo tcbinfo[MAXCPU];
162 struct tcpcbackqhead tcpcbackq[MAXCPU];
163 
164 int tcp_mssdflt = TCP_MSS;
165 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
166     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
167 
168 #ifdef INET6
169 int tcp_v6mssdflt = TCP6_MSS;
170 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
171     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
172 #endif
173 
174 /*
175  * Minimum MSS we accept and use. This prevents DoS attacks where
176  * we are forced to a ridiculous low MSS like 20 and send hundreds
177  * of packets instead of one. The effect scales with the available
178  * bandwidth and quickly saturates the CPU and network interface
179  * with packet generation and sending. Set to zero to disable MINMSS
180  * checking. This setting prevents us from sending too small packets.
181  */
182 int tcp_minmss = TCP_MINMSS;
183 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
184     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
185 
186 #if 0
187 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
188 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
189     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
190 #endif
191 
192 int tcp_do_rfc1323 = 1;
193 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
194     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
195 
196 static int tcp_tcbhashsize = 0;
197 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
198      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
199 
200 static int do_tcpdrain = 1;
201 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
202      "Enable tcp_drain routine for extra help when low on mbufs");
203 
204 static int icmp_may_rst = 1;
205 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
206     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
207 
208 static int tcp_isn_reseed_interval = 0;
209 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
210     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
211 
212 /*
213  * TCP bandwidth limiting sysctls.  The inflight limiter is now turned on
214  * by default, but with generous values which should allow maximal
215  * bandwidth.  In particular, the slop defaults to 50 (5 packets).
216  *
217  * The reason for doing this is that the limiter is the only mechanism we
218  * have which seems to do a really good job preventing receiver RX rings
219  * on network interfaces from getting blown out.  Even though GigE/10GigE
220  * is supposed to flow control it looks like either it doesn't actually
221  * do it or Open Source drivers do not properly enable it.
222  *
223  * People using the limiter to reduce bottlenecks on slower WAN connections
224  * should set the slop to 20 (2 packets).
225  */
226 static int tcp_inflight_enable = 1;
227 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
228     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
229 
230 static int tcp_inflight_debug = 0;
231 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
232     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
233 
234 /*
235  * NOTE: tcp_inflight_start is essentially the starting receive window
236  *	 for a connection.  If set too low then fetches over tcp
237  *	 connections will take noticably longer to ramp-up over
238  *	 high-latency connections.  6144 is too low for a default,
239  *	 use something more reasonable.
240  */
241 static int tcp_inflight_start = 33792;
242 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_start, CTLFLAG_RW,
243     &tcp_inflight_start, 0, "Start value for TCP inflight window");
244 
245 static int tcp_inflight_min = 6144;
246 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
247     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
248 
249 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
250 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
251     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
252 
253 static int tcp_inflight_stab = 50;
254 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
255     &tcp_inflight_stab, 0, "Fudge bw 1/10% (50=5%)");
256 
257 static int tcp_inflight_adjrtt = 2;
258 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_adjrtt, CTLFLAG_RW,
259     &tcp_inflight_adjrtt, 0, "Slop for rtt 1/(hz*32)");
260 
261 static int tcp_do_rfc3390 = 1;
262 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
263     &tcp_do_rfc3390, 0,
264     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
265 
266 static u_long tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
267 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwmaxsegs, CTLFLAG_RW,
268     &tcp_iw_maxsegs, 0, "TCP IW segments max");
269 
270 static u_long tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
271 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwcapsegs, CTLFLAG_RW,
272     &tcp_iw_capsegs, 0, "TCP IW segments");
273 
274 int tcp_low_rtobase = 1;
275 SYSCTL_INT(_net_inet_tcp, OID_AUTO, low_rtobase, CTLFLAG_RW,
276     &tcp_low_rtobase, 0, "Lowering the Initial RTO (RFC 6298)");
277 
278 static int tcp_do_ncr = 1;
279 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr, CTLFLAG_RW,
280     &tcp_do_ncr, 0, "Non-Congestion Robustness (RFC 4653)");
281 
282 int tcp_ncr_rxtthresh_max = 16;
283 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr_rxtthresh_max, CTLFLAG_RW,
284     &tcp_ncr_rxtthresh_max, 0,
285     "Non-Congestion Robustness (RFC 4653), DupThresh upper limit");
286 
287 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
288 static struct malloc_pipe tcptemp_mpipe;
289 
290 static void tcp_willblock(void);
291 static void tcp_notify (struct inpcb *, int);
292 
293 struct tcp_stats tcpstats_percpu[MAXCPU] __cachealign;
294 
295 static struct netmsg_base tcp_drain_netmsg[MAXCPU];
296 static void	tcp_drain_dispatch(netmsg_t nmsg);
297 
298 static int
299 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
300 {
301 	int cpu, error = 0;
302 
303 	for (cpu = 0; cpu < ncpus2; ++cpu) {
304 		if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
305 					sizeof(struct tcp_stats))))
306 			break;
307 		if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
308 				       sizeof(struct tcp_stats))))
309 			break;
310 	}
311 
312 	return (error);
313 }
314 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
315     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
316 
317 /*
318  * Target size of TCP PCB hash tables. Must be a power of two.
319  *
320  * Note that this can be overridden by the kernel environment
321  * variable net.inet.tcp.tcbhashsize
322  */
323 #ifndef TCBHASHSIZE
324 #define	TCBHASHSIZE	512
325 #endif
326 
327 /*
328  * This is the actual shape of what we allocate using the zone
329  * allocator.  Doing it this way allows us to protect both structures
330  * using the same generation count, and also eliminates the overhead
331  * of allocating tcpcbs separately.  By hiding the structure here,
332  * we avoid changing most of the rest of the code (although it needs
333  * to be changed, eventually, for greater efficiency).
334  */
335 #define	ALIGNMENT	32
336 #define	ALIGNM1		(ALIGNMENT - 1)
337 struct	inp_tp {
338 	union {
339 		struct	inpcb inp;
340 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
341 	} inp_tp_u;
342 	struct	tcpcb tcb;
343 	struct	tcp_callout inp_tp_rexmt;
344 	struct	tcp_callout inp_tp_persist;
345 	struct	tcp_callout inp_tp_keep;
346 	struct	tcp_callout inp_tp_2msl;
347 	struct	tcp_callout inp_tp_delack;
348 	struct	netmsg_tcp_timer inp_tp_timermsg;
349 	struct	netmsg_base inp_tp_sndmore;
350 };
351 #undef ALIGNMENT
352 #undef ALIGNM1
353 
354 /*
355  * Tcp initialization
356  */
357 void
358 tcp_init(void)
359 {
360 	struct inpcbportinfo *portinfo;
361 	struct inpcbinfo *ticb;
362 	int hashsize = TCBHASHSIZE;
363 	int cpu;
364 
365 	/*
366 	 * note: tcptemp is used for keepalives, and it is ok for an
367 	 * allocation to fail so do not specify MPF_INT.
368 	 */
369 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
370 		    25, -1, 0, NULL, NULL, NULL);
371 
372 	tcp_delacktime = TCPTV_DELACK;
373 	tcp_keepinit = TCPTV_KEEP_INIT;
374 	tcp_keepidle = TCPTV_KEEP_IDLE;
375 	tcp_keepintvl = TCPTV_KEEPINTVL;
376 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
377 	tcp_msl = TCPTV_MSL;
378 	tcp_rexmit_min = TCPTV_MIN;
379 	tcp_rexmit_slop = TCPTV_CPU_VAR;
380 
381 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
382 	if (!powerof2(hashsize)) {
383 		kprintf("WARNING: TCB hash size not a power of 2\n");
384 		hashsize = 512; /* safe default */
385 	}
386 	tcp_tcbhashsize = hashsize;
387 
388 	portinfo = kmalloc_cachealign(sizeof(*portinfo) * ncpus2, M_PCB,
389 	    M_WAITOK);
390 
391 	for (cpu = 0; cpu < ncpus2; cpu++) {
392 		ticb = &tcbinfo[cpu];
393 		in_pcbinfo_init(ticb, cpu, FALSE);
394 		ticb->hashbase = hashinit(hashsize, M_PCB,
395 					  &ticb->hashmask);
396 		in_pcbportinfo_init(&portinfo[cpu], hashsize, cpu);
397 		ticb->portinfo = portinfo;
398 		ticb->portinfo_mask = ncpus2_mask;
399 		ticb->wildcardhashbase = hashinit(hashsize, M_PCB,
400 						  &ticb->wildcardhashmask);
401 		ticb->localgrphashbase = hashinit(hashsize, M_PCB,
402 						  &ticb->localgrphashmask);
403 		ticb->ipi_size = sizeof(struct inp_tp);
404 		TAILQ_INIT(&tcpcbackq[cpu]);
405 	}
406 
407 	tcp_reass_maxseg = nmbclusters / 16;
408 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
409 
410 #ifdef INET6
411 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
412 #else
413 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
414 #endif
415 	if (max_protohdr < TCP_MINPROTOHDR)
416 		max_protohdr = TCP_MINPROTOHDR;
417 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
418 		panic("tcp_init");
419 #undef TCP_MINPROTOHDR
420 
421 	/*
422 	 * Initialize TCP statistics counters for each CPU.
423 	 */
424 	for (cpu = 0; cpu < ncpus2; ++cpu)
425 		bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
426 
427 	/*
428 	 * Initialize netmsgs for TCP drain
429 	 */
430 	for (cpu = 0; cpu < ncpus2; ++cpu) {
431 		netmsg_init(&tcp_drain_netmsg[cpu], NULL, &netisr_adone_rport,
432 		    MSGF_PRIORITY, tcp_drain_dispatch);
433 	}
434 
435 	syncache_init();
436 	netisr_register_rollup(tcp_willblock, NETISR_ROLLUP_PRIO_TCP);
437 }
438 
439 static void
440 tcp_willblock(void)
441 {
442 	struct tcpcb *tp;
443 	int cpu = mycpu->gd_cpuid;
444 
445 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
446 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
447 		tp->t_flags &= ~TF_ONOUTPUTQ;
448 		TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
449 		tcp_output(tp);
450 	}
451 }
452 
453 /*
454  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
455  * tcp_template used to store this data in mbufs, but we now recopy it out
456  * of the tcpcb each time to conserve mbufs.
457  */
458 void
459 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr, boolean_t tso)
460 {
461 	struct inpcb *inp = tp->t_inpcb;
462 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
463 
464 #ifdef INET6
465 	if (INP_ISIPV6(inp)) {
466 		struct ip6_hdr *ip6;
467 
468 		ip6 = (struct ip6_hdr *)ip_ptr;
469 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
470 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
471 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
472 			(IPV6_VERSION & IPV6_VERSION_MASK);
473 		ip6->ip6_nxt = IPPROTO_TCP;
474 		ip6->ip6_plen = sizeof(struct tcphdr);
475 		ip6->ip6_src = inp->in6p_laddr;
476 		ip6->ip6_dst = inp->in6p_faddr;
477 		tcp_hdr->th_sum = 0;
478 	} else
479 #endif
480 	{
481 		struct ip *ip = (struct ip *) ip_ptr;
482 		u_int plen;
483 
484 		ip->ip_vhl = IP_VHL_BORING;
485 		ip->ip_tos = 0;
486 		ip->ip_len = 0;
487 		ip->ip_id = 0;
488 		ip->ip_off = 0;
489 		ip->ip_ttl = 0;
490 		ip->ip_sum = 0;
491 		ip->ip_p = IPPROTO_TCP;
492 		ip->ip_src = inp->inp_laddr;
493 		ip->ip_dst = inp->inp_faddr;
494 
495 		if (tso)
496 			plen = htons(IPPROTO_TCP);
497 		else
498 			plen = htons(sizeof(struct tcphdr) + IPPROTO_TCP);
499 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
500 		    ip->ip_dst.s_addr, plen);
501 	}
502 
503 	tcp_hdr->th_sport = inp->inp_lport;
504 	tcp_hdr->th_dport = inp->inp_fport;
505 	tcp_hdr->th_seq = 0;
506 	tcp_hdr->th_ack = 0;
507 	tcp_hdr->th_x2 = 0;
508 	tcp_hdr->th_off = 5;
509 	tcp_hdr->th_flags = 0;
510 	tcp_hdr->th_win = 0;
511 	tcp_hdr->th_urp = 0;
512 }
513 
514 /*
515  * Create template to be used to send tcp packets on a connection.
516  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
517  * use for this function is in keepalives, which use tcp_respond.
518  */
519 struct tcptemp *
520 tcp_maketemplate(struct tcpcb *tp)
521 {
522 	struct tcptemp *tmp;
523 
524 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
525 		return (NULL);
526 	tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t, FALSE);
527 	return (tmp);
528 }
529 
530 void
531 tcp_freetemplate(struct tcptemp *tmp)
532 {
533 	mpipe_free(&tcptemp_mpipe, tmp);
534 }
535 
536 /*
537  * Send a single message to the TCP at address specified by
538  * the given TCP/IP header.  If m == NULL, then we make a copy
539  * of the tcpiphdr at ti and send directly to the addressed host.
540  * This is used to force keep alive messages out using the TCP
541  * template for a connection.  If flags are given then we send
542  * a message back to the TCP which originated the * segment ti,
543  * and discard the mbuf containing it and any other attached mbufs.
544  *
545  * In any case the ack and sequence number of the transmitted
546  * segment are as specified by the parameters.
547  *
548  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
549  */
550 void
551 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
552 	    tcp_seq ack, tcp_seq seq, int flags)
553 {
554 	int tlen;
555 	long win = 0;
556 	struct route *ro = NULL;
557 	struct route sro;
558 	struct ip *ip = ipgen;
559 	struct tcphdr *nth;
560 	int ipflags = 0;
561 	struct route_in6 *ro6 = NULL;
562 	struct route_in6 sro6;
563 	struct ip6_hdr *ip6 = ipgen;
564 	boolean_t use_tmpro = TRUE;
565 #ifdef INET6
566 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
567 #else
568 	const boolean_t isipv6 = FALSE;
569 #endif
570 
571 	if (tp != NULL) {
572 		if (!(flags & TH_RST)) {
573 			win = ssb_space(&tp->t_inpcb->inp_socket->so_rcv);
574 			if (win < 0)
575 				win = 0;
576 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
577 				win = (long)TCP_MAXWIN << tp->rcv_scale;
578 		}
579 		/*
580 		 * Don't use the route cache of a listen socket,
581 		 * it is not MPSAFE; use temporary route cache.
582 		 */
583 		if (tp->t_state != TCPS_LISTEN) {
584 			if (isipv6)
585 				ro6 = &tp->t_inpcb->in6p_route;
586 			else
587 				ro = &tp->t_inpcb->inp_route;
588 			use_tmpro = FALSE;
589 		}
590 	}
591 	if (use_tmpro) {
592 		if (isipv6) {
593 			ro6 = &sro6;
594 			bzero(ro6, sizeof *ro6);
595 		} else {
596 			ro = &sro;
597 			bzero(ro, sizeof *ro);
598 		}
599 	}
600 	if (m == NULL) {
601 		m = m_gethdr(M_NOWAIT, MT_HEADER);
602 		if (m == NULL)
603 			return;
604 		tlen = 0;
605 		m->m_data += max_linkhdr;
606 		if (isipv6) {
607 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
608 			ip6 = mtod(m, struct ip6_hdr *);
609 			nth = (struct tcphdr *)(ip6 + 1);
610 		} else {
611 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
612 			ip = mtod(m, struct ip *);
613 			nth = (struct tcphdr *)(ip + 1);
614 		}
615 		bcopy(th, nth, sizeof(struct tcphdr));
616 		flags = TH_ACK;
617 	} else {
618 		m_freem(m->m_next);
619 		m->m_next = NULL;
620 		m->m_data = (caddr_t)ipgen;
621 		/* m_len is set later */
622 		tlen = 0;
623 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
624 		if (isipv6) {
625 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
626 			nth = (struct tcphdr *)(ip6 + 1);
627 		} else {
628 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
629 			nth = (struct tcphdr *)(ip + 1);
630 		}
631 		if (th != nth) {
632 			/*
633 			 * this is usually a case when an extension header
634 			 * exists between the IPv6 header and the
635 			 * TCP header.
636 			 */
637 			nth->th_sport = th->th_sport;
638 			nth->th_dport = th->th_dport;
639 		}
640 		xchg(nth->th_dport, nth->th_sport, n_short);
641 #undef xchg
642 	}
643 	if (isipv6) {
644 		ip6->ip6_flow = 0;
645 		ip6->ip6_vfc = IPV6_VERSION;
646 		ip6->ip6_nxt = IPPROTO_TCP;
647 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
648 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
649 	} else {
650 		tlen += sizeof(struct tcpiphdr);
651 		ip->ip_len = tlen;
652 		ip->ip_ttl = ip_defttl;
653 	}
654 	m->m_len = tlen;
655 	m->m_pkthdr.len = tlen;
656 	m->m_pkthdr.rcvif = NULL;
657 	nth->th_seq = htonl(seq);
658 	nth->th_ack = htonl(ack);
659 	nth->th_x2 = 0;
660 	nth->th_off = sizeof(struct tcphdr) >> 2;
661 	nth->th_flags = flags;
662 	if (tp != NULL)
663 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
664 	else
665 		nth->th_win = htons((u_short)win);
666 	nth->th_urp = 0;
667 	if (isipv6) {
668 		nth->th_sum = 0;
669 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
670 					sizeof(struct ip6_hdr),
671 					tlen - sizeof(struct ip6_hdr));
672 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
673 					       (ro6 && ro6->ro_rt) ?
674 						ro6->ro_rt->rt_ifp : NULL);
675 	} else {
676 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
677 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
678 		m->m_pkthdr.csum_flags = CSUM_TCP;
679 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
680 		m->m_pkthdr.csum_thlen = sizeof(struct tcphdr);
681 	}
682 #ifdef TCPDEBUG
683 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
684 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
685 #endif
686 	if (isipv6) {
687 		ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
688 			   tp ? tp->t_inpcb : NULL);
689 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
690 			RTFREE(ro6->ro_rt);
691 			ro6->ro_rt = NULL;
692 		}
693 	} else {
694 		ipflags |= IP_DEBUGROUTE;
695 		ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
696 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
697 			RTFREE(ro->ro_rt);
698 			ro->ro_rt = NULL;
699 		}
700 	}
701 }
702 
703 /*
704  * Create a new TCP control block, making an
705  * empty reassembly queue and hooking it to the argument
706  * protocol control block.  The `inp' parameter must have
707  * come from the zone allocator set up in tcp_init().
708  */
709 struct tcpcb *
710 tcp_newtcpcb(struct inpcb *inp)
711 {
712 	struct inp_tp *it;
713 	struct tcpcb *tp;
714 #ifdef INET6
715 	boolean_t isipv6 = INP_ISIPV6(inp);
716 #else
717 	const boolean_t isipv6 = FALSE;
718 #endif
719 
720 	it = (struct inp_tp *)inp;
721 	tp = &it->tcb;
722 	bzero(tp, sizeof(struct tcpcb));
723 	TAILQ_INIT(&tp->t_segq);
724 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
725 	tp->t_rxtthresh = tcprexmtthresh;
726 
727 	/* Set up our timeouts. */
728 	tp->tt_rexmt = &it->inp_tp_rexmt;
729 	tp->tt_persist = &it->inp_tp_persist;
730 	tp->tt_keep = &it->inp_tp_keep;
731 	tp->tt_2msl = &it->inp_tp_2msl;
732 	tp->tt_delack = &it->inp_tp_delack;
733 	tcp_inittimers(tp);
734 
735 	/*
736 	 * Zero out timer message.  We don't create it here,
737 	 * since the current CPU may not be the owner of this
738 	 * inpcb.
739 	 */
740 	tp->tt_msg = &it->inp_tp_timermsg;
741 	bzero(tp->tt_msg, sizeof(*tp->tt_msg));
742 
743 	tp->t_keepinit = tcp_keepinit;
744 	tp->t_keepidle = tcp_keepidle;
745 	tp->t_keepintvl = tcp_keepintvl;
746 	tp->t_keepcnt = tcp_keepcnt;
747 	tp->t_maxidle = tp->t_keepintvl * tp->t_keepcnt;
748 
749 	if (tcp_do_ncr)
750 		tp->t_flags |= TF_NCR;
751 	if (tcp_do_rfc1323)
752 		tp->t_flags |= (TF_REQ_SCALE | TF_REQ_TSTMP);
753 
754 	tp->t_inpcb = inp;	/* XXX */
755 	tp->t_state = TCPS_CLOSED;
756 	/*
757 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
758 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
759 	 * reasonable initial retransmit time.
760 	 */
761 	tp->t_srtt = TCPTV_SRTTBASE;
762 	tp->t_rttvar =
763 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
764 	tp->t_rttmin = tcp_rexmit_min;
765 	tp->t_rxtcur = TCPTV_RTOBASE;
766 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
767 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
768 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
769 	tp->snd_last = ticks;
770 	tp->t_rcvtime = ticks;
771 	/*
772 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
773 	 * because the socket may be bound to an IPv6 wildcard address,
774 	 * which may match an IPv4-mapped IPv6 address.
775 	 */
776 	inp->inp_ip_ttl = ip_defttl;
777 	inp->inp_ppcb = tp;
778 	tcp_sack_tcpcb_init(tp);
779 
780 	tp->tt_sndmore = &it->inp_tp_sndmore;
781 	tcp_output_init(tp);
782 
783 	return (tp);		/* XXX */
784 }
785 
786 /*
787  * Drop a TCP connection, reporting the specified error.
788  * If connection is synchronized, then send a RST to peer.
789  */
790 struct tcpcb *
791 tcp_drop(struct tcpcb *tp, int error)
792 {
793 	struct socket *so = tp->t_inpcb->inp_socket;
794 
795 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
796 		tp->t_state = TCPS_CLOSED;
797 		tcp_output(tp);
798 		tcpstat.tcps_drops++;
799 	} else
800 		tcpstat.tcps_conndrops++;
801 	if (error == ETIMEDOUT && tp->t_softerror)
802 		error = tp->t_softerror;
803 	so->so_error = error;
804 	return (tcp_close(tp));
805 }
806 
807 struct netmsg_listen_detach {
808 	struct netmsg_base	base;
809 	struct tcpcb		*nm_tp;
810 	struct tcpcb		*nm_tp_inh;
811 };
812 
813 static void
814 tcp_listen_detach_handler(netmsg_t msg)
815 {
816 	struct netmsg_listen_detach *nmsg = (struct netmsg_listen_detach *)msg;
817 	struct tcpcb *tp = nmsg->nm_tp;
818 	int cpu = mycpuid, nextcpu;
819 
820 	if (tp->t_flags & TF_LISTEN) {
821 		syncache_destroy(tp, nmsg->nm_tp_inh);
822 		tcp_pcbport_merge_oncpu(tp);
823 	}
824 
825 	in_pcbremwildcardhash_oncpu(tp->t_inpcb, &tcbinfo[cpu]);
826 
827 	nextcpu = cpu + 1;
828 	if (nextcpu < ncpus2)
829 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &nmsg->base.lmsg);
830 	else
831 		lwkt_replymsg(&nmsg->base.lmsg, 0);
832 }
833 
834 /*
835  * Close a TCP control block:
836  *	discard all space held by the tcp
837  *	discard internet protocol block
838  *	wake up any sleepers
839  */
840 struct tcpcb *
841 tcp_close(struct tcpcb *tp)
842 {
843 	struct tseg_qent *q;
844 	struct inpcb *inp = tp->t_inpcb;
845 	struct inpcb *inp_inh = NULL;
846 	struct tcpcb *tp_inh = NULL;
847 	struct socket *so = inp->inp_socket;
848 	struct rtentry *rt;
849 	boolean_t dosavessthresh;
850 #ifdef INET6
851 	boolean_t isipv6 = INP_ISIPV6(inp);
852 #else
853 	const boolean_t isipv6 = FALSE;
854 #endif
855 
856 	if (tp->t_flags & TF_LISTEN) {
857 		/*
858 		 * Pending socket/syncache inheritance
859 		 *
860 		 * If this is a listen(2) socket, find another listen(2)
861 		 * socket in the same local group, which could inherit
862 		 * the syncache and sockets pending on the completion
863 		 * and incompletion queues.
864 		 *
865 		 * NOTE:
866 		 * Currently the inheritance could only happen on the
867 		 * listen(2) sockets w/ SO_REUSEPORT set.
868 		 */
869 		ASSERT_IN_NETISR(0);
870 		inp_inh = in_pcblocalgroup_last(&tcbinfo[0], inp);
871 		if (inp_inh != NULL)
872 			tp_inh = intotcpcb(inp_inh);
873 	}
874 
875 	/*
876 	 * INP_WILDCARD indicates that listen(2) has been called on
877 	 * this socket.  This implies:
878 	 * - A wildcard inp's hash is replicated for each protocol thread.
879 	 * - Syncache for this inp grows independently in each protocol
880 	 *   thread.
881 	 * - There is more than one cpu
882 	 *
883 	 * We have to chain a message to the rest of the protocol threads
884 	 * to cleanup the wildcard hash and the syncache.  The cleanup
885 	 * in the current protocol thread is defered till the end of this
886 	 * function (syncache_destroy and in_pcbdetach).
887 	 *
888 	 * NOTE:
889 	 * After cleanup the inp's hash and syncache entries, this inp will
890 	 * no longer be available to the rest of the protocol threads, so we
891 	 * are safe to whack the inp in the following code.
892 	 */
893 	if ((inp->inp_flags & INP_WILDCARD) && ncpus2 > 1) {
894 		struct netmsg_listen_detach nmsg;
895 
896 		KKASSERT(so->so_port == netisr_cpuport(0));
897 		ASSERT_IN_NETISR(0);
898 		KKASSERT(inp->inp_pcbinfo == &tcbinfo[0]);
899 
900 		netmsg_init(&nmsg.base, NULL, &curthread->td_msgport,
901 			    MSGF_PRIORITY, tcp_listen_detach_handler);
902 		nmsg.nm_tp = tp;
903 		nmsg.nm_tp_inh = tp_inh;
904 		lwkt_domsg(netisr_cpuport(1), &nmsg.base.lmsg, 0);
905 	}
906 
907 	KKASSERT(tp->t_state != TCPS_TERMINATING);
908 	tp->t_state = TCPS_TERMINATING;
909 
910 	/*
911 	 * Make sure that all of our timers are stopped before we
912 	 * delete the PCB.  For listen TCP socket (tp->tt_msg == NULL),
913 	 * timers are never used.  If timer message is never created
914 	 * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
915 	 */
916 	if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
917 		tcp_callout_stop(tp, tp->tt_rexmt);
918 		tcp_callout_stop(tp, tp->tt_persist);
919 		tcp_callout_stop(tp, tp->tt_keep);
920 		tcp_callout_stop(tp, tp->tt_2msl);
921 		tcp_callout_stop(tp, tp->tt_delack);
922 	}
923 
924 	if (tp->t_flags & TF_ONOUTPUTQ) {
925 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
926 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
927 		tp->t_flags &= ~TF_ONOUTPUTQ;
928 	}
929 
930 	/*
931 	 * If we got enough samples through the srtt filter,
932 	 * save the rtt and rttvar in the routing entry.
933 	 * 'Enough' is arbitrarily defined as the 16 samples.
934 	 * 16 samples is enough for the srtt filter to converge
935 	 * to within 5% of the correct value; fewer samples and
936 	 * we could save a very bogus rtt.
937 	 *
938 	 * Don't update the default route's characteristics and don't
939 	 * update anything that the user "locked".
940 	 */
941 	if (tp->t_rttupdated >= 16) {
942 		u_long i = 0;
943 
944 		if (isipv6) {
945 			struct sockaddr_in6 *sin6;
946 
947 			if ((rt = inp->in6p_route.ro_rt) == NULL)
948 				goto no_valid_rt;
949 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
950 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
951 				goto no_valid_rt;
952 		} else
953 			if ((rt = inp->inp_route.ro_rt) == NULL ||
954 			    ((struct sockaddr_in *)rt_key(rt))->
955 			     sin_addr.s_addr == INADDR_ANY)
956 				goto no_valid_rt;
957 
958 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
959 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
960 			if (rt->rt_rmx.rmx_rtt && i)
961 				/*
962 				 * filter this update to half the old & half
963 				 * the new values, converting scale.
964 				 * See route.h and tcp_var.h for a
965 				 * description of the scaling constants.
966 				 */
967 				rt->rt_rmx.rmx_rtt =
968 				    (rt->rt_rmx.rmx_rtt + i) / 2;
969 			else
970 				rt->rt_rmx.rmx_rtt = i;
971 			tcpstat.tcps_cachedrtt++;
972 		}
973 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
974 			i = tp->t_rttvar *
975 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
976 			if (rt->rt_rmx.rmx_rttvar && i)
977 				rt->rt_rmx.rmx_rttvar =
978 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
979 			else
980 				rt->rt_rmx.rmx_rttvar = i;
981 			tcpstat.tcps_cachedrttvar++;
982 		}
983 		/*
984 		 * The old comment here said:
985 		 * update the pipelimit (ssthresh) if it has been updated
986 		 * already or if a pipesize was specified & the threshhold
987 		 * got below half the pipesize.  I.e., wait for bad news
988 		 * before we start updating, then update on both good
989 		 * and bad news.
990 		 *
991 		 * But we want to save the ssthresh even if no pipesize is
992 		 * specified explicitly in the route, because such
993 		 * connections still have an implicit pipesize specified
994 		 * by the global tcp_sendspace.  In the absence of a reliable
995 		 * way to calculate the pipesize, it will have to do.
996 		 */
997 		i = tp->snd_ssthresh;
998 		if (rt->rt_rmx.rmx_sendpipe != 0)
999 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
1000 		else
1001 			dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
1002 		if (dosavessthresh ||
1003 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
1004 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
1005 			/*
1006 			 * convert the limit from user data bytes to
1007 			 * packets then to packet data bytes.
1008 			 */
1009 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
1010 			if (i < 2)
1011 				i = 2;
1012 			i *= tp->t_maxseg +
1013 			     (isipv6 ?
1014 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1015 			      sizeof(struct tcpiphdr));
1016 			if (rt->rt_rmx.rmx_ssthresh)
1017 				rt->rt_rmx.rmx_ssthresh =
1018 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
1019 			else
1020 				rt->rt_rmx.rmx_ssthresh = i;
1021 			tcpstat.tcps_cachedssthresh++;
1022 		}
1023 	}
1024 
1025 no_valid_rt:
1026 	/* free the reassembly queue, if any */
1027 	while((q = TAILQ_FIRST(&tp->t_segq)) != NULL) {
1028 		TAILQ_REMOVE(&tp->t_segq, q, tqe_q);
1029 		m_freem(q->tqe_m);
1030 		kfree(q, M_TSEGQ);
1031 		atomic_add_int(&tcp_reass_qsize, -1);
1032 	}
1033 	/* throw away SACK blocks in scoreboard*/
1034 	if (TCP_DO_SACK(tp))
1035 		tcp_sack_destroy(&tp->scb);
1036 
1037 	inp->inp_ppcb = NULL;
1038 	soisdisconnected(so);
1039 	/* note: pcb detached later on */
1040 
1041 	tcp_destroy_timermsg(tp);
1042 	tcp_output_cancel(tp);
1043 
1044 	if (tp->t_flags & TF_LISTEN) {
1045 		syncache_destroy(tp, tp_inh);
1046 		tcp_pcbport_merge_oncpu(tp);
1047 		tcp_pcbport_destroy(tp);
1048 		if (inp_inh != NULL && inp_inh->inp_socket != NULL) {
1049 			/*
1050 			 * Pending sockets inheritance only needs
1051 			 * to be done once in the current thread,
1052 			 * i.e. netisr0.
1053 			 */
1054 			soinherit(so, inp_inh->inp_socket);
1055 		}
1056 	}
1057 	KASSERT(tp->t_pcbport == NULL, ("tcpcb port cache is not destroyed"));
1058 
1059 	so_async_rcvd_drop(so);
1060 	/* Drop the reference for the asynchronized pru_rcvd */
1061 	sofree(so);
1062 
1063 	/*
1064 	 * NOTE:
1065 	 * - Remove self from listen tcpcb per-cpu port cache _before_
1066 	 *   pcbdetach.
1067 	 * - pcbdetach removes any wildcard hash entry on the current CPU.
1068 	 */
1069 	tcp_pcbport_remove(inp);
1070 #ifdef INET6
1071 	if (isipv6)
1072 		in6_pcbdetach(inp);
1073 	else
1074 #endif
1075 		in_pcbdetach(inp);
1076 
1077 	tcpstat.tcps_closed++;
1078 	return (NULL);
1079 }
1080 
1081 static __inline void
1082 tcp_drain_oncpu(struct inpcbinfo *pcbinfo)
1083 {
1084 	struct inpcbhead *head = &pcbinfo->pcblisthead;
1085 	struct inpcb *inpb;
1086 
1087 	/*
1088 	 * Since we run in netisr, it is MP safe, even if
1089 	 * we block during the inpcb list iteration, i.e.
1090 	 * we don't need to use inpcb marker here.
1091 	 */
1092 	ASSERT_IN_NETISR(pcbinfo->cpu);
1093 
1094 	LIST_FOREACH(inpb, head, inp_list) {
1095 		struct tcpcb *tcpb;
1096 		struct tseg_qent *te;
1097 
1098 		if (inpb->inp_flags & INP_PLACEMARKER)
1099 			continue;
1100 
1101 		tcpb = intotcpcb(inpb);
1102 		KASSERT(tcpb != NULL, ("tcp_drain_oncpu: tcpb is NULL"));
1103 
1104 		if ((te = TAILQ_FIRST(&tcpb->t_segq)) != NULL) {
1105 			TAILQ_REMOVE(&tcpb->t_segq, te, tqe_q);
1106 			if (te->tqe_th->th_flags & TH_FIN)
1107 				tcpb->t_flags &= ~TF_QUEDFIN;
1108 			m_freem(te->tqe_m);
1109 			kfree(te, M_TSEGQ);
1110 			atomic_add_int(&tcp_reass_qsize, -1);
1111 			/* retry */
1112 		}
1113 	}
1114 }
1115 
1116 static void
1117 tcp_drain_dispatch(netmsg_t nmsg)
1118 {
1119 	crit_enter();
1120 	lwkt_replymsg(&nmsg->lmsg, 0);  /* reply ASAP */
1121 	crit_exit();
1122 
1123 	tcp_drain_oncpu(&tcbinfo[mycpuid]);
1124 }
1125 
1126 static void
1127 tcp_drain_ipi(void *arg __unused)
1128 {
1129 	int cpu = mycpuid;
1130 	struct lwkt_msg *msg = &tcp_drain_netmsg[cpu].lmsg;
1131 
1132 	crit_enter();
1133 	if (msg->ms_flags & MSGF_DONE)
1134 		lwkt_sendmsg_oncpu(netisr_cpuport(cpu), msg);
1135 	crit_exit();
1136 }
1137 
1138 void
1139 tcp_drain(void)
1140 {
1141 	cpumask_t mask;
1142 
1143 	if (!do_tcpdrain)
1144 		return;
1145 
1146 	/*
1147 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1148 	 * if there is one...
1149 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1150 	 *	reassembly queue should be flushed, but in a situation
1151 	 *	where we're really low on mbufs, this is potentially
1152 	 *	useful.
1153 	 * YYY: We may consider run tcp_drain_oncpu directly here,
1154 	 *      however, that will require M_WAITOK memory allocation
1155 	 *      for the inpcb marker.
1156 	 */
1157 	CPUMASK_ASSBMASK(mask, ncpus2);
1158 	CPUMASK_ANDMASK(mask, smp_active_mask);
1159 	if (CPUMASK_TESTNZERO(mask))
1160 		lwkt_send_ipiq_mask(mask, tcp_drain_ipi, NULL);
1161 }
1162 
1163 /*
1164  * Notify a tcp user of an asynchronous error;
1165  * store error as soft error, but wake up user
1166  * (for now, won't do anything until can select for soft error).
1167  *
1168  * Do not wake up user since there currently is no mechanism for
1169  * reporting soft errors (yet - a kqueue filter may be added).
1170  */
1171 static void
1172 tcp_notify(struct inpcb *inp, int error)
1173 {
1174 	struct tcpcb *tp = intotcpcb(inp);
1175 
1176 	/*
1177 	 * Ignore some errors if we are hooked up.
1178 	 * If connection hasn't completed, has retransmitted several times,
1179 	 * and receives a second error, give up now.  This is better
1180 	 * than waiting a long time to establish a connection that
1181 	 * can never complete.
1182 	 */
1183 	if (tp->t_state == TCPS_ESTABLISHED &&
1184 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1185 	      error == EHOSTDOWN)) {
1186 		return;
1187 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1188 	    tp->t_softerror)
1189 		tcp_drop(tp, error);
1190 	else
1191 		tp->t_softerror = error;
1192 #if 0
1193 	wakeup(&so->so_timeo);
1194 	sorwakeup(so);
1195 	sowwakeup(so);
1196 #endif
1197 }
1198 
1199 static int
1200 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1201 {
1202 	int error, i, n;
1203 	struct inpcb *marker;
1204 	struct inpcb *inp;
1205 	int origcpu, ccpu;
1206 
1207 	error = 0;
1208 	n = 0;
1209 
1210 	/*
1211 	 * The process of preparing the TCB list is too time-consuming and
1212 	 * resource-intensive to repeat twice on every request.
1213 	 */
1214 	if (req->oldptr == NULL) {
1215 		for (ccpu = 0; ccpu < ncpus2; ++ccpu)
1216 			n += tcbinfo[ccpu].ipi_count;
1217 		req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1218 		return (0);
1219 	}
1220 
1221 	if (req->newptr != NULL)
1222 		return (EPERM);
1223 
1224 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1225 	marker->inp_flags |= INP_PLACEMARKER;
1226 
1227 	/*
1228 	 * OK, now we're committed to doing something.  Run the inpcb list
1229 	 * for each cpu in the system and construct the output.  Use a
1230 	 * list placemarker to deal with list changes occuring during
1231 	 * copyout blockages (but otherwise depend on being on the correct
1232 	 * cpu to avoid races).
1233 	 */
1234 	origcpu = mycpu->gd_cpuid;
1235 	for (ccpu = 0; ccpu < ncpus2 && error == 0; ++ccpu) {
1236 		caddr_t inp_ppcb;
1237 		struct xtcpcb xt;
1238 
1239 		lwkt_migratecpu(ccpu);
1240 
1241 		n = tcbinfo[ccpu].ipi_count;
1242 
1243 		LIST_INSERT_HEAD(&tcbinfo[ccpu].pcblisthead, marker, inp_list);
1244 		i = 0;
1245 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1246 			/*
1247 			 * process a snapshot of pcbs, ignoring placemarkers
1248 			 * and using our own to allow SYSCTL_OUT to block.
1249 			 */
1250 			LIST_REMOVE(marker, inp_list);
1251 			LIST_INSERT_AFTER(inp, marker, inp_list);
1252 
1253 			if (inp->inp_flags & INP_PLACEMARKER)
1254 				continue;
1255 			if (prison_xinpcb(req->td, inp))
1256 				continue;
1257 
1258 			xt.xt_len = sizeof xt;
1259 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1260 			inp_ppcb = inp->inp_ppcb;
1261 			if (inp_ppcb != NULL)
1262 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1263 			else
1264 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1265 			if (inp->inp_socket)
1266 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1267 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1268 				break;
1269 			++i;
1270 		}
1271 		LIST_REMOVE(marker, inp_list);
1272 		if (error == 0 && i < n) {
1273 			bzero(&xt, sizeof xt);
1274 			xt.xt_len = sizeof xt;
1275 			while (i < n) {
1276 				error = SYSCTL_OUT(req, &xt, sizeof xt);
1277 				if (error)
1278 					break;
1279 				++i;
1280 			}
1281 		}
1282 	}
1283 
1284 	/*
1285 	 * Make sure we are on the same cpu we were on originally, since
1286 	 * higher level callers expect this.  Also don't pollute caches with
1287 	 * migrated userland data by (eventually) returning to userland
1288 	 * on a different cpu.
1289 	 */
1290 	lwkt_migratecpu(origcpu);
1291 	kfree(marker, M_TEMP);
1292 	return (error);
1293 }
1294 
1295 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1296 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1297 
1298 static int
1299 tcp_getcred(SYSCTL_HANDLER_ARGS)
1300 {
1301 	struct sockaddr_in addrs[2];
1302 	struct ucred cred0, *cred = NULL;
1303 	struct inpcb *inp;
1304 	int cpu, origcpu, error;
1305 
1306 	error = priv_check(req->td, PRIV_ROOT);
1307 	if (error != 0)
1308 		return (error);
1309 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1310 	if (error != 0)
1311 		return (error);
1312 
1313 	origcpu = mycpuid;
1314 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1315 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1316 
1317 	lwkt_migratecpu(cpu);
1318 
1319 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1320 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1321 	if (inp == NULL || inp->inp_socket == NULL) {
1322 		error = ENOENT;
1323 	} else if (inp->inp_socket->so_cred != NULL) {
1324 		cred0 = *(inp->inp_socket->so_cred);
1325 		cred = &cred0;
1326 	}
1327 
1328 	lwkt_migratecpu(origcpu);
1329 
1330 	if (error)
1331 		return (error);
1332 
1333 	return SYSCTL_OUT(req, cred, sizeof(struct ucred));
1334 }
1335 
1336 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1337     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1338 
1339 #ifdef INET6
1340 static int
1341 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1342 {
1343 	struct sockaddr_in6 addrs[2];
1344 	struct inpcb *inp;
1345 	int error;
1346 
1347 	error = priv_check(req->td, PRIV_ROOT);
1348 	if (error != 0)
1349 		return (error);
1350 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1351 	if (error != 0)
1352 		return (error);
1353 	crit_enter();
1354 	inp = in6_pcblookup_hash(&tcbinfo[0],
1355 	    &addrs[1].sin6_addr, addrs[1].sin6_port,
1356 	    &addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1357 	if (inp == NULL || inp->inp_socket == NULL) {
1358 		error = ENOENT;
1359 		goto out;
1360 	}
1361 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1362 out:
1363 	crit_exit();
1364 	return (error);
1365 }
1366 
1367 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1368 	    0, 0,
1369 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1370 #endif
1371 
1372 struct netmsg_tcp_notify {
1373 	struct netmsg_base base;
1374 	inp_notify_t	nm_notify;
1375 	struct in_addr	nm_faddr;
1376 	int		nm_arg;
1377 };
1378 
1379 static void
1380 tcp_notifyall_oncpu(netmsg_t msg)
1381 {
1382 	struct netmsg_tcp_notify *nm = (struct netmsg_tcp_notify *)msg;
1383 	int nextcpu;
1384 
1385 	in_pcbnotifyall(&tcbinfo[mycpuid], nm->nm_faddr,
1386 			nm->nm_arg, nm->nm_notify);
1387 
1388 	nextcpu = mycpuid + 1;
1389 	if (nextcpu < ncpus2)
1390 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &nm->base.lmsg);
1391 	else
1392 		lwkt_replymsg(&nm->base.lmsg, 0);
1393 }
1394 
1395 inp_notify_t
1396 tcp_get_inpnotify(int cmd, const struct sockaddr *sa,
1397     int *arg, struct ip **ip0, int *cpuid)
1398 {
1399 	struct ip *ip = *ip0;
1400 	struct in_addr faddr;
1401 	inp_notify_t notify = tcp_notify;
1402 
1403 	faddr = ((const struct sockaddr_in *)sa)->sin_addr;
1404 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1405 		return NULL;
1406 
1407 	*arg = inetctlerrmap[cmd];
1408 	if (cmd == PRC_QUENCH) {
1409 		notify = tcp_quench;
1410 	} else if (icmp_may_rst &&
1411 		   (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1412 		    cmd == PRC_UNREACH_PORT ||
1413 		    cmd == PRC_TIMXCEED_INTRANS) &&
1414 		   ip != NULL) {
1415 		notify = tcp_drop_syn_sent;
1416 	} else if (cmd == PRC_MSGSIZE) {
1417 		const struct icmp *icmp = (const struct icmp *)
1418 		    ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1419 
1420 		*arg = ntohs(icmp->icmp_nextmtu);
1421 		notify = tcp_mtudisc;
1422 	} else if (PRC_IS_REDIRECT(cmd)) {
1423 		ip = NULL;
1424 		notify = in_rtchange;
1425 	} else if (cmd == PRC_HOSTDEAD) {
1426 		ip = NULL;
1427 	} else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1428 		return NULL;
1429 	}
1430 
1431 	if (cpuid != NULL) {
1432 		if (ip == NULL) {
1433 			/* Go through all CPUs */
1434 			*cpuid = ncpus;
1435 		} else {
1436 			const struct tcphdr *th;
1437 
1438 			th = (const struct tcphdr *)
1439 			    ((caddr_t)ip + (IP_VHL_HL(ip->ip_vhl) << 2));
1440 			*cpuid = tcp_addrcpu(faddr.s_addr, th->th_dport,
1441 			    ip->ip_src.s_addr, th->th_sport);
1442 		}
1443 	}
1444 
1445 	*ip0 = ip;
1446 	return notify;
1447 }
1448 
1449 void
1450 tcp_ctlinput(netmsg_t msg)
1451 {
1452 	int cmd = msg->ctlinput.nm_cmd;
1453 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1454 	struct ip *ip = msg->ctlinput.nm_extra;
1455 	struct in_addr faddr;
1456 	inp_notify_t notify;
1457 	int arg, cpuid;
1458 
1459 	notify = tcp_get_inpnotify(cmd, sa, &arg, &ip, &cpuid);
1460 	if (notify == NULL)
1461 		goto done;
1462 
1463 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1464 	if (ip != NULL) {
1465 		const struct tcphdr *th;
1466 		struct inpcb *inp;
1467 
1468 		if (cpuid != mycpuid)
1469 			goto done;
1470 
1471 		th = (const struct tcphdr *)
1472 		    ((caddr_t)ip + (IP_VHL_HL(ip->ip_vhl) << 2));
1473 		inp = in_pcblookup_hash(&tcbinfo[mycpuid], faddr, th->th_dport,
1474 					ip->ip_src, th->th_sport, 0, NULL);
1475 		if (inp != NULL && inp->inp_socket != NULL) {
1476 			tcp_seq icmpseq = htonl(th->th_seq);
1477 			struct tcpcb *tp = intotcpcb(inp);
1478 
1479 			if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1480 			    SEQ_LT(icmpseq, tp->snd_max))
1481 				notify(inp, arg);
1482 		} else {
1483 			struct in_conninfo inc;
1484 
1485 			inc.inc_fport = th->th_dport;
1486 			inc.inc_lport = th->th_sport;
1487 			inc.inc_faddr = faddr;
1488 			inc.inc_laddr = ip->ip_src;
1489 #ifdef INET6
1490 			inc.inc_isipv6 = 0;
1491 #endif
1492 			syncache_unreach(&inc, th);
1493 		}
1494 	} else if (msg->ctlinput.nm_direct) {
1495 		if (cpuid != ncpus && cpuid != mycpuid)
1496 			goto done;
1497 		if (mycpuid >= ncpus2)
1498 			goto done;
1499 
1500 		in_pcbnotifyall(&tcbinfo[mycpuid], faddr, arg, notify);
1501 	} else {
1502 		struct netmsg_tcp_notify *nm;
1503 
1504 		ASSERT_IN_NETISR(0);
1505 		nm = kmalloc(sizeof(*nm), M_LWKTMSG, M_INTWAIT);
1506 		netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1507 			    0, tcp_notifyall_oncpu);
1508 		nm->nm_faddr = faddr;
1509 		nm->nm_arg = arg;
1510 		nm->nm_notify = notify;
1511 
1512 		lwkt_sendmsg(netisr_cpuport(0), &nm->base.lmsg);
1513 	}
1514 done:
1515 	lwkt_replymsg(&msg->lmsg, 0);
1516 }
1517 
1518 #ifdef INET6
1519 
1520 void
1521 tcp6_ctlinput(netmsg_t msg)
1522 {
1523 	int cmd = msg->ctlinput.nm_cmd;
1524 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1525 	void *d = msg->ctlinput.nm_extra;
1526 	struct tcphdr th;
1527 	inp_notify_t notify = tcp_notify;
1528 	struct ip6_hdr *ip6;
1529 	struct mbuf *m;
1530 	struct ip6ctlparam *ip6cp = NULL;
1531 	const struct sockaddr_in6 *sa6_src = NULL;
1532 	int off;
1533 	struct tcp_portonly {
1534 		u_int16_t th_sport;
1535 		u_int16_t th_dport;
1536 	} *thp;
1537 	int arg;
1538 
1539 	if (sa->sa_family != AF_INET6 ||
1540 	    sa->sa_len != sizeof(struct sockaddr_in6)) {
1541 		goto out;
1542 	}
1543 
1544 	arg = 0;
1545 	if (cmd == PRC_QUENCH)
1546 		notify = tcp_quench;
1547 	else if (cmd == PRC_MSGSIZE) {
1548 		struct ip6ctlparam *ip6cp = d;
1549 		struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1550 
1551 		arg = ntohl(icmp6->icmp6_mtu);
1552 		notify = tcp_mtudisc;
1553 	} else if (!PRC_IS_REDIRECT(cmd) &&
1554 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1555 		goto out;
1556 	}
1557 
1558 	/* if the parameter is from icmp6, decode it. */
1559 	if (d != NULL) {
1560 		ip6cp = (struct ip6ctlparam *)d;
1561 		m = ip6cp->ip6c_m;
1562 		ip6 = ip6cp->ip6c_ip6;
1563 		off = ip6cp->ip6c_off;
1564 		sa6_src = ip6cp->ip6c_src;
1565 	} else {
1566 		m = NULL;
1567 		ip6 = NULL;
1568 		off = 0;	/* fool gcc */
1569 		sa6_src = &sa6_any;
1570 	}
1571 
1572 	if (ip6 != NULL) {
1573 		struct in_conninfo inc;
1574 		/*
1575 		 * XXX: We assume that when IPV6 is non NULL,
1576 		 * M and OFF are valid.
1577 		 */
1578 
1579 		/* check if we can safely examine src and dst ports */
1580 		if (m->m_pkthdr.len < off + sizeof *thp)
1581 			goto out;
1582 
1583 		bzero(&th, sizeof th);
1584 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1585 
1586 		in6_pcbnotify(&tcbinfo[0], sa, th.th_dport,
1587 		    (struct sockaddr *)ip6cp->ip6c_src,
1588 		    th.th_sport, cmd, arg, notify);
1589 
1590 		inc.inc_fport = th.th_dport;
1591 		inc.inc_lport = th.th_sport;
1592 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1593 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1594 		inc.inc_isipv6 = 1;
1595 		syncache_unreach(&inc, &th);
1596 	} else {
1597 		in6_pcbnotify(&tcbinfo[0], sa, 0,
1598 		    (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1599 	}
1600 out:
1601 	lwkt_replymsg(&msg->ctlinput.base.lmsg, 0);
1602 }
1603 
1604 #endif
1605 
1606 /*
1607  * Following is where TCP initial sequence number generation occurs.
1608  *
1609  * There are two places where we must use initial sequence numbers:
1610  * 1.  In SYN-ACK packets.
1611  * 2.  In SYN packets.
1612  *
1613  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1614  * tcp_syncache.c for details.
1615  *
1616  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1617  * depends on this property.  In addition, these ISNs should be
1618  * unguessable so as to prevent connection hijacking.  To satisfy
1619  * the requirements of this situation, the algorithm outlined in
1620  * RFC 1948 is used to generate sequence numbers.
1621  *
1622  * Implementation details:
1623  *
1624  * Time is based off the system timer, and is corrected so that it
1625  * increases by one megabyte per second.  This allows for proper
1626  * recycling on high speed LANs while still leaving over an hour
1627  * before rollover.
1628  *
1629  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1630  * between seeding of isn_secret.  This is normally set to zero,
1631  * as reseeding should not be necessary.
1632  *
1633  */
1634 
1635 #define	ISN_BYTES_PER_SECOND 1048576
1636 
1637 u_char isn_secret[32];
1638 int isn_last_reseed;
1639 MD5_CTX isn_ctx;
1640 
1641 tcp_seq
1642 tcp_new_isn(struct tcpcb *tp)
1643 {
1644 	u_int32_t md5_buffer[4];
1645 	tcp_seq new_isn;
1646 
1647 	/* Seed if this is the first use, reseed if requested. */
1648 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1649 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1650 		< (u_int)ticks))) {
1651 		read_random_unlimited(&isn_secret, sizeof isn_secret);
1652 		isn_last_reseed = ticks;
1653 	}
1654 
1655 	/* Compute the md5 hash and return the ISN. */
1656 	MD5Init(&isn_ctx);
1657 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1658 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1659 #ifdef INET6
1660 	if (INP_ISIPV6(tp->t_inpcb)) {
1661 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1662 			  sizeof(struct in6_addr));
1663 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1664 			  sizeof(struct in6_addr));
1665 	} else
1666 #endif
1667 	{
1668 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1669 			  sizeof(struct in_addr));
1670 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1671 			  sizeof(struct in_addr));
1672 	}
1673 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1674 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1675 	new_isn = (tcp_seq) md5_buffer[0];
1676 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1677 	return (new_isn);
1678 }
1679 
1680 /*
1681  * When a source quench is received, close congestion window
1682  * to one segment.  We will gradually open it again as we proceed.
1683  */
1684 void
1685 tcp_quench(struct inpcb *inp, int error)
1686 {
1687 	struct tcpcb *tp = intotcpcb(inp);
1688 
1689 	KASSERT(tp != NULL, ("tcp_quench: tp is NULL"));
1690 	tp->snd_cwnd = tp->t_maxseg;
1691 	tp->snd_wacked = 0;
1692 }
1693 
1694 /*
1695  * When a specific ICMP unreachable message is received and the
1696  * connection state is SYN-SENT, drop the connection.  This behavior
1697  * is controlled by the icmp_may_rst sysctl.
1698  */
1699 void
1700 tcp_drop_syn_sent(struct inpcb *inp, int error)
1701 {
1702 	struct tcpcb *tp = intotcpcb(inp);
1703 
1704 	KASSERT(tp != NULL, ("tcp_drop_syn_sent: tp is NULL"));
1705 	if (tp->t_state == TCPS_SYN_SENT)
1706 		tcp_drop(tp, error);
1707 }
1708 
1709 /*
1710  * When a `need fragmentation' ICMP is received, update our idea of the MSS
1711  * based on the new value in the route.  Also nudge TCP to send something,
1712  * since we know the packet we just sent was dropped.
1713  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1714  */
1715 void
1716 tcp_mtudisc(struct inpcb *inp, int mtu)
1717 {
1718 	struct tcpcb *tp = intotcpcb(inp);
1719 	struct rtentry *rt;
1720 	struct socket *so = inp->inp_socket;
1721 	int maxopd, mss;
1722 #ifdef INET6
1723 	boolean_t isipv6 = INP_ISIPV6(inp);
1724 #else
1725 	const boolean_t isipv6 = FALSE;
1726 #endif
1727 
1728 	KASSERT(tp != NULL, ("tcp_mtudisc: tp is NULL"));
1729 
1730 	/*
1731 	 * If no MTU is provided in the ICMP message, use the
1732 	 * next lower likely value, as specified in RFC 1191.
1733 	 */
1734 	if (mtu == 0) {
1735 		int oldmtu;
1736 
1737 		oldmtu = tp->t_maxopd +
1738 		    (isipv6 ?
1739 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1740 		     sizeof(struct tcpiphdr));
1741 		mtu = ip_next_mtu(oldmtu, 0);
1742 	}
1743 
1744 	if (isipv6)
1745 		rt = tcp_rtlookup6(&inp->inp_inc);
1746 	else
1747 		rt = tcp_rtlookup(&inp->inp_inc);
1748 	if (rt != NULL) {
1749 		if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1750 			mtu = rt->rt_rmx.rmx_mtu;
1751 
1752 		maxopd = mtu -
1753 		    (isipv6 ?
1754 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1755 		     sizeof(struct tcpiphdr));
1756 
1757 		/*
1758 		 * XXX - The following conditional probably violates the TCP
1759 		 * spec.  The problem is that, since we don't know the
1760 		 * other end's MSS, we are supposed to use a conservative
1761 		 * default.  But, if we do that, then MTU discovery will
1762 		 * never actually take place, because the conservative
1763 		 * default is much less than the MTUs typically seen
1764 		 * on the Internet today.  For the moment, we'll sweep
1765 		 * this under the carpet.
1766 		 *
1767 		 * The conservative default might not actually be a problem
1768 		 * if the only case this occurs is when sending an initial
1769 		 * SYN with options and data to a host we've never talked
1770 		 * to before.  Then, they will reply with an MSS value which
1771 		 * will get recorded and the new parameters should get
1772 		 * recomputed.  For Further Study.
1773 		 */
1774 		if (rt->rt_rmx.rmx_mssopt  && rt->rt_rmx.rmx_mssopt < maxopd)
1775 			maxopd = rt->rt_rmx.rmx_mssopt;
1776 	} else
1777 		maxopd = mtu -
1778 		    (isipv6 ?
1779 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1780 		     sizeof(struct tcpiphdr));
1781 
1782 	if (tp->t_maxopd <= maxopd)
1783 		return;
1784 	tp->t_maxopd = maxopd;
1785 
1786 	mss = maxopd;
1787 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1788 			   (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1789 		mss -= TCPOLEN_TSTAMP_APPA;
1790 
1791 	/* round down to multiple of MCLBYTES */
1792 #if	(MCLBYTES & (MCLBYTES - 1)) == 0    /* test if MCLBYTES power of 2 */
1793 	if (mss > MCLBYTES)
1794 		mss &= ~(MCLBYTES - 1);
1795 #else
1796 	if (mss > MCLBYTES)
1797 		mss = (mss / MCLBYTES) * MCLBYTES;
1798 #endif
1799 
1800 	if (so->so_snd.ssb_hiwat < mss)
1801 		mss = so->so_snd.ssb_hiwat;
1802 
1803 	tp->t_maxseg = mss;
1804 	tp->t_rtttime = 0;
1805 	tp->snd_nxt = tp->snd_una;
1806 	tcp_output(tp);
1807 	tcpstat.tcps_mturesent++;
1808 }
1809 
1810 /*
1811  * Look-up the routing entry to the peer of this inpcb.  If no route
1812  * is found and it cannot be allocated the return NULL.  This routine
1813  * is called by TCP routines that access the rmx structure and by tcp_mss
1814  * to get the interface MTU.
1815  */
1816 struct rtentry *
1817 tcp_rtlookup(struct in_conninfo *inc)
1818 {
1819 	struct route *ro = &inc->inc_route;
1820 
1821 	if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1822 		/* No route yet, so try to acquire one */
1823 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1824 			/*
1825 			 * unused portions of the structure MUST be zero'd
1826 			 * out because rtalloc() treats it as opaque data
1827 			 */
1828 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1829 			ro->ro_dst.sa_family = AF_INET;
1830 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1831 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1832 			    inc->inc_faddr;
1833 			rtalloc(ro);
1834 		}
1835 	}
1836 	return (ro->ro_rt);
1837 }
1838 
1839 #ifdef INET6
1840 struct rtentry *
1841 tcp_rtlookup6(struct in_conninfo *inc)
1842 {
1843 	struct route_in6 *ro6 = &inc->inc6_route;
1844 
1845 	if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1846 		/* No route yet, so try to acquire one */
1847 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1848 			/*
1849 			 * unused portions of the structure MUST be zero'd
1850 			 * out because rtalloc() treats it as opaque data
1851 			 */
1852 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1853 			ro6->ro_dst.sin6_family = AF_INET6;
1854 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1855 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1856 			rtalloc((struct route *)ro6);
1857 		}
1858 	}
1859 	return (ro6->ro_rt);
1860 }
1861 #endif
1862 
1863 #ifdef IPSEC
1864 /* compute ESP/AH header size for TCP, including outer IP header. */
1865 size_t
1866 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1867 {
1868 	struct inpcb *inp;
1869 	struct mbuf *m;
1870 	size_t hdrsiz;
1871 	struct ip *ip;
1872 	struct tcphdr *th;
1873 
1874 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1875 		return (0);
1876 	MGETHDR(m, M_NOWAIT, MT_DATA);
1877 	if (!m)
1878 		return (0);
1879 
1880 #ifdef INET6
1881 	if (INP_ISIPV6(inp)) {
1882 		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1883 
1884 		th = (struct tcphdr *)(ip6 + 1);
1885 		m->m_pkthdr.len = m->m_len =
1886 		    sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1887 		tcp_fillheaders(tp, ip6, th, FALSE);
1888 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1889 	} else
1890 #endif
1891 	{
1892 		ip = mtod(m, struct ip *);
1893 		th = (struct tcphdr *)(ip + 1);
1894 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1895 		tcp_fillheaders(tp, ip, th, FALSE);
1896 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1897 	}
1898 
1899 	m_free(m);
1900 	return (hdrsiz);
1901 }
1902 #endif
1903 
1904 /*
1905  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1906  *
1907  * This code attempts to calculate the bandwidth-delay product as a
1908  * means of determining the optimal window size to maximize bandwidth,
1909  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1910  * routers.  This code also does a fairly good job keeping RTTs in check
1911  * across slow links like modems.  We implement an algorithm which is very
1912  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1913  * transmitter side of a TCP connection and so only effects the transmit
1914  * side of the connection.
1915  *
1916  * BACKGROUND:  TCP makes no provision for the management of buffer space
1917  * at the end points or at the intermediate routers and switches.  A TCP
1918  * stream, whether using NewReno or not, will eventually buffer as
1919  * many packets as it is able and the only reason this typically works is
1920  * due to the fairly small default buffers made available for a connection
1921  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1922  * scaling it is now fairly easy for even a single TCP connection to blow-out
1923  * all available buffer space not only on the local interface, but on
1924  * intermediate routers and switches as well.  NewReno makes a misguided
1925  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1926  * then backing off, then steadily increasing the window again until another
1927  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1928  * is only made worse as network loads increase and the idea of intentionally
1929  * blowing out network buffers is, frankly, a terrible way to manage network
1930  * resources.
1931  *
1932  * It is far better to limit the transmit window prior to the failure
1933  * condition being achieved.  There are two general ways to do this:  First
1934  * you can 'scan' through different transmit window sizes and locate the
1935  * point where the RTT stops increasing, indicating that you have filled the
1936  * pipe, then scan backwards until you note that RTT stops decreasing, then
1937  * repeat ad-infinitum.  This method works in principle but has severe
1938  * implementation issues due to RTT variances, timer granularity, and
1939  * instability in the algorithm which can lead to many false positives and
1940  * create oscillations as well as interact badly with other TCP streams
1941  * implementing the same algorithm.
1942  *
1943  * The second method is to limit the window to the bandwidth delay product
1944  * of the link.  This is the method we implement.  RTT variances and our
1945  * own manipulation of the congestion window, bwnd, can potentially
1946  * destabilize the algorithm.  For this reason we have to stabilize the
1947  * elements used to calculate the window.  We do this by using the minimum
1948  * observed RTT, the long term average of the observed bandwidth, and
1949  * by adding two segments worth of slop.  It isn't perfect but it is able
1950  * to react to changing conditions and gives us a very stable basis on
1951  * which to extend the algorithm.
1952  */
1953 void
1954 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1955 {
1956 	u_long bw;
1957 	u_long ibw;
1958 	u_long bwnd;
1959 	int save_ticks;
1960 	int delta_ticks;
1961 
1962 	/*
1963 	 * If inflight_enable is disabled in the middle of a tcp connection,
1964 	 * make sure snd_bwnd is effectively disabled.
1965 	 */
1966 	if (!tcp_inflight_enable) {
1967 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1968 		tp->snd_bandwidth = 0;
1969 		return;
1970 	}
1971 
1972 	/*
1973 	 * Validate the delta time.  If a connection is new or has been idle
1974 	 * a long time we have to reset the bandwidth calculator.
1975 	 */
1976 	save_ticks = ticks;
1977 	cpu_ccfence();
1978 	delta_ticks = save_ticks - tp->t_bw_rtttime;
1979 	if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1980 		tp->t_bw_rtttime = save_ticks;
1981 		tp->t_bw_rtseq = ack_seq;
1982 		if (tp->snd_bandwidth == 0)
1983 			tp->snd_bandwidth = tcp_inflight_start;
1984 		return;
1985 	}
1986 
1987 	/*
1988 	 * A delta of at least 1 tick is required.  Waiting 2 ticks will
1989 	 * result in better (bw) accuracy.  More than that and the ramp-up
1990 	 * will be too slow.
1991 	 */
1992 	if (delta_ticks == 0 || delta_ticks == 1)
1993 		return;
1994 
1995 	/*
1996 	 * Sanity check, plus ignore pure window update acks.
1997 	 */
1998 	if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1999 		return;
2000 
2001 	/*
2002 	 * Figure out the bandwidth.  Due to the tick granularity this
2003 	 * is a very rough number and it MUST be averaged over a fairly
2004 	 * long period of time.  XXX we need to take into account a link
2005 	 * that is not using all available bandwidth, but for now our
2006 	 * slop will ramp us up if this case occurs and the bandwidth later
2007 	 * increases.
2008 	 */
2009 	ibw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
2010 	tp->t_bw_rtttime = save_ticks;
2011 	tp->t_bw_rtseq = ack_seq;
2012 	bw = ((int64_t)tp->snd_bandwidth * 15 + ibw) >> 4;
2013 
2014 	tp->snd_bandwidth = bw;
2015 
2016 	/*
2017 	 * Calculate the semi-static bandwidth delay product, plus two maximal
2018 	 * segments.  The additional slop puts us squarely in the sweet
2019 	 * spot and also handles the bandwidth run-up case.  Without the
2020 	 * slop we could be locking ourselves into a lower bandwidth.
2021 	 *
2022 	 * At very high speeds the bw calculation can become overly sensitive
2023 	 * and error prone when delta_ticks is low (e.g. usually 1).  To deal
2024 	 * with the problem the stab must be scaled to the bw.  A stab of 50
2025 	 * (the default) increases the bw for the purposes of the bwnd
2026 	 * calculation by 5%.
2027 	 *
2028 	 * Situations Handled:
2029 	 *	(1) Prevents over-queueing of packets on LANs, especially on
2030 	 *	    high speed LANs, allowing larger TCP buffers to be
2031 	 *	    specified, and also does a good job preventing
2032 	 *	    over-queueing of packets over choke points like modems
2033 	 *	    (at least for the transmit side).
2034 	 *
2035 	 *	(2) Is able to handle changing network loads (bandwidth
2036 	 *	    drops so bwnd drops, bandwidth increases so bwnd
2037 	 *	    increases).
2038 	 *
2039 	 *	(3) Theoretically should stabilize in the face of multiple
2040 	 *	    connections implementing the same algorithm (this may need
2041 	 *	    a little work).
2042 	 *
2043 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2044 	 *	    be adjusted with a sysctl but typically only needs to be on
2045 	 *	    very slow connections.  A value no smaller then 5 should
2046 	 *	    be used, but only reduce this default if you have no other
2047 	 *	    choice.
2048 	 */
2049 
2050 #define	USERTT	((tp->t_srtt + tp->t_rttvar) + tcp_inflight_adjrtt)
2051 	bw += bw * tcp_inflight_stab / 1000;
2052 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
2053 	       (int)tp->t_maxseg * 2;
2054 #undef USERTT
2055 
2056 	if (tcp_inflight_debug > 0) {
2057 		static int ltime;
2058 		if ((u_int)(save_ticks - ltime) >= hz / tcp_inflight_debug) {
2059 			ltime = save_ticks;
2060 			kprintf("%p ibw %ld bw %ld rttvar %d srtt %d "
2061 				"bwnd %ld delta %d snd_win %ld\n",
2062 				tp, ibw, bw, tp->t_rttvar, tp->t_srtt,
2063 				bwnd, delta_ticks, tp->snd_wnd);
2064 		}
2065 	}
2066 	if ((long)bwnd < tcp_inflight_min)
2067 		bwnd = tcp_inflight_min;
2068 	if (bwnd > tcp_inflight_max)
2069 		bwnd = tcp_inflight_max;
2070 	if ((long)bwnd < tp->t_maxseg * 2)
2071 		bwnd = tp->t_maxseg * 2;
2072 	tp->snd_bwnd = bwnd;
2073 }
2074 
2075 static void
2076 tcp_rmx_iwsegs(struct tcpcb *tp, u_long *maxsegs, u_long *capsegs)
2077 {
2078 	struct rtentry *rt;
2079 	struct inpcb *inp = tp->t_inpcb;
2080 #ifdef INET6
2081 	boolean_t isipv6 = INP_ISIPV6(inp);
2082 #else
2083 	const boolean_t isipv6 = FALSE;
2084 #endif
2085 
2086 	/* XXX */
2087 	if (tcp_iw_maxsegs < TCP_IW_MAXSEGS_DFLT)
2088 		tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
2089 	if (tcp_iw_capsegs < TCP_IW_CAPSEGS_DFLT)
2090 		tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
2091 
2092 	if (isipv6)
2093 		rt = tcp_rtlookup6(&inp->inp_inc);
2094 	else
2095 		rt = tcp_rtlookup(&inp->inp_inc);
2096 	if (rt == NULL ||
2097 	    rt->rt_rmx.rmx_iwmaxsegs < TCP_IW_MAXSEGS_DFLT ||
2098 	    rt->rt_rmx.rmx_iwcapsegs < TCP_IW_CAPSEGS_DFLT) {
2099 		*maxsegs = tcp_iw_maxsegs;
2100 		*capsegs = tcp_iw_capsegs;
2101 		return;
2102 	}
2103 	*maxsegs = rt->rt_rmx.rmx_iwmaxsegs;
2104 	*capsegs = rt->rt_rmx.rmx_iwcapsegs;
2105 }
2106 
2107 u_long
2108 tcp_initial_window(struct tcpcb *tp)
2109 {
2110 	if (tcp_do_rfc3390) {
2111 		/*
2112 		 * RFC3390:
2113 		 * "If the SYN or SYN/ACK is lost, the initial window
2114 		 *  used by a sender after a correctly transmitted SYN
2115 		 *  MUST be one segment consisting of MSS bytes."
2116 		 *
2117 		 * However, we do something a little bit more aggressive
2118 		 * then RFC3390 here:
2119 		 * - Only if time spent in the SYN or SYN|ACK retransmition
2120 		 *   >= 3 seconds, the IW is reduced.  We do this mainly
2121 		 *   because when RFC3390 is published, the initial RTO is
2122 		 *   still 3 seconds (the threshold we test here), while
2123 		 *   after RFC6298, the initial RTO is 1 second.  This
2124 		 *   behaviour probably still falls within the spirit of
2125 		 *   RFC3390.
2126 		 * - When IW is reduced, 2*MSS is used instead of 1*MSS.
2127 		 *   Mainly to avoid sender and receiver deadlock until
2128 		 *   delayed ACK timer expires.  And even RFC2581 does not
2129 		 *   try to reduce IW upon SYN or SYN|ACK retransmition
2130 		 *   timeout.
2131 		 *
2132 		 * See also:
2133 		 * http://tools.ietf.org/html/draft-ietf-tcpm-initcwnd-03
2134 		 */
2135 		if (tp->t_rxtsyn >= TCPTV_RTOBASE3) {
2136 			return (2 * tp->t_maxseg);
2137 		} else {
2138 			u_long maxsegs, capsegs;
2139 
2140 			tcp_rmx_iwsegs(tp, &maxsegs, &capsegs);
2141 			return min(maxsegs * tp->t_maxseg,
2142 				   max(2 * tp->t_maxseg, capsegs * 1460));
2143 		}
2144 	} else {
2145 		/*
2146 		 * Even RFC2581 (back to 1999) allows 2*SMSS IW.
2147 		 *
2148 		 * Mainly to avoid sender and receiver deadlock
2149 		 * until delayed ACK timer expires.
2150 		 */
2151 		return (2 * tp->t_maxseg);
2152 	}
2153 }
2154 
2155 #ifdef TCP_SIGNATURE
2156 /*
2157  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2158  *
2159  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2160  * When called from tcp_input(), we can be sure that th_sum has been
2161  * zeroed out and verified already.
2162  *
2163  * Return 0 if successful, otherwise return -1.
2164  *
2165  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2166  * search with the destination IP address, and a 'magic SPI' to be
2167  * determined by the application. This is hardcoded elsewhere to 1179
2168  * right now. Another branch of this code exists which uses the SPD to
2169  * specify per-application flows but it is unstable.
2170  */
2171 int
2172 tcpsignature_compute(
2173 	struct mbuf *m,		/* mbuf chain */
2174 	int len,		/* length of TCP data */
2175 	int optlen,		/* length of TCP options */
2176 	u_char *buf,		/* storage for MD5 digest */
2177 	u_int direction)	/* direction of flow */
2178 {
2179 	struct ippseudo ippseudo;
2180 	MD5_CTX ctx;
2181 	int doff;
2182 	struct ip *ip;
2183 	struct ipovly *ipovly;
2184 	struct secasvar *sav;
2185 	struct tcphdr *th;
2186 #ifdef INET6
2187 	struct ip6_hdr *ip6;
2188 	struct in6_addr in6;
2189 	uint32_t plen;
2190 	uint16_t nhdr;
2191 #endif /* INET6 */
2192 	u_short savecsum;
2193 
2194 	KASSERT(m != NULL, ("passed NULL mbuf. Game over."));
2195 	KASSERT(buf != NULL, ("passed NULL storage pointer for MD5 signature"));
2196 	/*
2197 	 * Extract the destination from the IP header in the mbuf.
2198 	 */
2199 	ip = mtod(m, struct ip *);
2200 #ifdef INET6
2201 	ip6 = NULL;     /* Make the compiler happy. */
2202 #endif /* INET6 */
2203 	/*
2204 	 * Look up an SADB entry which matches the address found in
2205 	 * the segment.
2206 	 */
2207 	switch (IP_VHL_V(ip->ip_vhl)) {
2208 	case IPVERSION:
2209 		sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src, (caddr_t)&ip->ip_dst,
2210 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2211 		break;
2212 #ifdef INET6
2213 	case (IPV6_VERSION >> 4):
2214 		ip6 = mtod(m, struct ip6_hdr *);
2215 		sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src, (caddr_t)&ip6->ip6_dst,
2216 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2217 		break;
2218 #endif /* INET6 */
2219 	default:
2220 		return (EINVAL);
2221 		/* NOTREACHED */
2222 		break;
2223 	}
2224 	if (sav == NULL) {
2225 		kprintf("%s: SADB lookup failed\n", __func__);
2226 		return (EINVAL);
2227 	}
2228 	MD5Init(&ctx);
2229 
2230 	/*
2231 	 * Step 1: Update MD5 hash with IP pseudo-header.
2232 	 *
2233 	 * XXX The ippseudo header MUST be digested in network byte order,
2234 	 * or else we'll fail the regression test. Assume all fields we've
2235 	 * been doing arithmetic on have been in host byte order.
2236 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2237 	 * tcp_output(), the underlying ip_len member has not yet been set.
2238 	 */
2239 	switch (IP_VHL_V(ip->ip_vhl)) {
2240 	case IPVERSION:
2241 		ipovly = (struct ipovly *)ip;
2242 		ippseudo.ippseudo_src = ipovly->ih_src;
2243 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2244 		ippseudo.ippseudo_pad = 0;
2245 		ippseudo.ippseudo_p = IPPROTO_TCP;
2246 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2247 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2248 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2249 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2250 		break;
2251 #ifdef INET6
2252 	/*
2253 	 * RFC 2385, 2.0  Proposal
2254 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2255 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2256 	 * extended next header value (to form 32 bits), and 32-bit segment
2257 	 * length.
2258 	 * Note: Upper-Layer Packet Length comes before Next Header.
2259 	 */
2260 	case (IPV6_VERSION >> 4):
2261 		in6 = ip6->ip6_src;
2262 		in6_clearscope(&in6);
2263 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2264 		in6 = ip6->ip6_dst;
2265 		in6_clearscope(&in6);
2266 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2267 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2268 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2269 		nhdr = 0;
2270 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2271 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2272 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2273 		nhdr = IPPROTO_TCP;
2274 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2275 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2276 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2277 		break;
2278 #endif /* INET6 */
2279 	default:
2280 		return (EINVAL);
2281 		/* NOTREACHED */
2282 		break;
2283 	}
2284 	/*
2285 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2286 	 * The TCP checksum must be set to zero.
2287 	 */
2288 	savecsum = th->th_sum;
2289 	th->th_sum = 0;
2290 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2291 	th->th_sum = savecsum;
2292 	/*
2293 	 * Step 3: Update MD5 hash with TCP segment data.
2294 	 *         Use m_apply() to avoid an early m_pullup().
2295 	 */
2296 	if (len > 0)
2297 		m_apply(m, doff, len, tcpsignature_apply, &ctx);
2298 	/*
2299 	 * Step 4: Update MD5 hash with shared secret.
2300 	 */
2301 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2302 	MD5Final(buf, &ctx);
2303 	key_sa_recordxfer(sav, m);
2304 	key_freesav(sav);
2305 	return (0);
2306 }
2307 
2308 int
2309 tcpsignature_apply(void *fstate, void *data, unsigned int len)
2310 {
2311 
2312 	MD5Update((MD5_CTX *)fstate, (unsigned char *)data, len);
2313 	return (0);
2314 }
2315 #endif /* TCP_SIGNATURE */
2316 
2317 static void
2318 tcp_drop_sysctl_dispatch(netmsg_t nmsg)
2319 {
2320 	struct lwkt_msg *lmsg = &nmsg->lmsg;
2321 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2322 	struct sockaddr_storage *addrs = lmsg->u.ms_resultp;
2323 	int error;
2324 	struct sockaddr_in *fin, *lin;
2325 #ifdef INET6
2326 	struct sockaddr_in6 *fin6, *lin6;
2327 	struct in6_addr f6, l6;
2328 #endif
2329 	struct inpcb *inp;
2330 
2331 	switch (addrs[0].ss_family) {
2332 #ifdef INET6
2333 	case AF_INET6:
2334 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2335 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2336 		error = in6_embedscope(&f6, fin6, NULL, NULL);
2337 		if (error)
2338 			goto done;
2339 		error = in6_embedscope(&l6, lin6, NULL, NULL);
2340 		if (error)
2341 			goto done;
2342 		inp = in6_pcblookup_hash(&tcbinfo[mycpuid], &f6,
2343 		    fin6->sin6_port, &l6, lin6->sin6_port, FALSE, NULL);
2344 		break;
2345 #endif
2346 #ifdef INET
2347 	case AF_INET:
2348 		fin = (struct sockaddr_in *)&addrs[0];
2349 		lin = (struct sockaddr_in *)&addrs[1];
2350 		inp = in_pcblookup_hash(&tcbinfo[mycpuid], fin->sin_addr,
2351 		    fin->sin_port, lin->sin_addr, lin->sin_port, FALSE, NULL);
2352 		break;
2353 #endif
2354 	default:
2355 		/*
2356 		 * Must not reach here, since the address family was
2357 		 * checked in sysctl handler.
2358 		 */
2359 		panic("unknown address family %d", addrs[0].ss_family);
2360 	}
2361 	if (inp != NULL) {
2362 		struct tcpcb *tp = intotcpcb(inp);
2363 
2364 		KASSERT((inp->inp_flags & INP_WILDCARD) == 0,
2365 		    ("in wildcard hash"));
2366 		KASSERT(tp != NULL, ("tcp_drop_sysctl_dispatch: tp is NULL"));
2367 		KASSERT((tp->t_flags & TF_LISTEN) == 0, ("listen socket"));
2368 		tcp_drop(tp, ECONNABORTED);
2369 		error = 0;
2370 	} else {
2371 		error = ESRCH;
2372 	}
2373 #ifdef INET6
2374 done:
2375 #endif
2376 	lwkt_replymsg(lmsg, error);
2377 }
2378 
2379 static int
2380 sysctl_tcp_drop(SYSCTL_HANDLER_ARGS)
2381 {
2382 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2383 	struct sockaddr_storage addrs[2];
2384 	struct sockaddr_in *fin, *lin;
2385 #ifdef INET6
2386 	struct sockaddr_in6 *fin6, *lin6;
2387 #endif
2388 	struct netmsg_base nmsg;
2389 	struct lwkt_msg *lmsg = &nmsg.lmsg;
2390 	struct lwkt_port *port = NULL;
2391 	int error;
2392 
2393 	fin = lin = NULL;
2394 #ifdef INET6
2395 	fin6 = lin6 = NULL;
2396 #endif
2397 	error = 0;
2398 
2399 	if (req->oldptr != NULL || req->oldlen != 0)
2400 		return (EINVAL);
2401 	if (req->newptr == NULL)
2402 		return (EPERM);
2403 	if (req->newlen < sizeof(addrs))
2404 		return (ENOMEM);
2405 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2406 	if (error)
2407 		return (error);
2408 
2409 	switch (addrs[0].ss_family) {
2410 #ifdef INET6
2411 	case AF_INET6:
2412 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2413 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2414 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2415 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2416 			return (EINVAL);
2417 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr) ||
2418 		    IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2419 			return (EADDRNOTAVAIL);
2420 #if 0
2421 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2422 		if (error)
2423 			return (error);
2424 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2425 		if (error)
2426 			return (error);
2427 #endif
2428 		port = tcp6_addrport();
2429 		break;
2430 #endif
2431 #ifdef INET
2432 	case AF_INET:
2433 		fin = (struct sockaddr_in *)&addrs[0];
2434 		lin = (struct sockaddr_in *)&addrs[1];
2435 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2436 		    lin->sin_len != sizeof(struct sockaddr_in))
2437 			return (EINVAL);
2438 		port = tcp_addrport(fin->sin_addr.s_addr, fin->sin_port,
2439 		    lin->sin_addr.s_addr, lin->sin_port);
2440 		break;
2441 #endif
2442 	default:
2443 		return (EINVAL);
2444 	}
2445 
2446 	netmsg_init(&nmsg, NULL, &curthread->td_msgport, 0,
2447 	    tcp_drop_sysctl_dispatch);
2448 	lmsg->u.ms_resultp = addrs;
2449 	return lwkt_domsg(port, lmsg, 0);
2450 }
2451 
2452 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, drop,
2453     CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP, NULL,
2454     0, sysctl_tcp_drop, "", "Drop TCP connection");
2455 
2456 void
2457 tcp_pcbport_create(struct tcpcb *tp)
2458 {
2459 	int cpu;
2460 
2461 	KASSERT((tp->t_flags & TF_LISTEN) && tp->t_state == TCPS_LISTEN,
2462 	    ("not a listen tcpcb"));
2463 
2464 	KASSERT(tp->t_pcbport == NULL, ("tcpcb port cache was created"));
2465 	tp->t_pcbport = kmalloc_cachealign(sizeof(struct tcp_pcbport) * ncpus2,
2466 	    M_PCB, M_WAITOK);
2467 
2468 	for (cpu = 0; cpu < ncpus2; ++cpu) {
2469 		struct inpcbport *phd;
2470 
2471 		phd = &tp->t_pcbport[cpu].t_phd;
2472 		LIST_INIT(&phd->phd_pcblist);
2473 		/* Though, not used ... */
2474 		phd->phd_port = tp->t_inpcb->inp_lport;
2475 	}
2476 }
2477 
2478 void
2479 tcp_pcbport_merge_oncpu(struct tcpcb *tp)
2480 {
2481 	struct inpcbport *phd;
2482 	struct inpcb *inp;
2483 	int cpu = mycpuid;
2484 
2485 	KASSERT(cpu < ncpus2, ("invalid cpu%d", cpu));
2486 	phd = &tp->t_pcbport[cpu].t_phd;
2487 
2488 	while ((inp = LIST_FIRST(&phd->phd_pcblist)) != NULL) {
2489 		KASSERT(inp->inp_phd == phd && inp->inp_porthash == NULL,
2490 		    ("not on tcpcb port cache"));
2491 		LIST_REMOVE(inp, inp_portlist);
2492 		in_pcbinsporthash_lport(inp);
2493 		KASSERT(inp->inp_phd == tp->t_inpcb->inp_phd &&
2494 		    inp->inp_porthash == tp->t_inpcb->inp_porthash,
2495 		    ("tcpcb port cache merge failed"));
2496 	}
2497 }
2498 
2499 void
2500 tcp_pcbport_destroy(struct tcpcb *tp)
2501 {
2502 #ifdef INVARIANTS
2503 	int cpu;
2504 
2505 	for (cpu = 0; cpu < ncpus2; ++cpu) {
2506 		KASSERT(LIST_EMPTY(&tp->t_pcbport[cpu].t_phd.phd_pcblist),
2507 		    ("tcpcb port cache is not empty"));
2508 	}
2509 #endif
2510 	kfree(tp->t_pcbport, M_PCB);
2511 	tp->t_pcbport = NULL;
2512 }
2513