xref: /dragonfly/sys/netinet/tcp_subr.c (revision 9348a738)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. Neither the name of the University nor the names of its contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  *
62  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
63  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
64  */
65 
66 #include "opt_inet.h"
67 #include "opt_inet6.h"
68 #include "opt_ipsec.h"
69 #include "opt_tcpdebug.h"
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/callout.h>
74 #include <sys/kernel.h>
75 #include <sys/sysctl.h>
76 #include <sys/malloc.h>
77 #include <sys/mpipe.h>
78 #include <sys/mbuf.h>
79 #ifdef INET6
80 #include <sys/domain.h>
81 #endif
82 #include <sys/proc.h>
83 #include <sys/priv.h>
84 #include <sys/socket.h>
85 #include <sys/socketops.h>
86 #include <sys/socketvar.h>
87 #include <sys/protosw.h>
88 #include <sys/random.h>
89 #include <sys/in_cksum.h>
90 #include <sys/ktr.h>
91 
92 #include <net/route.h>
93 #include <net/if.h>
94 #include <net/netisr2.h>
95 
96 #define	_IP_VHL
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/ip.h>
100 #include <netinet/ip6.h>
101 #include <netinet/in_pcb.h>
102 #include <netinet6/in6_pcb.h>
103 #include <netinet/in_var.h>
104 #include <netinet/ip_var.h>
105 #include <netinet6/ip6_var.h>
106 #include <netinet/ip_icmp.h>
107 #ifdef INET6
108 #include <netinet/icmp6.h>
109 #endif
110 #include <netinet/tcp.h>
111 #include <netinet/tcp_fsm.h>
112 #include <netinet/tcp_seq.h>
113 #include <netinet/tcp_timer.h>
114 #include <netinet/tcp_timer2.h>
115 #include <netinet/tcp_var.h>
116 #include <netinet6/tcp6_var.h>
117 #include <netinet/tcpip.h>
118 #ifdef TCPDEBUG
119 #include <netinet/tcp_debug.h>
120 #endif
121 #include <netinet6/ip6protosw.h>
122 
123 #ifdef IPSEC
124 #include <netinet6/ipsec.h>
125 #include <netproto/key/key.h>
126 #ifdef INET6
127 #include <netinet6/ipsec6.h>
128 #endif
129 #endif
130 
131 #ifdef FAST_IPSEC
132 #include <netproto/ipsec/ipsec.h>
133 #ifdef INET6
134 #include <netproto/ipsec/ipsec6.h>
135 #endif
136 #define	IPSEC
137 #endif
138 
139 #include <sys/md5.h>
140 #include <machine/smp.h>
141 
142 #include <sys/msgport2.h>
143 #include <sys/mplock2.h>
144 #include <net/netmsg2.h>
145 
146 #if !defined(KTR_TCP)
147 #define KTR_TCP		KTR_ALL
148 #endif
149 /*
150 KTR_INFO_MASTER(tcp);
151 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
152 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
153 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
154 #define logtcp(name)	KTR_LOG(tcp_ ## name)
155 */
156 
157 #define TCP_IW_MAXSEGS_DFLT	4
158 #define TCP_IW_CAPSEGS_DFLT	4
159 
160 struct inpcbinfo tcbinfo[MAXCPU];
161 struct tcpcbackqhead tcpcbackq[MAXCPU];
162 
163 int tcp_mssdflt = TCP_MSS;
164 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
165     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
166 
167 #ifdef INET6
168 int tcp_v6mssdflt = TCP6_MSS;
169 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
170     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
171 #endif
172 
173 /*
174  * Minimum MSS we accept and use. This prevents DoS attacks where
175  * we are forced to a ridiculous low MSS like 20 and send hundreds
176  * of packets instead of one. The effect scales with the available
177  * bandwidth and quickly saturates the CPU and network interface
178  * with packet generation and sending. Set to zero to disable MINMSS
179  * checking. This setting prevents us from sending too small packets.
180  */
181 int tcp_minmss = TCP_MINMSS;
182 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
183     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
184 
185 #if 0
186 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
187 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
188     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
189 #endif
190 
191 int tcp_do_rfc1323 = 1;
192 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
193     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
194 
195 static int tcp_tcbhashsize = 0;
196 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
197      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
198 
199 static int do_tcpdrain = 1;
200 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
201      "Enable tcp_drain routine for extra help when low on mbufs");
202 
203 static int icmp_may_rst = 1;
204 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
205     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
206 
207 static int tcp_isn_reseed_interval = 0;
208 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
209     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
210 
211 /*
212  * TCP bandwidth limiting sysctls.  The inflight limiter is now turned on
213  * by default, but with generous values which should allow maximal
214  * bandwidth.  In particular, the slop defaults to 50 (5 packets).
215  *
216  * The reason for doing this is that the limiter is the only mechanism we
217  * have which seems to do a really good job preventing receiver RX rings
218  * on network interfaces from getting blown out.  Even though GigE/10GigE
219  * is supposed to flow control it looks like either it doesn't actually
220  * do it or Open Source drivers do not properly enable it.
221  *
222  * People using the limiter to reduce bottlenecks on slower WAN connections
223  * should set the slop to 20 (2 packets).
224  */
225 static int tcp_inflight_enable = 1;
226 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
227     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
228 
229 static int tcp_inflight_debug = 0;
230 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
231     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
232 
233 /*
234  * NOTE: tcp_inflight_start is essentially the starting receive window
235  *	 for a connection.  If set too low then fetches over tcp
236  *	 connections will take noticably longer to ramp-up over
237  *	 high-latency connections.  6144 is too low for a default,
238  *	 use something more reasonable.
239  */
240 static int tcp_inflight_start = 33792;
241 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_start, CTLFLAG_RW,
242     &tcp_inflight_start, 0, "Start value for TCP inflight window");
243 
244 static int tcp_inflight_min = 6144;
245 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
246     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
247 
248 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
249 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
250     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
251 
252 static int tcp_inflight_stab = 50;
253 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
254     &tcp_inflight_stab, 0, "Fudge bw 1/10% (50=5%)");
255 
256 static int tcp_inflight_adjrtt = 2;
257 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_adjrtt, CTLFLAG_RW,
258     &tcp_inflight_adjrtt, 0, "Slop for rtt 1/(hz*32)");
259 
260 static int tcp_do_rfc3390 = 1;
261 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
262     &tcp_do_rfc3390, 0,
263     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
264 
265 static u_long tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
266 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwmaxsegs, CTLFLAG_RW,
267     &tcp_iw_maxsegs, 0, "TCP IW segments max");
268 
269 static u_long tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
270 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwcapsegs, CTLFLAG_RW,
271     &tcp_iw_capsegs, 0, "TCP IW segments");
272 
273 int tcp_low_rtobase = 1;
274 SYSCTL_INT(_net_inet_tcp, OID_AUTO, low_rtobase, CTLFLAG_RW,
275     &tcp_low_rtobase, 0, "Lowering the Initial RTO (RFC 6298)");
276 
277 static int tcp_do_ncr = 1;
278 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr, CTLFLAG_RW,
279     &tcp_do_ncr, 0, "Non-Congestion Robustness (RFC 4653)");
280 
281 int tcp_ncr_rxtthresh_max = 16;
282 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr_rxtthresh_max, CTLFLAG_RW,
283     &tcp_ncr_rxtthresh_max, 0,
284     "Non-Congestion Robustness (RFC 4653), DupThresh upper limit");
285 
286 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
287 static struct malloc_pipe tcptemp_mpipe;
288 
289 static void tcp_willblock(void);
290 static void tcp_notify (struct inpcb *, int);
291 
292 struct tcp_stats tcpstats_percpu[MAXCPU] __cachealign;
293 struct tcp_state_count tcpstate_count[MAXCPU] __cachealign;
294 
295 static struct netmsg_base tcp_drain_netmsg[MAXCPU];
296 static void	tcp_drain_dispatch(netmsg_t nmsg);
297 
298 static int
299 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
300 {
301 	int cpu, error = 0;
302 
303 	for (cpu = 0; cpu < ncpus2; ++cpu) {
304 		if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
305 					sizeof(struct tcp_stats))))
306 			break;
307 		if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
308 				       sizeof(struct tcp_stats))))
309 			break;
310 	}
311 
312 	return (error);
313 }
314 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
315     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
316 
317 /*
318  * Target size of TCP PCB hash tables. Must be a power of two.
319  *
320  * Note that this can be overridden by the kernel environment
321  * variable net.inet.tcp.tcbhashsize
322  */
323 #ifndef TCBHASHSIZE
324 #define	TCBHASHSIZE	512
325 #endif
326 
327 /*
328  * This is the actual shape of what we allocate using the zone
329  * allocator.  Doing it this way allows us to protect both structures
330  * using the same generation count, and also eliminates the overhead
331  * of allocating tcpcbs separately.  By hiding the structure here,
332  * we avoid changing most of the rest of the code (although it needs
333  * to be changed, eventually, for greater efficiency).
334  */
335 #define	ALIGNMENT	32
336 #define	ALIGNM1		(ALIGNMENT - 1)
337 struct	inp_tp {
338 	union {
339 		struct	inpcb inp;
340 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
341 	} inp_tp_u;
342 	struct	tcpcb tcb;
343 	struct	tcp_callout inp_tp_rexmt;
344 	struct	tcp_callout inp_tp_persist;
345 	struct	tcp_callout inp_tp_keep;
346 	struct	tcp_callout inp_tp_2msl;
347 	struct	tcp_callout inp_tp_delack;
348 	struct	netmsg_tcp_timer inp_tp_timermsg;
349 	struct	netmsg_base inp_tp_sndmore;
350 };
351 #undef ALIGNMENT
352 #undef ALIGNM1
353 
354 /*
355  * Tcp initialization
356  */
357 void
358 tcp_init(void)
359 {
360 	struct inpcbportinfo *portinfo;
361 	struct inpcbinfo *ticb;
362 	int hashsize = TCBHASHSIZE;
363 	int cpu;
364 
365 	/*
366 	 * note: tcptemp is used for keepalives, and it is ok for an
367 	 * allocation to fail so do not specify MPF_INT.
368 	 */
369 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
370 		    25, -1, 0, NULL, NULL, NULL);
371 
372 	tcp_delacktime = TCPTV_DELACK;
373 	tcp_keepinit = TCPTV_KEEP_INIT;
374 	tcp_keepidle = TCPTV_KEEP_IDLE;
375 	tcp_keepintvl = TCPTV_KEEPINTVL;
376 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
377 	tcp_msl = TCPTV_MSL;
378 	tcp_rexmit_min = TCPTV_MIN;
379 	tcp_rexmit_slop = TCPTV_CPU_VAR;
380 
381 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
382 	if (!powerof2(hashsize)) {
383 		kprintf("WARNING: TCB hash size not a power of 2\n");
384 		hashsize = 512; /* safe default */
385 	}
386 	tcp_tcbhashsize = hashsize;
387 
388 	portinfo = kmalloc_cachealign(sizeof(*portinfo) * ncpus2, M_PCB,
389 	    M_WAITOK);
390 
391 	for (cpu = 0; cpu < ncpus2; cpu++) {
392 		ticb = &tcbinfo[cpu];
393 		in_pcbinfo_init(ticb, cpu, FALSE);
394 		ticb->hashbase = hashinit(hashsize, M_PCB,
395 					  &ticb->hashmask);
396 		in_pcbportinfo_init(&portinfo[cpu], hashsize, cpu);
397 		ticb->portinfo = portinfo;
398 		ticb->portinfo_mask = ncpus2_mask;
399 		ticb->wildcardhashbase = hashinit(hashsize, M_PCB,
400 						  &ticb->wildcardhashmask);
401 		ticb->localgrphashbase = hashinit(hashsize, M_PCB,
402 						  &ticb->localgrphashmask);
403 		ticb->ipi_size = sizeof(struct inp_tp);
404 		TAILQ_INIT(&tcpcbackq[cpu]);
405 	}
406 
407 	tcp_reass_maxseg = nmbclusters / 16;
408 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
409 
410 #ifdef INET6
411 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
412 #else
413 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
414 #endif
415 	if (max_protohdr < TCP_MINPROTOHDR)
416 		max_protohdr = TCP_MINPROTOHDR;
417 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
418 		panic("tcp_init");
419 #undef TCP_MINPROTOHDR
420 
421 	/*
422 	 * Initialize TCP statistics counters for each CPU.
423 	 */
424 	for (cpu = 0; cpu < ncpus2; ++cpu)
425 		bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
426 
427 	/*
428 	 * Initialize netmsgs for TCP drain
429 	 */
430 	for (cpu = 0; cpu < ncpus2; ++cpu) {
431 		netmsg_init(&tcp_drain_netmsg[cpu], NULL, &netisr_adone_rport,
432 		    MSGF_PRIORITY, tcp_drain_dispatch);
433 	}
434 
435 	syncache_init();
436 	netisr_register_rollup(tcp_willblock, NETISR_ROLLUP_PRIO_TCP);
437 }
438 
439 static void
440 tcp_willblock(void)
441 {
442 	struct tcpcb *tp;
443 	int cpu = mycpu->gd_cpuid;
444 
445 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
446 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
447 		tp->t_flags &= ~TF_ONOUTPUTQ;
448 		TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
449 		tcp_output(tp);
450 	}
451 }
452 
453 /*
454  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
455  * tcp_template used to store this data in mbufs, but we now recopy it out
456  * of the tcpcb each time to conserve mbufs.
457  */
458 void
459 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr, boolean_t tso)
460 {
461 	struct inpcb *inp = tp->t_inpcb;
462 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
463 
464 #ifdef INET6
465 	if (INP_ISIPV6(inp)) {
466 		struct ip6_hdr *ip6;
467 
468 		ip6 = (struct ip6_hdr *)ip_ptr;
469 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
470 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
471 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
472 			(IPV6_VERSION & IPV6_VERSION_MASK);
473 		ip6->ip6_nxt = IPPROTO_TCP;
474 		ip6->ip6_plen = sizeof(struct tcphdr);
475 		ip6->ip6_src = inp->in6p_laddr;
476 		ip6->ip6_dst = inp->in6p_faddr;
477 		tcp_hdr->th_sum = 0;
478 	} else
479 #endif
480 	{
481 		struct ip *ip = (struct ip *) ip_ptr;
482 		u_int plen;
483 
484 		ip->ip_vhl = IP_VHL_BORING;
485 		ip->ip_tos = 0;
486 		ip->ip_len = 0;
487 		ip->ip_id = 0;
488 		ip->ip_off = 0;
489 		ip->ip_ttl = 0;
490 		ip->ip_sum = 0;
491 		ip->ip_p = IPPROTO_TCP;
492 		ip->ip_src = inp->inp_laddr;
493 		ip->ip_dst = inp->inp_faddr;
494 
495 		if (tso)
496 			plen = htons(IPPROTO_TCP);
497 		else
498 			plen = htons(sizeof(struct tcphdr) + IPPROTO_TCP);
499 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
500 		    ip->ip_dst.s_addr, plen);
501 	}
502 
503 	tcp_hdr->th_sport = inp->inp_lport;
504 	tcp_hdr->th_dport = inp->inp_fport;
505 	tcp_hdr->th_seq = 0;
506 	tcp_hdr->th_ack = 0;
507 	tcp_hdr->th_x2 = 0;
508 	tcp_hdr->th_off = 5;
509 	tcp_hdr->th_flags = 0;
510 	tcp_hdr->th_win = 0;
511 	tcp_hdr->th_urp = 0;
512 }
513 
514 /*
515  * Create template to be used to send tcp packets on a connection.
516  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
517  * use for this function is in keepalives, which use tcp_respond.
518  */
519 struct tcptemp *
520 tcp_maketemplate(struct tcpcb *tp)
521 {
522 	struct tcptemp *tmp;
523 
524 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
525 		return (NULL);
526 	tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t, FALSE);
527 	return (tmp);
528 }
529 
530 void
531 tcp_freetemplate(struct tcptemp *tmp)
532 {
533 	mpipe_free(&tcptemp_mpipe, tmp);
534 }
535 
536 /*
537  * Send a single message to the TCP at address specified by
538  * the given TCP/IP header.  If m == NULL, then we make a copy
539  * of the tcpiphdr at ti and send directly to the addressed host.
540  * This is used to force keep alive messages out using the TCP
541  * template for a connection.  If flags are given then we send
542  * a message back to the TCP which originated the * segment ti,
543  * and discard the mbuf containing it and any other attached mbufs.
544  *
545  * In any case the ack and sequence number of the transmitted
546  * segment are as specified by the parameters.
547  *
548  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
549  */
550 void
551 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
552 	    tcp_seq ack, tcp_seq seq, int flags)
553 {
554 	int tlen;
555 	long win = 0;
556 	struct route *ro = NULL;
557 	struct route sro;
558 	struct ip *ip = ipgen;
559 	struct tcphdr *nth;
560 	int ipflags = 0;
561 	struct route_in6 *ro6 = NULL;
562 	struct route_in6 sro6;
563 	struct ip6_hdr *ip6 = ipgen;
564 	struct inpcb *inp = NULL;
565 	boolean_t use_tmpro = TRUE;
566 #ifdef INET6
567 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
568 #else
569 	const boolean_t isipv6 = FALSE;
570 #endif
571 
572 	if (tp != NULL) {
573 		inp = tp->t_inpcb;
574 		if (!(flags & TH_RST)) {
575 			win = ssb_space(&inp->inp_socket->so_rcv);
576 			if (win < 0)
577 				win = 0;
578 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
579 				win = (long)TCP_MAXWIN << tp->rcv_scale;
580 		}
581 		/*
582 		 * Don't use the route cache of a listen socket,
583 		 * it is not MPSAFE; use temporary route cache.
584 		 */
585 		if (tp->t_state != TCPS_LISTEN) {
586 			if (isipv6)
587 				ro6 = &inp->in6p_route;
588 			else
589 				ro = &inp->inp_route;
590 			use_tmpro = FALSE;
591 		}
592 	}
593 	if (use_tmpro) {
594 		if (isipv6) {
595 			ro6 = &sro6;
596 			bzero(ro6, sizeof *ro6);
597 		} else {
598 			ro = &sro;
599 			bzero(ro, sizeof *ro);
600 		}
601 	}
602 	if (m == NULL) {
603 		m = m_gethdr(M_NOWAIT, MT_HEADER);
604 		if (m == NULL)
605 			return;
606 		tlen = 0;
607 		m->m_data += max_linkhdr;
608 		if (isipv6) {
609 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
610 			ip6 = mtod(m, struct ip6_hdr *);
611 			nth = (struct tcphdr *)(ip6 + 1);
612 		} else {
613 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
614 			ip = mtod(m, struct ip *);
615 			nth = (struct tcphdr *)(ip + 1);
616 		}
617 		bcopy(th, nth, sizeof(struct tcphdr));
618 		flags = TH_ACK;
619 	} else {
620 		m_freem(m->m_next);
621 		m->m_next = NULL;
622 		m->m_data = (caddr_t)ipgen;
623 		/* m_len is set later */
624 		tlen = 0;
625 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
626 		if (isipv6) {
627 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
628 			nth = (struct tcphdr *)(ip6 + 1);
629 		} else {
630 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
631 			nth = (struct tcphdr *)(ip + 1);
632 		}
633 		if (th != nth) {
634 			/*
635 			 * this is usually a case when an extension header
636 			 * exists between the IPv6 header and the
637 			 * TCP header.
638 			 */
639 			nth->th_sport = th->th_sport;
640 			nth->th_dport = th->th_dport;
641 		}
642 		xchg(nth->th_dport, nth->th_sport, n_short);
643 #undef xchg
644 	}
645 	if (isipv6) {
646 		ip6->ip6_flow = 0;
647 		ip6->ip6_vfc = IPV6_VERSION;
648 		ip6->ip6_nxt = IPPROTO_TCP;
649 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
650 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
651 	} else {
652 		tlen += sizeof(struct tcpiphdr);
653 		ip->ip_len = tlen;
654 		ip->ip_ttl = ip_defttl;
655 	}
656 	m->m_len = tlen;
657 	m->m_pkthdr.len = tlen;
658 	m->m_pkthdr.rcvif = NULL;
659 	nth->th_seq = htonl(seq);
660 	nth->th_ack = htonl(ack);
661 	nth->th_x2 = 0;
662 	nth->th_off = sizeof(struct tcphdr) >> 2;
663 	nth->th_flags = flags;
664 	if (tp != NULL)
665 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
666 	else
667 		nth->th_win = htons((u_short)win);
668 	nth->th_urp = 0;
669 	if (isipv6) {
670 		nth->th_sum = 0;
671 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
672 					sizeof(struct ip6_hdr),
673 					tlen - sizeof(struct ip6_hdr));
674 		ip6->ip6_hlim = in6_selecthlim(inp,
675 		    (ro6 && ro6->ro_rt) ? ro6->ro_rt->rt_ifp : NULL);
676 	} else {
677 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
678 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
679 		m->m_pkthdr.csum_flags = CSUM_TCP;
680 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
681 		m->m_pkthdr.csum_thlen = sizeof(struct tcphdr);
682 	}
683 #ifdef TCPDEBUG
684 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
685 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
686 #endif
687 	if (isipv6) {
688 		ip6_output(m, NULL, ro6, ipflags, NULL, NULL, inp);
689 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
690 			RTFREE(ro6->ro_rt);
691 			ro6->ro_rt = NULL;
692 		}
693 	} else {
694 		if (inp != NULL && (inp->inp_flags & INP_HASH))
695 			m_sethash(m, inp->inp_hashval);
696 		ipflags |= IP_DEBUGROUTE;
697 		ip_output(m, NULL, ro, ipflags, NULL, inp);
698 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
699 			RTFREE(ro->ro_rt);
700 			ro->ro_rt = NULL;
701 		}
702 	}
703 }
704 
705 /*
706  * Create a new TCP control block, making an
707  * empty reassembly queue and hooking it to the argument
708  * protocol control block.  The `inp' parameter must have
709  * come from the zone allocator set up in tcp_init().
710  */
711 void
712 tcp_newtcpcb(struct inpcb *inp)
713 {
714 	struct inp_tp *it;
715 	struct tcpcb *tp;
716 #ifdef INET6
717 	boolean_t isipv6 = INP_ISIPV6(inp);
718 #else
719 	const boolean_t isipv6 = FALSE;
720 #endif
721 
722 	it = (struct inp_tp *)inp;
723 	tp = &it->tcb;
724 	bzero(tp, sizeof(struct tcpcb));
725 	TAILQ_INIT(&tp->t_segq);
726 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
727 	tp->t_rxtthresh = tcprexmtthresh;
728 
729 	/* Set up our timeouts. */
730 	tp->tt_rexmt = &it->inp_tp_rexmt;
731 	tp->tt_persist = &it->inp_tp_persist;
732 	tp->tt_keep = &it->inp_tp_keep;
733 	tp->tt_2msl = &it->inp_tp_2msl;
734 	tp->tt_delack = &it->inp_tp_delack;
735 	tcp_inittimers(tp);
736 
737 	/*
738 	 * Zero out timer message.  We don't create it here,
739 	 * since the current CPU may not be the owner of this
740 	 * inpcb.
741 	 */
742 	tp->tt_msg = &it->inp_tp_timermsg;
743 	bzero(tp->tt_msg, sizeof(*tp->tt_msg));
744 
745 	tp->t_keepinit = tcp_keepinit;
746 	tp->t_keepidle = tcp_keepidle;
747 	tp->t_keepintvl = tcp_keepintvl;
748 	tp->t_keepcnt = tcp_keepcnt;
749 	tp->t_maxidle = tp->t_keepintvl * tp->t_keepcnt;
750 
751 	if (tcp_do_ncr)
752 		tp->t_flags |= TF_NCR;
753 	if (tcp_do_rfc1323)
754 		tp->t_flags |= (TF_REQ_SCALE | TF_REQ_TSTMP);
755 
756 	tp->t_inpcb = inp;	/* XXX */
757 	TCP_STATE_INIT(tp);
758 	/*
759 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
760 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
761 	 * reasonable initial retransmit time.
762 	 */
763 	tp->t_srtt = TCPTV_SRTTBASE;
764 	tp->t_rttvar =
765 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
766 	tp->t_rttmin = tcp_rexmit_min;
767 	tp->t_rxtcur = TCPTV_RTOBASE;
768 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
769 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
770 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
771 	tp->snd_last = ticks;
772 	tp->t_rcvtime = ticks;
773 	/*
774 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
775 	 * because the socket may be bound to an IPv6 wildcard address,
776 	 * which may match an IPv4-mapped IPv6 address.
777 	 */
778 	inp->inp_ip_ttl = ip_defttl;
779 	inp->inp_ppcb = tp;
780 	tcp_sack_tcpcb_init(tp);
781 
782 	tp->tt_sndmore = &it->inp_tp_sndmore;
783 	tcp_output_init(tp);
784 }
785 
786 /*
787  * Drop a TCP connection, reporting the specified error.
788  * If connection is synchronized, then send a RST to peer.
789  */
790 struct tcpcb *
791 tcp_drop(struct tcpcb *tp, int error)
792 {
793 	struct socket *so = tp->t_inpcb->inp_socket;
794 
795 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
796 		TCP_STATE_CHANGE(tp, TCPS_CLOSED);
797 		tcp_output(tp);
798 		tcpstat.tcps_drops++;
799 	} else
800 		tcpstat.tcps_conndrops++;
801 	if (error == ETIMEDOUT && tp->t_softerror)
802 		error = tp->t_softerror;
803 	so->so_error = error;
804 	return (tcp_close(tp));
805 }
806 
807 struct netmsg_listen_detach {
808 	struct netmsg_base	base;
809 	struct tcpcb		*nm_tp;
810 	struct tcpcb		*nm_tp_inh;
811 };
812 
813 static void
814 tcp_listen_detach_handler(netmsg_t msg)
815 {
816 	struct netmsg_listen_detach *nmsg = (struct netmsg_listen_detach *)msg;
817 	struct tcpcb *tp = nmsg->nm_tp;
818 	int cpu = mycpuid, nextcpu;
819 
820 	if (tp->t_flags & TF_LISTEN) {
821 		syncache_destroy(tp, nmsg->nm_tp_inh);
822 		tcp_pcbport_merge_oncpu(tp);
823 	}
824 
825 	in_pcbremwildcardhash_oncpu(tp->t_inpcb, &tcbinfo[cpu]);
826 
827 	nextcpu = cpu + 1;
828 	if (nextcpu < ncpus2)
829 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &nmsg->base.lmsg);
830 	else
831 		lwkt_replymsg(&nmsg->base.lmsg, 0);
832 }
833 
834 /*
835  * Close a TCP control block:
836  *	discard all space held by the tcp
837  *	discard internet protocol block
838  *	wake up any sleepers
839  */
840 struct tcpcb *
841 tcp_close(struct tcpcb *tp)
842 {
843 	struct tseg_qent *q;
844 	struct inpcb *inp = tp->t_inpcb;
845 	struct inpcb *inp_inh = NULL;
846 	struct tcpcb *tp_inh = NULL;
847 	struct socket *so = inp->inp_socket;
848 	struct rtentry *rt;
849 	boolean_t dosavessthresh;
850 #ifdef INET6
851 	boolean_t isipv6 = INP_ISIPV6(inp);
852 #else
853 	const boolean_t isipv6 = FALSE;
854 #endif
855 
856 	if (tp->t_flags & TF_LISTEN) {
857 		/*
858 		 * Pending socket/syncache inheritance
859 		 *
860 		 * If this is a listen(2) socket, find another listen(2)
861 		 * socket in the same local group, which could inherit
862 		 * the syncache and sockets pending on the completion
863 		 * and incompletion queues.
864 		 *
865 		 * NOTE:
866 		 * Currently the inheritance could only happen on the
867 		 * listen(2) sockets w/ SO_REUSEPORT set.
868 		 */
869 		ASSERT_IN_NETISR(0);
870 		inp_inh = in_pcblocalgroup_last(&tcbinfo[0], inp);
871 		if (inp_inh != NULL)
872 			tp_inh = intotcpcb(inp_inh);
873 	}
874 
875 	/*
876 	 * INP_WILDCARD indicates that listen(2) has been called on
877 	 * this socket.  This implies:
878 	 * - A wildcard inp's hash is replicated for each protocol thread.
879 	 * - Syncache for this inp grows independently in each protocol
880 	 *   thread.
881 	 * - There is more than one cpu
882 	 *
883 	 * We have to chain a message to the rest of the protocol threads
884 	 * to cleanup the wildcard hash and the syncache.  The cleanup
885 	 * in the current protocol thread is defered till the end of this
886 	 * function (syncache_destroy and in_pcbdetach).
887 	 *
888 	 * NOTE:
889 	 * After cleanup the inp's hash and syncache entries, this inp will
890 	 * no longer be available to the rest of the protocol threads, so we
891 	 * are safe to whack the inp in the following code.
892 	 */
893 	if ((inp->inp_flags & INP_WILDCARD) && ncpus2 > 1) {
894 		struct netmsg_listen_detach nmsg;
895 
896 		KKASSERT(so->so_port == netisr_cpuport(0));
897 		ASSERT_IN_NETISR(0);
898 		KKASSERT(inp->inp_pcbinfo == &tcbinfo[0]);
899 
900 		netmsg_init(&nmsg.base, NULL, &curthread->td_msgport,
901 			    MSGF_PRIORITY, tcp_listen_detach_handler);
902 		nmsg.nm_tp = tp;
903 		nmsg.nm_tp_inh = tp_inh;
904 		lwkt_domsg(netisr_cpuport(1), &nmsg.base.lmsg, 0);
905 	}
906 
907 	TCP_STATE_TERM(tp);
908 
909 	/*
910 	 * Make sure that all of our timers are stopped before we
911 	 * delete the PCB.  For listen TCP socket (tp->tt_msg == NULL),
912 	 * timers are never used.  If timer message is never created
913 	 * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
914 	 */
915 	if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
916 		tcp_callout_stop(tp, tp->tt_rexmt);
917 		tcp_callout_stop(tp, tp->tt_persist);
918 		tcp_callout_stop(tp, tp->tt_keep);
919 		tcp_callout_stop(tp, tp->tt_2msl);
920 		tcp_callout_stop(tp, tp->tt_delack);
921 	}
922 
923 	if (tp->t_flags & TF_ONOUTPUTQ) {
924 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
925 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
926 		tp->t_flags &= ~TF_ONOUTPUTQ;
927 	}
928 
929 	/*
930 	 * If we got enough samples through the srtt filter,
931 	 * save the rtt and rttvar in the routing entry.
932 	 * 'Enough' is arbitrarily defined as the 16 samples.
933 	 * 16 samples is enough for the srtt filter to converge
934 	 * to within 5% of the correct value; fewer samples and
935 	 * we could save a very bogus rtt.
936 	 *
937 	 * Don't update the default route's characteristics and don't
938 	 * update anything that the user "locked".
939 	 */
940 	if (tp->t_rttupdated >= 16) {
941 		u_long i = 0;
942 
943 		if (isipv6) {
944 			struct sockaddr_in6 *sin6;
945 
946 			if ((rt = inp->in6p_route.ro_rt) == NULL)
947 				goto no_valid_rt;
948 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
949 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
950 				goto no_valid_rt;
951 		} else
952 			if ((rt = inp->inp_route.ro_rt) == NULL ||
953 			    ((struct sockaddr_in *)rt_key(rt))->
954 			     sin_addr.s_addr == INADDR_ANY)
955 				goto no_valid_rt;
956 
957 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
958 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
959 			if (rt->rt_rmx.rmx_rtt && i)
960 				/*
961 				 * filter this update to half the old & half
962 				 * the new values, converting scale.
963 				 * See route.h and tcp_var.h for a
964 				 * description of the scaling constants.
965 				 */
966 				rt->rt_rmx.rmx_rtt =
967 				    (rt->rt_rmx.rmx_rtt + i) / 2;
968 			else
969 				rt->rt_rmx.rmx_rtt = i;
970 			tcpstat.tcps_cachedrtt++;
971 		}
972 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
973 			i = tp->t_rttvar *
974 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
975 			if (rt->rt_rmx.rmx_rttvar && i)
976 				rt->rt_rmx.rmx_rttvar =
977 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
978 			else
979 				rt->rt_rmx.rmx_rttvar = i;
980 			tcpstat.tcps_cachedrttvar++;
981 		}
982 		/*
983 		 * The old comment here said:
984 		 * update the pipelimit (ssthresh) if it has been updated
985 		 * already or if a pipesize was specified & the threshhold
986 		 * got below half the pipesize.  I.e., wait for bad news
987 		 * before we start updating, then update on both good
988 		 * and bad news.
989 		 *
990 		 * But we want to save the ssthresh even if no pipesize is
991 		 * specified explicitly in the route, because such
992 		 * connections still have an implicit pipesize specified
993 		 * by the global tcp_sendspace.  In the absence of a reliable
994 		 * way to calculate the pipesize, it will have to do.
995 		 */
996 		i = tp->snd_ssthresh;
997 		if (rt->rt_rmx.rmx_sendpipe != 0)
998 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
999 		else
1000 			dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
1001 		if (dosavessthresh ||
1002 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
1003 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
1004 			/*
1005 			 * convert the limit from user data bytes to
1006 			 * packets then to packet data bytes.
1007 			 */
1008 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
1009 			if (i < 2)
1010 				i = 2;
1011 			i *= tp->t_maxseg +
1012 			     (isipv6 ?
1013 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1014 			      sizeof(struct tcpiphdr));
1015 			if (rt->rt_rmx.rmx_ssthresh)
1016 				rt->rt_rmx.rmx_ssthresh =
1017 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
1018 			else
1019 				rt->rt_rmx.rmx_ssthresh = i;
1020 			tcpstat.tcps_cachedssthresh++;
1021 		}
1022 	}
1023 
1024 no_valid_rt:
1025 	/* free the reassembly queue, if any */
1026 	while((q = TAILQ_FIRST(&tp->t_segq)) != NULL) {
1027 		TAILQ_REMOVE(&tp->t_segq, q, tqe_q);
1028 		m_freem(q->tqe_m);
1029 		kfree(q, M_TSEGQ);
1030 		atomic_add_int(&tcp_reass_qsize, -1);
1031 	}
1032 	/* throw away SACK blocks in scoreboard*/
1033 	if (TCP_DO_SACK(tp))
1034 		tcp_sack_destroy(&tp->scb);
1035 
1036 	inp->inp_ppcb = NULL;
1037 	soisdisconnected(so);
1038 	/* note: pcb detached later on */
1039 
1040 	tcp_destroy_timermsg(tp);
1041 	tcp_output_cancel(tp);
1042 
1043 	if (tp->t_flags & TF_LISTEN) {
1044 		syncache_destroy(tp, tp_inh);
1045 		tcp_pcbport_merge_oncpu(tp);
1046 		tcp_pcbport_destroy(tp);
1047 		if (inp_inh != NULL && inp_inh->inp_socket != NULL) {
1048 			/*
1049 			 * Pending sockets inheritance only needs
1050 			 * to be done once in the current thread,
1051 			 * i.e. netisr0.
1052 			 */
1053 			soinherit(so, inp_inh->inp_socket);
1054 		}
1055 	}
1056 	KASSERT(tp->t_pcbport == NULL, ("tcpcb port cache is not destroyed"));
1057 
1058 	so_async_rcvd_drop(so);
1059 	/* Drop the reference for the asynchronized pru_rcvd */
1060 	sofree(so);
1061 
1062 	/*
1063 	 * NOTE:
1064 	 * - Remove self from listen tcpcb per-cpu port cache _before_
1065 	 *   pcbdetach.
1066 	 * - pcbdetach removes any wildcard hash entry on the current CPU.
1067 	 */
1068 	tcp_pcbport_remove(inp);
1069 #ifdef INET6
1070 	if (isipv6)
1071 		in6_pcbdetach(inp);
1072 	else
1073 #endif
1074 		in_pcbdetach(inp);
1075 
1076 	tcpstat.tcps_closed++;
1077 	return (NULL);
1078 }
1079 
1080 static __inline void
1081 tcp_drain_oncpu(struct inpcbinfo *pcbinfo)
1082 {
1083 	struct inpcbhead *head = &pcbinfo->pcblisthead;
1084 	struct inpcb *inpb;
1085 
1086 	/*
1087 	 * Since we run in netisr, it is MP safe, even if
1088 	 * we block during the inpcb list iteration, i.e.
1089 	 * we don't need to use inpcb marker here.
1090 	 */
1091 	ASSERT_IN_NETISR(pcbinfo->cpu);
1092 
1093 	LIST_FOREACH(inpb, head, inp_list) {
1094 		struct tcpcb *tcpb;
1095 		struct tseg_qent *te;
1096 
1097 		if (inpb->inp_flags & INP_PLACEMARKER)
1098 			continue;
1099 
1100 		tcpb = intotcpcb(inpb);
1101 		KASSERT(tcpb != NULL, ("tcp_drain_oncpu: tcpb is NULL"));
1102 
1103 		if ((te = TAILQ_FIRST(&tcpb->t_segq)) != NULL) {
1104 			TAILQ_REMOVE(&tcpb->t_segq, te, tqe_q);
1105 			if (te->tqe_th->th_flags & TH_FIN)
1106 				tcpb->t_flags &= ~TF_QUEDFIN;
1107 			m_freem(te->tqe_m);
1108 			kfree(te, M_TSEGQ);
1109 			atomic_add_int(&tcp_reass_qsize, -1);
1110 			/* retry */
1111 		}
1112 	}
1113 }
1114 
1115 static void
1116 tcp_drain_dispatch(netmsg_t nmsg)
1117 {
1118 	crit_enter();
1119 	lwkt_replymsg(&nmsg->lmsg, 0);  /* reply ASAP */
1120 	crit_exit();
1121 
1122 	tcp_drain_oncpu(&tcbinfo[mycpuid]);
1123 }
1124 
1125 static void
1126 tcp_drain_ipi(void *arg __unused)
1127 {
1128 	int cpu = mycpuid;
1129 	struct lwkt_msg *msg = &tcp_drain_netmsg[cpu].lmsg;
1130 
1131 	crit_enter();
1132 	if (msg->ms_flags & MSGF_DONE)
1133 		lwkt_sendmsg_oncpu(netisr_cpuport(cpu), msg);
1134 	crit_exit();
1135 }
1136 
1137 void
1138 tcp_drain(void)
1139 {
1140 	cpumask_t mask;
1141 
1142 	if (!do_tcpdrain)
1143 		return;
1144 
1145 	/*
1146 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1147 	 * if there is one...
1148 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1149 	 *	reassembly queue should be flushed, but in a situation
1150 	 *	where we're really low on mbufs, this is potentially
1151 	 *	useful.
1152 	 * YYY: We may consider run tcp_drain_oncpu directly here,
1153 	 *      however, that will require M_WAITOK memory allocation
1154 	 *      for the inpcb marker.
1155 	 */
1156 	CPUMASK_ASSBMASK(mask, ncpus2);
1157 	CPUMASK_ANDMASK(mask, smp_active_mask);
1158 	if (CPUMASK_TESTNZERO(mask))
1159 		lwkt_send_ipiq_mask(mask, tcp_drain_ipi, NULL);
1160 }
1161 
1162 /*
1163  * Notify a tcp user of an asynchronous error;
1164  * store error as soft error, but wake up user
1165  * (for now, won't do anything until can select for soft error).
1166  *
1167  * Do not wake up user since there currently is no mechanism for
1168  * reporting soft errors (yet - a kqueue filter may be added).
1169  */
1170 static void
1171 tcp_notify(struct inpcb *inp, int error)
1172 {
1173 	struct tcpcb *tp = intotcpcb(inp);
1174 
1175 	/*
1176 	 * Ignore some errors if we are hooked up.
1177 	 * If connection hasn't completed, has retransmitted several times,
1178 	 * and receives a second error, give up now.  This is better
1179 	 * than waiting a long time to establish a connection that
1180 	 * can never complete.
1181 	 */
1182 	if (tp->t_state == TCPS_ESTABLISHED &&
1183 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1184 	      error == EHOSTDOWN)) {
1185 		return;
1186 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1187 	    tp->t_softerror)
1188 		tcp_drop(tp, error);
1189 	else
1190 		tp->t_softerror = error;
1191 #if 0
1192 	wakeup(&so->so_timeo);
1193 	sorwakeup(so);
1194 	sowwakeup(so);
1195 #endif
1196 }
1197 
1198 static int
1199 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1200 {
1201 	int error, i, n;
1202 	struct inpcb *marker;
1203 	struct inpcb *inp;
1204 	int origcpu, ccpu;
1205 
1206 	error = 0;
1207 	n = 0;
1208 
1209 	/*
1210 	 * The process of preparing the TCB list is too time-consuming and
1211 	 * resource-intensive to repeat twice on every request.
1212 	 */
1213 	if (req->oldptr == NULL) {
1214 		for (ccpu = 0; ccpu < ncpus2; ++ccpu)
1215 			n += tcbinfo[ccpu].ipi_count;
1216 		req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1217 		return (0);
1218 	}
1219 
1220 	if (req->newptr != NULL)
1221 		return (EPERM);
1222 
1223 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1224 	marker->inp_flags |= INP_PLACEMARKER;
1225 
1226 	/*
1227 	 * OK, now we're committed to doing something.  Run the inpcb list
1228 	 * for each cpu in the system and construct the output.  Use a
1229 	 * list placemarker to deal with list changes occuring during
1230 	 * copyout blockages (but otherwise depend on being on the correct
1231 	 * cpu to avoid races).
1232 	 */
1233 	origcpu = mycpu->gd_cpuid;
1234 	for (ccpu = 0; ccpu < ncpus2 && error == 0; ++ccpu) {
1235 		caddr_t inp_ppcb;
1236 		struct xtcpcb xt;
1237 
1238 		lwkt_migratecpu(ccpu);
1239 
1240 		n = tcbinfo[ccpu].ipi_count;
1241 
1242 		LIST_INSERT_HEAD(&tcbinfo[ccpu].pcblisthead, marker, inp_list);
1243 		i = 0;
1244 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1245 			/*
1246 			 * process a snapshot of pcbs, ignoring placemarkers
1247 			 * and using our own to allow SYSCTL_OUT to block.
1248 			 */
1249 			LIST_REMOVE(marker, inp_list);
1250 			LIST_INSERT_AFTER(inp, marker, inp_list);
1251 
1252 			if (inp->inp_flags & INP_PLACEMARKER)
1253 				continue;
1254 			if (prison_xinpcb(req->td, inp))
1255 				continue;
1256 
1257 			xt.xt_len = sizeof xt;
1258 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1259 			inp_ppcb = inp->inp_ppcb;
1260 			if (inp_ppcb != NULL)
1261 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1262 			else
1263 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1264 			if (inp->inp_socket)
1265 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1266 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1267 				break;
1268 			++i;
1269 		}
1270 		LIST_REMOVE(marker, inp_list);
1271 		if (error == 0 && i < n) {
1272 			bzero(&xt, sizeof xt);
1273 			xt.xt_len = sizeof xt;
1274 			while (i < n) {
1275 				error = SYSCTL_OUT(req, &xt, sizeof xt);
1276 				if (error)
1277 					break;
1278 				++i;
1279 			}
1280 		}
1281 	}
1282 
1283 	/*
1284 	 * Make sure we are on the same cpu we were on originally, since
1285 	 * higher level callers expect this.  Also don't pollute caches with
1286 	 * migrated userland data by (eventually) returning to userland
1287 	 * on a different cpu.
1288 	 */
1289 	lwkt_migratecpu(origcpu);
1290 	kfree(marker, M_TEMP);
1291 	return (error);
1292 }
1293 
1294 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1295 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1296 
1297 static int
1298 tcp_getcred(SYSCTL_HANDLER_ARGS)
1299 {
1300 	struct sockaddr_in addrs[2];
1301 	struct ucred cred0, *cred = NULL;
1302 	struct inpcb *inp;
1303 	int cpu, origcpu, error;
1304 
1305 	error = priv_check(req->td, PRIV_ROOT);
1306 	if (error != 0)
1307 		return (error);
1308 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1309 	if (error != 0)
1310 		return (error);
1311 
1312 	origcpu = mycpuid;
1313 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1314 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1315 
1316 	lwkt_migratecpu(cpu);
1317 
1318 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1319 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1320 	if (inp == NULL || inp->inp_socket == NULL) {
1321 		error = ENOENT;
1322 	} else if (inp->inp_socket->so_cred != NULL) {
1323 		cred0 = *(inp->inp_socket->so_cred);
1324 		cred = &cred0;
1325 	}
1326 
1327 	lwkt_migratecpu(origcpu);
1328 
1329 	if (error)
1330 		return (error);
1331 
1332 	return SYSCTL_OUT(req, cred, sizeof(struct ucred));
1333 }
1334 
1335 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1336     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1337 
1338 #ifdef INET6
1339 static int
1340 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1341 {
1342 	struct sockaddr_in6 addrs[2];
1343 	struct inpcb *inp;
1344 	int error;
1345 
1346 	error = priv_check(req->td, PRIV_ROOT);
1347 	if (error != 0)
1348 		return (error);
1349 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1350 	if (error != 0)
1351 		return (error);
1352 	crit_enter();
1353 	inp = in6_pcblookup_hash(&tcbinfo[0],
1354 	    &addrs[1].sin6_addr, addrs[1].sin6_port,
1355 	    &addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1356 	if (inp == NULL || inp->inp_socket == NULL) {
1357 		error = ENOENT;
1358 		goto out;
1359 	}
1360 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1361 out:
1362 	crit_exit();
1363 	return (error);
1364 }
1365 
1366 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1367 	    0, 0,
1368 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1369 #endif
1370 
1371 struct netmsg_tcp_notify {
1372 	struct netmsg_base base;
1373 	inp_notify_t	nm_notify;
1374 	struct in_addr	nm_faddr;
1375 	int		nm_arg;
1376 };
1377 
1378 static void
1379 tcp_notifyall_oncpu(netmsg_t msg)
1380 {
1381 	struct netmsg_tcp_notify *nm = (struct netmsg_tcp_notify *)msg;
1382 	int nextcpu;
1383 
1384 	in_pcbnotifyall(&tcbinfo[mycpuid], nm->nm_faddr,
1385 			nm->nm_arg, nm->nm_notify);
1386 
1387 	nextcpu = mycpuid + 1;
1388 	if (nextcpu < ncpus2)
1389 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &nm->base.lmsg);
1390 	else
1391 		lwkt_replymsg(&nm->base.lmsg, 0);
1392 }
1393 
1394 inp_notify_t
1395 tcp_get_inpnotify(int cmd, const struct sockaddr *sa,
1396     int *arg, struct ip **ip0, int *cpuid)
1397 {
1398 	struct ip *ip = *ip0;
1399 	struct in_addr faddr;
1400 	inp_notify_t notify = tcp_notify;
1401 
1402 	faddr = ((const struct sockaddr_in *)sa)->sin_addr;
1403 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1404 		return NULL;
1405 
1406 	*arg = inetctlerrmap[cmd];
1407 	if (cmd == PRC_QUENCH) {
1408 		notify = tcp_quench;
1409 	} else if (icmp_may_rst &&
1410 		   (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1411 		    cmd == PRC_UNREACH_PORT ||
1412 		    cmd == PRC_TIMXCEED_INTRANS) &&
1413 		   ip != NULL) {
1414 		notify = tcp_drop_syn_sent;
1415 	} else if (cmd == PRC_MSGSIZE) {
1416 		const struct icmp *icmp = (const struct icmp *)
1417 		    ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1418 
1419 		*arg = ntohs(icmp->icmp_nextmtu);
1420 		notify = tcp_mtudisc;
1421 	} else if (PRC_IS_REDIRECT(cmd)) {
1422 		ip = NULL;
1423 		notify = in_rtchange;
1424 	} else if (cmd == PRC_HOSTDEAD) {
1425 		ip = NULL;
1426 	} else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1427 		return NULL;
1428 	}
1429 
1430 	if (cpuid != NULL) {
1431 		if (ip == NULL) {
1432 			/* Go through all CPUs */
1433 			*cpuid = ncpus;
1434 		} else {
1435 			const struct tcphdr *th;
1436 
1437 			th = (const struct tcphdr *)
1438 			    ((caddr_t)ip + (IP_VHL_HL(ip->ip_vhl) << 2));
1439 			*cpuid = tcp_addrcpu(faddr.s_addr, th->th_dport,
1440 			    ip->ip_src.s_addr, th->th_sport);
1441 		}
1442 	}
1443 
1444 	*ip0 = ip;
1445 	return notify;
1446 }
1447 
1448 void
1449 tcp_ctlinput(netmsg_t msg)
1450 {
1451 	int cmd = msg->ctlinput.nm_cmd;
1452 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1453 	struct ip *ip = msg->ctlinput.nm_extra;
1454 	struct in_addr faddr;
1455 	inp_notify_t notify;
1456 	int arg, cpuid;
1457 
1458 	notify = tcp_get_inpnotify(cmd, sa, &arg, &ip, &cpuid);
1459 	if (notify == NULL)
1460 		goto done;
1461 
1462 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1463 	if (ip != NULL) {
1464 		const struct tcphdr *th;
1465 		struct inpcb *inp;
1466 
1467 		if (cpuid != mycpuid)
1468 			goto done;
1469 
1470 		th = (const struct tcphdr *)
1471 		    ((caddr_t)ip + (IP_VHL_HL(ip->ip_vhl) << 2));
1472 		inp = in_pcblookup_hash(&tcbinfo[mycpuid], faddr, th->th_dport,
1473 					ip->ip_src, th->th_sport, 0, NULL);
1474 		if (inp != NULL && inp->inp_socket != NULL) {
1475 			tcp_seq icmpseq = htonl(th->th_seq);
1476 			struct tcpcb *tp = intotcpcb(inp);
1477 
1478 			if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1479 			    SEQ_LT(icmpseq, tp->snd_max))
1480 				notify(inp, arg);
1481 		} else {
1482 			struct in_conninfo inc;
1483 
1484 			inc.inc_fport = th->th_dport;
1485 			inc.inc_lport = th->th_sport;
1486 			inc.inc_faddr = faddr;
1487 			inc.inc_laddr = ip->ip_src;
1488 #ifdef INET6
1489 			inc.inc_isipv6 = 0;
1490 #endif
1491 			syncache_unreach(&inc, th);
1492 		}
1493 	} else if (msg->ctlinput.nm_direct) {
1494 		if (cpuid != ncpus && cpuid != mycpuid)
1495 			goto done;
1496 		if (mycpuid >= ncpus2)
1497 			goto done;
1498 
1499 		in_pcbnotifyall(&tcbinfo[mycpuid], faddr, arg, notify);
1500 	} else {
1501 		struct netmsg_tcp_notify *nm;
1502 
1503 		ASSERT_IN_NETISR(0);
1504 		nm = kmalloc(sizeof(*nm), M_LWKTMSG, M_INTWAIT);
1505 		netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1506 			    0, tcp_notifyall_oncpu);
1507 		nm->nm_faddr = faddr;
1508 		nm->nm_arg = arg;
1509 		nm->nm_notify = notify;
1510 
1511 		lwkt_sendmsg(netisr_cpuport(0), &nm->base.lmsg);
1512 	}
1513 done:
1514 	lwkt_replymsg(&msg->lmsg, 0);
1515 }
1516 
1517 #ifdef INET6
1518 
1519 void
1520 tcp6_ctlinput(netmsg_t msg)
1521 {
1522 	int cmd = msg->ctlinput.nm_cmd;
1523 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1524 	void *d = msg->ctlinput.nm_extra;
1525 	struct tcphdr th;
1526 	inp_notify_t notify = tcp_notify;
1527 	struct ip6_hdr *ip6;
1528 	struct mbuf *m;
1529 	struct ip6ctlparam *ip6cp = NULL;
1530 	const struct sockaddr_in6 *sa6_src = NULL;
1531 	int off;
1532 	struct tcp_portonly {
1533 		u_int16_t th_sport;
1534 		u_int16_t th_dport;
1535 	} *thp;
1536 	int arg;
1537 
1538 	if (sa->sa_family != AF_INET6 ||
1539 	    sa->sa_len != sizeof(struct sockaddr_in6)) {
1540 		goto out;
1541 	}
1542 
1543 	arg = 0;
1544 	if (cmd == PRC_QUENCH)
1545 		notify = tcp_quench;
1546 	else if (cmd == PRC_MSGSIZE) {
1547 		struct ip6ctlparam *ip6cp = d;
1548 		struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1549 
1550 		arg = ntohl(icmp6->icmp6_mtu);
1551 		notify = tcp_mtudisc;
1552 	} else if (!PRC_IS_REDIRECT(cmd) &&
1553 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1554 		goto out;
1555 	}
1556 
1557 	/* if the parameter is from icmp6, decode it. */
1558 	if (d != NULL) {
1559 		ip6cp = (struct ip6ctlparam *)d;
1560 		m = ip6cp->ip6c_m;
1561 		ip6 = ip6cp->ip6c_ip6;
1562 		off = ip6cp->ip6c_off;
1563 		sa6_src = ip6cp->ip6c_src;
1564 	} else {
1565 		m = NULL;
1566 		ip6 = NULL;
1567 		off = 0;	/* fool gcc */
1568 		sa6_src = &sa6_any;
1569 	}
1570 
1571 	if (ip6 != NULL) {
1572 		struct in_conninfo inc;
1573 		/*
1574 		 * XXX: We assume that when IPV6 is non NULL,
1575 		 * M and OFF are valid.
1576 		 */
1577 
1578 		/* check if we can safely examine src and dst ports */
1579 		if (m->m_pkthdr.len < off + sizeof *thp)
1580 			goto out;
1581 
1582 		bzero(&th, sizeof th);
1583 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1584 
1585 		in6_pcbnotify(&tcbinfo[0], sa, th.th_dport,
1586 		    (struct sockaddr *)ip6cp->ip6c_src,
1587 		    th.th_sport, cmd, arg, notify);
1588 
1589 		inc.inc_fport = th.th_dport;
1590 		inc.inc_lport = th.th_sport;
1591 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1592 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1593 		inc.inc_isipv6 = 1;
1594 		syncache_unreach(&inc, &th);
1595 	} else {
1596 		in6_pcbnotify(&tcbinfo[0], sa, 0,
1597 		    (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1598 	}
1599 out:
1600 	lwkt_replymsg(&msg->ctlinput.base.lmsg, 0);
1601 }
1602 
1603 #endif
1604 
1605 /*
1606  * Following is where TCP initial sequence number generation occurs.
1607  *
1608  * There are two places where we must use initial sequence numbers:
1609  * 1.  In SYN-ACK packets.
1610  * 2.  In SYN packets.
1611  *
1612  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1613  * tcp_syncache.c for details.
1614  *
1615  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1616  * depends on this property.  In addition, these ISNs should be
1617  * unguessable so as to prevent connection hijacking.  To satisfy
1618  * the requirements of this situation, the algorithm outlined in
1619  * RFC 1948 is used to generate sequence numbers.
1620  *
1621  * Implementation details:
1622  *
1623  * Time is based off the system timer, and is corrected so that it
1624  * increases by one megabyte per second.  This allows for proper
1625  * recycling on high speed LANs while still leaving over an hour
1626  * before rollover.
1627  *
1628  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1629  * between seeding of isn_secret.  This is normally set to zero,
1630  * as reseeding should not be necessary.
1631  *
1632  */
1633 
1634 #define	ISN_BYTES_PER_SECOND 1048576
1635 
1636 u_char isn_secret[32];
1637 int isn_last_reseed;
1638 MD5_CTX isn_ctx;
1639 
1640 tcp_seq
1641 tcp_new_isn(struct tcpcb *tp)
1642 {
1643 	u_int32_t md5_buffer[4];
1644 	tcp_seq new_isn;
1645 
1646 	/* Seed if this is the first use, reseed if requested. */
1647 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1648 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1649 		< (u_int)ticks))) {
1650 		read_random_unlimited(&isn_secret, sizeof isn_secret);
1651 		isn_last_reseed = ticks;
1652 	}
1653 
1654 	/* Compute the md5 hash and return the ISN. */
1655 	MD5Init(&isn_ctx);
1656 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1657 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1658 #ifdef INET6
1659 	if (INP_ISIPV6(tp->t_inpcb)) {
1660 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1661 			  sizeof(struct in6_addr));
1662 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1663 			  sizeof(struct in6_addr));
1664 	} else
1665 #endif
1666 	{
1667 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1668 			  sizeof(struct in_addr));
1669 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1670 			  sizeof(struct in_addr));
1671 	}
1672 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1673 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1674 	new_isn = (tcp_seq) md5_buffer[0];
1675 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1676 	return (new_isn);
1677 }
1678 
1679 /*
1680  * When a source quench is received, close congestion window
1681  * to one segment.  We will gradually open it again as we proceed.
1682  */
1683 void
1684 tcp_quench(struct inpcb *inp, int error)
1685 {
1686 	struct tcpcb *tp = intotcpcb(inp);
1687 
1688 	KASSERT(tp != NULL, ("tcp_quench: tp is NULL"));
1689 	tp->snd_cwnd = tp->t_maxseg;
1690 	tp->snd_wacked = 0;
1691 }
1692 
1693 /*
1694  * When a specific ICMP unreachable message is received and the
1695  * connection state is SYN-SENT, drop the connection.  This behavior
1696  * is controlled by the icmp_may_rst sysctl.
1697  */
1698 void
1699 tcp_drop_syn_sent(struct inpcb *inp, int error)
1700 {
1701 	struct tcpcb *tp = intotcpcb(inp);
1702 
1703 	KASSERT(tp != NULL, ("tcp_drop_syn_sent: tp is NULL"));
1704 	if (tp->t_state == TCPS_SYN_SENT)
1705 		tcp_drop(tp, error);
1706 }
1707 
1708 /*
1709  * When a `need fragmentation' ICMP is received, update our idea of the MSS
1710  * based on the new value in the route.  Also nudge TCP to send something,
1711  * since we know the packet we just sent was dropped.
1712  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1713  */
1714 void
1715 tcp_mtudisc(struct inpcb *inp, int mtu)
1716 {
1717 	struct tcpcb *tp = intotcpcb(inp);
1718 	struct rtentry *rt;
1719 	struct socket *so = inp->inp_socket;
1720 	int maxopd, mss;
1721 #ifdef INET6
1722 	boolean_t isipv6 = INP_ISIPV6(inp);
1723 #else
1724 	const boolean_t isipv6 = FALSE;
1725 #endif
1726 
1727 	KASSERT(tp != NULL, ("tcp_mtudisc: tp is NULL"));
1728 
1729 	/*
1730 	 * If no MTU is provided in the ICMP message, use the
1731 	 * next lower likely value, as specified in RFC 1191.
1732 	 */
1733 	if (mtu == 0) {
1734 		int oldmtu;
1735 
1736 		oldmtu = tp->t_maxopd +
1737 		    (isipv6 ?
1738 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1739 		     sizeof(struct tcpiphdr));
1740 		mtu = ip_next_mtu(oldmtu, 0);
1741 	}
1742 
1743 	if (isipv6)
1744 		rt = tcp_rtlookup6(&inp->inp_inc);
1745 	else
1746 		rt = tcp_rtlookup(&inp->inp_inc);
1747 	if (rt != NULL) {
1748 		if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1749 			mtu = rt->rt_rmx.rmx_mtu;
1750 
1751 		maxopd = mtu -
1752 		    (isipv6 ?
1753 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1754 		     sizeof(struct tcpiphdr));
1755 
1756 		/*
1757 		 * XXX - The following conditional probably violates the TCP
1758 		 * spec.  The problem is that, since we don't know the
1759 		 * other end's MSS, we are supposed to use a conservative
1760 		 * default.  But, if we do that, then MTU discovery will
1761 		 * never actually take place, because the conservative
1762 		 * default is much less than the MTUs typically seen
1763 		 * on the Internet today.  For the moment, we'll sweep
1764 		 * this under the carpet.
1765 		 *
1766 		 * The conservative default might not actually be a problem
1767 		 * if the only case this occurs is when sending an initial
1768 		 * SYN with options and data to a host we've never talked
1769 		 * to before.  Then, they will reply with an MSS value which
1770 		 * will get recorded and the new parameters should get
1771 		 * recomputed.  For Further Study.
1772 		 */
1773 		if (rt->rt_rmx.rmx_mssopt  && rt->rt_rmx.rmx_mssopt < maxopd)
1774 			maxopd = rt->rt_rmx.rmx_mssopt;
1775 	} else
1776 		maxopd = mtu -
1777 		    (isipv6 ?
1778 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1779 		     sizeof(struct tcpiphdr));
1780 
1781 	if (tp->t_maxopd <= maxopd)
1782 		return;
1783 	tp->t_maxopd = maxopd;
1784 
1785 	mss = maxopd;
1786 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1787 			   (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1788 		mss -= TCPOLEN_TSTAMP_APPA;
1789 
1790 	/* round down to multiple of MCLBYTES */
1791 #if	(MCLBYTES & (MCLBYTES - 1)) == 0    /* test if MCLBYTES power of 2 */
1792 	if (mss > MCLBYTES)
1793 		mss &= ~(MCLBYTES - 1);
1794 #else
1795 	if (mss > MCLBYTES)
1796 		mss = (mss / MCLBYTES) * MCLBYTES;
1797 #endif
1798 
1799 	if (so->so_snd.ssb_hiwat < mss)
1800 		mss = so->so_snd.ssb_hiwat;
1801 
1802 	tp->t_maxseg = mss;
1803 	tp->t_rtttime = 0;
1804 	tp->snd_nxt = tp->snd_una;
1805 	tcp_output(tp);
1806 	tcpstat.tcps_mturesent++;
1807 }
1808 
1809 /*
1810  * Look-up the routing entry to the peer of this inpcb.  If no route
1811  * is found and it cannot be allocated the return NULL.  This routine
1812  * is called by TCP routines that access the rmx structure and by tcp_mss
1813  * to get the interface MTU.
1814  */
1815 struct rtentry *
1816 tcp_rtlookup(struct in_conninfo *inc)
1817 {
1818 	struct route *ro = &inc->inc_route;
1819 
1820 	if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1821 		/* No route yet, so try to acquire one */
1822 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1823 			/*
1824 			 * unused portions of the structure MUST be zero'd
1825 			 * out because rtalloc() treats it as opaque data
1826 			 */
1827 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1828 			ro->ro_dst.sa_family = AF_INET;
1829 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1830 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1831 			    inc->inc_faddr;
1832 			rtalloc(ro);
1833 		}
1834 	}
1835 	return (ro->ro_rt);
1836 }
1837 
1838 #ifdef INET6
1839 struct rtentry *
1840 tcp_rtlookup6(struct in_conninfo *inc)
1841 {
1842 	struct route_in6 *ro6 = &inc->inc6_route;
1843 
1844 	if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1845 		/* No route yet, so try to acquire one */
1846 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1847 			/*
1848 			 * unused portions of the structure MUST be zero'd
1849 			 * out because rtalloc() treats it as opaque data
1850 			 */
1851 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1852 			ro6->ro_dst.sin6_family = AF_INET6;
1853 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1854 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1855 			rtalloc((struct route *)ro6);
1856 		}
1857 	}
1858 	return (ro6->ro_rt);
1859 }
1860 #endif
1861 
1862 #ifdef IPSEC
1863 /* compute ESP/AH header size for TCP, including outer IP header. */
1864 size_t
1865 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1866 {
1867 	struct inpcb *inp;
1868 	struct mbuf *m;
1869 	size_t hdrsiz;
1870 	struct ip *ip;
1871 	struct tcphdr *th;
1872 
1873 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1874 		return (0);
1875 	MGETHDR(m, M_NOWAIT, MT_DATA);
1876 	if (!m)
1877 		return (0);
1878 
1879 #ifdef INET6
1880 	if (INP_ISIPV6(inp)) {
1881 		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1882 
1883 		th = (struct tcphdr *)(ip6 + 1);
1884 		m->m_pkthdr.len = m->m_len =
1885 		    sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1886 		tcp_fillheaders(tp, ip6, th, FALSE);
1887 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1888 	} else
1889 #endif
1890 	{
1891 		ip = mtod(m, struct ip *);
1892 		th = (struct tcphdr *)(ip + 1);
1893 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1894 		tcp_fillheaders(tp, ip, th, FALSE);
1895 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1896 	}
1897 
1898 	m_free(m);
1899 	return (hdrsiz);
1900 }
1901 #endif
1902 
1903 /*
1904  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1905  *
1906  * This code attempts to calculate the bandwidth-delay product as a
1907  * means of determining the optimal window size to maximize bandwidth,
1908  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1909  * routers.  This code also does a fairly good job keeping RTTs in check
1910  * across slow links like modems.  We implement an algorithm which is very
1911  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1912  * transmitter side of a TCP connection and so only effects the transmit
1913  * side of the connection.
1914  *
1915  * BACKGROUND:  TCP makes no provision for the management of buffer space
1916  * at the end points or at the intermediate routers and switches.  A TCP
1917  * stream, whether using NewReno or not, will eventually buffer as
1918  * many packets as it is able and the only reason this typically works is
1919  * due to the fairly small default buffers made available for a connection
1920  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1921  * scaling it is now fairly easy for even a single TCP connection to blow-out
1922  * all available buffer space not only on the local interface, but on
1923  * intermediate routers and switches as well.  NewReno makes a misguided
1924  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1925  * then backing off, then steadily increasing the window again until another
1926  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1927  * is only made worse as network loads increase and the idea of intentionally
1928  * blowing out network buffers is, frankly, a terrible way to manage network
1929  * resources.
1930  *
1931  * It is far better to limit the transmit window prior to the failure
1932  * condition being achieved.  There are two general ways to do this:  First
1933  * you can 'scan' through different transmit window sizes and locate the
1934  * point where the RTT stops increasing, indicating that you have filled the
1935  * pipe, then scan backwards until you note that RTT stops decreasing, then
1936  * repeat ad-infinitum.  This method works in principle but has severe
1937  * implementation issues due to RTT variances, timer granularity, and
1938  * instability in the algorithm which can lead to many false positives and
1939  * create oscillations as well as interact badly with other TCP streams
1940  * implementing the same algorithm.
1941  *
1942  * The second method is to limit the window to the bandwidth delay product
1943  * of the link.  This is the method we implement.  RTT variances and our
1944  * own manipulation of the congestion window, bwnd, can potentially
1945  * destabilize the algorithm.  For this reason we have to stabilize the
1946  * elements used to calculate the window.  We do this by using the minimum
1947  * observed RTT, the long term average of the observed bandwidth, and
1948  * by adding two segments worth of slop.  It isn't perfect but it is able
1949  * to react to changing conditions and gives us a very stable basis on
1950  * which to extend the algorithm.
1951  */
1952 void
1953 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1954 {
1955 	u_long bw;
1956 	u_long ibw;
1957 	u_long bwnd;
1958 	int save_ticks;
1959 	int delta_ticks;
1960 
1961 	/*
1962 	 * If inflight_enable is disabled in the middle of a tcp connection,
1963 	 * make sure snd_bwnd is effectively disabled.
1964 	 */
1965 	if (!tcp_inflight_enable) {
1966 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1967 		tp->snd_bandwidth = 0;
1968 		return;
1969 	}
1970 
1971 	/*
1972 	 * Validate the delta time.  If a connection is new or has been idle
1973 	 * a long time we have to reset the bandwidth calculator.
1974 	 */
1975 	save_ticks = ticks;
1976 	cpu_ccfence();
1977 	delta_ticks = save_ticks - tp->t_bw_rtttime;
1978 	if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1979 		tp->t_bw_rtttime = save_ticks;
1980 		tp->t_bw_rtseq = ack_seq;
1981 		if (tp->snd_bandwidth == 0)
1982 			tp->snd_bandwidth = tcp_inflight_start;
1983 		return;
1984 	}
1985 
1986 	/*
1987 	 * A delta of at least 1 tick is required.  Waiting 2 ticks will
1988 	 * result in better (bw) accuracy.  More than that and the ramp-up
1989 	 * will be too slow.
1990 	 */
1991 	if (delta_ticks == 0 || delta_ticks == 1)
1992 		return;
1993 
1994 	/*
1995 	 * Sanity check, plus ignore pure window update acks.
1996 	 */
1997 	if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1998 		return;
1999 
2000 	/*
2001 	 * Figure out the bandwidth.  Due to the tick granularity this
2002 	 * is a very rough number and it MUST be averaged over a fairly
2003 	 * long period of time.  XXX we need to take into account a link
2004 	 * that is not using all available bandwidth, but for now our
2005 	 * slop will ramp us up if this case occurs and the bandwidth later
2006 	 * increases.
2007 	 */
2008 	ibw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
2009 	tp->t_bw_rtttime = save_ticks;
2010 	tp->t_bw_rtseq = ack_seq;
2011 	bw = ((int64_t)tp->snd_bandwidth * 15 + ibw) >> 4;
2012 
2013 	tp->snd_bandwidth = bw;
2014 
2015 	/*
2016 	 * Calculate the semi-static bandwidth delay product, plus two maximal
2017 	 * segments.  The additional slop puts us squarely in the sweet
2018 	 * spot and also handles the bandwidth run-up case.  Without the
2019 	 * slop we could be locking ourselves into a lower bandwidth.
2020 	 *
2021 	 * At very high speeds the bw calculation can become overly sensitive
2022 	 * and error prone when delta_ticks is low (e.g. usually 1).  To deal
2023 	 * with the problem the stab must be scaled to the bw.  A stab of 50
2024 	 * (the default) increases the bw for the purposes of the bwnd
2025 	 * calculation by 5%.
2026 	 *
2027 	 * Situations Handled:
2028 	 *	(1) Prevents over-queueing of packets on LANs, especially on
2029 	 *	    high speed LANs, allowing larger TCP buffers to be
2030 	 *	    specified, and also does a good job preventing
2031 	 *	    over-queueing of packets over choke points like modems
2032 	 *	    (at least for the transmit side).
2033 	 *
2034 	 *	(2) Is able to handle changing network loads (bandwidth
2035 	 *	    drops so bwnd drops, bandwidth increases so bwnd
2036 	 *	    increases).
2037 	 *
2038 	 *	(3) Theoretically should stabilize in the face of multiple
2039 	 *	    connections implementing the same algorithm (this may need
2040 	 *	    a little work).
2041 	 *
2042 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2043 	 *	    be adjusted with a sysctl but typically only needs to be on
2044 	 *	    very slow connections.  A value no smaller then 5 should
2045 	 *	    be used, but only reduce this default if you have no other
2046 	 *	    choice.
2047 	 */
2048 
2049 #define	USERTT	((tp->t_srtt + tp->t_rttvar) + tcp_inflight_adjrtt)
2050 	bw += bw * tcp_inflight_stab / 1000;
2051 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
2052 	       (int)tp->t_maxseg * 2;
2053 #undef USERTT
2054 
2055 	if (tcp_inflight_debug > 0) {
2056 		static int ltime;
2057 		if ((u_int)(save_ticks - ltime) >= hz / tcp_inflight_debug) {
2058 			ltime = save_ticks;
2059 			kprintf("%p ibw %ld bw %ld rttvar %d srtt %d "
2060 				"bwnd %ld delta %d snd_win %ld\n",
2061 				tp, ibw, bw, tp->t_rttvar, tp->t_srtt,
2062 				bwnd, delta_ticks, tp->snd_wnd);
2063 		}
2064 	}
2065 	if ((long)bwnd < tcp_inflight_min)
2066 		bwnd = tcp_inflight_min;
2067 	if (bwnd > tcp_inflight_max)
2068 		bwnd = tcp_inflight_max;
2069 	if ((long)bwnd < tp->t_maxseg * 2)
2070 		bwnd = tp->t_maxseg * 2;
2071 	tp->snd_bwnd = bwnd;
2072 }
2073 
2074 static void
2075 tcp_rmx_iwsegs(struct tcpcb *tp, u_long *maxsegs, u_long *capsegs)
2076 {
2077 	struct rtentry *rt;
2078 	struct inpcb *inp = tp->t_inpcb;
2079 #ifdef INET6
2080 	boolean_t isipv6 = INP_ISIPV6(inp);
2081 #else
2082 	const boolean_t isipv6 = FALSE;
2083 #endif
2084 
2085 	/* XXX */
2086 	if (tcp_iw_maxsegs < TCP_IW_MAXSEGS_DFLT)
2087 		tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
2088 	if (tcp_iw_capsegs < TCP_IW_CAPSEGS_DFLT)
2089 		tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
2090 
2091 	if (isipv6)
2092 		rt = tcp_rtlookup6(&inp->inp_inc);
2093 	else
2094 		rt = tcp_rtlookup(&inp->inp_inc);
2095 	if (rt == NULL ||
2096 	    rt->rt_rmx.rmx_iwmaxsegs < TCP_IW_MAXSEGS_DFLT ||
2097 	    rt->rt_rmx.rmx_iwcapsegs < TCP_IW_CAPSEGS_DFLT) {
2098 		*maxsegs = tcp_iw_maxsegs;
2099 		*capsegs = tcp_iw_capsegs;
2100 		return;
2101 	}
2102 	*maxsegs = rt->rt_rmx.rmx_iwmaxsegs;
2103 	*capsegs = rt->rt_rmx.rmx_iwcapsegs;
2104 }
2105 
2106 u_long
2107 tcp_initial_window(struct tcpcb *tp)
2108 {
2109 	if (tcp_do_rfc3390) {
2110 		/*
2111 		 * RFC3390:
2112 		 * "If the SYN or SYN/ACK is lost, the initial window
2113 		 *  used by a sender after a correctly transmitted SYN
2114 		 *  MUST be one segment consisting of MSS bytes."
2115 		 *
2116 		 * However, we do something a little bit more aggressive
2117 		 * then RFC3390 here:
2118 		 * - Only if time spent in the SYN or SYN|ACK retransmition
2119 		 *   >= 3 seconds, the IW is reduced.  We do this mainly
2120 		 *   because when RFC3390 is published, the initial RTO is
2121 		 *   still 3 seconds (the threshold we test here), while
2122 		 *   after RFC6298, the initial RTO is 1 second.  This
2123 		 *   behaviour probably still falls within the spirit of
2124 		 *   RFC3390.
2125 		 * - When IW is reduced, 2*MSS is used instead of 1*MSS.
2126 		 *   Mainly to avoid sender and receiver deadlock until
2127 		 *   delayed ACK timer expires.  And even RFC2581 does not
2128 		 *   try to reduce IW upon SYN or SYN|ACK retransmition
2129 		 *   timeout.
2130 		 *
2131 		 * See also:
2132 		 * http://tools.ietf.org/html/draft-ietf-tcpm-initcwnd-03
2133 		 */
2134 		if (tp->t_rxtsyn >= TCPTV_RTOBASE3) {
2135 			return (2 * tp->t_maxseg);
2136 		} else {
2137 			u_long maxsegs, capsegs;
2138 
2139 			tcp_rmx_iwsegs(tp, &maxsegs, &capsegs);
2140 			return min(maxsegs * tp->t_maxseg,
2141 				   max(2 * tp->t_maxseg, capsegs * 1460));
2142 		}
2143 	} else {
2144 		/*
2145 		 * Even RFC2581 (back to 1999) allows 2*SMSS IW.
2146 		 *
2147 		 * Mainly to avoid sender and receiver deadlock
2148 		 * until delayed ACK timer expires.
2149 		 */
2150 		return (2 * tp->t_maxseg);
2151 	}
2152 }
2153 
2154 #ifdef TCP_SIGNATURE
2155 /*
2156  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2157  *
2158  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2159  * When called from tcp_input(), we can be sure that th_sum has been
2160  * zeroed out and verified already.
2161  *
2162  * Return 0 if successful, otherwise return -1.
2163  *
2164  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2165  * search with the destination IP address, and a 'magic SPI' to be
2166  * determined by the application. This is hardcoded elsewhere to 1179
2167  * right now. Another branch of this code exists which uses the SPD to
2168  * specify per-application flows but it is unstable.
2169  */
2170 int
2171 tcpsignature_compute(
2172 	struct mbuf *m,		/* mbuf chain */
2173 	int len,		/* length of TCP data */
2174 	int optlen,		/* length of TCP options */
2175 	u_char *buf,		/* storage for MD5 digest */
2176 	u_int direction)	/* direction of flow */
2177 {
2178 	struct ippseudo ippseudo;
2179 	MD5_CTX ctx;
2180 	int doff;
2181 	struct ip *ip;
2182 	struct ipovly *ipovly;
2183 	struct secasvar *sav;
2184 	struct tcphdr *th;
2185 #ifdef INET6
2186 	struct ip6_hdr *ip6;
2187 	struct in6_addr in6;
2188 	uint32_t plen;
2189 	uint16_t nhdr;
2190 #endif /* INET6 */
2191 	u_short savecsum;
2192 
2193 	KASSERT(m != NULL, ("passed NULL mbuf. Game over."));
2194 	KASSERT(buf != NULL, ("passed NULL storage pointer for MD5 signature"));
2195 	/*
2196 	 * Extract the destination from the IP header in the mbuf.
2197 	 */
2198 	ip = mtod(m, struct ip *);
2199 #ifdef INET6
2200 	ip6 = NULL;     /* Make the compiler happy. */
2201 #endif /* INET6 */
2202 	/*
2203 	 * Look up an SADB entry which matches the address found in
2204 	 * the segment.
2205 	 */
2206 	switch (IP_VHL_V(ip->ip_vhl)) {
2207 	case IPVERSION:
2208 		sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src, (caddr_t)&ip->ip_dst,
2209 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2210 		break;
2211 #ifdef INET6
2212 	case (IPV6_VERSION >> 4):
2213 		ip6 = mtod(m, struct ip6_hdr *);
2214 		sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src, (caddr_t)&ip6->ip6_dst,
2215 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2216 		break;
2217 #endif /* INET6 */
2218 	default:
2219 		return (EINVAL);
2220 		/* NOTREACHED */
2221 		break;
2222 	}
2223 	if (sav == NULL) {
2224 		kprintf("%s: SADB lookup failed\n", __func__);
2225 		return (EINVAL);
2226 	}
2227 	MD5Init(&ctx);
2228 
2229 	/*
2230 	 * Step 1: Update MD5 hash with IP pseudo-header.
2231 	 *
2232 	 * XXX The ippseudo header MUST be digested in network byte order,
2233 	 * or else we'll fail the regression test. Assume all fields we've
2234 	 * been doing arithmetic on have been in host byte order.
2235 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2236 	 * tcp_output(), the underlying ip_len member has not yet been set.
2237 	 */
2238 	switch (IP_VHL_V(ip->ip_vhl)) {
2239 	case IPVERSION:
2240 		ipovly = (struct ipovly *)ip;
2241 		ippseudo.ippseudo_src = ipovly->ih_src;
2242 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2243 		ippseudo.ippseudo_pad = 0;
2244 		ippseudo.ippseudo_p = IPPROTO_TCP;
2245 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2246 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2247 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2248 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2249 		break;
2250 #ifdef INET6
2251 	/*
2252 	 * RFC 2385, 2.0  Proposal
2253 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2254 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2255 	 * extended next header value (to form 32 bits), and 32-bit segment
2256 	 * length.
2257 	 * Note: Upper-Layer Packet Length comes before Next Header.
2258 	 */
2259 	case (IPV6_VERSION >> 4):
2260 		in6 = ip6->ip6_src;
2261 		in6_clearscope(&in6);
2262 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2263 		in6 = ip6->ip6_dst;
2264 		in6_clearscope(&in6);
2265 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2266 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2267 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2268 		nhdr = 0;
2269 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2270 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2271 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2272 		nhdr = IPPROTO_TCP;
2273 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2274 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2275 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2276 		break;
2277 #endif /* INET6 */
2278 	default:
2279 		return (EINVAL);
2280 		/* NOTREACHED */
2281 		break;
2282 	}
2283 	/*
2284 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2285 	 * The TCP checksum must be set to zero.
2286 	 */
2287 	savecsum = th->th_sum;
2288 	th->th_sum = 0;
2289 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2290 	th->th_sum = savecsum;
2291 	/*
2292 	 * Step 3: Update MD5 hash with TCP segment data.
2293 	 *         Use m_apply() to avoid an early m_pullup().
2294 	 */
2295 	if (len > 0)
2296 		m_apply(m, doff, len, tcpsignature_apply, &ctx);
2297 	/*
2298 	 * Step 4: Update MD5 hash with shared secret.
2299 	 */
2300 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2301 	MD5Final(buf, &ctx);
2302 	key_sa_recordxfer(sav, m);
2303 	key_freesav(sav);
2304 	return (0);
2305 }
2306 
2307 int
2308 tcpsignature_apply(void *fstate, void *data, unsigned int len)
2309 {
2310 
2311 	MD5Update((MD5_CTX *)fstate, (unsigned char *)data, len);
2312 	return (0);
2313 }
2314 #endif /* TCP_SIGNATURE */
2315 
2316 static void
2317 tcp_drop_sysctl_dispatch(netmsg_t nmsg)
2318 {
2319 	struct lwkt_msg *lmsg = &nmsg->lmsg;
2320 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2321 	struct sockaddr_storage *addrs = lmsg->u.ms_resultp;
2322 	int error;
2323 	struct sockaddr_in *fin, *lin;
2324 #ifdef INET6
2325 	struct sockaddr_in6 *fin6, *lin6;
2326 	struct in6_addr f6, l6;
2327 #endif
2328 	struct inpcb *inp;
2329 
2330 	switch (addrs[0].ss_family) {
2331 #ifdef INET6
2332 	case AF_INET6:
2333 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2334 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2335 		error = in6_embedscope(&f6, fin6, NULL, NULL);
2336 		if (error)
2337 			goto done;
2338 		error = in6_embedscope(&l6, lin6, NULL, NULL);
2339 		if (error)
2340 			goto done;
2341 		inp = in6_pcblookup_hash(&tcbinfo[mycpuid], &f6,
2342 		    fin6->sin6_port, &l6, lin6->sin6_port, FALSE, NULL);
2343 		break;
2344 #endif
2345 #ifdef INET
2346 	case AF_INET:
2347 		fin = (struct sockaddr_in *)&addrs[0];
2348 		lin = (struct sockaddr_in *)&addrs[1];
2349 		inp = in_pcblookup_hash(&tcbinfo[mycpuid], fin->sin_addr,
2350 		    fin->sin_port, lin->sin_addr, lin->sin_port, FALSE, NULL);
2351 		break;
2352 #endif
2353 	default:
2354 		/*
2355 		 * Must not reach here, since the address family was
2356 		 * checked in sysctl handler.
2357 		 */
2358 		panic("unknown address family %d", addrs[0].ss_family);
2359 	}
2360 	if (inp != NULL) {
2361 		struct tcpcb *tp = intotcpcb(inp);
2362 
2363 		KASSERT((inp->inp_flags & INP_WILDCARD) == 0,
2364 		    ("in wildcard hash"));
2365 		KASSERT(tp != NULL, ("tcp_drop_sysctl_dispatch: tp is NULL"));
2366 		KASSERT((tp->t_flags & TF_LISTEN) == 0, ("listen socket"));
2367 		tcp_drop(tp, ECONNABORTED);
2368 		error = 0;
2369 	} else {
2370 		error = ESRCH;
2371 	}
2372 #ifdef INET6
2373 done:
2374 #endif
2375 	lwkt_replymsg(lmsg, error);
2376 }
2377 
2378 static int
2379 sysctl_tcp_drop(SYSCTL_HANDLER_ARGS)
2380 {
2381 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2382 	struct sockaddr_storage addrs[2];
2383 	struct sockaddr_in *fin, *lin;
2384 #ifdef INET6
2385 	struct sockaddr_in6 *fin6, *lin6;
2386 #endif
2387 	struct netmsg_base nmsg;
2388 	struct lwkt_msg *lmsg = &nmsg.lmsg;
2389 	struct lwkt_port *port = NULL;
2390 	int error;
2391 
2392 	fin = lin = NULL;
2393 #ifdef INET6
2394 	fin6 = lin6 = NULL;
2395 #endif
2396 	error = 0;
2397 
2398 	if (req->oldptr != NULL || req->oldlen != 0)
2399 		return (EINVAL);
2400 	if (req->newptr == NULL)
2401 		return (EPERM);
2402 	if (req->newlen < sizeof(addrs))
2403 		return (ENOMEM);
2404 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2405 	if (error)
2406 		return (error);
2407 
2408 	switch (addrs[0].ss_family) {
2409 #ifdef INET6
2410 	case AF_INET6:
2411 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2412 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2413 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2414 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2415 			return (EINVAL);
2416 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr) ||
2417 		    IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2418 			return (EADDRNOTAVAIL);
2419 #if 0
2420 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2421 		if (error)
2422 			return (error);
2423 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2424 		if (error)
2425 			return (error);
2426 #endif
2427 		port = tcp6_addrport();
2428 		break;
2429 #endif
2430 #ifdef INET
2431 	case AF_INET:
2432 		fin = (struct sockaddr_in *)&addrs[0];
2433 		lin = (struct sockaddr_in *)&addrs[1];
2434 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2435 		    lin->sin_len != sizeof(struct sockaddr_in))
2436 			return (EINVAL);
2437 		port = tcp_addrport(fin->sin_addr.s_addr, fin->sin_port,
2438 		    lin->sin_addr.s_addr, lin->sin_port);
2439 		break;
2440 #endif
2441 	default:
2442 		return (EINVAL);
2443 	}
2444 
2445 	netmsg_init(&nmsg, NULL, &curthread->td_msgport, 0,
2446 	    tcp_drop_sysctl_dispatch);
2447 	lmsg->u.ms_resultp = addrs;
2448 	return lwkt_domsg(port, lmsg, 0);
2449 }
2450 
2451 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, drop,
2452     CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP, NULL,
2453     0, sysctl_tcp_drop, "", "Drop TCP connection");
2454 
2455 static int
2456 sysctl_tcps_count(SYSCTL_HANDLER_ARGS)
2457 {
2458 	u_long state_count[TCP_NSTATES];
2459 	int cpu;
2460 
2461 	memset(state_count, 0, sizeof(state_count));
2462 	for (cpu = 0; cpu < ncpus2; ++cpu) {
2463 		int i;
2464 
2465 		for (i = 0; i < TCP_NSTATES; ++i)
2466 			state_count[i] += tcpstate_count[cpu].tcps_count[i];
2467 	}
2468 
2469 	return sysctl_handle_opaque(oidp, state_count, sizeof(state_count), req);
2470 }
2471 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, state_count,
2472     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
2473     sysctl_tcps_count, "LU", "TCP connection counts by state");
2474 
2475 void
2476 tcp_pcbport_create(struct tcpcb *tp)
2477 {
2478 	int cpu;
2479 
2480 	KASSERT((tp->t_flags & TF_LISTEN) && tp->t_state == TCPS_LISTEN,
2481 	    ("not a listen tcpcb"));
2482 
2483 	KASSERT(tp->t_pcbport == NULL, ("tcpcb port cache was created"));
2484 	tp->t_pcbport = kmalloc_cachealign(sizeof(struct tcp_pcbport) * ncpus2,
2485 	    M_PCB, M_WAITOK);
2486 
2487 	for (cpu = 0; cpu < ncpus2; ++cpu) {
2488 		struct inpcbport *phd;
2489 
2490 		phd = &tp->t_pcbport[cpu].t_phd;
2491 		LIST_INIT(&phd->phd_pcblist);
2492 		/* Though, not used ... */
2493 		phd->phd_port = tp->t_inpcb->inp_lport;
2494 	}
2495 }
2496 
2497 void
2498 tcp_pcbport_merge_oncpu(struct tcpcb *tp)
2499 {
2500 	struct inpcbport *phd;
2501 	struct inpcb *inp;
2502 	int cpu = mycpuid;
2503 
2504 	KASSERT(cpu < ncpus2, ("invalid cpu%d", cpu));
2505 	phd = &tp->t_pcbport[cpu].t_phd;
2506 
2507 	while ((inp = LIST_FIRST(&phd->phd_pcblist)) != NULL) {
2508 		KASSERT(inp->inp_phd == phd && inp->inp_porthash == NULL,
2509 		    ("not on tcpcb port cache"));
2510 		LIST_REMOVE(inp, inp_portlist);
2511 		in_pcbinsporthash_lport(inp);
2512 		KASSERT(inp->inp_phd == tp->t_inpcb->inp_phd &&
2513 		    inp->inp_porthash == tp->t_inpcb->inp_porthash,
2514 		    ("tcpcb port cache merge failed"));
2515 	}
2516 }
2517 
2518 void
2519 tcp_pcbport_destroy(struct tcpcb *tp)
2520 {
2521 #ifdef INVARIANTS
2522 	int cpu;
2523 
2524 	for (cpu = 0; cpu < ncpus2; ++cpu) {
2525 		KASSERT(LIST_EMPTY(&tp->t_pcbport[cpu].t_phd.phd_pcblist),
2526 		    ("tcpcb port cache is not empty"));
2527 	}
2528 #endif
2529 	kfree(tp->t_pcbport, M_PCB);
2530 	tp->t_pcbport = NULL;
2531 }
2532