xref: /dragonfly/sys/netinet/tcp_subr.c (revision 9bb2a92d)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
35  * $DragonFly: src/sys/netinet/tcp_subr.c,v 1.14 2004/03/08 19:44:32 hsu Exp $
36  */
37 
38 #include "opt_compat.h"
39 #include "opt_inet6.h"
40 #include "opt_ipsec.h"
41 #include "opt_tcpdebug.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/kernel.h>
47 #include <sys/sysctl.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #ifdef INET6
51 #include <sys/domain.h>
52 #endif
53 #include <sys/proc.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/protosw.h>
57 #include <sys/random.h>
58 #include <sys/in_cksum.h>
59 
60 #include <vm/vm_zone.h>
61 
62 #include <net/route.h>
63 #include <net/if.h>
64 
65 #define _IP_VHL
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/ip.h>
69 #ifdef INET6
70 #include <netinet/ip6.h>
71 #endif
72 #include <netinet/in_pcb.h>
73 #ifdef INET6
74 #include <netinet6/in6_pcb.h>
75 #endif
76 #include <netinet/in_var.h>
77 #include <netinet/ip_var.h>
78 #ifdef INET6
79 #include <netinet6/ip6_var.h>
80 #endif
81 #include <netinet/tcp.h>
82 #include <netinet/tcp_fsm.h>
83 #include <netinet/tcp_seq.h>
84 #include <netinet/tcp_timer.h>
85 #include <netinet/tcp_var.h>
86 #ifdef INET6
87 #include <netinet6/tcp6_var.h>
88 #endif
89 #include <netinet/tcpip.h>
90 #ifdef TCPDEBUG
91 #include <netinet/tcp_debug.h>
92 #endif
93 #include <netinet6/ip6protosw.h>
94 
95 #ifdef IPSEC
96 #include <netinet6/ipsec.h>
97 #ifdef INET6
98 #include <netinet6/ipsec6.h>
99 #endif
100 #endif /*IPSEC*/
101 
102 #ifdef FAST_IPSEC
103 #include <netipsec/ipsec.h>
104 #ifdef INET6
105 #include <netipsec/ipsec6.h>
106 #endif
107 #define	IPSEC
108 #endif /*FAST_IPSEC*/
109 
110 #include <sys/md5.h>
111 
112 int 	tcp_mssdflt = TCP_MSS;
113 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
114     &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
115 
116 #ifdef INET6
117 int	tcp_v6mssdflt = TCP6_MSS;
118 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
119 	CTLFLAG_RW, &tcp_v6mssdflt , 0,
120 	"Default TCP Maximum Segment Size for IPv6");
121 #endif
122 
123 #if 0
124 static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
125 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
126     &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
127 #endif
128 
129 int	tcp_do_rfc1323 = 1;
130 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
131     &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
132 
133 int	tcp_do_rfc1644 = 0;
134 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
135     &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
136 
137 static int	tcp_tcbhashsize = 0;
138 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
139      &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
140 
141 static int	do_tcpdrain = 1;
142 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
143      "Enable tcp_drain routine for extra help when low on mbufs");
144 
145 /* XXX JH */
146 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
147     &tcbinfo[0].ipi_count, 0, "Number of active PCBs");
148 
149 static int	icmp_may_rst = 1;
150 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
151     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
152 
153 static int	tcp_isn_reseed_interval = 0;
154 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
155     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
156 
157 /*
158  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
159  * 1024 exists only for debugging.  A good production default would be
160  * something like 6100.
161  */
162 static int     tcp_inflight_enable = 0;
163 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
164     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
165 
166 static int     tcp_inflight_debug = 0;
167 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
168     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
169 
170 static int     tcp_inflight_min = 6144;
171 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
172     &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
173 
174 static int     tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
175 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
176     &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
177 
178 static int     tcp_inflight_stab = 20;
179 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
180     &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 2 packets)");
181 
182 static void	tcp_cleartaocache (void);
183 static void	tcp_notify (struct inpcb *, int);
184 
185 /*
186  * Target size of TCP PCB hash tables. Must be a power of two.
187  *
188  * Note that this can be overridden by the kernel environment
189  * variable net.inet.tcp.tcbhashsize
190  */
191 #ifndef TCBHASHSIZE
192 #define TCBHASHSIZE	512
193 #endif
194 
195 /*
196  * This is the actual shape of what we allocate using the zone
197  * allocator.  Doing it this way allows us to protect both structures
198  * using the same generation count, and also eliminates the overhead
199  * of allocating tcpcbs separately.  By hiding the structure here,
200  * we avoid changing most of the rest of the code (although it needs
201  * to be changed, eventually, for greater efficiency).
202  */
203 #define	ALIGNMENT	32
204 #define	ALIGNM1		(ALIGNMENT - 1)
205 struct	inp_tp {
206 	union {
207 		struct	inpcb inp;
208 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
209 	} inp_tp_u;
210 	struct	tcpcb tcb;
211 	struct	callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
212 	struct	callout inp_tp_delack;
213 };
214 #undef ALIGNMENT
215 #undef ALIGNM1
216 
217 /*
218  * Tcp initialization
219  */
220 void
221 tcp_init()
222 {
223 	struct inpcbporthead *porthashbase;
224 	u_long porthashmask;
225 	struct inpcbhead *bindhashbase;
226 	u_long bindhashmask;
227 	struct vm_zone *ipi_zone;
228 	int hashsize = TCBHASHSIZE;
229 	int cpu;
230 
231 	tcp_ccgen = 1;
232 	tcp_cleartaocache();
233 
234 	tcp_delacktime = TCPTV_DELACK;
235 	tcp_keepinit = TCPTV_KEEP_INIT;
236 	tcp_keepidle = TCPTV_KEEP_IDLE;
237 	tcp_keepintvl = TCPTV_KEEPINTVL;
238 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
239 	tcp_msl = TCPTV_MSL;
240 	tcp_rexmit_min = TCPTV_MIN;
241 	tcp_rexmit_slop = TCPTV_CPU_VAR;
242 
243 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
244 	if (!powerof2(hashsize)) {
245 		printf("WARNING: TCB hash size not a power of 2\n");
246 		hashsize = 512; /* safe default */
247 	}
248 	tcp_tcbhashsize = hashsize;
249 	porthashbase = hashinit(hashsize, M_PCB, &porthashmask);
250 	bindhashbase = hashinit(hashsize, M_PCB, &bindhashmask);
251 	ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets,
252 			 ZONE_INTERRUPT, 0);
253 
254 	for (cpu = 0; cpu < ncpus2; cpu++) {
255 		LIST_INIT(&tcbinfo[cpu].listhead);
256 		tcbinfo[cpu].hashbase = hashinit(hashsize, M_PCB,
257 		    &tcbinfo[cpu].hashmask);
258 		tcbinfo[cpu].porthashbase = porthashbase;
259 		tcbinfo[cpu].porthashmask = porthashmask;
260 		tcbinfo[cpu].bindhashbase = bindhashbase;
261 		tcbinfo[cpu].bindhashmask = bindhashmask;
262 		tcbinfo[cpu].ipi_zone = ipi_zone;
263 	}
264 
265 	tcp_reass_maxseg = nmbclusters / 16;
266 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments",
267 	    &tcp_reass_maxseg);
268 
269 #ifdef INET6
270 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
271 #else /* INET6 */
272 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
273 #endif /* INET6 */
274 	if (max_protohdr < TCP_MINPROTOHDR)
275 		max_protohdr = TCP_MINPROTOHDR;
276 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
277 		panic("tcp_init");
278 #undef TCP_MINPROTOHDR
279 
280 	syncache_init();
281 	tcp_thread_init();
282 }
283 
284 /*
285  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
286  * tcp_template used to store this data in mbufs, but we now recopy it out
287  * of the tcpcb each time to conserve mbufs.
288  */
289 void
290 tcp_fillheaders(tp, ip_ptr, tcp_ptr)
291 	struct tcpcb *tp;
292 	void *ip_ptr;
293 	void *tcp_ptr;
294 {
295 	struct inpcb *inp = tp->t_inpcb;
296 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
297 
298 #ifdef INET6
299 	if ((inp->inp_vflag & INP_IPV6) != 0) {
300 		struct ip6_hdr *ip6;
301 
302 		ip6 = (struct ip6_hdr *)ip_ptr;
303 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
304 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
305 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
306 			(IPV6_VERSION & IPV6_VERSION_MASK);
307 		ip6->ip6_nxt = IPPROTO_TCP;
308 		ip6->ip6_plen = sizeof(struct tcphdr);
309 		ip6->ip6_src = inp->in6p_laddr;
310 		ip6->ip6_dst = inp->in6p_faddr;
311 		tcp_hdr->th_sum = 0;
312 	} else
313 #endif
314 	{
315 	struct ip *ip = (struct ip *) ip_ptr;
316 
317 	ip->ip_vhl = IP_VHL_BORING;
318 	ip->ip_tos = 0;
319 	ip->ip_len = 0;
320 	ip->ip_id = 0;
321 	ip->ip_off = 0;
322 	ip->ip_ttl = 0;
323 	ip->ip_sum = 0;
324 	ip->ip_p = IPPROTO_TCP;
325 	ip->ip_src = inp->inp_laddr;
326 	ip->ip_dst = inp->inp_faddr;
327 	tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
328 		htons(sizeof(struct tcphdr) + IPPROTO_TCP));
329 	}
330 
331 	tcp_hdr->th_sport = inp->inp_lport;
332 	tcp_hdr->th_dport = inp->inp_fport;
333 	tcp_hdr->th_seq = 0;
334 	tcp_hdr->th_ack = 0;
335 	tcp_hdr->th_x2 = 0;
336 	tcp_hdr->th_off = 5;
337 	tcp_hdr->th_flags = 0;
338 	tcp_hdr->th_win = 0;
339 	tcp_hdr->th_urp = 0;
340 }
341 
342 /*
343  * Create template to be used to send tcp packets on a connection.
344  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
345  * use for this function is in keepalives, which use tcp_respond.
346  */
347 struct tcptemp *
348 tcp_maketemplate(tp)
349 	struct tcpcb *tp;
350 {
351 	struct mbuf *m;
352 	struct tcptemp *n;
353 
354 	m = m_get(M_DONTWAIT, MT_HEADER);
355 	if (m == NULL)
356 		return (0);
357 	m->m_len = sizeof(struct tcptemp);
358 	n = mtod(m, struct tcptemp *);
359 
360 	tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
361 	return (n);
362 }
363 
364 /*
365  * Send a single message to the TCP at address specified by
366  * the given TCP/IP header.  If m == 0, then we make a copy
367  * of the tcpiphdr at ti and send directly to the addressed host.
368  * This is used to force keep alive messages out using the TCP
369  * template for a connection.  If flags are given then we send
370  * a message back to the TCP which originated the * segment ti,
371  * and discard the mbuf containing it and any other attached mbufs.
372  *
373  * In any case the ack and sequence number of the transmitted
374  * segment are as specified by the parameters.
375  *
376  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
377  */
378 void
379 tcp_respond(tp, ipgen, th, m, ack, seq, flags)
380 	struct tcpcb *tp;
381 	void *ipgen;
382 	struct tcphdr *th;
383 	struct mbuf *m;
384 	tcp_seq ack, seq;
385 	int flags;
386 {
387 	int tlen;
388 	int win = 0;
389 	struct route *ro = 0;
390 	struct route sro;
391 	struct ip *ip;
392 	struct tcphdr *nth;
393 #ifdef INET6
394 	struct route_in6 *ro6 = 0;
395 	struct route_in6 sro6;
396 	struct ip6_hdr *ip6;
397 	int isipv6;
398 #endif /* INET6 */
399 	int ipflags = 0;
400 
401 #ifdef INET6
402 	isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6;
403 	ip6 = ipgen;
404 #endif /* INET6 */
405 	ip = ipgen;
406 
407 	if (tp) {
408 		if (!(flags & TH_RST)) {
409 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
410 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
411 				win = (long)TCP_MAXWIN << tp->rcv_scale;
412 		}
413 #ifdef INET6
414 		if (isipv6)
415 			ro6 = &tp->t_inpcb->in6p_route;
416 		else
417 #endif /* INET6 */
418 		ro = &tp->t_inpcb->inp_route;
419 	} else {
420 #ifdef INET6
421 		if (isipv6) {
422 			ro6 = &sro6;
423 			bzero(ro6, sizeof *ro6);
424 		} else
425 #endif /* INET6 */
426 	      {
427 		ro = &sro;
428 		bzero(ro, sizeof *ro);
429 	      }
430 	}
431 	if (m == 0) {
432 		m = m_gethdr(M_DONTWAIT, MT_HEADER);
433 		if (m == NULL)
434 			return;
435 		tlen = 0;
436 		m->m_data += max_linkhdr;
437 #ifdef INET6
438 		if (isipv6) {
439 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
440 			      sizeof(struct ip6_hdr));
441 			ip6 = mtod(m, struct ip6_hdr *);
442 			nth = (struct tcphdr *)(ip6 + 1);
443 		} else
444 #endif /* INET6 */
445 	      {
446 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
447 		ip = mtod(m, struct ip *);
448 		nth = (struct tcphdr *)(ip + 1);
449 	      }
450 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
451 		flags = TH_ACK;
452 	} else {
453 		m_freem(m->m_next);
454 		m->m_next = 0;
455 		m->m_data = (caddr_t)ipgen;
456 		/* m_len is set later */
457 		tlen = 0;
458 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
459 #ifdef INET6
460 		if (isipv6) {
461 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
462 			nth = (struct tcphdr *)(ip6 + 1);
463 		} else
464 #endif /* INET6 */
465 	      {
466 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
467 		nth = (struct tcphdr *)(ip + 1);
468 	      }
469 		if (th != nth) {
470 			/*
471 			 * this is usually a case when an extension header
472 			 * exists between the IPv6 header and the
473 			 * TCP header.
474 			 */
475 			nth->th_sport = th->th_sport;
476 			nth->th_dport = th->th_dport;
477 		}
478 		xchg(nth->th_dport, nth->th_sport, n_short);
479 #undef xchg
480 	}
481 #ifdef INET6
482 	if (isipv6) {
483 		ip6->ip6_flow = 0;
484 		ip6->ip6_vfc = IPV6_VERSION;
485 		ip6->ip6_nxt = IPPROTO_TCP;
486 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
487 						tlen));
488 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
489 	} else
490 #endif
491       {
492 	tlen += sizeof (struct tcpiphdr);
493 	ip->ip_len = tlen;
494 	ip->ip_ttl = ip_defttl;
495       }
496 	m->m_len = tlen;
497 	m->m_pkthdr.len = tlen;
498 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
499 	nth->th_seq = htonl(seq);
500 	nth->th_ack = htonl(ack);
501 	nth->th_x2 = 0;
502 	nth->th_off = sizeof (struct tcphdr) >> 2;
503 	nth->th_flags = flags;
504 	if (tp)
505 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
506 	else
507 		nth->th_win = htons((u_short)win);
508 	nth->th_urp = 0;
509 #ifdef INET6
510 	if (isipv6) {
511 		nth->th_sum = 0;
512 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
513 					sizeof(struct ip6_hdr),
514 					tlen - sizeof(struct ip6_hdr));
515 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
516 					       ro6 && ro6->ro_rt ?
517 					       ro6->ro_rt->rt_ifp :
518 					       NULL);
519 	} else
520 #endif /* INET6 */
521       {
522         nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
523 	    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
524         m->m_pkthdr.csum_flags = CSUM_TCP;
525         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
526       }
527 #ifdef TCPDEBUG
528 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
529 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
530 #endif
531 #ifdef INET6
532 	if (isipv6) {
533 		(void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
534 			tp ? tp->t_inpcb : NULL);
535 		if (ro6 == &sro6 && ro6->ro_rt) {
536 			RTFREE(ro6->ro_rt);
537 			ro6->ro_rt = NULL;
538 		}
539 	} else
540 #endif /* INET6 */
541       {
542 	(void) ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
543 	if (ro == &sro && ro->ro_rt) {
544 		RTFREE(ro->ro_rt);
545 		ro->ro_rt = NULL;
546 	}
547       }
548 }
549 
550 /*
551  * Create a new TCP control block, making an
552  * empty reassembly queue and hooking it to the argument
553  * protocol control block.  The `inp' parameter must have
554  * come from the zone allocator set up in tcp_init().
555  */
556 struct tcpcb *
557 tcp_newtcpcb(inp)
558 	struct inpcb *inp;
559 {
560 	struct inp_tp *it;
561 	struct tcpcb *tp;
562 #ifdef INET6
563 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
564 #endif /* INET6 */
565 
566 	it = (struct inp_tp *)inp;
567 	tp = &it->tcb;
568 	bzero((char *) tp, sizeof(struct tcpcb));
569 	LIST_INIT(&tp->t_segq);
570 	tp->t_maxseg = tp->t_maxopd =
571 #ifdef INET6
572 		isipv6 ? tcp_v6mssdflt :
573 #endif /* INET6 */
574 		tcp_mssdflt;
575 
576 	/* Set up our timeouts. */
577 	callout_init(tp->tt_rexmt = &it->inp_tp_rexmt);
578 	callout_init(tp->tt_persist = &it->inp_tp_persist);
579 	callout_init(tp->tt_keep = &it->inp_tp_keep);
580 	callout_init(tp->tt_2msl = &it->inp_tp_2msl);
581 	callout_init(tp->tt_delack = &it->inp_tp_delack);
582 
583 	if (tcp_do_rfc1323)
584 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
585 	if (tcp_do_rfc1644)
586 		tp->t_flags |= TF_REQ_CC;
587 	tp->t_inpcb = inp;	/* XXX */
588 	/*
589 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
590 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
591 	 * reasonable initial retransmit time.
592 	 */
593 	tp->t_srtt = TCPTV_SRTTBASE;
594 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
595 	tp->t_rttmin = tcp_rexmit_min;
596 	tp->t_rxtcur = TCPTV_RTOBASE;
597 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
598 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
599 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
600 	tp->t_rcvtime = ticks;
601 	tp->t_bw_rtttime = ticks;
602         /*
603 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
604 	 * because the socket may be bound to an IPv6 wildcard address,
605 	 * which may match an IPv4-mapped IPv6 address.
606 	 */
607 	inp->inp_ip_ttl = ip_defttl;
608 	inp->inp_ppcb = (caddr_t)tp;
609 	return (tp);		/* XXX */
610 }
611 
612 /*
613  * Drop a TCP connection, reporting
614  * the specified error.  If connection is synchronized,
615  * then send a RST to peer.
616  */
617 struct tcpcb *
618 tcp_drop(tp, errno)
619 	struct tcpcb *tp;
620 	int errno;
621 {
622 	struct socket *so = tp->t_inpcb->inp_socket;
623 
624 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
625 		tp->t_state = TCPS_CLOSED;
626 		(void) tcp_output(tp);
627 		tcpstat.tcps_drops++;
628 	} else
629 		tcpstat.tcps_conndrops++;
630 	if (errno == ETIMEDOUT && tp->t_softerror)
631 		errno = tp->t_softerror;
632 	so->so_error = errno;
633 	return (tcp_close(tp));
634 }
635 
636 /*
637  * Close a TCP control block:
638  *	discard all space held by the tcp
639  *	discard internet protocol block
640  *	wake up any sleepers
641  */
642 struct tcpcb *
643 tcp_close(tp)
644 	struct tcpcb *tp;
645 {
646 	struct tseg_qent *q;
647 	struct inpcb *inp = tp->t_inpcb;
648 	struct socket *so = inp->inp_socket;
649 #ifdef INET6
650 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
651 #endif /* INET6 */
652 	struct rtentry *rt;
653 	int dosavessthresh;
654 
655 	/*
656 	 * Make sure that all of our timers are stopped before we
657 	 * delete the PCB.
658 	 */
659 	callout_stop(tp->tt_rexmt);
660 	callout_stop(tp->tt_persist);
661 	callout_stop(tp->tt_keep);
662 	callout_stop(tp->tt_2msl);
663 	callout_stop(tp->tt_delack);
664 
665 	/*
666 	 * If we got enough samples through the srtt filter,
667 	 * save the rtt and rttvar in the routing entry.
668 	 * 'Enough' is arbitrarily defined as the 16 samples.
669 	 * 16 samples is enough for the srtt filter to converge
670 	 * to within 5% of the correct value; fewer samples and
671 	 * we could save a very bogus rtt.
672 	 *
673 	 * Don't update the default route's characteristics and don't
674 	 * update anything that the user "locked".
675 	 */
676 	if (tp->t_rttupdated >= 16) {
677 		u_long i = 0;
678 #ifdef INET6
679 		if (isipv6) {
680 			struct sockaddr_in6 *sin6;
681 
682 			if ((rt = inp->in6p_route.ro_rt) == NULL)
683 				goto no_valid_rt;
684 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
685 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
686 				goto no_valid_rt;
687 		}
688 		else
689 #endif /* INET6 */
690 		if ((rt = inp->inp_route.ro_rt) == NULL ||
691 		    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr
692 		    == INADDR_ANY)
693 			goto no_valid_rt;
694 
695 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
696 			i = tp->t_srtt *
697 			    (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
698 			if (rt->rt_rmx.rmx_rtt && i)
699 				/*
700 				 * filter this update to half the old & half
701 				 * the new values, converting scale.
702 				 * See route.h and tcp_var.h for a
703 				 * description of the scaling constants.
704 				 */
705 				rt->rt_rmx.rmx_rtt =
706 				    (rt->rt_rmx.rmx_rtt + i) / 2;
707 			else
708 				rt->rt_rmx.rmx_rtt = i;
709 			tcpstat.tcps_cachedrtt++;
710 		}
711 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
712 			i = tp->t_rttvar *
713 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
714 			if (rt->rt_rmx.rmx_rttvar && i)
715 				rt->rt_rmx.rmx_rttvar =
716 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
717 			else
718 				rt->rt_rmx.rmx_rttvar = i;
719 			tcpstat.tcps_cachedrttvar++;
720 		}
721 		/*
722 		 * The old comment here said:
723 		 * update the pipelimit (ssthresh) if it has been updated
724 		 * already or if a pipesize was specified & the threshhold
725 		 * got below half the pipesize.  I.e., wait for bad news
726 		 * before we start updating, then update on both good
727 		 * and bad news.
728 		 *
729 		 * But we want to save the ssthresh even if no pipesize is
730 		 * specified explicitly in the route, because such
731 		 * connections still have an implicit pipesize specified
732 		 * by the global tcp_sendspace.  In the absence of a reliable
733 		 * way to calculate the pipesize, it will have to do.
734 		 */
735 		i = tp->snd_ssthresh;
736 		if (rt->rt_rmx.rmx_sendpipe != 0)
737 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
738 		else
739 			dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
740 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
741 		     i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
742 		    || dosavessthresh) {
743 			/*
744 			 * convert the limit from user data bytes to
745 			 * packets then to packet data bytes.
746 			 */
747 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
748 			if (i < 2)
749 				i = 2;
750 			i *= (u_long)(tp->t_maxseg +
751 #ifdef INET6
752 				      (isipv6 ? sizeof (struct ip6_hdr) +
753 					       sizeof (struct tcphdr) :
754 #endif
755 				       sizeof (struct tcpiphdr)
756 #ifdef INET6
757 				       )
758 #endif
759 				      );
760 			if (rt->rt_rmx.rmx_ssthresh)
761 				rt->rt_rmx.rmx_ssthresh =
762 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
763 			else
764 				rt->rt_rmx.rmx_ssthresh = i;
765 			tcpstat.tcps_cachedssthresh++;
766 		}
767 	}
768     no_valid_rt:
769 	/* free the reassembly queue, if any */
770 	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
771 		LIST_REMOVE(q, tqe_q);
772 		m_freem(q->tqe_m);
773 		FREE(q, M_TSEGQ);
774 		tcp_reass_qsize--;
775 	}
776 	inp->inp_ppcb = NULL;
777 	soisdisconnected(so);
778 #ifdef INET6
779 	if (INP_CHECK_SOCKAF(so, AF_INET6))
780 		in6_pcbdetach(inp);
781 	else
782 #endif /* INET6 */
783 	in_pcbdetach(inp);
784 	tcpstat.tcps_closed++;
785 	return ((struct tcpcb *)0);
786 }
787 
788 void
789 tcp_drain()
790 {
791 	struct inpcb *inpb;
792 	struct tcpcb *tcpb;
793 	struct tseg_qent *te;
794 	int cpu;
795 
796 	if (!do_tcpdrain)
797 		return;
798 
799 	/*
800 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
801 	 * if there is one...
802 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
803 	 *      reassembly queue should be flushed, but in a situation
804 	 * 	where we're really low on mbufs, this is potentially
805 	 *  	usefull.
806 	 */
807 	for (cpu = 0; cpu < ncpus2; cpu++) {
808 		LIST_FOREACH(inpb, &tcbinfo[cpu].listhead, inp_list) {
809 			if ((tcpb = intotcpcb(inpb))) {
810 				while ((te = LIST_FIRST(&tcpb->t_segq))
811 				    != NULL) {
812 					LIST_REMOVE(te, tqe_q);
813 					m_freem(te->tqe_m);
814 					FREE(te, M_TSEGQ);
815 					tcp_reass_qsize--;
816 				}
817 			}
818 		}
819 	}
820 }
821 
822 /*
823  * Notify a tcp user of an asynchronous error;
824  * store error as soft error, but wake up user
825  * (for now, won't do anything until can select for soft error).
826  *
827  * Do not wake up user since there currently is no mechanism for
828  * reporting soft errors (yet - a kqueue filter may be added).
829  */
830 static void
831 tcp_notify(inp, error)
832 	struct inpcb *inp;
833 	int error;
834 {
835 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
836 
837 	/*
838 	 * Ignore some errors if we are hooked up.
839 	 * If connection hasn't completed, has retransmitted several times,
840 	 * and receives a second error, give up now.  This is better
841 	 * than waiting a long time to establish a connection that
842 	 * can never complete.
843 	 */
844 	if (tp->t_state == TCPS_ESTABLISHED &&
845 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
846 	      error == EHOSTDOWN)) {
847 		return;
848 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
849 	    tp->t_softerror)
850 		tcp_drop(tp, error);
851 	else
852 		tp->t_softerror = error;
853 #if 0
854 	wakeup((caddr_t) &so->so_timeo);
855 	sorwakeup(so);
856 	sowwakeup(so);
857 #endif
858 }
859 
860 static int
861 tcp_pcblist(SYSCTL_HANDLER_ARGS)
862 {
863 	int error, i, n, s;
864 	struct inpcb *inp, **inp_list;
865 	inp_gen_t gencnt;
866 	struct xinpgen xig;
867 
868 	/*
869 	 * The process of preparing the TCB list is too time-consuming and
870 	 * resource-intensive to repeat twice on every request.
871 	 */
872 	if (req->oldptr == 0) {
873 		n = tcbinfo[mycpu->gd_cpuid].ipi_count;
874 		req->oldidx = 2 * (sizeof xig)
875 			+ (n + n/8) * sizeof(struct xtcpcb);
876 		return 0;
877 	}
878 
879 	if (req->newptr != 0)
880 		return EPERM;
881 
882 	/*
883 	 * OK, now we're committed to doing something.
884 	 */
885 	s = splnet();
886 	gencnt = tcbinfo[mycpu->gd_cpuid].ipi_gencnt;
887 	n = tcbinfo[mycpu->gd_cpuid].ipi_count;
888 	splx(s);
889 
890 	xig.xig_len = sizeof xig;
891 	xig.xig_count = n;
892 	xig.xig_gen = gencnt;
893 	xig.xig_sogen = so_gencnt;
894 	error = SYSCTL_OUT(req, &xig, sizeof xig);
895 	if (error)
896 		return error;
897 
898 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
899 	if (inp_list == 0)
900 		return ENOMEM;
901 
902 	s = splnet();
903 	for (inp = LIST_FIRST(&tcbinfo[mycpu->gd_cpuid].listhead), i = 0;
904 	    inp && i < n; inp = LIST_NEXT(inp, inp_list)) {
905 		if (inp->inp_gencnt <= gencnt && !prison_xinpcb(req->td, inp))
906 			inp_list[i++] = inp;
907 	}
908 	splx(s);
909 	n = i;
910 
911 	error = 0;
912 	for (i = 0; i < n; i++) {
913 		inp = inp_list[i];
914 		if (inp->inp_gencnt <= gencnt) {
915 			struct xtcpcb xt;
916 			caddr_t inp_ppcb;
917 			xt.xt_len = sizeof xt;
918 			/* XXX should avoid extra copy */
919 			bcopy(inp, &xt.xt_inp, sizeof *inp);
920 			inp_ppcb = inp->inp_ppcb;
921 			if (inp_ppcb != NULL)
922 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
923 			else
924 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
925 			if (inp->inp_socket)
926 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
927 			error = SYSCTL_OUT(req, &xt, sizeof xt);
928 		}
929 	}
930 	if (!error) {
931 		/*
932 		 * Give the user an updated idea of our state.
933 		 * If the generation differs from what we told
934 		 * her before, she knows that something happened
935 		 * while we were processing this request, and it
936 		 * might be necessary to retry.
937 		 */
938 		s = splnet();
939 		xig.xig_gen = tcbinfo[mycpu->gd_cpuid].ipi_gencnt;
940 		xig.xig_sogen = so_gencnt;
941 		xig.xig_count = tcbinfo[mycpu->gd_cpuid].ipi_count;
942 		splx(s);
943 		error = SYSCTL_OUT(req, &xig, sizeof xig);
944 	}
945 	free(inp_list, M_TEMP);
946 	return error;
947 }
948 
949 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
950 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
951 
952 static int
953 tcp_getcred(SYSCTL_HANDLER_ARGS)
954 {
955 	struct sockaddr_in addrs[2];
956 	struct inpcb *inp;
957 	int cpu;
958 	int error, s;
959 
960 	error = suser(req->td);
961 	if (error)
962 		return (error);
963 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
964 	if (error)
965 		return (error);
966 	s = splnet();
967 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
968 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
969 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
970 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
971 	if (inp == NULL || inp->inp_socket == NULL) {
972 		error = ENOENT;
973 		goto out;
974 	}
975 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
976 out:
977 	splx(s);
978 	return (error);
979 }
980 
981 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW,
982     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
983 
984 #ifdef INET6
985 static int
986 tcp6_getcred(SYSCTL_HANDLER_ARGS)
987 {
988 	struct sockaddr_in6 addrs[2];
989 	struct inpcb *inp;
990 	int error, s, mapped = 0;
991 
992 	error = suser(req->td);
993 	if (error)
994 		return (error);
995 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
996 	if (error)
997 		return (error);
998 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
999 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1000 			mapped = 1;
1001 		else
1002 			return (EINVAL);
1003 	}
1004 	s = splnet();
1005 	if (mapped == 1) {
1006 		inp = in_pcblookup_hash(&tcbinfo[0],
1007 		    *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1008 		    addrs[1].sin6_port,
1009 		    *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1010 		    addrs[0].sin6_port,
1011 		    0, NULL);
1012 	} else {
1013 		inp = in6_pcblookup_hash(&tcbinfo[0],
1014 		    &addrs[1].sin6_addr, addrs[1].sin6_port,
1015 		    &addrs[0].sin6_addr, addrs[0].sin6_port,
1016 		    0, NULL);
1017 	}
1018 	if (inp == NULL || inp->inp_socket == NULL) {
1019 		error = ENOENT;
1020 		goto out;
1021 	}
1022 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred,
1023 			   sizeof(struct ucred));
1024 out:
1025 	splx(s);
1026 	return (error);
1027 }
1028 
1029 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW,
1030 	    0, 0,
1031 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1032 #endif
1033 
1034 
1035 void
1036 tcp_ctlinput(cmd, sa, vip)
1037 	int cmd;
1038 	struct sockaddr *sa;
1039 	void *vip;
1040 {
1041 	struct ip *ip = vip;
1042 	struct tcphdr *th;
1043 	struct in_addr faddr;
1044 	struct inpcb *inp;
1045 	struct tcpcb *tp;
1046 	void (*notify) (struct inpcb *, int) = tcp_notify;
1047 	tcp_seq icmp_seq;
1048 	int cpu;
1049 	int s;
1050 
1051 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1052 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1053 		return;
1054 
1055 	if (cmd == PRC_QUENCH)
1056 		notify = tcp_quench;
1057 	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1058 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1059 		notify = tcp_drop_syn_sent;
1060 	else if (cmd == PRC_MSGSIZE)
1061 		notify = tcp_mtudisc;
1062 	else if (PRC_IS_REDIRECT(cmd)) {
1063 		ip = 0;
1064 		notify = in_rtchange;
1065 	} else if (cmd == PRC_HOSTDEAD)
1066 		ip = 0;
1067 	else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
1068 		return;
1069 	if (ip) {
1070 		s = splnet();
1071 		th = (struct tcphdr *)((caddr_t)ip
1072 				       + (IP_VHL_HL(ip->ip_vhl) << 2));
1073 		cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
1074 		    ip->ip_src.s_addr, th->th_sport);
1075 		inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
1076 		    ip->ip_src, th->th_sport, 0, NULL);
1077 		if (inp != NULL && inp->inp_socket != NULL) {
1078 			icmp_seq = htonl(th->th_seq);
1079 			tp = intotcpcb(inp);
1080 			if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1081 			    SEQ_LT(icmp_seq, tp->snd_max))
1082 				(*notify)(inp, inetctlerrmap[cmd]);
1083 		} else {
1084 			struct in_conninfo inc;
1085 
1086 			inc.inc_fport = th->th_dport;
1087 			inc.inc_lport = th->th_sport;
1088 			inc.inc_faddr = faddr;
1089 			inc.inc_laddr = ip->ip_src;
1090 #ifdef INET6
1091 			inc.inc_isipv6 = 0;
1092 #endif
1093 			syncache_unreach(&inc, th);
1094 		}
1095 		splx(s);
1096 	} else {
1097 		for (cpu = 0; cpu < ncpus2; cpu++)
1098 			in_pcbnotifyall(&tcbinfo[cpu].listhead, faddr,
1099 					inetctlerrmap[cmd], notify);
1100 	}
1101 }
1102 
1103 #ifdef INET6
1104 void
1105 tcp6_ctlinput(cmd, sa, d)
1106 	int cmd;
1107 	struct sockaddr *sa;
1108 	void *d;
1109 {
1110 	struct tcphdr th;
1111 	void (*notify) (struct inpcb *, int) = tcp_notify;
1112 	struct ip6_hdr *ip6;
1113 	struct mbuf *m;
1114 	struct ip6ctlparam *ip6cp = NULL;
1115 	const struct sockaddr_in6 *sa6_src = NULL;
1116 	int off;
1117 	struct tcp_portonly {
1118 		u_int16_t th_sport;
1119 		u_int16_t th_dport;
1120 	} *thp;
1121 
1122 	if (sa->sa_family != AF_INET6 ||
1123 	    sa->sa_len != sizeof(struct sockaddr_in6))
1124 		return;
1125 
1126 	if (cmd == PRC_QUENCH)
1127 		notify = tcp_quench;
1128 	else if (cmd == PRC_MSGSIZE)
1129 		notify = tcp_mtudisc;
1130 	else if (!PRC_IS_REDIRECT(cmd) &&
1131 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1132 		return;
1133 
1134 	/* if the parameter is from icmp6, decode it. */
1135 	if (d != NULL) {
1136 		ip6cp = (struct ip6ctlparam *)d;
1137 		m = ip6cp->ip6c_m;
1138 		ip6 = ip6cp->ip6c_ip6;
1139 		off = ip6cp->ip6c_off;
1140 		sa6_src = ip6cp->ip6c_src;
1141 	} else {
1142 		m = NULL;
1143 		ip6 = NULL;
1144 		off = 0;	/* fool gcc */
1145 		sa6_src = &sa6_any;
1146 	}
1147 
1148 	if (ip6) {
1149 		struct in_conninfo inc;
1150 		/*
1151 		 * XXX: We assume that when IPV6 is non NULL,
1152 		 * M and OFF are valid.
1153 		 */
1154 
1155 		/* check if we can safely examine src and dst ports */
1156 		if (m->m_pkthdr.len < off + sizeof(*thp))
1157 			return;
1158 
1159 		bzero(&th, sizeof(th));
1160 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1161 
1162 		in6_pcbnotify(&tcbinfo[0].listhead, sa, th.th_dport,
1163 		    (struct sockaddr *)ip6cp->ip6c_src,
1164 		    th.th_sport, cmd, notify);
1165 
1166 		inc.inc_fport = th.th_dport;
1167 		inc.inc_lport = th.th_sport;
1168 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1169 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1170 		inc.inc_isipv6 = 1;
1171 		syncache_unreach(&inc, &th);
1172 	} else
1173 		in6_pcbnotify(&tcbinfo[0].listhead, sa, 0,
1174 		    (const struct sockaddr *)sa6_src, 0, cmd, notify);
1175 }
1176 #endif /* INET6 */
1177 
1178 
1179 /*
1180  * Following is where TCP initial sequence number generation occurs.
1181  *
1182  * There are two places where we must use initial sequence numbers:
1183  * 1.  In SYN-ACK packets.
1184  * 2.  In SYN packets.
1185  *
1186  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1187  * tcp_syncache.c for details.
1188  *
1189  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1190  * depends on this property.  In addition, these ISNs should be
1191  * unguessable so as to prevent connection hijacking.  To satisfy
1192  * the requirements of this situation, the algorithm outlined in
1193  * RFC 1948 is used to generate sequence numbers.
1194  *
1195  * Implementation details:
1196  *
1197  * Time is based off the system timer, and is corrected so that it
1198  * increases by one megabyte per second.  This allows for proper
1199  * recycling on high speed LANs while still leaving over an hour
1200  * before rollover.
1201  *
1202  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1203  * between seeding of isn_secret.  This is normally set to zero,
1204  * as reseeding should not be necessary.
1205  *
1206  */
1207 
1208 #define ISN_BYTES_PER_SECOND 1048576
1209 
1210 u_char isn_secret[32];
1211 int isn_last_reseed;
1212 MD5_CTX isn_ctx;
1213 
1214 tcp_seq
1215 tcp_new_isn(tp)
1216 	struct tcpcb *tp;
1217 {
1218 	u_int32_t md5_buffer[4];
1219 	tcp_seq new_isn;
1220 
1221 	/* Seed if this is the first use, reseed if requested. */
1222 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1223 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1224 		< (u_int)ticks))) {
1225 		read_random_unlimited(&isn_secret, sizeof(isn_secret));
1226 		isn_last_reseed = ticks;
1227 	}
1228 
1229 	/* Compute the md5 hash and return the ISN. */
1230 	MD5Init(&isn_ctx);
1231 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1232 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1233 #ifdef INET6
1234 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1235 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1236 			  sizeof(struct in6_addr));
1237 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1238 			  sizeof(struct in6_addr));
1239 	} else
1240 #endif
1241 	{
1242 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1243 			  sizeof(struct in_addr));
1244 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1245 			  sizeof(struct in_addr));
1246 	}
1247 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1248 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1249 	new_isn = (tcp_seq) md5_buffer[0];
1250 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1251 	return new_isn;
1252 }
1253 
1254 /*
1255  * When a source quench is received, close congestion window
1256  * to one segment.  We will gradually open it again as we proceed.
1257  */
1258 void
1259 tcp_quench(inp, errno)
1260 	struct inpcb *inp;
1261 	int errno;
1262 {
1263 	struct tcpcb *tp = intotcpcb(inp);
1264 
1265 	if (tp)
1266 		tp->snd_cwnd = tp->t_maxseg;
1267 }
1268 
1269 /*
1270  * When a specific ICMP unreachable message is received and the
1271  * connection state is SYN-SENT, drop the connection.  This behavior
1272  * is controlled by the icmp_may_rst sysctl.
1273  */
1274 void
1275 tcp_drop_syn_sent(inp, errno)
1276 	struct inpcb *inp;
1277 	int errno;
1278 {
1279 	struct tcpcb *tp = intotcpcb(inp);
1280 
1281 	if (tp && tp->t_state == TCPS_SYN_SENT)
1282 		tcp_drop(tp, errno);
1283 }
1284 
1285 /*
1286  * When `need fragmentation' ICMP is received, update our idea of the MSS
1287  * based on the new value in the route.  Also nudge TCP to send something,
1288  * since we know the packet we just sent was dropped.
1289  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1290  */
1291 void
1292 tcp_mtudisc(inp, errno)
1293 	struct inpcb *inp;
1294 	int errno;
1295 {
1296 	struct tcpcb *tp = intotcpcb(inp);
1297 	struct rtentry *rt;
1298 	struct rmxp_tao *taop;
1299 	struct socket *so = inp->inp_socket;
1300 	int offered;
1301 	int mss;
1302 #ifdef INET6
1303 	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1304 #endif /* INET6 */
1305 
1306 	if (tp) {
1307 #ifdef INET6
1308 		if (isipv6)
1309 			rt = tcp_rtlookup6(&inp->inp_inc);
1310 		else
1311 #endif /* INET6 */
1312 		rt = tcp_rtlookup(&inp->inp_inc);
1313 		if (!rt || !rt->rt_rmx.rmx_mtu) {
1314 			tp->t_maxopd = tp->t_maxseg =
1315 #ifdef INET6
1316 				isipv6 ? tcp_v6mssdflt :
1317 #endif /* INET6 */
1318 				tcp_mssdflt;
1319 			return;
1320 		}
1321 		taop = rmx_taop(rt->rt_rmx);
1322 		offered = taop->tao_mssopt;
1323 		mss = rt->rt_rmx.rmx_mtu -
1324 #ifdef INET6
1325 			(isipv6 ?
1326 			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1327 #endif /* INET6 */
1328 			 sizeof(struct tcpiphdr)
1329 #ifdef INET6
1330 			 )
1331 #endif /* INET6 */
1332 			;
1333 
1334 		if (offered)
1335 			mss = min(mss, offered);
1336 		/*
1337 		 * XXX - The above conditional probably violates the TCP
1338 		 * spec.  The problem is that, since we don't know the
1339 		 * other end's MSS, we are supposed to use a conservative
1340 		 * default.  But, if we do that, then MTU discovery will
1341 		 * never actually take place, because the conservative
1342 		 * default is much less than the MTUs typically seen
1343 		 * on the Internet today.  For the moment, we'll sweep
1344 		 * this under the carpet.
1345 		 *
1346 		 * The conservative default might not actually be a problem
1347 		 * if the only case this occurs is when sending an initial
1348 		 * SYN with options and data to a host we've never talked
1349 		 * to before.  Then, they will reply with an MSS value which
1350 		 * will get recorded and the new parameters should get
1351 		 * recomputed.  For Further Study.
1352 		 */
1353 		if (tp->t_maxopd <= mss)
1354 			return;
1355 		tp->t_maxopd = mss;
1356 
1357 		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1358 		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1359 			mss -= TCPOLEN_TSTAMP_APPA;
1360 		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1361 		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1362 			mss -= TCPOLEN_CC_APPA;
1363 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1364 		if (mss > MCLBYTES)
1365 			mss &= ~(MCLBYTES-1);
1366 #else
1367 		if (mss > MCLBYTES)
1368 			mss = mss / MCLBYTES * MCLBYTES;
1369 #endif
1370 		if (so->so_snd.sb_hiwat < mss)
1371 			mss = so->so_snd.sb_hiwat;
1372 
1373 		tp->t_maxseg = mss;
1374 
1375 		tcpstat.tcps_mturesent++;
1376 		tp->t_rtttime = 0;
1377 		tp->snd_nxt = tp->snd_una;
1378 		tcp_output(tp);
1379 	}
1380 }
1381 
1382 /*
1383  * Look-up the routing entry to the peer of this inpcb.  If no route
1384  * is found and it cannot be allocated the return NULL.  This routine
1385  * is called by TCP routines that access the rmx structure and by tcp_mss
1386  * to get the interface MTU.
1387  */
1388 struct rtentry *
1389 tcp_rtlookup(inc)
1390 	struct in_conninfo *inc;
1391 {
1392 	struct route *ro;
1393 	struct rtentry *rt;
1394 
1395 	ro = &inc->inc_route;
1396 	rt = ro->ro_rt;
1397 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1398 		/* No route yet, so try to acquire one */
1399 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1400 			ro->ro_dst.sa_family = AF_INET;
1401 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1402 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1403 			    inc->inc_faddr;
1404 			rtalloc(ro);
1405 			rt = ro->ro_rt;
1406 		}
1407 	}
1408 	return rt;
1409 }
1410 
1411 #ifdef INET6
1412 struct rtentry *
1413 tcp_rtlookup6(inc)
1414 	struct in_conninfo *inc;
1415 {
1416 	struct route_in6 *ro6;
1417 	struct rtentry *rt;
1418 
1419 	ro6 = &inc->inc6_route;
1420 	rt = ro6->ro_rt;
1421 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1422 		/* No route yet, so try to acquire one */
1423 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1424 			ro6->ro_dst.sin6_family = AF_INET6;
1425 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1426 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1427 			rtalloc((struct route *)ro6);
1428 			rt = ro6->ro_rt;
1429 		}
1430 	}
1431 	return rt;
1432 }
1433 #endif /* INET6 */
1434 
1435 #ifdef IPSEC
1436 /* compute ESP/AH header size for TCP, including outer IP header. */
1437 size_t
1438 ipsec_hdrsiz_tcp(tp)
1439 	struct tcpcb *tp;
1440 {
1441 	struct inpcb *inp;
1442 	struct mbuf *m;
1443 	size_t hdrsiz;
1444 	struct ip *ip;
1445 #ifdef INET6
1446 	struct ip6_hdr *ip6;
1447 #endif /* INET6 */
1448 	struct tcphdr *th;
1449 
1450 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1451 		return 0;
1452 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1453 	if (!m)
1454 		return 0;
1455 
1456 #ifdef INET6
1457 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1458 		ip6 = mtod(m, struct ip6_hdr *);
1459 		th = (struct tcphdr *)(ip6 + 1);
1460 		m->m_pkthdr.len = m->m_len =
1461 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1462 		tcp_fillheaders(tp, ip6, th);
1463 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1464 	} else
1465 #endif /* INET6 */
1466       {
1467 	ip = mtod(m, struct ip *);
1468 	th = (struct tcphdr *)(ip + 1);
1469 	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1470 	tcp_fillheaders(tp, ip, th);
1471 	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1472       }
1473 
1474 	m_free(m);
1475 	return hdrsiz;
1476 }
1477 #endif /*IPSEC*/
1478 
1479 /*
1480  * Return a pointer to the cached information about the remote host.
1481  * The cached information is stored in the protocol specific part of
1482  * the route metrics.
1483  */
1484 struct rmxp_tao *
1485 tcp_gettaocache(inc)
1486 	struct in_conninfo *inc;
1487 {
1488 	struct rtentry *rt;
1489 
1490 #ifdef INET6
1491 	if (inc->inc_isipv6)
1492 		rt = tcp_rtlookup6(inc);
1493 	else
1494 #endif /* INET6 */
1495 	rt = tcp_rtlookup(inc);
1496 
1497 	/* Make sure this is a host route and is up. */
1498 	if (rt == NULL ||
1499 	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
1500 		return NULL;
1501 
1502 	return rmx_taop(rt->rt_rmx);
1503 }
1504 
1505 /*
1506  * Clear all the TAO cache entries, called from tcp_init.
1507  *
1508  * XXX
1509  * This routine is just an empty one, because we assume that the routing
1510  * routing tables are initialized at the same time when TCP, so there is
1511  * nothing in the cache left over.
1512  */
1513 static void
1514 tcp_cleartaocache()
1515 {
1516 }
1517 
1518 /*
1519  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1520  *
1521  * This code attempts to calculate the bandwidth-delay product as a
1522  * means of determining the optimal window size to maximize bandwidth,
1523  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1524  * routers.  This code also does a fairly good job keeping RTTs in check
1525  * across slow links like modems.  We implement an algorithm which is very
1526  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1527  * transmitter side of a TCP connection and so only effects the transmit
1528  * side of the connection.
1529  *
1530  * BACKGROUND:  TCP makes no provision for the management of buffer space
1531  * at the end points or at the intermediate routers and switches.  A TCP
1532  * stream, whether using NewReno or not, will eventually buffer as
1533  * many packets as it is able and the only reason this typically works is
1534  * due to the fairly small default buffers made available for a connection
1535  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1536  * scaling it is now fairly easy for even a single TCP connection to blow-out
1537  * all available buffer space not only on the local interface, but on
1538  * intermediate routers and switches as well.  NewReno makes a misguided
1539  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1540  * then backing off, then steadily increasing the window again until another
1541  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1542  * is only made worse as network loads increase and the idea of intentionally
1543  * blowing out network buffers is, frankly, a terrible way to manage network
1544  * resources.
1545  *
1546  * It is far better to limit the transmit window prior to the failure
1547  * condition being achieved.  There are two general ways to do this:  First
1548  * you can 'scan' through different transmit window sizes and locate the
1549  * point where the RTT stops increasing, indicating that you have filled the
1550  * pipe, then scan backwards until you note that RTT stops decreasing, then
1551  * repeat ad-infinitum.  This method works in principle but has severe
1552  * implementation issues due to RTT variances, timer granularity, and
1553  * instability in the algorithm which can lead to many false positives and
1554  * create oscillations as well as interact badly with other TCP streams
1555  * implementing the same algorithm.
1556  *
1557  * The second method is to limit the window to the bandwidth delay product
1558  * of the link.  This is the method we implement.  RTT variances and our
1559  * own manipulation of the congestion window, bwnd, can potentially
1560  * destabilize the algorithm.  For this reason we have to stabilize the
1561  * elements used to calculate the window.  We do this by using the minimum
1562  * observed RTT, the long term average of the observed bandwidth, and
1563  * by adding two segments worth of slop.  It isn't perfect but it is able
1564  * to react to changing conditions and gives us a very stable basis on
1565  * which to extend the algorithm.
1566  */
1567 void
1568 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1569 {
1570 	u_long bw;
1571 	u_long bwnd;
1572 	int save_ticks;
1573 
1574 	/*
1575 	 * If inflight_enable is disabled in the middle of a tcp connection,
1576 	 * make sure snd_bwnd is effectively disabled.
1577 	 */
1578 	if (tcp_inflight_enable == 0) {
1579 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1580 		tp->snd_bandwidth = 0;
1581 		return;
1582 	}
1583 
1584 	/*
1585 	 * Figure out the bandwidth.  Due to the tick granularity this
1586 	 * is a very rough number and it MUST be averaged over a fairly
1587 	 * long period of time.  XXX we need to take into account a link
1588 	 * that is not using all available bandwidth, but for now our
1589 	 * slop will ramp us up if this case occurs and the bandwidth later
1590 	 * increases.
1591 	 *
1592 	 * Note: if ticks rollover 'bw' may wind up negative.  We must
1593 	 * effectively reset t_bw_rtttime for this case.
1594 	 */
1595 	save_ticks = ticks;
1596 	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1597 		return;
1598 
1599 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1600 	    (save_ticks - tp->t_bw_rtttime);
1601 	tp->t_bw_rtttime = save_ticks;
1602 	tp->t_bw_rtseq = ack_seq;
1603 	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
1604 		return;
1605 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1606 
1607 	tp->snd_bandwidth = bw;
1608 
1609 	/*
1610 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1611 	 * segments.  The additional slop puts us squarely in the sweet
1612 	 * spot and also handles the bandwidth run-up case.  Without the
1613 	 * slop we could be locking ourselves into a lower bandwidth.
1614 	 *
1615 	 * Situations Handled:
1616 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1617 	 *	    high speed LANs, allowing larger TCP buffers to be
1618 	 *	    specified, and also does a good job preventing
1619 	 *	    over-queueing of packets over choke points like modems
1620 	 *	    (at least for the transmit side).
1621 	 *
1622 	 *	(2) Is able to handle changing network loads (bandwidth
1623 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1624 	 *	    increases).
1625 	 *
1626 	 *	(3) Theoretically should stabilize in the face of multiple
1627 	 *	    connections implementing the same algorithm (this may need
1628 	 *	    a little work).
1629 	 *
1630 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1631 	 *	    be adjusted with a sysctl but typically only needs to be on
1632 	 *	    very slow connections.  A value no smaller then 5 should
1633 	 *	    be used, but only reduce this default if you have no other
1634 	 *	    choice.
1635 	 */
1636 #define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1637 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * (int)tp->t_maxseg / 10;
1638 #undef USERTT
1639 
1640 	if (tcp_inflight_debug > 0) {
1641 		static int ltime;
1642 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1643 			ltime = ticks;
1644 			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1645 			    tp,
1646 			    bw,
1647 			    tp->t_rttbest,
1648 			    tp->t_srtt,
1649 			    bwnd
1650 			);
1651 		}
1652 	}
1653 	if ((long)bwnd < tcp_inflight_min)
1654 		bwnd = tcp_inflight_min;
1655 	if (bwnd > tcp_inflight_max)
1656 		bwnd = tcp_inflight_max;
1657 	if ((long)bwnd < tp->t_maxseg * 2)
1658 		bwnd = tp->t_maxseg * 2;
1659 	tp->snd_bwnd = bwnd;
1660 }
1661