xref: /dragonfly/sys/netinet/tcp_subr.c (revision bd611623)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
67  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
68  */
69 
70 #include "opt_compat.h"
71 #include "opt_inet.h"
72 #include "opt_inet6.h"
73 #include "opt_ipsec.h"
74 #include "opt_tcpdebug.h"
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/callout.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 #include <sys/malloc.h>
82 #include <sys/mpipe.h>
83 #include <sys/mbuf.h>
84 #ifdef INET6
85 #include <sys/domain.h>
86 #endif
87 #include <sys/proc.h>
88 #include <sys/priv.h>
89 #include <sys/socket.h>
90 #include <sys/socketops.h>
91 #include <sys/socketvar.h>
92 #include <sys/protosw.h>
93 #include <sys/random.h>
94 #include <sys/in_cksum.h>
95 #include <sys/ktr.h>
96 
97 #include <net/route.h>
98 #include <net/if.h>
99 #include <net/netisr.h>
100 
101 #define	_IP_VHL
102 #include <netinet/in.h>
103 #include <netinet/in_systm.h>
104 #include <netinet/ip.h>
105 #include <netinet/ip6.h>
106 #include <netinet/in_pcb.h>
107 #include <netinet6/in6_pcb.h>
108 #include <netinet/in_var.h>
109 #include <netinet/ip_var.h>
110 #include <netinet6/ip6_var.h>
111 #include <netinet/ip_icmp.h>
112 #ifdef INET6
113 #include <netinet/icmp6.h>
114 #endif
115 #include <netinet/tcp.h>
116 #include <netinet/tcp_fsm.h>
117 #include <netinet/tcp_seq.h>
118 #include <netinet/tcp_timer.h>
119 #include <netinet/tcp_timer2.h>
120 #include <netinet/tcp_var.h>
121 #include <netinet6/tcp6_var.h>
122 #include <netinet/tcpip.h>
123 #ifdef TCPDEBUG
124 #include <netinet/tcp_debug.h>
125 #endif
126 #include <netinet6/ip6protosw.h>
127 
128 #ifdef IPSEC
129 #include <netinet6/ipsec.h>
130 #include <netproto/key/key.h>
131 #ifdef INET6
132 #include <netinet6/ipsec6.h>
133 #endif
134 #endif
135 
136 #ifdef FAST_IPSEC
137 #include <netproto/ipsec/ipsec.h>
138 #ifdef INET6
139 #include <netproto/ipsec/ipsec6.h>
140 #endif
141 #define	IPSEC
142 #endif
143 
144 #include <sys/md5.h>
145 #include <machine/smp.h>
146 
147 #include <sys/msgport2.h>
148 #include <sys/mplock2.h>
149 #include <net/netmsg2.h>
150 
151 #if !defined(KTR_TCP)
152 #define KTR_TCP		KTR_ALL
153 #endif
154 /*
155 KTR_INFO_MASTER(tcp);
156 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
157 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
158 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
159 #define logtcp(name)	KTR_LOG(tcp_ ## name)
160 */
161 
162 #define TCP_IW_MAXSEGS_DFLT	4
163 #define TCP_IW_CAPSEGS_DFLT	3
164 
165 struct inpcbinfo tcbinfo[MAXCPU];
166 struct tcpcbackqhead tcpcbackq[MAXCPU];
167 
168 static struct lwkt_token tcp_port_token =
169 		LWKT_TOKEN_INITIALIZER(tcp_port_token);
170 
171 int tcp_mssdflt = TCP_MSS;
172 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
173     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
174 
175 #ifdef INET6
176 int tcp_v6mssdflt = TCP6_MSS;
177 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
178     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
179 #endif
180 
181 /*
182  * Minimum MSS we accept and use. This prevents DoS attacks where
183  * we are forced to a ridiculous low MSS like 20 and send hundreds
184  * of packets instead of one. The effect scales with the available
185  * bandwidth and quickly saturates the CPU and network interface
186  * with packet generation and sending. Set to zero to disable MINMSS
187  * checking. This setting prevents us from sending too small packets.
188  */
189 int tcp_minmss = TCP_MINMSS;
190 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
191     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
192 
193 #if 0
194 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
195 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
196     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
197 #endif
198 
199 int tcp_do_rfc1323 = 1;
200 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
201     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
202 
203 static int tcp_tcbhashsize = 0;
204 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
205      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
206 
207 static int do_tcpdrain = 1;
208 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
209      "Enable tcp_drain routine for extra help when low on mbufs");
210 
211 static int icmp_may_rst = 1;
212 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
213     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
214 
215 static int tcp_isn_reseed_interval = 0;
216 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
217     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
218 
219 /*
220  * TCP bandwidth limiting sysctls.  The inflight limiter is now turned on
221  * by default, but with generous values which should allow maximal
222  * bandwidth.  In particular, the slop defaults to 50 (5 packets).
223  *
224  * The reason for doing this is that the limiter is the only mechanism we
225  * have which seems to do a really good job preventing receiver RX rings
226  * on network interfaces from getting blown out.  Even though GigE/10GigE
227  * is supposed to flow control it looks like either it doesn't actually
228  * do it or Open Source drivers do not properly enable it.
229  *
230  * People using the limiter to reduce bottlenecks on slower WAN connections
231  * should set the slop to 20 (2 packets).
232  */
233 static int tcp_inflight_enable = 1;
234 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
235     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
236 
237 static int tcp_inflight_debug = 0;
238 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
239     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
240 
241 static int tcp_inflight_min = 6144;
242 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
243     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
244 
245 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
246 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
247     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
248 
249 static int tcp_inflight_stab = 50;
250 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
251     &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 3 packets)");
252 
253 static int tcp_do_rfc3390 = 1;
254 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
255     &tcp_do_rfc3390, 0,
256     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
257 
258 static u_long tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
259 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwmaxsegs, CTLFLAG_RW,
260     &tcp_iw_maxsegs, 0, "TCP IW segments max");
261 
262 static u_long tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
263 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwcapsegs, CTLFLAG_RW,
264     &tcp_iw_capsegs, 0, "TCP IW segments");
265 
266 int tcp_low_rtobase = 1;
267 SYSCTL_INT(_net_inet_tcp, OID_AUTO, low_rtobase, CTLFLAG_RW,
268     &tcp_low_rtobase, 0, "Lowering the Initial RTO (RFC 6298)");
269 
270 static int tcp_do_ncr = 1;
271 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr, CTLFLAG_RW,
272     &tcp_do_ncr, 0, "Non-Congestion Robustness (RFC 4653)");
273 
274 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
275 static struct malloc_pipe tcptemp_mpipe;
276 
277 static void tcp_willblock(void);
278 static void tcp_notify (struct inpcb *, int);
279 
280 struct tcp_stats tcpstats_percpu[MAXCPU];
281 
282 static int
283 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
284 {
285 	int cpu, error = 0;
286 
287 	for (cpu = 0; cpu < ncpus; ++cpu) {
288 		if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
289 					sizeof(struct tcp_stats))))
290 			break;
291 		if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
292 				       sizeof(struct tcp_stats))))
293 			break;
294 	}
295 
296 	return (error);
297 }
298 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
299     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
300 
301 /*
302  * Target size of TCP PCB hash tables. Must be a power of two.
303  *
304  * Note that this can be overridden by the kernel environment
305  * variable net.inet.tcp.tcbhashsize
306  */
307 #ifndef TCBHASHSIZE
308 #define	TCBHASHSIZE	512
309 #endif
310 
311 /*
312  * This is the actual shape of what we allocate using the zone
313  * allocator.  Doing it this way allows us to protect both structures
314  * using the same generation count, and also eliminates the overhead
315  * of allocating tcpcbs separately.  By hiding the structure here,
316  * we avoid changing most of the rest of the code (although it needs
317  * to be changed, eventually, for greater efficiency).
318  */
319 #define	ALIGNMENT	32
320 #define	ALIGNM1		(ALIGNMENT - 1)
321 struct	inp_tp {
322 	union {
323 		struct	inpcb inp;
324 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
325 	} inp_tp_u;
326 	struct	tcpcb tcb;
327 	struct	tcp_callout inp_tp_rexmt;
328 	struct	tcp_callout inp_tp_persist;
329 	struct	tcp_callout inp_tp_keep;
330 	struct	tcp_callout inp_tp_2msl;
331 	struct	tcp_callout inp_tp_delack;
332 	struct	netmsg_tcp_timer inp_tp_timermsg;
333 	struct	netmsg_base inp_tp_sndmore;
334 };
335 #undef ALIGNMENT
336 #undef ALIGNM1
337 
338 /*
339  * Tcp initialization
340  */
341 void
342 tcp_init(void)
343 {
344 	struct inpcbporthead *porthashbase;
345 	struct inpcbinfo *ticb;
346 	u_long porthashmask;
347 	int hashsize = TCBHASHSIZE;
348 	int cpu;
349 
350 	/*
351 	 * note: tcptemp is used for keepalives, and it is ok for an
352 	 * allocation to fail so do not specify MPF_INT.
353 	 */
354 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
355 		    25, -1, 0, NULL, NULL, NULL);
356 
357 	tcp_delacktime = TCPTV_DELACK;
358 	tcp_keepinit = TCPTV_KEEP_INIT;
359 	tcp_keepidle = TCPTV_KEEP_IDLE;
360 	tcp_keepintvl = TCPTV_KEEPINTVL;
361 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
362 	tcp_msl = TCPTV_MSL;
363 	tcp_rexmit_min = TCPTV_MIN;
364 	tcp_rexmit_slop = TCPTV_CPU_VAR;
365 
366 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
367 	if (!powerof2(hashsize)) {
368 		kprintf("WARNING: TCB hash size not a power of 2\n");
369 		hashsize = 512; /* safe default */
370 	}
371 	tcp_tcbhashsize = hashsize;
372 	porthashbase = hashinit(hashsize, M_PCB, &porthashmask);
373 
374 	for (cpu = 0; cpu < ncpus2; cpu++) {
375 		ticb = &tcbinfo[cpu];
376 		in_pcbinfo_init(ticb);
377 		ticb->cpu = cpu;
378 		ticb->hashbase = hashinit(hashsize, M_PCB,
379 					  &ticb->hashmask);
380 		ticb->porthashbase = porthashbase;
381 		ticb->porthashmask = porthashmask;
382 		ticb->porttoken = &tcp_port_token;
383 #if 0
384 		ticb->porthashbase = hashinit(hashsize, M_PCB,
385 					      &ticb->porthashmask);
386 #endif
387 		ticb->wildcardhashbase = hashinit(hashsize, M_PCB,
388 						  &ticb->wildcardhashmask);
389 		ticb->ipi_size = sizeof(struct inp_tp);
390 		TAILQ_INIT(&tcpcbackq[cpu]);
391 	}
392 
393 	tcp_reass_maxseg = nmbclusters / 16;
394 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
395 
396 #ifdef INET6
397 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
398 #else
399 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
400 #endif
401 	if (max_protohdr < TCP_MINPROTOHDR)
402 		max_protohdr = TCP_MINPROTOHDR;
403 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
404 		panic("tcp_init");
405 #undef TCP_MINPROTOHDR
406 
407 	/*
408 	 * Initialize TCP statistics counters for each CPU.
409 	 */
410 	for (cpu = 0; cpu < ncpus; ++cpu) {
411 		bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
412 	}
413 
414 	syncache_init();
415 	netisr_register_rollup(tcp_willblock, NETISR_ROLLUP_PRIO_TCP);
416 }
417 
418 static void
419 tcp_willblock(void)
420 {
421 	struct tcpcb *tp;
422 	int cpu = mycpu->gd_cpuid;
423 
424 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
425 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
426 		tp->t_flags &= ~TF_ONOUTPUTQ;
427 		TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
428 		tcp_output(tp);
429 	}
430 }
431 
432 /*
433  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
434  * tcp_template used to store this data in mbufs, but we now recopy it out
435  * of the tcpcb each time to conserve mbufs.
436  */
437 void
438 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr, boolean_t tso)
439 {
440 	struct inpcb *inp = tp->t_inpcb;
441 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
442 
443 #ifdef INET6
444 	if (inp->inp_vflag & INP_IPV6) {
445 		struct ip6_hdr *ip6;
446 
447 		ip6 = (struct ip6_hdr *)ip_ptr;
448 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
449 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
450 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
451 			(IPV6_VERSION & IPV6_VERSION_MASK);
452 		ip6->ip6_nxt = IPPROTO_TCP;
453 		ip6->ip6_plen = sizeof(struct tcphdr);
454 		ip6->ip6_src = inp->in6p_laddr;
455 		ip6->ip6_dst = inp->in6p_faddr;
456 		tcp_hdr->th_sum = 0;
457 	} else
458 #endif
459 	{
460 		struct ip *ip = (struct ip *) ip_ptr;
461 		u_int plen;
462 
463 		ip->ip_vhl = IP_VHL_BORING;
464 		ip->ip_tos = 0;
465 		ip->ip_len = 0;
466 		ip->ip_id = 0;
467 		ip->ip_off = 0;
468 		ip->ip_ttl = 0;
469 		ip->ip_sum = 0;
470 		ip->ip_p = IPPROTO_TCP;
471 		ip->ip_src = inp->inp_laddr;
472 		ip->ip_dst = inp->inp_faddr;
473 
474 		if (tso)
475 			plen = htons(IPPROTO_TCP);
476 		else
477 			plen = htons(sizeof(struct tcphdr) + IPPROTO_TCP);
478 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
479 		    ip->ip_dst.s_addr, plen);
480 	}
481 
482 	tcp_hdr->th_sport = inp->inp_lport;
483 	tcp_hdr->th_dport = inp->inp_fport;
484 	tcp_hdr->th_seq = 0;
485 	tcp_hdr->th_ack = 0;
486 	tcp_hdr->th_x2 = 0;
487 	tcp_hdr->th_off = 5;
488 	tcp_hdr->th_flags = 0;
489 	tcp_hdr->th_win = 0;
490 	tcp_hdr->th_urp = 0;
491 }
492 
493 /*
494  * Create template to be used to send tcp packets on a connection.
495  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
496  * use for this function is in keepalives, which use tcp_respond.
497  */
498 struct tcptemp *
499 tcp_maketemplate(struct tcpcb *tp)
500 {
501 	struct tcptemp *tmp;
502 
503 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
504 		return (NULL);
505 	tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t, FALSE);
506 	return (tmp);
507 }
508 
509 void
510 tcp_freetemplate(struct tcptemp *tmp)
511 {
512 	mpipe_free(&tcptemp_mpipe, tmp);
513 }
514 
515 /*
516  * Send a single message to the TCP at address specified by
517  * the given TCP/IP header.  If m == NULL, then we make a copy
518  * of the tcpiphdr at ti and send directly to the addressed host.
519  * This is used to force keep alive messages out using the TCP
520  * template for a connection.  If flags are given then we send
521  * a message back to the TCP which originated the * segment ti,
522  * and discard the mbuf containing it and any other attached mbufs.
523  *
524  * In any case the ack and sequence number of the transmitted
525  * segment are as specified by the parameters.
526  *
527  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
528  */
529 void
530 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
531 	    tcp_seq ack, tcp_seq seq, int flags)
532 {
533 	int tlen;
534 	int win = 0;
535 	struct route *ro = NULL;
536 	struct route sro;
537 	struct ip *ip = ipgen;
538 	struct tcphdr *nth;
539 	int ipflags = 0;
540 	struct route_in6 *ro6 = NULL;
541 	struct route_in6 sro6;
542 	struct ip6_hdr *ip6 = ipgen;
543 	boolean_t use_tmpro = TRUE;
544 #ifdef INET6
545 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
546 #else
547 	const boolean_t isipv6 = FALSE;
548 #endif
549 
550 	if (tp != NULL) {
551 		if (!(flags & TH_RST)) {
552 			win = ssb_space(&tp->t_inpcb->inp_socket->so_rcv);
553 			if (win < 0)
554 				win = 0;
555 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
556 				win = (long)TCP_MAXWIN << tp->rcv_scale;
557 		}
558 		/*
559 		 * Don't use the route cache of a listen socket,
560 		 * it is not MPSAFE; use temporary route cache.
561 		 */
562 		if (tp->t_state != TCPS_LISTEN) {
563 			if (isipv6)
564 				ro6 = &tp->t_inpcb->in6p_route;
565 			else
566 				ro = &tp->t_inpcb->inp_route;
567 			use_tmpro = FALSE;
568 		}
569 	}
570 	if (use_tmpro) {
571 		if (isipv6) {
572 			ro6 = &sro6;
573 			bzero(ro6, sizeof *ro6);
574 		} else {
575 			ro = &sro;
576 			bzero(ro, sizeof *ro);
577 		}
578 	}
579 	if (m == NULL) {
580 		m = m_gethdr(MB_DONTWAIT, MT_HEADER);
581 		if (m == NULL)
582 			return;
583 		tlen = 0;
584 		m->m_data += max_linkhdr;
585 		if (isipv6) {
586 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
587 			ip6 = mtod(m, struct ip6_hdr *);
588 			nth = (struct tcphdr *)(ip6 + 1);
589 		} else {
590 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
591 			ip = mtod(m, struct ip *);
592 			nth = (struct tcphdr *)(ip + 1);
593 		}
594 		bcopy(th, nth, sizeof(struct tcphdr));
595 		flags = TH_ACK;
596 	} else {
597 		m_freem(m->m_next);
598 		m->m_next = NULL;
599 		m->m_data = (caddr_t)ipgen;
600 		/* m_len is set later */
601 		tlen = 0;
602 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
603 		if (isipv6) {
604 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
605 			nth = (struct tcphdr *)(ip6 + 1);
606 		} else {
607 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
608 			nth = (struct tcphdr *)(ip + 1);
609 		}
610 		if (th != nth) {
611 			/*
612 			 * this is usually a case when an extension header
613 			 * exists between the IPv6 header and the
614 			 * TCP header.
615 			 */
616 			nth->th_sport = th->th_sport;
617 			nth->th_dport = th->th_dport;
618 		}
619 		xchg(nth->th_dport, nth->th_sport, n_short);
620 #undef xchg
621 	}
622 	if (isipv6) {
623 		ip6->ip6_flow = 0;
624 		ip6->ip6_vfc = IPV6_VERSION;
625 		ip6->ip6_nxt = IPPROTO_TCP;
626 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
627 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
628 	} else {
629 		tlen += sizeof(struct tcpiphdr);
630 		ip->ip_len = tlen;
631 		ip->ip_ttl = ip_defttl;
632 	}
633 	m->m_len = tlen;
634 	m->m_pkthdr.len = tlen;
635 	m->m_pkthdr.rcvif = NULL;
636 	nth->th_seq = htonl(seq);
637 	nth->th_ack = htonl(ack);
638 	nth->th_x2 = 0;
639 	nth->th_off = sizeof(struct tcphdr) >> 2;
640 	nth->th_flags = flags;
641 	if (tp != NULL)
642 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
643 	else
644 		nth->th_win = htons((u_short)win);
645 	nth->th_urp = 0;
646 	if (isipv6) {
647 		nth->th_sum = 0;
648 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
649 					sizeof(struct ip6_hdr),
650 					tlen - sizeof(struct ip6_hdr));
651 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
652 					       (ro6 && ro6->ro_rt) ?
653 						ro6->ro_rt->rt_ifp : NULL);
654 	} else {
655 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
656 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
657 		m->m_pkthdr.csum_flags = CSUM_TCP;
658 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
659 		m->m_pkthdr.csum_thlen = sizeof(struct tcphdr);
660 	}
661 #ifdef TCPDEBUG
662 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
663 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
664 #endif
665 	if (isipv6) {
666 		ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
667 			   tp ? tp->t_inpcb : NULL);
668 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
669 			RTFREE(ro6->ro_rt);
670 			ro6->ro_rt = NULL;
671 		}
672 	} else {
673 		ipflags |= IP_DEBUGROUTE;
674 		ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
675 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
676 			RTFREE(ro->ro_rt);
677 			ro->ro_rt = NULL;
678 		}
679 	}
680 }
681 
682 /*
683  * Create a new TCP control block, making an
684  * empty reassembly queue and hooking it to the argument
685  * protocol control block.  The `inp' parameter must have
686  * come from the zone allocator set up in tcp_init().
687  */
688 struct tcpcb *
689 tcp_newtcpcb(struct inpcb *inp)
690 {
691 	struct inp_tp *it;
692 	struct tcpcb *tp;
693 #ifdef INET6
694 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
695 #else
696 	const boolean_t isipv6 = FALSE;
697 #endif
698 
699 	it = (struct inp_tp *)inp;
700 	tp = &it->tcb;
701 	bzero(tp, sizeof(struct tcpcb));
702 	TAILQ_INIT(&tp->t_segq);
703 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
704 	tp->t_rxtthresh = tcprexmtthresh;
705 
706 	/* Set up our timeouts. */
707 	tp->tt_rexmt = &it->inp_tp_rexmt;
708 	tp->tt_persist = &it->inp_tp_persist;
709 	tp->tt_keep = &it->inp_tp_keep;
710 	tp->tt_2msl = &it->inp_tp_2msl;
711 	tp->tt_delack = &it->inp_tp_delack;
712 	tcp_inittimers(tp);
713 
714 	/*
715 	 * Zero out timer message.  We don't create it here,
716 	 * since the current CPU may not be the owner of this
717 	 * inpcb.
718 	 */
719 	tp->tt_msg = &it->inp_tp_timermsg;
720 	bzero(tp->tt_msg, sizeof(*tp->tt_msg));
721 
722 	tp->t_keepinit = tcp_keepinit;
723 	tp->t_keepidle = tcp_keepidle;
724 	tp->t_keepintvl = tcp_keepintvl;
725 	tp->t_keepcnt = tcp_keepcnt;
726 	tp->t_maxidle = tp->t_keepintvl * tp->t_keepcnt;
727 
728 	if (tcp_do_ncr)
729 		tp->t_flags |= TF_NCR;
730 	if (tcp_do_rfc1323)
731 		tp->t_flags |= (TF_REQ_SCALE | TF_REQ_TSTMP);
732 
733 	tp->t_inpcb = inp;	/* XXX */
734 	tp->t_state = TCPS_CLOSED;
735 	/*
736 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
737 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
738 	 * reasonable initial retransmit time.
739 	 */
740 	tp->t_srtt = TCPTV_SRTTBASE;
741 	tp->t_rttvar =
742 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
743 	tp->t_rttmin = tcp_rexmit_min;
744 	tp->t_rxtcur = TCPTV_RTOBASE;
745 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
746 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
747 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
748 	tp->snd_last = ticks;
749 	tp->t_rcvtime = ticks;
750 	/*
751 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
752 	 * because the socket may be bound to an IPv6 wildcard address,
753 	 * which may match an IPv4-mapped IPv6 address.
754 	 */
755 	inp->inp_ip_ttl = ip_defttl;
756 	inp->inp_ppcb = tp;
757 	tcp_sack_tcpcb_init(tp);
758 
759 	tp->tt_sndmore = &it->inp_tp_sndmore;
760 	tcp_output_init(tp);
761 
762 	return (tp);		/* XXX */
763 }
764 
765 /*
766  * Drop a TCP connection, reporting the specified error.
767  * If connection is synchronized, then send a RST to peer.
768  */
769 struct tcpcb *
770 tcp_drop(struct tcpcb *tp, int error)
771 {
772 	struct socket *so = tp->t_inpcb->inp_socket;
773 
774 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
775 		tp->t_state = TCPS_CLOSED;
776 		tcp_output(tp);
777 		tcpstat.tcps_drops++;
778 	} else
779 		tcpstat.tcps_conndrops++;
780 	if (error == ETIMEDOUT && tp->t_softerror)
781 		error = tp->t_softerror;
782 	so->so_error = error;
783 	return (tcp_close(tp));
784 }
785 
786 struct netmsg_listen_detach {
787 	struct netmsg_base	base;
788 	struct tcpcb		*nm_tp;
789 };
790 
791 static void
792 tcp_listen_detach_handler(netmsg_t msg)
793 {
794 	struct netmsg_listen_detach *nmsg = (struct netmsg_listen_detach *)msg;
795 	struct tcpcb *tp = nmsg->nm_tp;
796 	int cpu = mycpuid, nextcpu;
797 
798 	if (tp->t_flags & TF_LISTEN)
799 		syncache_destroy(tp);
800 
801 	in_pcbremwildcardhash_oncpu(tp->t_inpcb, &tcbinfo[cpu]);
802 
803 	nextcpu = cpu + 1;
804 	if (nextcpu < ncpus2)
805 		lwkt_forwardmsg(netisr_portfn(nextcpu), &nmsg->base.lmsg);
806 	else
807 		lwkt_replymsg(&nmsg->base.lmsg, 0);
808 }
809 
810 /*
811  * Close a TCP control block:
812  *	discard all space held by the tcp
813  *	discard internet protocol block
814  *	wake up any sleepers
815  */
816 struct tcpcb *
817 tcp_close(struct tcpcb *tp)
818 {
819 	struct tseg_qent *q;
820 	struct inpcb *inp = tp->t_inpcb;
821 	struct socket *so = inp->inp_socket;
822 	struct rtentry *rt;
823 	boolean_t dosavessthresh;
824 #ifdef INET6
825 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
826 	boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
827 #else
828 	const boolean_t isipv6 = FALSE;
829 #endif
830 
831 	/*
832 	 * INP_WILDCARD_MP indicates that listen(2) has been called on
833 	 * this socket.  This implies:
834 	 * - A wildcard inp's hash is replicated for each protocol thread.
835 	 * - Syncache for this inp grows independently in each protocol
836 	 *   thread.
837 	 * - There is more than one cpu
838 	 *
839 	 * We have to chain a message to the rest of the protocol threads
840 	 * to cleanup the wildcard hash and the syncache.  The cleanup
841 	 * in the current protocol thread is defered till the end of this
842 	 * function.
843 	 *
844 	 * NOTE:
845 	 * After cleanup the inp's hash and syncache entries, this inp will
846 	 * no longer be available to the rest of the protocol threads, so we
847 	 * are safe to whack the inp in the following code.
848 	 */
849 	if (inp->inp_flags & INP_WILDCARD_MP) {
850 		struct netmsg_listen_detach nmsg;
851 
852 		KKASSERT(so->so_port == netisr_portfn(0));
853 		KKASSERT(&curthread->td_msgport == netisr_portfn(0));
854 		KKASSERT(inp->inp_pcbinfo == &tcbinfo[0]);
855 
856 		netmsg_init(&nmsg.base, NULL, &curthread->td_msgport,
857 			    MSGF_PRIORITY, tcp_listen_detach_handler);
858 		nmsg.nm_tp = tp;
859 		lwkt_domsg(netisr_portfn(1), &nmsg.base.lmsg, 0);
860 
861 		inp->inp_flags &= ~INP_WILDCARD_MP;
862 	}
863 
864 	KKASSERT(tp->t_state != TCPS_TERMINATING);
865 	tp->t_state = TCPS_TERMINATING;
866 
867 	/*
868 	 * Make sure that all of our timers are stopped before we
869 	 * delete the PCB.  For listen TCP socket (tp->tt_msg == NULL),
870 	 * timers are never used.  If timer message is never created
871 	 * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
872 	 */
873 	if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
874 		tcp_callout_stop(tp, tp->tt_rexmt);
875 		tcp_callout_stop(tp, tp->tt_persist);
876 		tcp_callout_stop(tp, tp->tt_keep);
877 		tcp_callout_stop(tp, tp->tt_2msl);
878 		tcp_callout_stop(tp, tp->tt_delack);
879 	}
880 
881 	if (tp->t_flags & TF_ONOUTPUTQ) {
882 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
883 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
884 		tp->t_flags &= ~TF_ONOUTPUTQ;
885 	}
886 
887 	/*
888 	 * If we got enough samples through the srtt filter,
889 	 * save the rtt and rttvar in the routing entry.
890 	 * 'Enough' is arbitrarily defined as the 16 samples.
891 	 * 16 samples is enough for the srtt filter to converge
892 	 * to within 5% of the correct value; fewer samples and
893 	 * we could save a very bogus rtt.
894 	 *
895 	 * Don't update the default route's characteristics and don't
896 	 * update anything that the user "locked".
897 	 */
898 	if (tp->t_rttupdated >= 16) {
899 		u_long i = 0;
900 
901 		if (isipv6) {
902 			struct sockaddr_in6 *sin6;
903 
904 			if ((rt = inp->in6p_route.ro_rt) == NULL)
905 				goto no_valid_rt;
906 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
907 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
908 				goto no_valid_rt;
909 		} else
910 			if ((rt = inp->inp_route.ro_rt) == NULL ||
911 			    ((struct sockaddr_in *)rt_key(rt))->
912 			     sin_addr.s_addr == INADDR_ANY)
913 				goto no_valid_rt;
914 
915 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
916 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
917 			if (rt->rt_rmx.rmx_rtt && i)
918 				/*
919 				 * filter this update to half the old & half
920 				 * the new values, converting scale.
921 				 * See route.h and tcp_var.h for a
922 				 * description of the scaling constants.
923 				 */
924 				rt->rt_rmx.rmx_rtt =
925 				    (rt->rt_rmx.rmx_rtt + i) / 2;
926 			else
927 				rt->rt_rmx.rmx_rtt = i;
928 			tcpstat.tcps_cachedrtt++;
929 		}
930 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
931 			i = tp->t_rttvar *
932 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
933 			if (rt->rt_rmx.rmx_rttvar && i)
934 				rt->rt_rmx.rmx_rttvar =
935 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
936 			else
937 				rt->rt_rmx.rmx_rttvar = i;
938 			tcpstat.tcps_cachedrttvar++;
939 		}
940 		/*
941 		 * The old comment here said:
942 		 * update the pipelimit (ssthresh) if it has been updated
943 		 * already or if a pipesize was specified & the threshhold
944 		 * got below half the pipesize.  I.e., wait for bad news
945 		 * before we start updating, then update on both good
946 		 * and bad news.
947 		 *
948 		 * But we want to save the ssthresh even if no pipesize is
949 		 * specified explicitly in the route, because such
950 		 * connections still have an implicit pipesize specified
951 		 * by the global tcp_sendspace.  In the absence of a reliable
952 		 * way to calculate the pipesize, it will have to do.
953 		 */
954 		i = tp->snd_ssthresh;
955 		if (rt->rt_rmx.rmx_sendpipe != 0)
956 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
957 		else
958 			dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
959 		if (dosavessthresh ||
960 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
961 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
962 			/*
963 			 * convert the limit from user data bytes to
964 			 * packets then to packet data bytes.
965 			 */
966 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
967 			if (i < 2)
968 				i = 2;
969 			i *= tp->t_maxseg +
970 			     (isipv6 ?
971 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
972 			      sizeof(struct tcpiphdr));
973 			if (rt->rt_rmx.rmx_ssthresh)
974 				rt->rt_rmx.rmx_ssthresh =
975 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
976 			else
977 				rt->rt_rmx.rmx_ssthresh = i;
978 			tcpstat.tcps_cachedssthresh++;
979 		}
980 	}
981 
982 no_valid_rt:
983 	/* free the reassembly queue, if any */
984 	while((q = TAILQ_FIRST(&tp->t_segq)) != NULL) {
985 		TAILQ_REMOVE(&tp->t_segq, q, tqe_q);
986 		m_freem(q->tqe_m);
987 		kfree(q, M_TSEGQ);
988 		atomic_add_int(&tcp_reass_qsize, -1);
989 	}
990 	/* throw away SACK blocks in scoreboard*/
991 	if (TCP_DO_SACK(tp))
992 		tcp_sack_destroy(&tp->scb);
993 
994 	inp->inp_ppcb = NULL;
995 	soisdisconnected(so);
996 	/* note: pcb detached later on */
997 
998 	tcp_destroy_timermsg(tp);
999 	tcp_output_cancel(tp);
1000 
1001 	if (tp->t_flags & TF_LISTEN)
1002 		syncache_destroy(tp);
1003 
1004 	so_async_rcvd_drop(so);
1005 
1006 	/*
1007 	 * NOTE:
1008 	 * pcbdetach removes any wildcard hash entry on the current CPU.
1009 	 */
1010 #ifdef INET6
1011 	if (isafinet6)
1012 		in6_pcbdetach(inp);
1013 	else
1014 #endif
1015 		in_pcbdetach(inp);
1016 
1017 	tcpstat.tcps_closed++;
1018 	return (NULL);
1019 }
1020 
1021 static __inline void
1022 tcp_drain_oncpu(struct inpcbhead *head)
1023 {
1024 	struct inpcb *marker;
1025 	struct inpcb *inpb;
1026 	struct tcpcb *tcpb;
1027 	struct tseg_qent *te;
1028 
1029 	/*
1030 	 * Allows us to block while running the list
1031 	 */
1032 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1033 	marker->inp_flags |= INP_PLACEMARKER;
1034 	LIST_INSERT_HEAD(head, marker, inp_list);
1035 
1036 	while ((inpb = LIST_NEXT(marker, inp_list)) != NULL) {
1037 		if ((inpb->inp_flags & INP_PLACEMARKER) == 0 &&
1038 		    (tcpb = intotcpcb(inpb)) != NULL &&
1039 		    (te = TAILQ_FIRST(&tcpb->t_segq)) != NULL) {
1040 			TAILQ_REMOVE(&tcpb->t_segq, te, tqe_q);
1041 			if (te->tqe_th->th_flags & TH_FIN)
1042 				tcpb->t_flags &= ~TF_QUEDFIN;
1043 			m_freem(te->tqe_m);
1044 			kfree(te, M_TSEGQ);
1045 			atomic_add_int(&tcp_reass_qsize, -1);
1046 			/* retry */
1047 		} else {
1048 			LIST_REMOVE(marker, inp_list);
1049 			LIST_INSERT_AFTER(inpb, marker, inp_list);
1050 		}
1051 	}
1052 	LIST_REMOVE(marker, inp_list);
1053 	kfree(marker, M_TEMP);
1054 }
1055 
1056 struct netmsg_tcp_drain {
1057 	struct netmsg_base	base;
1058 	struct inpcbhead	*nm_head;
1059 };
1060 
1061 static void
1062 tcp_drain_handler(netmsg_t msg)
1063 {
1064 	struct netmsg_tcp_drain *nm = (void *)msg;
1065 
1066 	tcp_drain_oncpu(nm->nm_head);
1067 	lwkt_replymsg(&nm->base.lmsg, 0);
1068 }
1069 
1070 void
1071 tcp_drain(void)
1072 {
1073 	int cpu;
1074 
1075 	if (!do_tcpdrain)
1076 		return;
1077 
1078 	/*
1079 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1080 	 * if there is one...
1081 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1082 	 *	reassembly queue should be flushed, but in a situation
1083 	 *	where we're really low on mbufs, this is potentially
1084 	 *	useful.
1085 	 */
1086 	for (cpu = 0; cpu < ncpus2; cpu++) {
1087 		struct netmsg_tcp_drain *nm;
1088 
1089 		if (cpu == mycpu->gd_cpuid) {
1090 			tcp_drain_oncpu(&tcbinfo[cpu].pcblisthead);
1091 		} else {
1092 			nm = kmalloc(sizeof(struct netmsg_tcp_drain),
1093 				     M_LWKTMSG, M_NOWAIT);
1094 			if (nm == NULL)
1095 				continue;
1096 			netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1097 				    0, tcp_drain_handler);
1098 			nm->nm_head = &tcbinfo[cpu].pcblisthead;
1099 			lwkt_sendmsg(netisr_portfn(cpu), &nm->base.lmsg);
1100 		}
1101 	}
1102 }
1103 
1104 /*
1105  * Notify a tcp user of an asynchronous error;
1106  * store error as soft error, but wake up user
1107  * (for now, won't do anything until can select for soft error).
1108  *
1109  * Do not wake up user since there currently is no mechanism for
1110  * reporting soft errors (yet - a kqueue filter may be added).
1111  */
1112 static void
1113 tcp_notify(struct inpcb *inp, int error)
1114 {
1115 	struct tcpcb *tp = intotcpcb(inp);
1116 
1117 	/*
1118 	 * Ignore some errors if we are hooked up.
1119 	 * If connection hasn't completed, has retransmitted several times,
1120 	 * and receives a second error, give up now.  This is better
1121 	 * than waiting a long time to establish a connection that
1122 	 * can never complete.
1123 	 */
1124 	if (tp->t_state == TCPS_ESTABLISHED &&
1125 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1126 	      error == EHOSTDOWN)) {
1127 		return;
1128 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1129 	    tp->t_softerror)
1130 		tcp_drop(tp, error);
1131 	else
1132 		tp->t_softerror = error;
1133 #if 0
1134 	wakeup(&so->so_timeo);
1135 	sorwakeup(so);
1136 	sowwakeup(so);
1137 #endif
1138 }
1139 
1140 static int
1141 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1142 {
1143 	int error, i, n;
1144 	struct inpcb *marker;
1145 	struct inpcb *inp;
1146 	globaldata_t gd;
1147 	int origcpu, ccpu;
1148 
1149 	error = 0;
1150 	n = 0;
1151 
1152 	/*
1153 	 * The process of preparing the TCB list is too time-consuming and
1154 	 * resource-intensive to repeat twice on every request.
1155 	 */
1156 	if (req->oldptr == NULL) {
1157 		for (ccpu = 0; ccpu < ncpus; ++ccpu) {
1158 			gd = globaldata_find(ccpu);
1159 			n += tcbinfo[gd->gd_cpuid].ipi_count;
1160 		}
1161 		req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1162 		return (0);
1163 	}
1164 
1165 	if (req->newptr != NULL)
1166 		return (EPERM);
1167 
1168 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1169 	marker->inp_flags |= INP_PLACEMARKER;
1170 
1171 	/*
1172 	 * OK, now we're committed to doing something.  Run the inpcb list
1173 	 * for each cpu in the system and construct the output.  Use a
1174 	 * list placemarker to deal with list changes occuring during
1175 	 * copyout blockages (but otherwise depend on being on the correct
1176 	 * cpu to avoid races).
1177 	 */
1178 	origcpu = mycpu->gd_cpuid;
1179 	for (ccpu = 1; ccpu <= ncpus && error == 0; ++ccpu) {
1180 		globaldata_t rgd;
1181 		caddr_t inp_ppcb;
1182 		struct xtcpcb xt;
1183 		int cpu_id;
1184 
1185 		cpu_id = (origcpu + ccpu) % ncpus;
1186 		if ((smp_active_mask & CPUMASK(cpu_id)) == 0)
1187 			continue;
1188 		rgd = globaldata_find(cpu_id);
1189 		lwkt_setcpu_self(rgd);
1190 
1191 		n = tcbinfo[cpu_id].ipi_count;
1192 
1193 		LIST_INSERT_HEAD(&tcbinfo[cpu_id].pcblisthead, marker, inp_list);
1194 		i = 0;
1195 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1196 			/*
1197 			 * process a snapshot of pcbs, ignoring placemarkers
1198 			 * and using our own to allow SYSCTL_OUT to block.
1199 			 */
1200 			LIST_REMOVE(marker, inp_list);
1201 			LIST_INSERT_AFTER(inp, marker, inp_list);
1202 
1203 			if (inp->inp_flags & INP_PLACEMARKER)
1204 				continue;
1205 			if (prison_xinpcb(req->td, inp))
1206 				continue;
1207 
1208 			xt.xt_len = sizeof xt;
1209 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1210 			inp_ppcb = inp->inp_ppcb;
1211 			if (inp_ppcb != NULL)
1212 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1213 			else
1214 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1215 			if (inp->inp_socket)
1216 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1217 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1218 				break;
1219 			++i;
1220 		}
1221 		LIST_REMOVE(marker, inp_list);
1222 		if (error == 0 && i < n) {
1223 			bzero(&xt, sizeof xt);
1224 			xt.xt_len = sizeof xt;
1225 			while (i < n) {
1226 				error = SYSCTL_OUT(req, &xt, sizeof xt);
1227 				if (error)
1228 					break;
1229 				++i;
1230 			}
1231 		}
1232 	}
1233 
1234 	/*
1235 	 * Make sure we are on the same cpu we were on originally, since
1236 	 * higher level callers expect this.  Also don't pollute caches with
1237 	 * migrated userland data by (eventually) returning to userland
1238 	 * on a different cpu.
1239 	 */
1240 	lwkt_setcpu_self(globaldata_find(origcpu));
1241 	kfree(marker, M_TEMP);
1242 	return (error);
1243 }
1244 
1245 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1246 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1247 
1248 static int
1249 tcp_getcred(SYSCTL_HANDLER_ARGS)
1250 {
1251 	struct sockaddr_in addrs[2];
1252 	struct inpcb *inp;
1253 	int cpu;
1254 	int error;
1255 
1256 	error = priv_check(req->td, PRIV_ROOT);
1257 	if (error != 0)
1258 		return (error);
1259 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1260 	if (error != 0)
1261 		return (error);
1262 	crit_enter();
1263 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1264 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1265 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1266 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1267 	if (inp == NULL || inp->inp_socket == NULL) {
1268 		error = ENOENT;
1269 		goto out;
1270 	}
1271 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1272 out:
1273 	crit_exit();
1274 	return (error);
1275 }
1276 
1277 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1278     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1279 
1280 #ifdef INET6
1281 static int
1282 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1283 {
1284 	struct sockaddr_in6 addrs[2];
1285 	struct inpcb *inp;
1286 	int error;
1287 	boolean_t mapped = FALSE;
1288 
1289 	error = priv_check(req->td, PRIV_ROOT);
1290 	if (error != 0)
1291 		return (error);
1292 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1293 	if (error != 0)
1294 		return (error);
1295 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1296 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1297 			mapped = TRUE;
1298 		else
1299 			return (EINVAL);
1300 	}
1301 	crit_enter();
1302 	if (mapped) {
1303 		inp = in_pcblookup_hash(&tcbinfo[0],
1304 		    *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1305 		    addrs[1].sin6_port,
1306 		    *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1307 		    addrs[0].sin6_port,
1308 		    0, NULL);
1309 	} else {
1310 		inp = in6_pcblookup_hash(&tcbinfo[0],
1311 		    &addrs[1].sin6_addr, addrs[1].sin6_port,
1312 		    &addrs[0].sin6_addr, addrs[0].sin6_port,
1313 		    0, NULL);
1314 	}
1315 	if (inp == NULL || inp->inp_socket == NULL) {
1316 		error = ENOENT;
1317 		goto out;
1318 	}
1319 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1320 out:
1321 	crit_exit();
1322 	return (error);
1323 }
1324 
1325 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1326 	    0, 0,
1327 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1328 #endif
1329 
1330 struct netmsg_tcp_notify {
1331 	struct netmsg_base base;
1332 	void		(*nm_notify)(struct inpcb *, int);
1333 	struct in_addr	nm_faddr;
1334 	int		nm_arg;
1335 };
1336 
1337 static void
1338 tcp_notifyall_oncpu(netmsg_t msg)
1339 {
1340 	struct netmsg_tcp_notify *nm = (struct netmsg_tcp_notify *)msg;
1341 	int nextcpu;
1342 
1343 	in_pcbnotifyall(&tcbinfo[mycpuid].pcblisthead, nm->nm_faddr,
1344 			nm->nm_arg, nm->nm_notify);
1345 
1346 	nextcpu = mycpuid + 1;
1347 	if (nextcpu < ncpus2)
1348 		lwkt_forwardmsg(netisr_portfn(nextcpu), &nm->base.lmsg);
1349 	else
1350 		lwkt_replymsg(&nm->base.lmsg, 0);
1351 }
1352 
1353 void
1354 tcp_ctlinput(netmsg_t msg)
1355 {
1356 	int cmd = msg->ctlinput.nm_cmd;
1357 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1358 	struct ip *ip = msg->ctlinput.nm_extra;
1359 	struct tcphdr *th;
1360 	struct in_addr faddr;
1361 	struct inpcb *inp;
1362 	struct tcpcb *tp;
1363 	void (*notify)(struct inpcb *, int) = tcp_notify;
1364 	tcp_seq icmpseq;
1365 	int arg, cpu;
1366 
1367 	if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1368 		goto done;
1369 	}
1370 
1371 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1372 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1373 		goto done;
1374 
1375 	arg = inetctlerrmap[cmd];
1376 	if (cmd == PRC_QUENCH) {
1377 		notify = tcp_quench;
1378 	} else if (icmp_may_rst &&
1379 		   (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1380 		    cmd == PRC_UNREACH_PORT ||
1381 		    cmd == PRC_TIMXCEED_INTRANS) &&
1382 		   ip != NULL) {
1383 		notify = tcp_drop_syn_sent;
1384 	} else if (cmd == PRC_MSGSIZE) {
1385 		struct icmp *icmp = (struct icmp *)
1386 		    ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1387 
1388 		arg = ntohs(icmp->icmp_nextmtu);
1389 		notify = tcp_mtudisc;
1390 	} else if (PRC_IS_REDIRECT(cmd)) {
1391 		ip = NULL;
1392 		notify = in_rtchange;
1393 	} else if (cmd == PRC_HOSTDEAD) {
1394 		ip = NULL;
1395 	}
1396 
1397 	if (ip != NULL) {
1398 		crit_enter();
1399 		th = (struct tcphdr *)((caddr_t)ip +
1400 				       (IP_VHL_HL(ip->ip_vhl) << 2));
1401 		cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
1402 				  ip->ip_src.s_addr, th->th_sport);
1403 		inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
1404 					ip->ip_src, th->th_sport, 0, NULL);
1405 		if ((inp != NULL) && (inp->inp_socket != NULL)) {
1406 			icmpseq = htonl(th->th_seq);
1407 			tp = intotcpcb(inp);
1408 			if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1409 			    SEQ_LT(icmpseq, tp->snd_max))
1410 				(*notify)(inp, arg);
1411 		} else {
1412 			struct in_conninfo inc;
1413 
1414 			inc.inc_fport = th->th_dport;
1415 			inc.inc_lport = th->th_sport;
1416 			inc.inc_faddr = faddr;
1417 			inc.inc_laddr = ip->ip_src;
1418 #ifdef INET6
1419 			inc.inc_isipv6 = 0;
1420 #endif
1421 			syncache_unreach(&inc, th);
1422 		}
1423 		crit_exit();
1424 	} else {
1425 		struct netmsg_tcp_notify *nm;
1426 
1427 		KKASSERT(&curthread->td_msgport == netisr_portfn(0));
1428 		nm = kmalloc(sizeof(*nm), M_LWKTMSG, M_INTWAIT);
1429 		netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1430 			    0, tcp_notifyall_oncpu);
1431 		nm->nm_faddr = faddr;
1432 		nm->nm_arg = arg;
1433 		nm->nm_notify = notify;
1434 
1435 		lwkt_sendmsg(netisr_portfn(0), &nm->base.lmsg);
1436 	}
1437 done:
1438 	lwkt_replymsg(&msg->lmsg, 0);
1439 }
1440 
1441 #ifdef INET6
1442 
1443 void
1444 tcp6_ctlinput(netmsg_t msg)
1445 {
1446 	int cmd = msg->ctlinput.nm_cmd;
1447 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1448 	void *d = msg->ctlinput.nm_extra;
1449 	struct tcphdr th;
1450 	void (*notify) (struct inpcb *, int) = tcp_notify;
1451 	struct ip6_hdr *ip6;
1452 	struct mbuf *m;
1453 	struct ip6ctlparam *ip6cp = NULL;
1454 	const struct sockaddr_in6 *sa6_src = NULL;
1455 	int off;
1456 	struct tcp_portonly {
1457 		u_int16_t th_sport;
1458 		u_int16_t th_dport;
1459 	} *thp;
1460 	int arg;
1461 
1462 	if (sa->sa_family != AF_INET6 ||
1463 	    sa->sa_len != sizeof(struct sockaddr_in6)) {
1464 		goto out;
1465 	}
1466 
1467 	arg = 0;
1468 	if (cmd == PRC_QUENCH)
1469 		notify = tcp_quench;
1470 	else if (cmd == PRC_MSGSIZE) {
1471 		struct ip6ctlparam *ip6cp = d;
1472 		struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1473 
1474 		arg = ntohl(icmp6->icmp6_mtu);
1475 		notify = tcp_mtudisc;
1476 	} else if (!PRC_IS_REDIRECT(cmd) &&
1477 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1478 		goto out;
1479 	}
1480 
1481 	/* if the parameter is from icmp6, decode it. */
1482 	if (d != NULL) {
1483 		ip6cp = (struct ip6ctlparam *)d;
1484 		m = ip6cp->ip6c_m;
1485 		ip6 = ip6cp->ip6c_ip6;
1486 		off = ip6cp->ip6c_off;
1487 		sa6_src = ip6cp->ip6c_src;
1488 	} else {
1489 		m = NULL;
1490 		ip6 = NULL;
1491 		off = 0;	/* fool gcc */
1492 		sa6_src = &sa6_any;
1493 	}
1494 
1495 	if (ip6 != NULL) {
1496 		struct in_conninfo inc;
1497 		/*
1498 		 * XXX: We assume that when IPV6 is non NULL,
1499 		 * M and OFF are valid.
1500 		 */
1501 
1502 		/* check if we can safely examine src and dst ports */
1503 		if (m->m_pkthdr.len < off + sizeof *thp)
1504 			goto out;
1505 
1506 		bzero(&th, sizeof th);
1507 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1508 
1509 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, th.th_dport,
1510 		    (struct sockaddr *)ip6cp->ip6c_src,
1511 		    th.th_sport, cmd, arg, notify);
1512 
1513 		inc.inc_fport = th.th_dport;
1514 		inc.inc_lport = th.th_sport;
1515 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1516 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1517 		inc.inc_isipv6 = 1;
1518 		syncache_unreach(&inc, &th);
1519 	} else {
1520 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, 0,
1521 		    (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1522 	}
1523 out:
1524 	lwkt_replymsg(&msg->ctlinput.base.lmsg, 0);
1525 }
1526 
1527 #endif
1528 
1529 /*
1530  * Following is where TCP initial sequence number generation occurs.
1531  *
1532  * There are two places where we must use initial sequence numbers:
1533  * 1.  In SYN-ACK packets.
1534  * 2.  In SYN packets.
1535  *
1536  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1537  * tcp_syncache.c for details.
1538  *
1539  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1540  * depends on this property.  In addition, these ISNs should be
1541  * unguessable so as to prevent connection hijacking.  To satisfy
1542  * the requirements of this situation, the algorithm outlined in
1543  * RFC 1948 is used to generate sequence numbers.
1544  *
1545  * Implementation details:
1546  *
1547  * Time is based off the system timer, and is corrected so that it
1548  * increases by one megabyte per second.  This allows for proper
1549  * recycling on high speed LANs while still leaving over an hour
1550  * before rollover.
1551  *
1552  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1553  * between seeding of isn_secret.  This is normally set to zero,
1554  * as reseeding should not be necessary.
1555  *
1556  */
1557 
1558 #define	ISN_BYTES_PER_SECOND 1048576
1559 
1560 u_char isn_secret[32];
1561 int isn_last_reseed;
1562 MD5_CTX isn_ctx;
1563 
1564 tcp_seq
1565 tcp_new_isn(struct tcpcb *tp)
1566 {
1567 	u_int32_t md5_buffer[4];
1568 	tcp_seq new_isn;
1569 
1570 	/* Seed if this is the first use, reseed if requested. */
1571 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1572 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1573 		< (u_int)ticks))) {
1574 		read_random_unlimited(&isn_secret, sizeof isn_secret);
1575 		isn_last_reseed = ticks;
1576 	}
1577 
1578 	/* Compute the md5 hash and return the ISN. */
1579 	MD5Init(&isn_ctx);
1580 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1581 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1582 #ifdef INET6
1583 	if (tp->t_inpcb->inp_vflag & INP_IPV6) {
1584 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1585 			  sizeof(struct in6_addr));
1586 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1587 			  sizeof(struct in6_addr));
1588 	} else
1589 #endif
1590 	{
1591 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1592 			  sizeof(struct in_addr));
1593 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1594 			  sizeof(struct in_addr));
1595 	}
1596 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1597 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1598 	new_isn = (tcp_seq) md5_buffer[0];
1599 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1600 	return (new_isn);
1601 }
1602 
1603 /*
1604  * When a source quench is received, close congestion window
1605  * to one segment.  We will gradually open it again as we proceed.
1606  */
1607 void
1608 tcp_quench(struct inpcb *inp, int error)
1609 {
1610 	struct tcpcb *tp = intotcpcb(inp);
1611 
1612 	if (tp != NULL) {
1613 		tp->snd_cwnd = tp->t_maxseg;
1614 		tp->snd_wacked = 0;
1615 	}
1616 }
1617 
1618 /*
1619  * When a specific ICMP unreachable message is received and the
1620  * connection state is SYN-SENT, drop the connection.  This behavior
1621  * is controlled by the icmp_may_rst sysctl.
1622  */
1623 void
1624 tcp_drop_syn_sent(struct inpcb *inp, int error)
1625 {
1626 	struct tcpcb *tp = intotcpcb(inp);
1627 
1628 	if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
1629 		tcp_drop(tp, error);
1630 }
1631 
1632 /*
1633  * When a `need fragmentation' ICMP is received, update our idea of the MSS
1634  * based on the new value in the route.  Also nudge TCP to send something,
1635  * since we know the packet we just sent was dropped.
1636  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1637  */
1638 void
1639 tcp_mtudisc(struct inpcb *inp, int mtu)
1640 {
1641 	struct tcpcb *tp = intotcpcb(inp);
1642 	struct rtentry *rt;
1643 	struct socket *so = inp->inp_socket;
1644 	int maxopd, mss;
1645 #ifdef INET6
1646 	boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1647 #else
1648 	const boolean_t isipv6 = FALSE;
1649 #endif
1650 
1651 	if (tp == NULL)
1652 		return;
1653 
1654 	/*
1655 	 * If no MTU is provided in the ICMP message, use the
1656 	 * next lower likely value, as specified in RFC 1191.
1657 	 */
1658 	if (mtu == 0) {
1659 		int oldmtu;
1660 
1661 		oldmtu = tp->t_maxopd +
1662 		    (isipv6 ?
1663 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1664 		     sizeof(struct tcpiphdr));
1665 		mtu = ip_next_mtu(oldmtu, 0);
1666 	}
1667 
1668 	if (isipv6)
1669 		rt = tcp_rtlookup6(&inp->inp_inc);
1670 	else
1671 		rt = tcp_rtlookup(&inp->inp_inc);
1672 	if (rt != NULL) {
1673 		if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1674 			mtu = rt->rt_rmx.rmx_mtu;
1675 
1676 		maxopd = mtu -
1677 		    (isipv6 ?
1678 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1679 		     sizeof(struct tcpiphdr));
1680 
1681 		/*
1682 		 * XXX - The following conditional probably violates the TCP
1683 		 * spec.  The problem is that, since we don't know the
1684 		 * other end's MSS, we are supposed to use a conservative
1685 		 * default.  But, if we do that, then MTU discovery will
1686 		 * never actually take place, because the conservative
1687 		 * default is much less than the MTUs typically seen
1688 		 * on the Internet today.  For the moment, we'll sweep
1689 		 * this under the carpet.
1690 		 *
1691 		 * The conservative default might not actually be a problem
1692 		 * if the only case this occurs is when sending an initial
1693 		 * SYN with options and data to a host we've never talked
1694 		 * to before.  Then, they will reply with an MSS value which
1695 		 * will get recorded and the new parameters should get
1696 		 * recomputed.  For Further Study.
1697 		 */
1698 		if (rt->rt_rmx.rmx_mssopt  && rt->rt_rmx.rmx_mssopt < maxopd)
1699 			maxopd = rt->rt_rmx.rmx_mssopt;
1700 	} else
1701 		maxopd = mtu -
1702 		    (isipv6 ?
1703 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1704 		     sizeof(struct tcpiphdr));
1705 
1706 	if (tp->t_maxopd <= maxopd)
1707 		return;
1708 	tp->t_maxopd = maxopd;
1709 
1710 	mss = maxopd;
1711 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1712 			   (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1713 		mss -= TCPOLEN_TSTAMP_APPA;
1714 
1715 	/* round down to multiple of MCLBYTES */
1716 #if	(MCLBYTES & (MCLBYTES - 1)) == 0    /* test if MCLBYTES power of 2 */
1717 	if (mss > MCLBYTES)
1718 		mss &= ~(MCLBYTES - 1);
1719 #else
1720 	if (mss > MCLBYTES)
1721 		mss = (mss / MCLBYTES) * MCLBYTES;
1722 #endif
1723 
1724 	if (so->so_snd.ssb_hiwat < mss)
1725 		mss = so->so_snd.ssb_hiwat;
1726 
1727 	tp->t_maxseg = mss;
1728 	tp->t_rtttime = 0;
1729 	tp->snd_nxt = tp->snd_una;
1730 	tcp_output(tp);
1731 	tcpstat.tcps_mturesent++;
1732 }
1733 
1734 /*
1735  * Look-up the routing entry to the peer of this inpcb.  If no route
1736  * is found and it cannot be allocated the return NULL.  This routine
1737  * is called by TCP routines that access the rmx structure and by tcp_mss
1738  * to get the interface MTU.
1739  */
1740 struct rtentry *
1741 tcp_rtlookup(struct in_conninfo *inc)
1742 {
1743 	struct route *ro = &inc->inc_route;
1744 
1745 	if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1746 		/* No route yet, so try to acquire one */
1747 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1748 			/*
1749 			 * unused portions of the structure MUST be zero'd
1750 			 * out because rtalloc() treats it as opaque data
1751 			 */
1752 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1753 			ro->ro_dst.sa_family = AF_INET;
1754 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1755 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1756 			    inc->inc_faddr;
1757 			rtalloc(ro);
1758 		}
1759 	}
1760 	return (ro->ro_rt);
1761 }
1762 
1763 #ifdef INET6
1764 struct rtentry *
1765 tcp_rtlookup6(struct in_conninfo *inc)
1766 {
1767 	struct route_in6 *ro6 = &inc->inc6_route;
1768 
1769 	if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1770 		/* No route yet, so try to acquire one */
1771 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1772 			/*
1773 			 * unused portions of the structure MUST be zero'd
1774 			 * out because rtalloc() treats it as opaque data
1775 			 */
1776 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1777 			ro6->ro_dst.sin6_family = AF_INET6;
1778 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1779 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1780 			rtalloc((struct route *)ro6);
1781 		}
1782 	}
1783 	return (ro6->ro_rt);
1784 }
1785 #endif
1786 
1787 #ifdef IPSEC
1788 /* compute ESP/AH header size for TCP, including outer IP header. */
1789 size_t
1790 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1791 {
1792 	struct inpcb *inp;
1793 	struct mbuf *m;
1794 	size_t hdrsiz;
1795 	struct ip *ip;
1796 	struct tcphdr *th;
1797 
1798 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1799 		return (0);
1800 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1801 	if (!m)
1802 		return (0);
1803 
1804 #ifdef INET6
1805 	if (inp->inp_vflag & INP_IPV6) {
1806 		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1807 
1808 		th = (struct tcphdr *)(ip6 + 1);
1809 		m->m_pkthdr.len = m->m_len =
1810 		    sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1811 		tcp_fillheaders(tp, ip6, th, FALSE);
1812 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1813 	} else
1814 #endif
1815 	{
1816 		ip = mtod(m, struct ip *);
1817 		th = (struct tcphdr *)(ip + 1);
1818 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1819 		tcp_fillheaders(tp, ip, th, FALSE);
1820 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1821 	}
1822 
1823 	m_free(m);
1824 	return (hdrsiz);
1825 }
1826 #endif
1827 
1828 /*
1829  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1830  *
1831  * This code attempts to calculate the bandwidth-delay product as a
1832  * means of determining the optimal window size to maximize bandwidth,
1833  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1834  * routers.  This code also does a fairly good job keeping RTTs in check
1835  * across slow links like modems.  We implement an algorithm which is very
1836  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1837  * transmitter side of a TCP connection and so only effects the transmit
1838  * side of the connection.
1839  *
1840  * BACKGROUND:  TCP makes no provision for the management of buffer space
1841  * at the end points or at the intermediate routers and switches.  A TCP
1842  * stream, whether using NewReno or not, will eventually buffer as
1843  * many packets as it is able and the only reason this typically works is
1844  * due to the fairly small default buffers made available for a connection
1845  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1846  * scaling it is now fairly easy for even a single TCP connection to blow-out
1847  * all available buffer space not only on the local interface, but on
1848  * intermediate routers and switches as well.  NewReno makes a misguided
1849  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1850  * then backing off, then steadily increasing the window again until another
1851  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1852  * is only made worse as network loads increase and the idea of intentionally
1853  * blowing out network buffers is, frankly, a terrible way to manage network
1854  * resources.
1855  *
1856  * It is far better to limit the transmit window prior to the failure
1857  * condition being achieved.  There are two general ways to do this:  First
1858  * you can 'scan' through different transmit window sizes and locate the
1859  * point where the RTT stops increasing, indicating that you have filled the
1860  * pipe, then scan backwards until you note that RTT stops decreasing, then
1861  * repeat ad-infinitum.  This method works in principle but has severe
1862  * implementation issues due to RTT variances, timer granularity, and
1863  * instability in the algorithm which can lead to many false positives and
1864  * create oscillations as well as interact badly with other TCP streams
1865  * implementing the same algorithm.
1866  *
1867  * The second method is to limit the window to the bandwidth delay product
1868  * of the link.  This is the method we implement.  RTT variances and our
1869  * own manipulation of the congestion window, bwnd, can potentially
1870  * destabilize the algorithm.  For this reason we have to stabilize the
1871  * elements used to calculate the window.  We do this by using the minimum
1872  * observed RTT, the long term average of the observed bandwidth, and
1873  * by adding two segments worth of slop.  It isn't perfect but it is able
1874  * to react to changing conditions and gives us a very stable basis on
1875  * which to extend the algorithm.
1876  */
1877 void
1878 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1879 {
1880 	u_long bw;
1881 	u_long bwnd;
1882 	int save_ticks;
1883 	int delta_ticks;
1884 
1885 	/*
1886 	 * If inflight_enable is disabled in the middle of a tcp connection,
1887 	 * make sure snd_bwnd is effectively disabled.
1888 	 */
1889 	if (!tcp_inflight_enable) {
1890 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1891 		tp->snd_bandwidth = 0;
1892 		return;
1893 	}
1894 
1895 	/*
1896 	 * Validate the delta time.  If a connection is new or has been idle
1897 	 * a long time we have to reset the bandwidth calculator.
1898 	 */
1899 	save_ticks = ticks;
1900 	delta_ticks = save_ticks - tp->t_bw_rtttime;
1901 	if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1902 		tp->t_bw_rtttime = ticks;
1903 		tp->t_bw_rtseq = ack_seq;
1904 		if (tp->snd_bandwidth == 0)
1905 			tp->snd_bandwidth = tcp_inflight_min;
1906 		return;
1907 	}
1908 	if (delta_ticks == 0)
1909 		return;
1910 
1911 	/*
1912 	 * Sanity check, plus ignore pure window update acks.
1913 	 */
1914 	if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1915 		return;
1916 
1917 	/*
1918 	 * Figure out the bandwidth.  Due to the tick granularity this
1919 	 * is a very rough number and it MUST be averaged over a fairly
1920 	 * long period of time.  XXX we need to take into account a link
1921 	 * that is not using all available bandwidth, but for now our
1922 	 * slop will ramp us up if this case occurs and the bandwidth later
1923 	 * increases.
1924 	 */
1925 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
1926 	tp->t_bw_rtttime = save_ticks;
1927 	tp->t_bw_rtseq = ack_seq;
1928 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1929 
1930 	tp->snd_bandwidth = bw;
1931 
1932 	/*
1933 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1934 	 * segments.  The additional slop puts us squarely in the sweet
1935 	 * spot and also handles the bandwidth run-up case.  Without the
1936 	 * slop we could be locking ourselves into a lower bandwidth.
1937 	 *
1938 	 * Situations Handled:
1939 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1940 	 *	    high speed LANs, allowing larger TCP buffers to be
1941 	 *	    specified, and also does a good job preventing
1942 	 *	    over-queueing of packets over choke points like modems
1943 	 *	    (at least for the transmit side).
1944 	 *
1945 	 *	(2) Is able to handle changing network loads (bandwidth
1946 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1947 	 *	    increases).
1948 	 *
1949 	 *	(3) Theoretically should stabilize in the face of multiple
1950 	 *	    connections implementing the same algorithm (this may need
1951 	 *	    a little work).
1952 	 *
1953 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1954 	 *	    be adjusted with a sysctl but typically only needs to be on
1955 	 *	    very slow connections.  A value no smaller then 5 should
1956 	 *	    be used, but only reduce this default if you have no other
1957 	 *	    choice.
1958 	 */
1959 
1960 #define	USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1961 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
1962 	       tcp_inflight_stab * (int)tp->t_maxseg / 10;
1963 #undef USERTT
1964 
1965 	if (tcp_inflight_debug > 0) {
1966 		static int ltime;
1967 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1968 			ltime = ticks;
1969 			kprintf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1970 				tp, bw, tp->t_rttbest, tp->t_srtt, bwnd);
1971 		}
1972 	}
1973 	if ((long)bwnd < tcp_inflight_min)
1974 		bwnd = tcp_inflight_min;
1975 	if (bwnd > tcp_inflight_max)
1976 		bwnd = tcp_inflight_max;
1977 	if ((long)bwnd < tp->t_maxseg * 2)
1978 		bwnd = tp->t_maxseg * 2;
1979 	tp->snd_bwnd = bwnd;
1980 }
1981 
1982 static void
1983 tcp_rmx_iwsegs(struct tcpcb *tp, u_long *maxsegs, u_long *capsegs)
1984 {
1985 	struct rtentry *rt;
1986 	struct inpcb *inp = tp->t_inpcb;
1987 #ifdef INET6
1988 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
1989 #else
1990 	const boolean_t isipv6 = FALSE;
1991 #endif
1992 
1993 	/* XXX */
1994 	if (tcp_iw_maxsegs < TCP_IW_MAXSEGS_DFLT)
1995 		tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
1996 	if (tcp_iw_capsegs < TCP_IW_CAPSEGS_DFLT)
1997 		tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
1998 
1999 	if (isipv6)
2000 		rt = tcp_rtlookup6(&inp->inp_inc);
2001 	else
2002 		rt = tcp_rtlookup(&inp->inp_inc);
2003 	if (rt == NULL ||
2004 	    rt->rt_rmx.rmx_iwmaxsegs < TCP_IW_MAXSEGS_DFLT ||
2005 	    rt->rt_rmx.rmx_iwcapsegs < TCP_IW_CAPSEGS_DFLT) {
2006 		*maxsegs = tcp_iw_maxsegs;
2007 		*capsegs = tcp_iw_capsegs;
2008 		return;
2009 	}
2010 	*maxsegs = rt->rt_rmx.rmx_iwmaxsegs;
2011 	*capsegs = rt->rt_rmx.rmx_iwcapsegs;
2012 }
2013 
2014 u_long
2015 tcp_initial_window(struct tcpcb *tp)
2016 {
2017 	if (tcp_do_rfc3390) {
2018 		/*
2019 		 * RFC3390:
2020 		 * "If the SYN or SYN/ACK is lost, the initial window
2021 		 *  used by a sender after a correctly transmitted SYN
2022 		 *  MUST be one segment consisting of MSS bytes."
2023 		 *
2024 		 * However, we do something a little bit more aggressive
2025 		 * then RFC3390 here:
2026 		 * - Only if time spent in the SYN or SYN|ACK retransmition
2027 		 *   >= 3 seconds, the IW is reduced.  We do this mainly
2028 		 *   because when RFC3390 is published, the initial RTO is
2029 		 *   still 3 seconds (the threshold we test here), while
2030 		 *   after RFC6298, the initial RTO is 1 second.  This
2031 		 *   behaviour probably still falls within the spirit of
2032 		 *   RFC3390.
2033 		 * - When IW is reduced, 2*MSS is used instead of 1*MSS.
2034 		 *   Mainly to avoid sender and receiver deadlock until
2035 		 *   delayed ACK timer expires.  And even RFC2581 does not
2036 		 *   try to reduce IW upon SYN or SYN|ACK retransmition
2037 		 *   timeout.
2038 		 *
2039 		 * See also:
2040 		 * http://tools.ietf.org/html/draft-ietf-tcpm-initcwnd-03
2041 		 */
2042 		if (tp->t_rxtsyn >= TCPTV_RTOBASE3) {
2043 			return (2 * tp->t_maxseg);
2044 		} else {
2045 			u_long maxsegs, capsegs;
2046 
2047 			tcp_rmx_iwsegs(tp, &maxsegs, &capsegs);
2048 			return min(maxsegs * tp->t_maxseg,
2049 				   max(2 * tp->t_maxseg, capsegs * 1460));
2050 		}
2051 	} else {
2052 		/*
2053 		 * Even RFC2581 (back to 1999) allows 2*SMSS IW.
2054 		 *
2055 		 * Mainly to avoid sender and receiver deadlock
2056 		 * until delayed ACK timer expires.
2057 		 */
2058 		return (2 * tp->t_maxseg);
2059 	}
2060 }
2061 
2062 #ifdef TCP_SIGNATURE
2063 /*
2064  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2065  *
2066  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2067  * When called from tcp_input(), we can be sure that th_sum has been
2068  * zeroed out and verified already.
2069  *
2070  * Return 0 if successful, otherwise return -1.
2071  *
2072  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2073  * search with the destination IP address, and a 'magic SPI' to be
2074  * determined by the application. This is hardcoded elsewhere to 1179
2075  * right now. Another branch of this code exists which uses the SPD to
2076  * specify per-application flows but it is unstable.
2077  */
2078 int
2079 tcpsignature_compute(
2080 	struct mbuf *m,		/* mbuf chain */
2081 	int len,		/* length of TCP data */
2082 	int optlen,		/* length of TCP options */
2083 	u_char *buf,		/* storage for MD5 digest */
2084 	u_int direction)	/* direction of flow */
2085 {
2086 	struct ippseudo ippseudo;
2087 	MD5_CTX ctx;
2088 	int doff;
2089 	struct ip *ip;
2090 	struct ipovly *ipovly;
2091 	struct secasvar *sav;
2092 	struct tcphdr *th;
2093 #ifdef INET6
2094 	struct ip6_hdr *ip6;
2095 	struct in6_addr in6;
2096 	uint32_t plen;
2097 	uint16_t nhdr;
2098 #endif /* INET6 */
2099 	u_short savecsum;
2100 
2101 	KASSERT(m != NULL, ("passed NULL mbuf. Game over."));
2102 	KASSERT(buf != NULL, ("passed NULL storage pointer for MD5 signature"));
2103 	/*
2104 	 * Extract the destination from the IP header in the mbuf.
2105 	 */
2106 	ip = mtod(m, struct ip *);
2107 #ifdef INET6
2108 	ip6 = NULL;     /* Make the compiler happy. */
2109 #endif /* INET6 */
2110 	/*
2111 	 * Look up an SADB entry which matches the address found in
2112 	 * the segment.
2113 	 */
2114 	switch (IP_VHL_V(ip->ip_vhl)) {
2115 	case IPVERSION:
2116 		sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src, (caddr_t)&ip->ip_dst,
2117 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2118 		break;
2119 #ifdef INET6
2120 	case (IPV6_VERSION >> 4):
2121 		ip6 = mtod(m, struct ip6_hdr *);
2122 		sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src, (caddr_t)&ip6->ip6_dst,
2123 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2124 		break;
2125 #endif /* INET6 */
2126 	default:
2127 		return (EINVAL);
2128 		/* NOTREACHED */
2129 		break;
2130 	}
2131 	if (sav == NULL) {
2132 		kprintf("%s: SADB lookup failed\n", __func__);
2133 		return (EINVAL);
2134 	}
2135 	MD5Init(&ctx);
2136 
2137 	/*
2138 	 * Step 1: Update MD5 hash with IP pseudo-header.
2139 	 *
2140 	 * XXX The ippseudo header MUST be digested in network byte order,
2141 	 * or else we'll fail the regression test. Assume all fields we've
2142 	 * been doing arithmetic on have been in host byte order.
2143 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2144 	 * tcp_output(), the underlying ip_len member has not yet been set.
2145 	 */
2146 	switch (IP_VHL_V(ip->ip_vhl)) {
2147 	case IPVERSION:
2148 		ipovly = (struct ipovly *)ip;
2149 		ippseudo.ippseudo_src = ipovly->ih_src;
2150 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2151 		ippseudo.ippseudo_pad = 0;
2152 		ippseudo.ippseudo_p = IPPROTO_TCP;
2153 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2154 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2155 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2156 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2157 		break;
2158 #ifdef INET6
2159 	/*
2160 	 * RFC 2385, 2.0  Proposal
2161 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2162 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2163 	 * extended next header value (to form 32 bits), and 32-bit segment
2164 	 * length.
2165 	 * Note: Upper-Layer Packet Length comes before Next Header.
2166 	 */
2167 	case (IPV6_VERSION >> 4):
2168 		in6 = ip6->ip6_src;
2169 		in6_clearscope(&in6);
2170 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2171 		in6 = ip6->ip6_dst;
2172 		in6_clearscope(&in6);
2173 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2174 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2175 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2176 		nhdr = 0;
2177 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2178 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2179 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2180 		nhdr = IPPROTO_TCP;
2181 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2182 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2183 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2184 		break;
2185 #endif /* INET6 */
2186 	default:
2187 		return (EINVAL);
2188 		/* NOTREACHED */
2189 		break;
2190 	}
2191 	/*
2192 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2193 	 * The TCP checksum must be set to zero.
2194 	 */
2195 	savecsum = th->th_sum;
2196 	th->th_sum = 0;
2197 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2198 	th->th_sum = savecsum;
2199 	/*
2200 	 * Step 3: Update MD5 hash with TCP segment data.
2201 	 *         Use m_apply() to avoid an early m_pullup().
2202 	 */
2203 	if (len > 0)
2204 		m_apply(m, doff, len, tcpsignature_apply, &ctx);
2205 	/*
2206 	 * Step 4: Update MD5 hash with shared secret.
2207 	 */
2208 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2209 	MD5Final(buf, &ctx);
2210 	key_sa_recordxfer(sav, m);
2211 	key_freesav(sav);
2212 	return (0);
2213 }
2214 
2215 int
2216 tcpsignature_apply(void *fstate, void *data, unsigned int len)
2217 {
2218 
2219 	MD5Update((MD5_CTX *)fstate, (unsigned char *)data, len);
2220 	return (0);
2221 }
2222 #endif /* TCP_SIGNATURE */
2223 
2224 boolean_t
2225 tcp_tso_pullup(struct mbuf **mp, int hoff, struct ip **ip0, int *iphlen0,
2226     struct tcphdr **th0, int *thoff0)
2227 {
2228 	struct mbuf *m = *mp;
2229 	struct ip *ip;
2230 	int len, iphlen;
2231 	struct tcphdr *th;
2232 	int thoff;
2233 
2234 	len = hoff + sizeof(struct ip);
2235 
2236 	/* The fixed IP header must reside completely in the first mbuf. */
2237 	if (m->m_len < len) {
2238 		m = m_pullup(m, len);
2239 		if (m == NULL)
2240 			goto fail;
2241 	}
2242 
2243 	ip = mtodoff(m, struct ip *, hoff);
2244 	iphlen = IP_VHL_HL(ip->ip_vhl) << 2;
2245 
2246 	/* The full IP header must reside completely in the one mbuf. */
2247 	if (m->m_len < hoff + iphlen) {
2248 		m = m_pullup(m, hoff + iphlen);
2249 		if (m == NULL)
2250 			goto fail;
2251 		ip = mtodoff(m, struct ip *, hoff);
2252 	}
2253 
2254 	KASSERT(ip->ip_p == IPPROTO_TCP, ("not tcp %d", ip->ip_p));
2255 
2256 	if (m->m_len < hoff + iphlen + sizeof(struct tcphdr)) {
2257 		m = m_pullup(m, hoff + iphlen + sizeof(struct tcphdr));
2258 		if (m == NULL)
2259 			goto fail;
2260 		ip = mtodoff(m, struct ip *, hoff);
2261 	}
2262 
2263 	th = (struct tcphdr *)((caddr_t)ip + iphlen);
2264 	thoff = th->th_off << 2;
2265 
2266 	if (m->m_len < hoff + iphlen + thoff) {
2267 		m = m_pullup(m, hoff + iphlen + thoff);
2268 		if (m == NULL)
2269 			goto fail;
2270 		ip = mtodoff(m, struct ip *, hoff);
2271 		th = (struct tcphdr *)((caddr_t)ip + iphlen);
2272 	}
2273 
2274 	*mp = m;
2275 	*ip0 = ip;
2276 	*iphlen0 = iphlen;
2277 	*th0 = th;
2278 	*thoff0 = thoff;
2279 	return TRUE;
2280 
2281 fail:
2282 	if (m != NULL)
2283 		m_freem(m);
2284 	*mp = NULL;
2285 	return FALSE;
2286 }
2287