xref: /dragonfly/sys/netinet/tcp_subr.c (revision cf6b3eb1)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. Neither the name of the University nor the names of its contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  *
62  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
63  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
64  */
65 
66 #include "opt_inet.h"
67 #include "opt_inet6.h"
68 #include "opt_ipsec.h"
69 #include "opt_tcpdebug.h"
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/callout.h>
74 #include <sys/kernel.h>
75 #include <sys/sysctl.h>
76 #include <sys/malloc.h>
77 #include <sys/mpipe.h>
78 #include <sys/mbuf.h>
79 #ifdef INET6
80 #include <sys/domain.h>
81 #endif
82 #include <sys/proc.h>
83 #include <sys/priv.h>
84 #include <sys/socket.h>
85 #include <sys/socketops.h>
86 #include <sys/socketvar.h>
87 #include <sys/protosw.h>
88 #include <sys/random.h>
89 #include <sys/in_cksum.h>
90 #include <sys/ktr.h>
91 
92 #include <net/route.h>
93 #include <net/if.h>
94 #include <net/netisr2.h>
95 
96 #define	_IP_VHL
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/ip.h>
100 #include <netinet/ip6.h>
101 #include <netinet/in_pcb.h>
102 #include <netinet6/in6_pcb.h>
103 #include <netinet/in_var.h>
104 #include <netinet/ip_var.h>
105 #include <netinet6/ip6_var.h>
106 #include <netinet/ip_icmp.h>
107 #ifdef INET6
108 #include <netinet/icmp6.h>
109 #endif
110 #include <netinet/tcp.h>
111 #include <netinet/tcp_fsm.h>
112 #include <netinet/tcp_seq.h>
113 #include <netinet/tcp_timer.h>
114 #include <netinet/tcp_timer2.h>
115 #include <netinet/tcp_var.h>
116 #include <netinet6/tcp6_var.h>
117 #include <netinet/tcpip.h>
118 #ifdef TCPDEBUG
119 #include <netinet/tcp_debug.h>
120 #endif
121 #include <netinet6/ip6protosw.h>
122 
123 #ifdef IPSEC
124 #include <netinet6/ipsec.h>
125 #include <netproto/key/key.h>
126 #ifdef INET6
127 #include <netinet6/ipsec6.h>
128 #endif
129 #endif
130 
131 #ifdef FAST_IPSEC
132 #include <netproto/ipsec/ipsec.h>
133 #ifdef INET6
134 #include <netproto/ipsec/ipsec6.h>
135 #endif
136 #define	IPSEC
137 #endif
138 
139 #include <sys/md5.h>
140 #include <machine/smp.h>
141 
142 #include <sys/msgport2.h>
143 #include <sys/mplock2.h>
144 #include <net/netmsg2.h>
145 
146 #if !defined(KTR_TCP)
147 #define KTR_TCP		KTR_ALL
148 #endif
149 /*
150 KTR_INFO_MASTER(tcp);
151 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
152 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
153 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
154 #define logtcp(name)	KTR_LOG(tcp_ ## name)
155 */
156 
157 #define TCP_IW_MAXSEGS_DFLT	4
158 #define TCP_IW_CAPSEGS_DFLT	4
159 
160 struct tcp_reass_pcpu {
161 	int			draining;
162 	struct netmsg_base	drain_nmsg;
163 } __cachealign;
164 
165 struct inpcbinfo tcbinfo[MAXCPU];
166 struct tcpcbackq tcpcbackq[MAXCPU];
167 struct tcp_reass_pcpu tcp_reassq[MAXCPU];
168 
169 int tcp_mssdflt = TCP_MSS;
170 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
171     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
172 
173 #ifdef INET6
174 int tcp_v6mssdflt = TCP6_MSS;
175 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
176     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
177 #endif
178 
179 /*
180  * Minimum MSS we accept and use. This prevents DoS attacks where
181  * we are forced to a ridiculous low MSS like 20 and send hundreds
182  * of packets instead of one. The effect scales with the available
183  * bandwidth and quickly saturates the CPU and network interface
184  * with packet generation and sending. Set to zero to disable MINMSS
185  * checking. This setting prevents us from sending too small packets.
186  */
187 int tcp_minmss = TCP_MINMSS;
188 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
189     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
190 
191 #if 0
192 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
193 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
194     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
195 #endif
196 
197 int tcp_do_rfc1323 = 1;
198 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
199     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
200 
201 static int tcp_tcbhashsize = 0;
202 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
203      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
204 
205 static int do_tcpdrain = 1;
206 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
207      "Enable tcp_drain routine for extra help when low on mbufs");
208 
209 static int icmp_may_rst = 1;
210 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
211     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
212 
213 static int tcp_isn_reseed_interval = 0;
214 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
215     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
216 
217 /*
218  * TCP bandwidth limiting sysctls.  The inflight limiter is now turned on
219  * by default, but with generous values which should allow maximal
220  * bandwidth.  In particular, the slop defaults to 50 (5 packets).
221  *
222  * The reason for doing this is that the limiter is the only mechanism we
223  * have which seems to do a really good job preventing receiver RX rings
224  * on network interfaces from getting blown out.  Even though GigE/10GigE
225  * is supposed to flow control it looks like either it doesn't actually
226  * do it or Open Source drivers do not properly enable it.
227  *
228  * People using the limiter to reduce bottlenecks on slower WAN connections
229  * should set the slop to 20 (2 packets).
230  */
231 static int tcp_inflight_enable = 1;
232 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
233     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
234 
235 static int tcp_inflight_debug = 0;
236 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
237     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
238 
239 /*
240  * NOTE: tcp_inflight_start is essentially the starting receive window
241  *	 for a connection.  If set too low then fetches over tcp
242  *	 connections will take noticably longer to ramp-up over
243  *	 high-latency connections.  6144 is too low for a default,
244  *	 use something more reasonable.
245  */
246 static int tcp_inflight_start = 33792;
247 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_start, CTLFLAG_RW,
248     &tcp_inflight_start, 0, "Start value for TCP inflight window");
249 
250 static int tcp_inflight_min = 6144;
251 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
252     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
253 
254 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
255 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
256     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
257 
258 static int tcp_inflight_stab = 50;
259 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
260     &tcp_inflight_stab, 0, "Fudge bw 1/10% (50=5%)");
261 
262 static int tcp_inflight_adjrtt = 2;
263 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_adjrtt, CTLFLAG_RW,
264     &tcp_inflight_adjrtt, 0, "Slop for rtt 1/(hz*32)");
265 
266 static int tcp_do_rfc3390 = 1;
267 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
268     &tcp_do_rfc3390, 0,
269     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
270 
271 static u_long tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
272 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwmaxsegs, CTLFLAG_RW,
273     &tcp_iw_maxsegs, 0, "TCP IW segments max");
274 
275 static u_long tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
276 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwcapsegs, CTLFLAG_RW,
277     &tcp_iw_capsegs, 0, "TCP IW segments");
278 
279 int tcp_low_rtobase = 1;
280 SYSCTL_INT(_net_inet_tcp, OID_AUTO, low_rtobase, CTLFLAG_RW,
281     &tcp_low_rtobase, 0, "Lowering the Initial RTO (RFC 6298)");
282 
283 static int tcp_do_ncr = 1;
284 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr, CTLFLAG_RW,
285     &tcp_do_ncr, 0, "Non-Congestion Robustness (RFC 4653)");
286 
287 int tcp_ncr_linklocal = 0;
288 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr_linklocal, CTLFLAG_RW,
289     &tcp_ncr_linklocal, 0,
290     "Enable Non-Congestion Robustness (RFC 4653) on link local network");
291 
292 int tcp_ncr_rxtthresh_max = 16;
293 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr_rxtthresh_max, CTLFLAG_RW,
294     &tcp_ncr_rxtthresh_max, 0,
295     "Non-Congestion Robustness (RFC 4653), DupThresh upper limit");
296 
297 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
298 static struct malloc_pipe tcptemp_mpipe;
299 
300 static void tcp_willblock(void);
301 static void tcp_notify (struct inpcb *, int);
302 
303 struct tcp_stats tcpstats_percpu[MAXCPU] __cachealign;
304 struct tcp_state_count tcpstate_count[MAXCPU] __cachealign;
305 
306 static void	tcp_drain_dispatch(netmsg_t nmsg);
307 
308 static int
309 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
310 {
311 	int cpu, error = 0;
312 
313 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
314 		if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
315 					sizeof(struct tcp_stats))))
316 			break;
317 		if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
318 				       sizeof(struct tcp_stats))))
319 			break;
320 	}
321 
322 	return (error);
323 }
324 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
325     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
326 
327 /*
328  * Target size of TCP PCB hash tables. Must be a power of two.
329  *
330  * Note that this can be overridden by the kernel environment
331  * variable net.inet.tcp.tcbhashsize
332  */
333 #ifndef TCBHASHSIZE
334 #define	TCBHASHSIZE	512
335 #endif
336 
337 /*
338  * This is the actual shape of what we allocate using the zone
339  * allocator.  Doing it this way allows us to protect both structures
340  * using the same generation count, and also eliminates the overhead
341  * of allocating tcpcbs separately.  By hiding the structure here,
342  * we avoid changing most of the rest of the code (although it needs
343  * to be changed, eventually, for greater efficiency).
344  */
345 #define	ALIGNMENT	32
346 #define	ALIGNM1		(ALIGNMENT - 1)
347 struct	inp_tp {
348 	union {
349 		struct	inpcb inp;
350 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
351 	} inp_tp_u;
352 	struct	tcpcb tcb;
353 	struct	tcp_callout inp_tp_rexmt;
354 	struct	tcp_callout inp_tp_persist;
355 	struct	tcp_callout inp_tp_keep;
356 	struct	tcp_callout inp_tp_2msl;
357 	struct	tcp_callout inp_tp_delack;
358 	struct	netmsg_tcp_timer inp_tp_timermsg;
359 	struct	netmsg_base inp_tp_sndmore;
360 };
361 #undef ALIGNMENT
362 #undef ALIGNM1
363 
364 /*
365  * Tcp initialization
366  */
367 void
368 tcp_init(void)
369 {
370 	struct inpcbportinfo *portinfo;
371 	struct inpcbinfo *ticb;
372 	int hashsize = TCBHASHSIZE;
373 	int cpu;
374 
375 	/*
376 	 * note: tcptemp is used for keepalives, and it is ok for an
377 	 * allocation to fail so do not specify MPF_INT.
378 	 */
379 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
380 		    25, -1, 0, NULL, NULL, NULL);
381 
382 	tcp_delacktime = TCPTV_DELACK;
383 	tcp_keepinit = TCPTV_KEEP_INIT;
384 	tcp_keepidle = TCPTV_KEEP_IDLE;
385 	tcp_keepintvl = TCPTV_KEEPINTVL;
386 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
387 	tcp_msl = TCPTV_MSL;
388 	tcp_rexmit_min = TCPTV_MIN;
389 	if (tcp_rexmit_min < 1) /* if kern.hz is too low */
390 		tcp_rexmit_min = 1;
391 	tcp_rexmit_slop = TCPTV_CPU_VAR;
392 
393 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
394 	if (!powerof2(hashsize)) {
395 		kprintf("WARNING: TCB hash size not a power of 2\n");
396 		hashsize = 512; /* safe default */
397 	}
398 	tcp_tcbhashsize = hashsize;
399 
400 	portinfo = kmalloc_cachealign(sizeof(*portinfo) * netisr_ncpus, M_PCB,
401 	    M_WAITOK);
402 
403 	for (cpu = 0; cpu < netisr_ncpus; cpu++) {
404 		ticb = &tcbinfo[cpu];
405 		in_pcbinfo_init(ticb, cpu, FALSE);
406 		ticb->hashbase = hashinit(hashsize, M_PCB,
407 					  &ticb->hashmask);
408 		in_pcbportinfo_init(&portinfo[cpu], hashsize, cpu);
409 		in_pcbportinfo_set(ticb, portinfo, netisr_ncpus);
410 		ticb->wildcardhashbase = hashinit(hashsize, M_PCB,
411 						  &ticb->wildcardhashmask);
412 		ticb->localgrphashbase = hashinit(hashsize, M_PCB,
413 						  &ticb->localgrphashmask);
414 		ticb->ipi_size = sizeof(struct inp_tp);
415 		TAILQ_INIT(&tcpcbackq[cpu].head);
416 	}
417 
418 	tcp_reass_maxseg = nmbclusters / 16;
419 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
420 
421 #ifdef INET6
422 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
423 #else
424 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
425 #endif
426 	if (max_protohdr < TCP_MINPROTOHDR)
427 		max_protohdr = TCP_MINPROTOHDR;
428 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
429 		panic("tcp_init");
430 #undef TCP_MINPROTOHDR
431 
432 	/*
433 	 * Initialize TCP statistics counters for each CPU.
434 	 */
435 	for (cpu = 0; cpu < netisr_ncpus; ++cpu)
436 		bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
437 
438 	/*
439 	 * Initialize netmsgs for TCP drain
440 	 */
441 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
442 		netmsg_init(&tcp_reassq[cpu].drain_nmsg, NULL,
443 		    &netisr_adone_rport, MSGF_PRIORITY, tcp_drain_dispatch);
444 	}
445 
446 	syncache_init();
447 	netisr_register_rollup(tcp_willblock, NETISR_ROLLUP_PRIO_TCP);
448 }
449 
450 static void
451 tcp_willblock(void)
452 {
453 	struct tcpcb *tp;
454 	int cpu = mycpuid;
455 
456 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu].head)) != NULL) {
457 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
458 		tp->t_flags &= ~TF_ONOUTPUTQ;
459 		TAILQ_REMOVE(&tcpcbackq[cpu].head, tp, t_outputq);
460 		tcp_output(tp);
461 	}
462 }
463 
464 /*
465  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
466  * tcp_template used to store this data in mbufs, but we now recopy it out
467  * of the tcpcb each time to conserve mbufs.
468  */
469 void
470 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr, boolean_t tso)
471 {
472 	struct inpcb *inp = tp->t_inpcb;
473 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
474 
475 #ifdef INET6
476 	if (INP_ISIPV6(inp)) {
477 		struct ip6_hdr *ip6;
478 
479 		ip6 = (struct ip6_hdr *)ip_ptr;
480 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
481 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
482 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
483 			(IPV6_VERSION & IPV6_VERSION_MASK);
484 		ip6->ip6_nxt = IPPROTO_TCP;
485 		ip6->ip6_plen = sizeof(struct tcphdr);
486 		ip6->ip6_src = inp->in6p_laddr;
487 		ip6->ip6_dst = inp->in6p_faddr;
488 		tcp_hdr->th_sum = 0;
489 	} else
490 #endif
491 	{
492 		struct ip *ip = (struct ip *) ip_ptr;
493 		u_int plen;
494 
495 		ip->ip_vhl = IP_VHL_BORING;
496 		ip->ip_tos = 0;
497 		ip->ip_len = 0;
498 		ip->ip_id = 0;
499 		ip->ip_off = 0;
500 		ip->ip_ttl = 0;
501 		ip->ip_sum = 0;
502 		ip->ip_p = IPPROTO_TCP;
503 		ip->ip_src = inp->inp_laddr;
504 		ip->ip_dst = inp->inp_faddr;
505 
506 		if (tso)
507 			plen = htons(IPPROTO_TCP);
508 		else
509 			plen = htons(sizeof(struct tcphdr) + IPPROTO_TCP);
510 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
511 		    ip->ip_dst.s_addr, plen);
512 	}
513 
514 	tcp_hdr->th_sport = inp->inp_lport;
515 	tcp_hdr->th_dport = inp->inp_fport;
516 	tcp_hdr->th_seq = 0;
517 	tcp_hdr->th_ack = 0;
518 	tcp_hdr->th_x2 = 0;
519 	tcp_hdr->th_off = 5;
520 	tcp_hdr->th_flags = 0;
521 	tcp_hdr->th_win = 0;
522 	tcp_hdr->th_urp = 0;
523 }
524 
525 /*
526  * Create template to be used to send tcp packets on a connection.
527  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
528  * use for this function is in keepalives, which use tcp_respond.
529  */
530 struct tcptemp *
531 tcp_maketemplate(struct tcpcb *tp)
532 {
533 	struct tcptemp *tmp;
534 
535 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
536 		return (NULL);
537 	tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t, FALSE);
538 	return (tmp);
539 }
540 
541 void
542 tcp_freetemplate(struct tcptemp *tmp)
543 {
544 	mpipe_free(&tcptemp_mpipe, tmp);
545 }
546 
547 /*
548  * Send a single message to the TCP at address specified by
549  * the given TCP/IP header.  If m == NULL, then we make a copy
550  * of the tcpiphdr at ti and send directly to the addressed host.
551  * This is used to force keep alive messages out using the TCP
552  * template for a connection.  If flags are given then we send
553  * a message back to the TCP which originated the * segment ti,
554  * and discard the mbuf containing it and any other attached mbufs.
555  *
556  * In any case the ack and sequence number of the transmitted
557  * segment are as specified by the parameters.
558  *
559  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
560  */
561 void
562 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
563 	    tcp_seq ack, tcp_seq seq, int flags)
564 {
565 	int tlen;
566 	long win = 0;
567 	struct route *ro = NULL;
568 	struct route sro;
569 	struct ip *ip = ipgen;
570 	struct tcphdr *nth;
571 	int ipflags = 0;
572 	struct route_in6 *ro6 = NULL;
573 	struct route_in6 sro6;
574 	struct ip6_hdr *ip6 = ipgen;
575 	struct inpcb *inp = NULL;
576 	boolean_t use_tmpro = TRUE;
577 #ifdef INET6
578 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
579 #else
580 	const boolean_t isipv6 = FALSE;
581 #endif
582 
583 	if (tp != NULL) {
584 		inp = tp->t_inpcb;
585 		if (!(flags & TH_RST)) {
586 			win = ssb_space(&inp->inp_socket->so_rcv);
587 			if (win < 0)
588 				win = 0;
589 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
590 				win = (long)TCP_MAXWIN << tp->rcv_scale;
591 		}
592 		/*
593 		 * Don't use the route cache of a listen socket,
594 		 * it is not MPSAFE; use temporary route cache.
595 		 */
596 		if (tp->t_state != TCPS_LISTEN) {
597 			if (isipv6)
598 				ro6 = &inp->in6p_route;
599 			else
600 				ro = &inp->inp_route;
601 			use_tmpro = FALSE;
602 		}
603 	}
604 	if (use_tmpro) {
605 		if (isipv6) {
606 			ro6 = &sro6;
607 			bzero(ro6, sizeof *ro6);
608 		} else {
609 			ro = &sro;
610 			bzero(ro, sizeof *ro);
611 		}
612 	}
613 	if (m == NULL) {
614 		m = m_gethdr(M_NOWAIT, MT_HEADER);
615 		if (m == NULL)
616 			return;
617 		tlen = 0;
618 		m->m_data += max_linkhdr;
619 		if (isipv6) {
620 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
621 			ip6 = mtod(m, struct ip6_hdr *);
622 			nth = (struct tcphdr *)(ip6 + 1);
623 		} else {
624 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
625 			ip = mtod(m, struct ip *);
626 			nth = (struct tcphdr *)(ip + 1);
627 		}
628 		bcopy(th, nth, sizeof(struct tcphdr));
629 		flags = TH_ACK;
630 	} else {
631 		m_freem(m->m_next);
632 		m->m_next = NULL;
633 		m->m_data = (caddr_t)ipgen;
634 		/* m_len is set later */
635 		tlen = 0;
636 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
637 		if (isipv6) {
638 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
639 			nth = (struct tcphdr *)(ip6 + 1);
640 		} else {
641 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
642 			nth = (struct tcphdr *)(ip + 1);
643 		}
644 		if (th != nth) {
645 			/*
646 			 * this is usually a case when an extension header
647 			 * exists between the IPv6 header and the
648 			 * TCP header.
649 			 */
650 			nth->th_sport = th->th_sport;
651 			nth->th_dport = th->th_dport;
652 		}
653 		xchg(nth->th_dport, nth->th_sport, n_short);
654 #undef xchg
655 	}
656 	if (isipv6) {
657 		ip6->ip6_flow = 0;
658 		ip6->ip6_vfc = IPV6_VERSION;
659 		ip6->ip6_nxt = IPPROTO_TCP;
660 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
661 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
662 	} else {
663 		tlen += sizeof(struct tcpiphdr);
664 		ip->ip_len = tlen;
665 		ip->ip_ttl = ip_defttl;
666 	}
667 	m->m_len = tlen;
668 	m->m_pkthdr.len = tlen;
669 	m->m_pkthdr.rcvif = NULL;
670 	nth->th_seq = htonl(seq);
671 	nth->th_ack = htonl(ack);
672 	nth->th_x2 = 0;
673 	nth->th_off = sizeof(struct tcphdr) >> 2;
674 	nth->th_flags = flags;
675 	if (tp != NULL)
676 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
677 	else
678 		nth->th_win = htons((u_short)win);
679 	nth->th_urp = 0;
680 	if (isipv6) {
681 		nth->th_sum = 0;
682 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
683 					sizeof(struct ip6_hdr),
684 					tlen - sizeof(struct ip6_hdr));
685 		ip6->ip6_hlim = in6_selecthlim(inp,
686 		    (ro6 && ro6->ro_rt) ? ro6->ro_rt->rt_ifp : NULL);
687 	} else {
688 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
689 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
690 		m->m_pkthdr.csum_flags = CSUM_TCP;
691 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
692 		m->m_pkthdr.csum_thlen = sizeof(struct tcphdr);
693 	}
694 #ifdef TCPDEBUG
695 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
696 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
697 #endif
698 	if (isipv6) {
699 		ip6_output(m, NULL, ro6, ipflags, NULL, NULL, inp);
700 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
701 			RTFREE(ro6->ro_rt);
702 			ro6->ro_rt = NULL;
703 		}
704 	} else {
705 		if (inp != NULL && (inp->inp_flags & INP_HASH))
706 			m_sethash(m, inp->inp_hashval);
707 		ipflags |= IP_DEBUGROUTE;
708 		ip_output(m, NULL, ro, ipflags, NULL, inp);
709 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
710 			RTFREE(ro->ro_rt);
711 			ro->ro_rt = NULL;
712 		}
713 	}
714 }
715 
716 /*
717  * Create a new TCP control block, making an
718  * empty reassembly queue and hooking it to the argument
719  * protocol control block.  The `inp' parameter must have
720  * come from the zone allocator set up in tcp_init().
721  */
722 void
723 tcp_newtcpcb(struct inpcb *inp)
724 {
725 	struct inp_tp *it;
726 	struct tcpcb *tp;
727 #ifdef INET6
728 	boolean_t isipv6 = INP_ISIPV6(inp);
729 #else
730 	const boolean_t isipv6 = FALSE;
731 #endif
732 
733 	it = (struct inp_tp *)inp;
734 	tp = &it->tcb;
735 	bzero(tp, sizeof(struct tcpcb));
736 	TAILQ_INIT(&tp->t_segq);
737 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
738 	tp->t_rxtthresh = tcprexmtthresh;
739 
740 	/* Set up our timeouts. */
741 	tp->tt_rexmt = &it->inp_tp_rexmt;
742 	tp->tt_persist = &it->inp_tp_persist;
743 	tp->tt_keep = &it->inp_tp_keep;
744 	tp->tt_2msl = &it->inp_tp_2msl;
745 	tp->tt_delack = &it->inp_tp_delack;
746 	tcp_inittimers(tp);
747 
748 	/*
749 	 * Zero out timer message.  We don't create it here,
750 	 * since the current CPU may not be the owner of this
751 	 * inpcb.
752 	 */
753 	tp->tt_msg = &it->inp_tp_timermsg;
754 	bzero(tp->tt_msg, sizeof(*tp->tt_msg));
755 
756 	tp->t_keepinit = tcp_keepinit;
757 	tp->t_keepidle = tcp_keepidle;
758 	tp->t_keepintvl = tcp_keepintvl;
759 	tp->t_keepcnt = tcp_keepcnt;
760 	tp->t_maxidle = tp->t_keepintvl * tp->t_keepcnt;
761 
762 	if (tcp_do_ncr)
763 		tp->t_flags |= TF_NCR;
764 	if (tcp_do_rfc1323)
765 		tp->t_flags |= (TF_REQ_SCALE | TF_REQ_TSTMP);
766 
767 	tp->t_inpcb = inp;	/* XXX */
768 	TCP_STATE_INIT(tp);
769 	/*
770 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
771 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
772 	 * reasonable initial retransmit time.
773 	 */
774 	tp->t_srtt = TCPTV_SRTTBASE;
775 	tp->t_rttvar =
776 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
777 	tp->t_rttmin = tcp_rexmit_min;
778 	tp->t_rxtcur = TCPTV_RTOBASE;
779 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
780 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
781 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
782 	tp->snd_last = ticks;
783 	tp->t_rcvtime = ticks;
784 	/*
785 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
786 	 * because the socket may be bound to an IPv6 wildcard address,
787 	 * which may match an IPv4-mapped IPv6 address.
788 	 */
789 	inp->inp_ip_ttl = ip_defttl;
790 	inp->inp_ppcb = tp;
791 	tcp_sack_tcpcb_init(tp);
792 
793 	tp->tt_sndmore = &it->inp_tp_sndmore;
794 	tcp_output_init(tp);
795 }
796 
797 /*
798  * Drop a TCP connection, reporting the specified error.
799  * If connection is synchronized, then send a RST to peer.
800  */
801 struct tcpcb *
802 tcp_drop(struct tcpcb *tp, int error)
803 {
804 	struct socket *so = tp->t_inpcb->inp_socket;
805 
806 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
807 		TCP_STATE_CHANGE(tp, TCPS_CLOSED);
808 		tcp_output(tp);
809 		tcpstat.tcps_drops++;
810 	} else
811 		tcpstat.tcps_conndrops++;
812 	if (error == ETIMEDOUT && tp->t_softerror)
813 		error = tp->t_softerror;
814 	so->so_error = error;
815 	return (tcp_close(tp));
816 }
817 
818 struct netmsg_listen_detach {
819 	struct netmsg_base	base;
820 	struct tcpcb		*nm_tp;
821 	struct tcpcb		*nm_tp_inh;
822 };
823 
824 static void
825 tcp_listen_detach_handler(netmsg_t msg)
826 {
827 	struct netmsg_listen_detach *nmsg = (struct netmsg_listen_detach *)msg;
828 	struct tcpcb *tp = nmsg->nm_tp;
829 	int cpu = mycpuid, nextcpu;
830 
831 	if (tp->t_flags & TF_LISTEN) {
832 		syncache_destroy(tp, nmsg->nm_tp_inh);
833 		tcp_pcbport_merge_oncpu(tp);
834 	}
835 
836 	in_pcbremwildcardhash_oncpu(tp->t_inpcb, &tcbinfo[cpu]);
837 
838 	nextcpu = cpu + 1;
839 	if (nextcpu < netisr_ncpus)
840 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &nmsg->base.lmsg);
841 	else
842 		lwkt_replymsg(&nmsg->base.lmsg, 0);
843 }
844 
845 /*
846  * Close a TCP control block:
847  *	discard all space held by the tcp
848  *	discard internet protocol block
849  *	wake up any sleepers
850  */
851 struct tcpcb *
852 tcp_close(struct tcpcb *tp)
853 {
854 	struct tseg_qent *q;
855 	struct inpcb *inp = tp->t_inpcb;
856 	struct inpcb *inp_inh = NULL;
857 	struct tcpcb *tp_inh = NULL;
858 	struct socket *so = inp->inp_socket;
859 	struct rtentry *rt;
860 	boolean_t dosavessthresh;
861 #ifdef INET6
862 	boolean_t isipv6 = INP_ISIPV6(inp);
863 #else
864 	const boolean_t isipv6 = FALSE;
865 #endif
866 
867 	if (tp->t_flags & TF_LISTEN) {
868 		/*
869 		 * Pending socket/syncache inheritance
870 		 *
871 		 * If this is a listen(2) socket, find another listen(2)
872 		 * socket in the same local group, which could inherit
873 		 * the syncache and sockets pending on the completion
874 		 * and incompletion queues.
875 		 *
876 		 * NOTE:
877 		 * Currently the inheritance could only happen on the
878 		 * listen(2) sockets w/ SO_REUSEPORT set.
879 		 */
880 		ASSERT_NETISR0;
881 		inp_inh = in_pcblocalgroup_last(&tcbinfo[0], inp);
882 		if (inp_inh != NULL)
883 			tp_inh = intotcpcb(inp_inh);
884 	}
885 
886 	/*
887 	 * INP_WILDCARD indicates that listen(2) has been called on
888 	 * this socket.  This implies:
889 	 * - A wildcard inp's hash is replicated for each protocol thread.
890 	 * - Syncache for this inp grows independently in each protocol
891 	 *   thread.
892 	 * - There is more than one cpu
893 	 *
894 	 * We have to chain a message to the rest of the protocol threads
895 	 * to cleanup the wildcard hash and the syncache.  The cleanup
896 	 * in the current protocol thread is defered till the end of this
897 	 * function (syncache_destroy and in_pcbdetach).
898 	 *
899 	 * NOTE:
900 	 * After cleanup the inp's hash and syncache entries, this inp will
901 	 * no longer be available to the rest of the protocol threads, so we
902 	 * are safe to whack the inp in the following code.
903 	 */
904 	if ((inp->inp_flags & INP_WILDCARD) && netisr_ncpus > 1) {
905 		struct netmsg_listen_detach nmsg;
906 
907 		KKASSERT(so->so_port == netisr_cpuport(0));
908 		ASSERT_NETISR0;
909 		KKASSERT(inp->inp_pcbinfo == &tcbinfo[0]);
910 
911 		netmsg_init(&nmsg.base, NULL, &curthread->td_msgport,
912 			    MSGF_PRIORITY, tcp_listen_detach_handler);
913 		nmsg.nm_tp = tp;
914 		nmsg.nm_tp_inh = tp_inh;
915 		lwkt_domsg(netisr_cpuport(1), &nmsg.base.lmsg, 0);
916 	}
917 
918 	TCP_STATE_TERM(tp);
919 
920 	/*
921 	 * Make sure that all of our timers are stopped before we
922 	 * delete the PCB.  For listen TCP socket (tp->tt_msg == NULL),
923 	 * timers are never used.  If timer message is never created
924 	 * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
925 	 */
926 	if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
927 		tcp_callout_stop(tp, tp->tt_rexmt);
928 		tcp_callout_stop(tp, tp->tt_persist);
929 		tcp_callout_stop(tp, tp->tt_keep);
930 		tcp_callout_stop(tp, tp->tt_2msl);
931 		tcp_callout_stop(tp, tp->tt_delack);
932 	}
933 
934 	if (tp->t_flags & TF_ONOUTPUTQ) {
935 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
936 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu].head, tp, t_outputq);
937 		tp->t_flags &= ~TF_ONOUTPUTQ;
938 	}
939 
940 	/*
941 	 * If we got enough samples through the srtt filter,
942 	 * save the rtt and rttvar in the routing entry.
943 	 * 'Enough' is arbitrarily defined as the 16 samples.
944 	 * 16 samples is enough for the srtt filter to converge
945 	 * to within 5% of the correct value; fewer samples and
946 	 * we could save a very bogus rtt.
947 	 *
948 	 * Don't update the default route's characteristics and don't
949 	 * update anything that the user "locked".
950 	 */
951 	if (tp->t_rttupdated >= 16) {
952 		u_long i = 0;
953 
954 		if (isipv6) {
955 			struct sockaddr_in6 *sin6;
956 
957 			if ((rt = inp->in6p_route.ro_rt) == NULL)
958 				goto no_valid_rt;
959 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
960 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
961 				goto no_valid_rt;
962 		} else
963 			if ((rt = inp->inp_route.ro_rt) == NULL ||
964 			    ((struct sockaddr_in *)rt_key(rt))->
965 			     sin_addr.s_addr == INADDR_ANY)
966 				goto no_valid_rt;
967 
968 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
969 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
970 			if (rt->rt_rmx.rmx_rtt && i)
971 				/*
972 				 * filter this update to half the old & half
973 				 * the new values, converting scale.
974 				 * See route.h and tcp_var.h for a
975 				 * description of the scaling constants.
976 				 */
977 				rt->rt_rmx.rmx_rtt =
978 				    (rt->rt_rmx.rmx_rtt + i) / 2;
979 			else
980 				rt->rt_rmx.rmx_rtt = i;
981 			tcpstat.tcps_cachedrtt++;
982 		}
983 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
984 			i = tp->t_rttvar *
985 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
986 			if (rt->rt_rmx.rmx_rttvar && i)
987 				rt->rt_rmx.rmx_rttvar =
988 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
989 			else
990 				rt->rt_rmx.rmx_rttvar = i;
991 			tcpstat.tcps_cachedrttvar++;
992 		}
993 		/*
994 		 * The old comment here said:
995 		 * update the pipelimit (ssthresh) if it has been updated
996 		 * already or if a pipesize was specified & the threshhold
997 		 * got below half the pipesize.  I.e., wait for bad news
998 		 * before we start updating, then update on both good
999 		 * and bad news.
1000 		 *
1001 		 * But we want to save the ssthresh even if no pipesize is
1002 		 * specified explicitly in the route, because such
1003 		 * connections still have an implicit pipesize specified
1004 		 * by the global tcp_sendspace.  In the absence of a reliable
1005 		 * way to calculate the pipesize, it will have to do.
1006 		 */
1007 		i = tp->snd_ssthresh;
1008 		if (rt->rt_rmx.rmx_sendpipe != 0)
1009 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
1010 		else
1011 			dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
1012 		if (dosavessthresh ||
1013 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
1014 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
1015 			/*
1016 			 * convert the limit from user data bytes to
1017 			 * packets then to packet data bytes.
1018 			 */
1019 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
1020 			if (i < 2)
1021 				i = 2;
1022 			i *= tp->t_maxseg +
1023 			     (isipv6 ?
1024 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1025 			      sizeof(struct tcpiphdr));
1026 			if (rt->rt_rmx.rmx_ssthresh)
1027 				rt->rt_rmx.rmx_ssthresh =
1028 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
1029 			else
1030 				rt->rt_rmx.rmx_ssthresh = i;
1031 			tcpstat.tcps_cachedssthresh++;
1032 		}
1033 	}
1034 
1035 no_valid_rt:
1036 	/* free the reassembly queue, if any */
1037 	while((q = TAILQ_FIRST(&tp->t_segq)) != NULL) {
1038 		TAILQ_REMOVE(&tp->t_segq, q, tqe_q);
1039 		m_freem(q->tqe_m);
1040 		kfree(q, M_TSEGQ);
1041 		atomic_add_int(&tcp_reass_qsize, -1);
1042 	}
1043 	/* throw away SACK blocks in scoreboard*/
1044 	if (TCP_DO_SACK(tp))
1045 		tcp_sack_destroy(&tp->scb);
1046 
1047 	inp->inp_ppcb = NULL;
1048 	soisdisconnected(so);
1049 	/* note: pcb detached later on */
1050 
1051 	tcp_destroy_timermsg(tp);
1052 	tcp_output_cancel(tp);
1053 
1054 	if (tp->t_flags & TF_LISTEN) {
1055 		syncache_destroy(tp, tp_inh);
1056 		tcp_pcbport_merge_oncpu(tp);
1057 		tcp_pcbport_destroy(tp);
1058 		if (inp_inh != NULL && inp_inh->inp_socket != NULL) {
1059 			/*
1060 			 * Pending sockets inheritance only needs
1061 			 * to be done once in the current thread,
1062 			 * i.e. netisr0.
1063 			 */
1064 			soinherit(so, inp_inh->inp_socket);
1065 		}
1066 	}
1067 	KASSERT(tp->t_pcbport == NULL, ("tcpcb port cache is not destroyed"));
1068 
1069 	so_async_rcvd_drop(so);
1070 	/* Drop the reference for the asynchronized pru_rcvd */
1071 	sofree(so);
1072 
1073 	/*
1074 	 * NOTE:
1075 	 * - Remove self from listen tcpcb per-cpu port cache _before_
1076 	 *   pcbdetach.
1077 	 * - pcbdetach removes any wildcard hash entry on the current CPU.
1078 	 */
1079 	tcp_pcbport_remove(inp);
1080 #ifdef INET6
1081 	if (isipv6)
1082 		in6_pcbdetach(inp);
1083 	else
1084 #endif
1085 		in_pcbdetach(inp);
1086 
1087 	tcpstat.tcps_closed++;
1088 	return (NULL);
1089 }
1090 
1091 /*
1092  * Walk the tcpbs, if existing, and flush the reassembly queue,
1093  * if there is one...
1094  */
1095 static void
1096 tcp_drain_oncpu(struct inpcbinfo *pcbinfo)
1097 {
1098 	struct inpcbhead *head = &pcbinfo->pcblisthead;
1099 	struct inpcb *inpb;
1100 
1101 	/*
1102 	 * Since we run in netisr, it is MP safe, even if
1103 	 * we block during the inpcb list iteration, i.e.
1104 	 * we don't need to use inpcb marker here.
1105 	 */
1106 	ASSERT_NETISR_NCPUS(pcbinfo->cpu);
1107 
1108 	LIST_FOREACH(inpb, head, inp_list) {
1109 		struct tcpcb *tcpb;
1110 		struct tseg_qent *te;
1111 
1112 		if (inpb->inp_flags & INP_PLACEMARKER)
1113 			continue;
1114 
1115 		tcpb = intotcpcb(inpb);
1116 		KASSERT(tcpb != NULL, ("tcp_drain_oncpu: tcpb is NULL"));
1117 
1118 		if ((te = TAILQ_FIRST(&tcpb->t_segq)) != NULL) {
1119 			TAILQ_REMOVE(&tcpb->t_segq, te, tqe_q);
1120 			if (te->tqe_th->th_flags & TH_FIN)
1121 				tcpb->t_flags &= ~TF_QUEDFIN;
1122 			m_freem(te->tqe_m);
1123 			kfree(te, M_TSEGQ);
1124 			atomic_add_int(&tcp_reass_qsize, -1);
1125 			/* retry */
1126 		}
1127 	}
1128 }
1129 
1130 static void
1131 tcp_drain_dispatch(netmsg_t nmsg)
1132 {
1133 	crit_enter();
1134 	lwkt_replymsg(&nmsg->lmsg, 0);  /* reply ASAP */
1135 	crit_exit();
1136 
1137 	tcp_drain_oncpu(&tcbinfo[mycpuid]);
1138 	tcp_reassq[mycpuid].draining = 0;
1139 }
1140 
1141 static void
1142 tcp_drain_ipi(void *arg __unused)
1143 {
1144 	int cpu = mycpuid;
1145 	struct lwkt_msg *msg = &tcp_reassq[cpu].drain_nmsg.lmsg;
1146 
1147 	crit_enter();
1148 	if (msg->ms_flags & MSGF_DONE)
1149 		lwkt_sendmsg_oncpu(netisr_cpuport(cpu), msg);
1150 	crit_exit();
1151 }
1152 
1153 void
1154 tcp_drain(void)
1155 {
1156 	cpumask_t mask;
1157 	int cpu;
1158 
1159 	if (!do_tcpdrain)
1160 		return;
1161 
1162 	if (tcp_reass_qsize == 0)
1163 		return;
1164 
1165 	CPUMASK_ASSBMASK(mask, netisr_ncpus);
1166 	CPUMASK_ANDMASK(mask, smp_active_mask);
1167 
1168 	cpu = mycpuid;
1169 	if (IN_NETISR_NCPUS(cpu)) {
1170 		tcp_drain_oncpu(&tcbinfo[cpu]);
1171 		CPUMASK_NANDBIT(mask, cpu);
1172 	}
1173 
1174 	if (tcp_reass_qsize < netisr_ncpus) {
1175 		/* Does not worth the trouble. */
1176 		return;
1177 	}
1178 
1179 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
1180 		if (!CPUMASK_TESTBIT(mask, cpu))
1181 			continue;
1182 
1183 		if (tcp_reassq[cpu].draining) {
1184 			/* Draining; skip this cpu. */
1185 			CPUMASK_NANDBIT(mask, cpu);
1186 			continue;
1187 		}
1188 		tcp_reassq[cpu].draining = 1;
1189 	}
1190 
1191 	if (CPUMASK_TESTNZERO(mask))
1192 		lwkt_send_ipiq_mask(mask, tcp_drain_ipi, NULL);
1193 }
1194 
1195 /*
1196  * Notify a tcp user of an asynchronous error;
1197  * store error as soft error, but wake up user
1198  * (for now, won't do anything until can select for soft error).
1199  *
1200  * Do not wake up user since there currently is no mechanism for
1201  * reporting soft errors (yet - a kqueue filter may be added).
1202  */
1203 static void
1204 tcp_notify(struct inpcb *inp, int error)
1205 {
1206 	struct tcpcb *tp = intotcpcb(inp);
1207 
1208 	/*
1209 	 * Ignore some errors if we are hooked up.
1210 	 * If connection hasn't completed, has retransmitted several times,
1211 	 * and receives a second error, give up now.  This is better
1212 	 * than waiting a long time to establish a connection that
1213 	 * can never complete.
1214 	 */
1215 	if (tp->t_state == TCPS_ESTABLISHED &&
1216 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1217 	      error == EHOSTDOWN)) {
1218 		return;
1219 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1220 	    tp->t_softerror)
1221 		tcp_drop(tp, error);
1222 	else
1223 		tp->t_softerror = error;
1224 #if 0
1225 	wakeup(&so->so_timeo);
1226 	sorwakeup(so);
1227 	sowwakeup(so);
1228 #endif
1229 }
1230 
1231 static int
1232 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1233 {
1234 	int error, i, n;
1235 	struct inpcb *marker;
1236 	struct inpcb *inp;
1237 	int origcpu, ccpu;
1238 
1239 	error = 0;
1240 	n = 0;
1241 
1242 	/*
1243 	 * The process of preparing the TCB list is too time-consuming and
1244 	 * resource-intensive to repeat twice on every request.
1245 	 */
1246 	if (req->oldptr == NULL) {
1247 		for (ccpu = 0; ccpu < netisr_ncpus; ++ccpu)
1248 			n += tcbinfo[ccpu].ipi_count;
1249 		req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1250 		return (0);
1251 	}
1252 
1253 	if (req->newptr != NULL)
1254 		return (EPERM);
1255 
1256 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1257 	marker->inp_flags |= INP_PLACEMARKER;
1258 
1259 	/*
1260 	 * OK, now we're committed to doing something.  Run the inpcb list
1261 	 * for each cpu in the system and construct the output.  Use a
1262 	 * list placemarker to deal with list changes occuring during
1263 	 * copyout blockages (but otherwise depend on being on the correct
1264 	 * cpu to avoid races).
1265 	 */
1266 	origcpu = mycpu->gd_cpuid;
1267 	for (ccpu = 0; ccpu < netisr_ncpus && error == 0; ++ccpu) {
1268 		caddr_t inp_ppcb;
1269 		struct xtcpcb xt;
1270 
1271 		lwkt_migratecpu(ccpu);
1272 
1273 		n = tcbinfo[ccpu].ipi_count;
1274 
1275 		LIST_INSERT_HEAD(&tcbinfo[ccpu].pcblisthead, marker, inp_list);
1276 		i = 0;
1277 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1278 			/*
1279 			 * process a snapshot of pcbs, ignoring placemarkers
1280 			 * and using our own to allow SYSCTL_OUT to block.
1281 			 */
1282 			LIST_REMOVE(marker, inp_list);
1283 			LIST_INSERT_AFTER(inp, marker, inp_list);
1284 
1285 			if (inp->inp_flags & INP_PLACEMARKER)
1286 				continue;
1287 			if (prison_xinpcb(req->td, inp))
1288 				continue;
1289 
1290 			xt.xt_len = sizeof xt;
1291 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1292 			inp_ppcb = inp->inp_ppcb;
1293 			if (inp_ppcb != NULL)
1294 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1295 			else
1296 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1297 			if (inp->inp_socket)
1298 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1299 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1300 				break;
1301 			++i;
1302 		}
1303 		LIST_REMOVE(marker, inp_list);
1304 		if (error == 0 && i < n) {
1305 			bzero(&xt, sizeof xt);
1306 			xt.xt_len = sizeof xt;
1307 			while (i < n) {
1308 				error = SYSCTL_OUT(req, &xt, sizeof xt);
1309 				if (error)
1310 					break;
1311 				++i;
1312 			}
1313 		}
1314 	}
1315 
1316 	/*
1317 	 * Make sure we are on the same cpu we were on originally, since
1318 	 * higher level callers expect this.  Also don't pollute caches with
1319 	 * migrated userland data by (eventually) returning to userland
1320 	 * on a different cpu.
1321 	 */
1322 	lwkt_migratecpu(origcpu);
1323 	kfree(marker, M_TEMP);
1324 	return (error);
1325 }
1326 
1327 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1328 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1329 
1330 static int
1331 tcp_getcred(SYSCTL_HANDLER_ARGS)
1332 {
1333 	struct sockaddr_in addrs[2];
1334 	struct ucred cred0, *cred = NULL;
1335 	struct inpcb *inp;
1336 	int cpu, origcpu, error;
1337 
1338 	error = priv_check(req->td, PRIV_ROOT);
1339 	if (error != 0)
1340 		return (error);
1341 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1342 	if (error != 0)
1343 		return (error);
1344 
1345 	origcpu = mycpuid;
1346 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1347 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1348 
1349 	lwkt_migratecpu(cpu);
1350 
1351 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1352 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1353 	if (inp == NULL || inp->inp_socket == NULL) {
1354 		error = ENOENT;
1355 	} else if (inp->inp_socket->so_cred != NULL) {
1356 		cred0 = *(inp->inp_socket->so_cred);
1357 		cred = &cred0;
1358 	}
1359 
1360 	lwkt_migratecpu(origcpu);
1361 
1362 	if (error)
1363 		return (error);
1364 
1365 	return SYSCTL_OUT(req, cred, sizeof(struct ucred));
1366 }
1367 
1368 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1369     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1370 
1371 #ifdef INET6
1372 static int
1373 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1374 {
1375 	struct sockaddr_in6 addrs[2];
1376 	struct inpcb *inp;
1377 	int error;
1378 
1379 	error = priv_check(req->td, PRIV_ROOT);
1380 	if (error != 0)
1381 		return (error);
1382 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1383 	if (error != 0)
1384 		return (error);
1385 	crit_enter();
1386 	inp = in6_pcblookup_hash(&tcbinfo[0],
1387 	    &addrs[1].sin6_addr, addrs[1].sin6_port,
1388 	    &addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1389 	if (inp == NULL || inp->inp_socket == NULL) {
1390 		error = ENOENT;
1391 		goto out;
1392 	}
1393 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1394 out:
1395 	crit_exit();
1396 	return (error);
1397 }
1398 
1399 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1400 	    0, 0,
1401 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1402 #endif
1403 
1404 struct netmsg_tcp_notify {
1405 	struct netmsg_base base;
1406 	inp_notify_t	nm_notify;
1407 	struct in_addr	nm_faddr;
1408 	int		nm_arg;
1409 };
1410 
1411 static void
1412 tcp_notifyall_oncpu(netmsg_t msg)
1413 {
1414 	struct netmsg_tcp_notify *nm = (struct netmsg_tcp_notify *)msg;
1415 	int nextcpu;
1416 
1417 	ASSERT_NETISR_NCPUS(mycpuid);
1418 
1419 	in_pcbnotifyall(&tcbinfo[mycpuid], nm->nm_faddr,
1420 			nm->nm_arg, nm->nm_notify);
1421 
1422 	nextcpu = mycpuid + 1;
1423 	if (nextcpu < netisr_ncpus)
1424 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &nm->base.lmsg);
1425 	else
1426 		lwkt_replymsg(&nm->base.lmsg, 0);
1427 }
1428 
1429 inp_notify_t
1430 tcp_get_inpnotify(int cmd, const struct sockaddr *sa,
1431     int *arg, struct ip **ip0, int *cpuid)
1432 {
1433 	struct ip *ip = *ip0;
1434 	struct in_addr faddr;
1435 	inp_notify_t notify = tcp_notify;
1436 
1437 	faddr = ((const struct sockaddr_in *)sa)->sin_addr;
1438 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1439 		return NULL;
1440 
1441 	*arg = inetctlerrmap[cmd];
1442 	if (cmd == PRC_QUENCH) {
1443 		notify = tcp_quench;
1444 	} else if (icmp_may_rst &&
1445 		   (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1446 		    cmd == PRC_UNREACH_PORT ||
1447 		    cmd == PRC_TIMXCEED_INTRANS) &&
1448 		   ip != NULL) {
1449 		notify = tcp_drop_syn_sent;
1450 	} else if (cmd == PRC_MSGSIZE) {
1451 		const struct icmp *icmp = (const struct icmp *)
1452 		    ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1453 
1454 		*arg = ntohs(icmp->icmp_nextmtu);
1455 		notify = tcp_mtudisc;
1456 	} else if (PRC_IS_REDIRECT(cmd)) {
1457 		ip = NULL;
1458 		notify = in_rtchange;
1459 	} else if (cmd == PRC_HOSTDEAD) {
1460 		ip = NULL;
1461 	} else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1462 		return NULL;
1463 	}
1464 
1465 	if (cpuid != NULL) {
1466 		if (ip == NULL) {
1467 			/* Go through all effective netisr CPUs. */
1468 			*cpuid = netisr_ncpus;
1469 		} else {
1470 			const struct tcphdr *th;
1471 
1472 			th = (const struct tcphdr *)
1473 			    ((caddr_t)ip + (IP_VHL_HL(ip->ip_vhl) << 2));
1474 			*cpuid = tcp_addrcpu(faddr.s_addr, th->th_dport,
1475 			    ip->ip_src.s_addr, th->th_sport);
1476 		}
1477 	}
1478 
1479 	*ip0 = ip;
1480 	return notify;
1481 }
1482 
1483 void
1484 tcp_ctlinput(netmsg_t msg)
1485 {
1486 	int cmd = msg->ctlinput.nm_cmd;
1487 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1488 	struct ip *ip = msg->ctlinput.nm_extra;
1489 	struct in_addr faddr;
1490 	inp_notify_t notify;
1491 	int arg, cpuid;
1492 
1493 	ASSERT_NETISR_NCPUS(mycpuid);
1494 
1495 	notify = tcp_get_inpnotify(cmd, sa, &arg, &ip, &cpuid);
1496 	if (notify == NULL)
1497 		goto done;
1498 
1499 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1500 	if (ip != NULL) {
1501 		const struct tcphdr *th;
1502 		struct inpcb *inp;
1503 
1504 		if (cpuid != mycpuid)
1505 			goto done;
1506 
1507 		th = (const struct tcphdr *)
1508 		    ((caddr_t)ip + (IP_VHL_HL(ip->ip_vhl) << 2));
1509 		inp = in_pcblookup_hash(&tcbinfo[mycpuid], faddr, th->th_dport,
1510 					ip->ip_src, th->th_sport, 0, NULL);
1511 		if (inp != NULL && inp->inp_socket != NULL) {
1512 			tcp_seq icmpseq = htonl(th->th_seq);
1513 			struct tcpcb *tp = intotcpcb(inp);
1514 
1515 			if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1516 			    SEQ_LT(icmpseq, tp->snd_max))
1517 				notify(inp, arg);
1518 		} else {
1519 			struct in_conninfo inc;
1520 
1521 			inc.inc_fport = th->th_dport;
1522 			inc.inc_lport = th->th_sport;
1523 			inc.inc_faddr = faddr;
1524 			inc.inc_laddr = ip->ip_src;
1525 #ifdef INET6
1526 			inc.inc_isipv6 = 0;
1527 #endif
1528 			syncache_unreach(&inc, th);
1529 		}
1530 	} else if (msg->ctlinput.nm_direct) {
1531 		if (cpuid != netisr_ncpus && cpuid != mycpuid)
1532 			goto done;
1533 
1534 		in_pcbnotifyall(&tcbinfo[mycpuid], faddr, arg, notify);
1535 	} else {
1536 		struct netmsg_tcp_notify *nm;
1537 
1538 		ASSERT_NETISR0;
1539 		nm = kmalloc(sizeof(*nm), M_LWKTMSG, M_INTWAIT);
1540 		netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1541 			    0, tcp_notifyall_oncpu);
1542 		nm->nm_faddr = faddr;
1543 		nm->nm_arg = arg;
1544 		nm->nm_notify = notify;
1545 
1546 		lwkt_sendmsg(netisr_cpuport(0), &nm->base.lmsg);
1547 	}
1548 done:
1549 	lwkt_replymsg(&msg->lmsg, 0);
1550 }
1551 
1552 #ifdef INET6
1553 
1554 void
1555 tcp6_ctlinput(netmsg_t msg)
1556 {
1557 	int cmd = msg->ctlinput.nm_cmd;
1558 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1559 	void *d = msg->ctlinput.nm_extra;
1560 	struct tcphdr th;
1561 	inp_notify_t notify = tcp_notify;
1562 	struct ip6_hdr *ip6;
1563 	struct mbuf *m;
1564 	struct ip6ctlparam *ip6cp = NULL;
1565 	const struct sockaddr_in6 *sa6_src = NULL;
1566 	int off;
1567 	struct tcp_portonly {
1568 		u_int16_t th_sport;
1569 		u_int16_t th_dport;
1570 	} *thp;
1571 	int arg;
1572 
1573 	if (sa->sa_family != AF_INET6 ||
1574 	    sa->sa_len != sizeof(struct sockaddr_in6)) {
1575 		goto out;
1576 	}
1577 
1578 	arg = 0;
1579 	if (cmd == PRC_QUENCH)
1580 		notify = tcp_quench;
1581 	else if (cmd == PRC_MSGSIZE) {
1582 		struct ip6ctlparam *ip6cp = d;
1583 		struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1584 
1585 		arg = ntohl(icmp6->icmp6_mtu);
1586 		notify = tcp_mtudisc;
1587 	} else if (!PRC_IS_REDIRECT(cmd) &&
1588 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1589 		goto out;
1590 	}
1591 
1592 	/* if the parameter is from icmp6, decode it. */
1593 	if (d != NULL) {
1594 		ip6cp = (struct ip6ctlparam *)d;
1595 		m = ip6cp->ip6c_m;
1596 		ip6 = ip6cp->ip6c_ip6;
1597 		off = ip6cp->ip6c_off;
1598 		sa6_src = ip6cp->ip6c_src;
1599 	} else {
1600 		m = NULL;
1601 		ip6 = NULL;
1602 		off = 0;	/* fool gcc */
1603 		sa6_src = &sa6_any;
1604 	}
1605 
1606 	if (ip6 != NULL) {
1607 		struct in_conninfo inc;
1608 		/*
1609 		 * XXX: We assume that when IPV6 is non NULL,
1610 		 * M and OFF are valid.
1611 		 */
1612 
1613 		/* check if we can safely examine src and dst ports */
1614 		if (m->m_pkthdr.len < off + sizeof *thp)
1615 			goto out;
1616 
1617 		bzero(&th, sizeof th);
1618 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1619 
1620 		in6_pcbnotify(&tcbinfo[0], sa, th.th_dport,
1621 		    (struct sockaddr *)ip6cp->ip6c_src,
1622 		    th.th_sport, cmd, arg, notify);
1623 
1624 		inc.inc_fport = th.th_dport;
1625 		inc.inc_lport = th.th_sport;
1626 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1627 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1628 		inc.inc_isipv6 = 1;
1629 		syncache_unreach(&inc, &th);
1630 	} else {
1631 		in6_pcbnotify(&tcbinfo[0], sa, 0,
1632 		    (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1633 	}
1634 out:
1635 	lwkt_replymsg(&msg->ctlinput.base.lmsg, 0);
1636 }
1637 
1638 #endif
1639 
1640 /*
1641  * Following is where TCP initial sequence number generation occurs.
1642  *
1643  * There are two places where we must use initial sequence numbers:
1644  * 1.  In SYN-ACK packets.
1645  * 2.  In SYN packets.
1646  *
1647  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1648  * tcp_syncache.c for details.
1649  *
1650  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1651  * depends on this property.  In addition, these ISNs should be
1652  * unguessable so as to prevent connection hijacking.  To satisfy
1653  * the requirements of this situation, the algorithm outlined in
1654  * RFC 1948 is used to generate sequence numbers.
1655  *
1656  * Implementation details:
1657  *
1658  * Time is based off the system timer, and is corrected so that it
1659  * increases by one megabyte per second.  This allows for proper
1660  * recycling on high speed LANs while still leaving over an hour
1661  * before rollover.
1662  *
1663  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1664  * between seeding of isn_secret.  This is normally set to zero,
1665  * as reseeding should not be necessary.
1666  *
1667  */
1668 
1669 #define	ISN_BYTES_PER_SECOND 1048576
1670 
1671 u_char isn_secret[32];
1672 int isn_last_reseed;
1673 MD5_CTX isn_ctx;
1674 
1675 tcp_seq
1676 tcp_new_isn(struct tcpcb *tp)
1677 {
1678 	u_int32_t md5_buffer[4];
1679 	tcp_seq new_isn;
1680 
1681 	/* Seed if this is the first use, reseed if requested. */
1682 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1683 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1684 		< (u_int)ticks))) {
1685 		read_random_unlimited(&isn_secret, sizeof isn_secret);
1686 		isn_last_reseed = ticks;
1687 	}
1688 
1689 	/* Compute the md5 hash and return the ISN. */
1690 	MD5Init(&isn_ctx);
1691 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1692 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1693 #ifdef INET6
1694 	if (INP_ISIPV6(tp->t_inpcb)) {
1695 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1696 			  sizeof(struct in6_addr));
1697 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1698 			  sizeof(struct in6_addr));
1699 	} else
1700 #endif
1701 	{
1702 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1703 			  sizeof(struct in_addr));
1704 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1705 			  sizeof(struct in_addr));
1706 	}
1707 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1708 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1709 	new_isn = (tcp_seq) md5_buffer[0];
1710 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1711 	return (new_isn);
1712 }
1713 
1714 /*
1715  * When a source quench is received, close congestion window
1716  * to one segment.  We will gradually open it again as we proceed.
1717  */
1718 void
1719 tcp_quench(struct inpcb *inp, int error)
1720 {
1721 	struct tcpcb *tp = intotcpcb(inp);
1722 
1723 	KASSERT(tp != NULL, ("tcp_quench: tp is NULL"));
1724 	tp->snd_cwnd = tp->t_maxseg;
1725 	tp->snd_wacked = 0;
1726 }
1727 
1728 /*
1729  * When a specific ICMP unreachable message is received and the
1730  * connection state is SYN-SENT, drop the connection.  This behavior
1731  * is controlled by the icmp_may_rst sysctl.
1732  */
1733 void
1734 tcp_drop_syn_sent(struct inpcb *inp, int error)
1735 {
1736 	struct tcpcb *tp = intotcpcb(inp);
1737 
1738 	KASSERT(tp != NULL, ("tcp_drop_syn_sent: tp is NULL"));
1739 	if (tp->t_state == TCPS_SYN_SENT)
1740 		tcp_drop(tp, error);
1741 }
1742 
1743 /*
1744  * When a `need fragmentation' ICMP is received, update our idea of the MSS
1745  * based on the new value in the route.  Also nudge TCP to send something,
1746  * since we know the packet we just sent was dropped.
1747  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1748  */
1749 void
1750 tcp_mtudisc(struct inpcb *inp, int mtu)
1751 {
1752 	struct tcpcb *tp = intotcpcb(inp);
1753 	struct rtentry *rt;
1754 	struct socket *so = inp->inp_socket;
1755 	int maxopd, mss;
1756 #ifdef INET6
1757 	boolean_t isipv6 = INP_ISIPV6(inp);
1758 #else
1759 	const boolean_t isipv6 = FALSE;
1760 #endif
1761 
1762 	KASSERT(tp != NULL, ("tcp_mtudisc: tp is NULL"));
1763 
1764 	/*
1765 	 * If no MTU is provided in the ICMP message, use the
1766 	 * next lower likely value, as specified in RFC 1191.
1767 	 */
1768 	if (mtu == 0) {
1769 		int oldmtu;
1770 
1771 		oldmtu = tp->t_maxopd +
1772 		    (isipv6 ?
1773 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1774 		     sizeof(struct tcpiphdr));
1775 		mtu = ip_next_mtu(oldmtu, 0);
1776 	}
1777 
1778 	if (isipv6)
1779 		rt = tcp_rtlookup6(&inp->inp_inc);
1780 	else
1781 		rt = tcp_rtlookup(&inp->inp_inc);
1782 	if (rt != NULL) {
1783 		if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1784 			mtu = rt->rt_rmx.rmx_mtu;
1785 
1786 		maxopd = mtu -
1787 		    (isipv6 ?
1788 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1789 		     sizeof(struct tcpiphdr));
1790 
1791 		/*
1792 		 * XXX - The following conditional probably violates the TCP
1793 		 * spec.  The problem is that, since we don't know the
1794 		 * other end's MSS, we are supposed to use a conservative
1795 		 * default.  But, if we do that, then MTU discovery will
1796 		 * never actually take place, because the conservative
1797 		 * default is much less than the MTUs typically seen
1798 		 * on the Internet today.  For the moment, we'll sweep
1799 		 * this under the carpet.
1800 		 *
1801 		 * The conservative default might not actually be a problem
1802 		 * if the only case this occurs is when sending an initial
1803 		 * SYN with options and data to a host we've never talked
1804 		 * to before.  Then, they will reply with an MSS value which
1805 		 * will get recorded and the new parameters should get
1806 		 * recomputed.  For Further Study.
1807 		 */
1808 		if (rt->rt_rmx.rmx_mssopt  && rt->rt_rmx.rmx_mssopt < maxopd)
1809 			maxopd = rt->rt_rmx.rmx_mssopt;
1810 	} else
1811 		maxopd = mtu -
1812 		    (isipv6 ?
1813 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1814 		     sizeof(struct tcpiphdr));
1815 
1816 	if (tp->t_maxopd <= maxopd)
1817 		return;
1818 	tp->t_maxopd = maxopd;
1819 
1820 	mss = maxopd;
1821 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1822 			   (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1823 		mss -= TCPOLEN_TSTAMP_APPA;
1824 
1825 	/* round down to multiple of MCLBYTES */
1826 #if	(MCLBYTES & (MCLBYTES - 1)) == 0    /* test if MCLBYTES power of 2 */
1827 	if (mss > MCLBYTES)
1828 		mss &= ~(MCLBYTES - 1);
1829 #else
1830 	if (mss > MCLBYTES)
1831 		mss = (mss / MCLBYTES) * MCLBYTES;
1832 #endif
1833 
1834 	if (so->so_snd.ssb_hiwat < mss)
1835 		mss = so->so_snd.ssb_hiwat;
1836 
1837 	tp->t_maxseg = mss;
1838 	tp->t_rtttime = 0;
1839 	tp->snd_nxt = tp->snd_una;
1840 	tcp_output(tp);
1841 	tcpstat.tcps_mturesent++;
1842 }
1843 
1844 /*
1845  * Look-up the routing entry to the peer of this inpcb.  If no route
1846  * is found and it cannot be allocated the return NULL.  This routine
1847  * is called by TCP routines that access the rmx structure and by tcp_mss
1848  * to get the interface MTU.
1849  */
1850 struct rtentry *
1851 tcp_rtlookup(struct in_conninfo *inc)
1852 {
1853 	struct route *ro = &inc->inc_route;
1854 
1855 	if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1856 		/* No route yet, so try to acquire one */
1857 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1858 			/*
1859 			 * unused portions of the structure MUST be zero'd
1860 			 * out because rtalloc() treats it as opaque data
1861 			 */
1862 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1863 			ro->ro_dst.sa_family = AF_INET;
1864 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1865 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1866 			    inc->inc_faddr;
1867 			rtalloc(ro);
1868 		}
1869 	}
1870 	return (ro->ro_rt);
1871 }
1872 
1873 #ifdef INET6
1874 struct rtentry *
1875 tcp_rtlookup6(struct in_conninfo *inc)
1876 {
1877 	struct route_in6 *ro6 = &inc->inc6_route;
1878 
1879 	if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1880 		/* No route yet, so try to acquire one */
1881 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1882 			/*
1883 			 * unused portions of the structure MUST be zero'd
1884 			 * out because rtalloc() treats it as opaque data
1885 			 */
1886 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1887 			ro6->ro_dst.sin6_family = AF_INET6;
1888 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1889 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1890 			rtalloc((struct route *)ro6);
1891 		}
1892 	}
1893 	return (ro6->ro_rt);
1894 }
1895 #endif
1896 
1897 #ifdef IPSEC
1898 /* compute ESP/AH header size for TCP, including outer IP header. */
1899 size_t
1900 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1901 {
1902 	struct inpcb *inp;
1903 	struct mbuf *m;
1904 	size_t hdrsiz;
1905 	struct ip *ip;
1906 	struct tcphdr *th;
1907 
1908 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1909 		return (0);
1910 	MGETHDR(m, M_NOWAIT, MT_DATA);
1911 	if (!m)
1912 		return (0);
1913 
1914 #ifdef INET6
1915 	if (INP_ISIPV6(inp)) {
1916 		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1917 
1918 		th = (struct tcphdr *)(ip6 + 1);
1919 		m->m_pkthdr.len = m->m_len =
1920 		    sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1921 		tcp_fillheaders(tp, ip6, th, FALSE);
1922 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1923 	} else
1924 #endif
1925 	{
1926 		ip = mtod(m, struct ip *);
1927 		th = (struct tcphdr *)(ip + 1);
1928 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1929 		tcp_fillheaders(tp, ip, th, FALSE);
1930 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1931 	}
1932 
1933 	m_free(m);
1934 	return (hdrsiz);
1935 }
1936 #endif
1937 
1938 /*
1939  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1940  *
1941  * This code attempts to calculate the bandwidth-delay product as a
1942  * means of determining the optimal window size to maximize bandwidth,
1943  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1944  * routers.  This code also does a fairly good job keeping RTTs in check
1945  * across slow links like modems.  We implement an algorithm which is very
1946  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1947  * transmitter side of a TCP connection and so only effects the transmit
1948  * side of the connection.
1949  *
1950  * BACKGROUND:  TCP makes no provision for the management of buffer space
1951  * at the end points or at the intermediate routers and switches.  A TCP
1952  * stream, whether using NewReno or not, will eventually buffer as
1953  * many packets as it is able and the only reason this typically works is
1954  * due to the fairly small default buffers made available for a connection
1955  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1956  * scaling it is now fairly easy for even a single TCP connection to blow-out
1957  * all available buffer space not only on the local interface, but on
1958  * intermediate routers and switches as well.  NewReno makes a misguided
1959  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1960  * then backing off, then steadily increasing the window again until another
1961  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1962  * is only made worse as network loads increase and the idea of intentionally
1963  * blowing out network buffers is, frankly, a terrible way to manage network
1964  * resources.
1965  *
1966  * It is far better to limit the transmit window prior to the failure
1967  * condition being achieved.  There are two general ways to do this:  First
1968  * you can 'scan' through different transmit window sizes and locate the
1969  * point where the RTT stops increasing, indicating that you have filled the
1970  * pipe, then scan backwards until you note that RTT stops decreasing, then
1971  * repeat ad-infinitum.  This method works in principle but has severe
1972  * implementation issues due to RTT variances, timer granularity, and
1973  * instability in the algorithm which can lead to many false positives and
1974  * create oscillations as well as interact badly with other TCP streams
1975  * implementing the same algorithm.
1976  *
1977  * The second method is to limit the window to the bandwidth delay product
1978  * of the link.  This is the method we implement.  RTT variances and our
1979  * own manipulation of the congestion window, bwnd, can potentially
1980  * destabilize the algorithm.  For this reason we have to stabilize the
1981  * elements used to calculate the window.  We do this by using the minimum
1982  * observed RTT, the long term average of the observed bandwidth, and
1983  * by adding two segments worth of slop.  It isn't perfect but it is able
1984  * to react to changing conditions and gives us a very stable basis on
1985  * which to extend the algorithm.
1986  */
1987 void
1988 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1989 {
1990 	u_long bw;
1991 	u_long ibw;
1992 	u_long bwnd;
1993 	int save_ticks;
1994 	int delta_ticks;
1995 
1996 	/*
1997 	 * If inflight_enable is disabled in the middle of a tcp connection,
1998 	 * make sure snd_bwnd is effectively disabled.
1999 	 */
2000 	if (!tcp_inflight_enable) {
2001 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
2002 		tp->snd_bandwidth = 0;
2003 		return;
2004 	}
2005 
2006 	/*
2007 	 * Validate the delta time.  If a connection is new or has been idle
2008 	 * a long time we have to reset the bandwidth calculator.
2009 	 */
2010 	save_ticks = ticks;
2011 	cpu_ccfence();
2012 	delta_ticks = save_ticks - tp->t_bw_rtttime;
2013 	if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
2014 		tp->t_bw_rtttime = save_ticks;
2015 		tp->t_bw_rtseq = ack_seq;
2016 		if (tp->snd_bandwidth == 0)
2017 			tp->snd_bandwidth = tcp_inflight_start;
2018 		return;
2019 	}
2020 
2021 	/*
2022 	 * A delta of at least 1 tick is required.  Waiting 2 ticks will
2023 	 * result in better (bw) accuracy.  More than that and the ramp-up
2024 	 * will be too slow.
2025 	 */
2026 	if (delta_ticks == 0 || delta_ticks == 1)
2027 		return;
2028 
2029 	/*
2030 	 * Sanity check, plus ignore pure window update acks.
2031 	 */
2032 	if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
2033 		return;
2034 
2035 	/*
2036 	 * Figure out the bandwidth.  Due to the tick granularity this
2037 	 * is a very rough number and it MUST be averaged over a fairly
2038 	 * long period of time.  XXX we need to take into account a link
2039 	 * that is not using all available bandwidth, but for now our
2040 	 * slop will ramp us up if this case occurs and the bandwidth later
2041 	 * increases.
2042 	 */
2043 	ibw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
2044 	tp->t_bw_rtttime = save_ticks;
2045 	tp->t_bw_rtseq = ack_seq;
2046 	bw = ((int64_t)tp->snd_bandwidth * 15 + ibw) >> 4;
2047 
2048 	tp->snd_bandwidth = bw;
2049 
2050 	/*
2051 	 * Calculate the semi-static bandwidth delay product, plus two maximal
2052 	 * segments.  The additional slop puts us squarely in the sweet
2053 	 * spot and also handles the bandwidth run-up case.  Without the
2054 	 * slop we could be locking ourselves into a lower bandwidth.
2055 	 *
2056 	 * At very high speeds the bw calculation can become overly sensitive
2057 	 * and error prone when delta_ticks is low (e.g. usually 1).  To deal
2058 	 * with the problem the stab must be scaled to the bw.  A stab of 50
2059 	 * (the default) increases the bw for the purposes of the bwnd
2060 	 * calculation by 5%.
2061 	 *
2062 	 * Situations Handled:
2063 	 *	(1) Prevents over-queueing of packets on LANs, especially on
2064 	 *	    high speed LANs, allowing larger TCP buffers to be
2065 	 *	    specified, and also does a good job preventing
2066 	 *	    over-queueing of packets over choke points like modems
2067 	 *	    (at least for the transmit side).
2068 	 *
2069 	 *	(2) Is able to handle changing network loads (bandwidth
2070 	 *	    drops so bwnd drops, bandwidth increases so bwnd
2071 	 *	    increases).
2072 	 *
2073 	 *	(3) Theoretically should stabilize in the face of multiple
2074 	 *	    connections implementing the same algorithm (this may need
2075 	 *	    a little work).
2076 	 *
2077 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2078 	 *	    be adjusted with a sysctl but typically only needs to be on
2079 	 *	    very slow connections.  A value no smaller then 5 should
2080 	 *	    be used, but only reduce this default if you have no other
2081 	 *	    choice.
2082 	 */
2083 
2084 #define	USERTT	((tp->t_srtt + tp->t_rttvar) + tcp_inflight_adjrtt)
2085 	bw += bw * tcp_inflight_stab / 1000;
2086 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
2087 	       (int)tp->t_maxseg * 2;
2088 #undef USERTT
2089 
2090 	if (tcp_inflight_debug > 0) {
2091 		static int ltime;
2092 		if ((u_int)(save_ticks - ltime) >= hz / tcp_inflight_debug) {
2093 			ltime = save_ticks;
2094 			kprintf("%p ibw %ld bw %ld rttvar %d srtt %d "
2095 				"bwnd %ld delta %d snd_win %ld\n",
2096 				tp, ibw, bw, tp->t_rttvar, tp->t_srtt,
2097 				bwnd, delta_ticks, tp->snd_wnd);
2098 		}
2099 	}
2100 	if ((long)bwnd < tcp_inflight_min)
2101 		bwnd = tcp_inflight_min;
2102 	if (bwnd > tcp_inflight_max)
2103 		bwnd = tcp_inflight_max;
2104 	if ((long)bwnd < tp->t_maxseg * 2)
2105 		bwnd = tp->t_maxseg * 2;
2106 	tp->snd_bwnd = bwnd;
2107 }
2108 
2109 static void
2110 tcp_rmx_iwsegs(struct tcpcb *tp, u_long *maxsegs, u_long *capsegs)
2111 {
2112 	struct rtentry *rt;
2113 	struct inpcb *inp = tp->t_inpcb;
2114 #ifdef INET6
2115 	boolean_t isipv6 = INP_ISIPV6(inp);
2116 #else
2117 	const boolean_t isipv6 = FALSE;
2118 #endif
2119 
2120 	/* XXX */
2121 	if (tcp_iw_maxsegs < TCP_IW_MAXSEGS_DFLT)
2122 		tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
2123 	if (tcp_iw_capsegs < TCP_IW_CAPSEGS_DFLT)
2124 		tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
2125 
2126 	if (isipv6)
2127 		rt = tcp_rtlookup6(&inp->inp_inc);
2128 	else
2129 		rt = tcp_rtlookup(&inp->inp_inc);
2130 	if (rt == NULL ||
2131 	    rt->rt_rmx.rmx_iwmaxsegs < TCP_IW_MAXSEGS_DFLT ||
2132 	    rt->rt_rmx.rmx_iwcapsegs < TCP_IW_CAPSEGS_DFLT) {
2133 		*maxsegs = tcp_iw_maxsegs;
2134 		*capsegs = tcp_iw_capsegs;
2135 		return;
2136 	}
2137 	*maxsegs = rt->rt_rmx.rmx_iwmaxsegs;
2138 	*capsegs = rt->rt_rmx.rmx_iwcapsegs;
2139 }
2140 
2141 u_long
2142 tcp_initial_window(struct tcpcb *tp)
2143 {
2144 	if (tcp_do_rfc3390) {
2145 		/*
2146 		 * RFC3390:
2147 		 * "If the SYN or SYN/ACK is lost, the initial window
2148 		 *  used by a sender after a correctly transmitted SYN
2149 		 *  MUST be one segment consisting of MSS bytes."
2150 		 *
2151 		 * However, we do something a little bit more aggressive
2152 		 * then RFC3390 here:
2153 		 * - Only if time spent in the SYN or SYN|ACK retransmition
2154 		 *   >= 3 seconds, the IW is reduced.  We do this mainly
2155 		 *   because when RFC3390 is published, the initial RTO is
2156 		 *   still 3 seconds (the threshold we test here), while
2157 		 *   after RFC6298, the initial RTO is 1 second.  This
2158 		 *   behaviour probably still falls within the spirit of
2159 		 *   RFC3390.
2160 		 * - When IW is reduced, 2*MSS is used instead of 1*MSS.
2161 		 *   Mainly to avoid sender and receiver deadlock until
2162 		 *   delayed ACK timer expires.  And even RFC2581 does not
2163 		 *   try to reduce IW upon SYN or SYN|ACK retransmition
2164 		 *   timeout.
2165 		 *
2166 		 * See also:
2167 		 * http://tools.ietf.org/html/draft-ietf-tcpm-initcwnd-03
2168 		 */
2169 		if (tp->t_rxtsyn >= TCPTV_RTOBASE3) {
2170 			return (2 * tp->t_maxseg);
2171 		} else {
2172 			u_long maxsegs, capsegs;
2173 
2174 			tcp_rmx_iwsegs(tp, &maxsegs, &capsegs);
2175 			return min(maxsegs * tp->t_maxseg,
2176 				   max(2 * tp->t_maxseg, capsegs * 1460));
2177 		}
2178 	} else {
2179 		/*
2180 		 * Even RFC2581 (back to 1999) allows 2*SMSS IW.
2181 		 *
2182 		 * Mainly to avoid sender and receiver deadlock
2183 		 * until delayed ACK timer expires.
2184 		 */
2185 		return (2 * tp->t_maxseg);
2186 	}
2187 }
2188 
2189 #ifdef TCP_SIGNATURE
2190 /*
2191  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2192  *
2193  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2194  * When called from tcp_input(), we can be sure that th_sum has been
2195  * zeroed out and verified already.
2196  *
2197  * Return 0 if successful, otherwise return -1.
2198  *
2199  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2200  * search with the destination IP address, and a 'magic SPI' to be
2201  * determined by the application. This is hardcoded elsewhere to 1179
2202  * right now. Another branch of this code exists which uses the SPD to
2203  * specify per-application flows but it is unstable.
2204  */
2205 int
2206 tcpsignature_compute(
2207 	struct mbuf *m,		/* mbuf chain */
2208 	int len,		/* length of TCP data */
2209 	int optlen,		/* length of TCP options */
2210 	u_char *buf,		/* storage for MD5 digest */
2211 	u_int direction)	/* direction of flow */
2212 {
2213 	struct ippseudo ippseudo;
2214 	MD5_CTX ctx;
2215 	int doff;
2216 	struct ip *ip;
2217 	struct ipovly *ipovly;
2218 	struct secasvar *sav;
2219 	struct tcphdr *th;
2220 #ifdef INET6
2221 	struct ip6_hdr *ip6;
2222 	struct in6_addr in6;
2223 	uint32_t plen;
2224 	uint16_t nhdr;
2225 #endif /* INET6 */
2226 	u_short savecsum;
2227 
2228 	KASSERT(m != NULL, ("passed NULL mbuf. Game over."));
2229 	KASSERT(buf != NULL, ("passed NULL storage pointer for MD5 signature"));
2230 	/*
2231 	 * Extract the destination from the IP header in the mbuf.
2232 	 */
2233 	ip = mtod(m, struct ip *);
2234 #ifdef INET6
2235 	ip6 = NULL;     /* Make the compiler happy. */
2236 #endif /* INET6 */
2237 	/*
2238 	 * Look up an SADB entry which matches the address found in
2239 	 * the segment.
2240 	 */
2241 	switch (IP_VHL_V(ip->ip_vhl)) {
2242 	case IPVERSION:
2243 		sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src, (caddr_t)&ip->ip_dst,
2244 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2245 		break;
2246 #ifdef INET6
2247 	case (IPV6_VERSION >> 4):
2248 		ip6 = mtod(m, struct ip6_hdr *);
2249 		sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src, (caddr_t)&ip6->ip6_dst,
2250 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2251 		break;
2252 #endif /* INET6 */
2253 	default:
2254 		return (EINVAL);
2255 		/* NOTREACHED */
2256 		break;
2257 	}
2258 	if (sav == NULL) {
2259 		kprintf("%s: SADB lookup failed\n", __func__);
2260 		return (EINVAL);
2261 	}
2262 	MD5Init(&ctx);
2263 
2264 	/*
2265 	 * Step 1: Update MD5 hash with IP pseudo-header.
2266 	 *
2267 	 * XXX The ippseudo header MUST be digested in network byte order,
2268 	 * or else we'll fail the regression test. Assume all fields we've
2269 	 * been doing arithmetic on have been in host byte order.
2270 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2271 	 * tcp_output(), the underlying ip_len member has not yet been set.
2272 	 */
2273 	switch (IP_VHL_V(ip->ip_vhl)) {
2274 	case IPVERSION:
2275 		ipovly = (struct ipovly *)ip;
2276 		ippseudo.ippseudo_src = ipovly->ih_src;
2277 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2278 		ippseudo.ippseudo_pad = 0;
2279 		ippseudo.ippseudo_p = IPPROTO_TCP;
2280 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2281 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2282 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2283 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2284 		break;
2285 #ifdef INET6
2286 	/*
2287 	 * RFC 2385, 2.0  Proposal
2288 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2289 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2290 	 * extended next header value (to form 32 bits), and 32-bit segment
2291 	 * length.
2292 	 * Note: Upper-Layer Packet Length comes before Next Header.
2293 	 */
2294 	case (IPV6_VERSION >> 4):
2295 		in6 = ip6->ip6_src;
2296 		in6_clearscope(&in6);
2297 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2298 		in6 = ip6->ip6_dst;
2299 		in6_clearscope(&in6);
2300 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2301 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2302 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2303 		nhdr = 0;
2304 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2305 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2306 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2307 		nhdr = IPPROTO_TCP;
2308 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2309 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2310 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2311 		break;
2312 #endif /* INET6 */
2313 	default:
2314 		return (EINVAL);
2315 		/* NOTREACHED */
2316 		break;
2317 	}
2318 	/*
2319 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2320 	 * The TCP checksum must be set to zero.
2321 	 */
2322 	savecsum = th->th_sum;
2323 	th->th_sum = 0;
2324 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2325 	th->th_sum = savecsum;
2326 	/*
2327 	 * Step 3: Update MD5 hash with TCP segment data.
2328 	 *         Use m_apply() to avoid an early m_pullup().
2329 	 */
2330 	if (len > 0)
2331 		m_apply(m, doff, len, tcpsignature_apply, &ctx);
2332 	/*
2333 	 * Step 4: Update MD5 hash with shared secret.
2334 	 */
2335 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2336 	MD5Final(buf, &ctx);
2337 	key_sa_recordxfer(sav, m);
2338 	key_freesav(sav);
2339 	return (0);
2340 }
2341 
2342 int
2343 tcpsignature_apply(void *fstate, void *data, unsigned int len)
2344 {
2345 
2346 	MD5Update((MD5_CTX *)fstate, (unsigned char *)data, len);
2347 	return (0);
2348 }
2349 #endif /* TCP_SIGNATURE */
2350 
2351 static void
2352 tcp_drop_sysctl_dispatch(netmsg_t nmsg)
2353 {
2354 	struct lwkt_msg *lmsg = &nmsg->lmsg;
2355 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2356 	struct sockaddr_storage *addrs = lmsg->u.ms_resultp;
2357 	int error;
2358 	struct sockaddr_in *fin, *lin;
2359 #ifdef INET6
2360 	struct sockaddr_in6 *fin6, *lin6;
2361 	struct in6_addr f6, l6;
2362 #endif
2363 	struct inpcb *inp;
2364 
2365 	switch (addrs[0].ss_family) {
2366 #ifdef INET6
2367 	case AF_INET6:
2368 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2369 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2370 		error = in6_embedscope(&f6, fin6, NULL, NULL);
2371 		if (error)
2372 			goto done;
2373 		error = in6_embedscope(&l6, lin6, NULL, NULL);
2374 		if (error)
2375 			goto done;
2376 		inp = in6_pcblookup_hash(&tcbinfo[mycpuid], &f6,
2377 		    fin6->sin6_port, &l6, lin6->sin6_port, FALSE, NULL);
2378 		break;
2379 #endif
2380 #ifdef INET
2381 	case AF_INET:
2382 		fin = (struct sockaddr_in *)&addrs[0];
2383 		lin = (struct sockaddr_in *)&addrs[1];
2384 		inp = in_pcblookup_hash(&tcbinfo[mycpuid], fin->sin_addr,
2385 		    fin->sin_port, lin->sin_addr, lin->sin_port, FALSE, NULL);
2386 		break;
2387 #endif
2388 	default:
2389 		/*
2390 		 * Must not reach here, since the address family was
2391 		 * checked in sysctl handler.
2392 		 */
2393 		panic("unknown address family %d", addrs[0].ss_family);
2394 	}
2395 	if (inp != NULL) {
2396 		struct tcpcb *tp = intotcpcb(inp);
2397 
2398 		KASSERT((inp->inp_flags & INP_WILDCARD) == 0,
2399 		    ("in wildcard hash"));
2400 		KASSERT(tp != NULL, ("tcp_drop_sysctl_dispatch: tp is NULL"));
2401 		KASSERT((tp->t_flags & TF_LISTEN) == 0, ("listen socket"));
2402 		tcp_drop(tp, ECONNABORTED);
2403 		error = 0;
2404 	} else {
2405 		error = ESRCH;
2406 	}
2407 #ifdef INET6
2408 done:
2409 #endif
2410 	lwkt_replymsg(lmsg, error);
2411 }
2412 
2413 static int
2414 sysctl_tcp_drop(SYSCTL_HANDLER_ARGS)
2415 {
2416 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2417 	struct sockaddr_storage addrs[2];
2418 	struct sockaddr_in *fin, *lin;
2419 #ifdef INET6
2420 	struct sockaddr_in6 *fin6, *lin6;
2421 #endif
2422 	struct netmsg_base nmsg;
2423 	struct lwkt_msg *lmsg = &nmsg.lmsg;
2424 	struct lwkt_port *port = NULL;
2425 	int error;
2426 
2427 	fin = lin = NULL;
2428 #ifdef INET6
2429 	fin6 = lin6 = NULL;
2430 #endif
2431 	error = 0;
2432 
2433 	if (req->oldptr != NULL || req->oldlen != 0)
2434 		return (EINVAL);
2435 	if (req->newptr == NULL)
2436 		return (EPERM);
2437 	if (req->newlen < sizeof(addrs))
2438 		return (ENOMEM);
2439 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2440 	if (error)
2441 		return (error);
2442 
2443 	switch (addrs[0].ss_family) {
2444 #ifdef INET6
2445 	case AF_INET6:
2446 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2447 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2448 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2449 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2450 			return (EINVAL);
2451 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr) ||
2452 		    IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2453 			return (EADDRNOTAVAIL);
2454 #if 0
2455 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2456 		if (error)
2457 			return (error);
2458 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2459 		if (error)
2460 			return (error);
2461 #endif
2462 		port = tcp6_addrport();
2463 		break;
2464 #endif
2465 #ifdef INET
2466 	case AF_INET:
2467 		fin = (struct sockaddr_in *)&addrs[0];
2468 		lin = (struct sockaddr_in *)&addrs[1];
2469 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2470 		    lin->sin_len != sizeof(struct sockaddr_in))
2471 			return (EINVAL);
2472 		port = tcp_addrport(fin->sin_addr.s_addr, fin->sin_port,
2473 		    lin->sin_addr.s_addr, lin->sin_port);
2474 		break;
2475 #endif
2476 	default:
2477 		return (EINVAL);
2478 	}
2479 
2480 	netmsg_init(&nmsg, NULL, &curthread->td_msgport, 0,
2481 	    tcp_drop_sysctl_dispatch);
2482 	lmsg->u.ms_resultp = addrs;
2483 	return lwkt_domsg(port, lmsg, 0);
2484 }
2485 
2486 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, drop,
2487     CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP, NULL,
2488     0, sysctl_tcp_drop, "", "Drop TCP connection");
2489 
2490 static int
2491 sysctl_tcps_count(SYSCTL_HANDLER_ARGS)
2492 {
2493 	u_long state_count[TCP_NSTATES];
2494 	int cpu;
2495 
2496 	memset(state_count, 0, sizeof(state_count));
2497 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
2498 		int i;
2499 
2500 		for (i = 0; i < TCP_NSTATES; ++i)
2501 			state_count[i] += tcpstate_count[cpu].tcps_count[i];
2502 	}
2503 
2504 	return sysctl_handle_opaque(oidp, state_count, sizeof(state_count), req);
2505 }
2506 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, state_count,
2507     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
2508     sysctl_tcps_count, "LU", "TCP connection counts by state");
2509 
2510 void
2511 tcp_pcbport_create(struct tcpcb *tp)
2512 {
2513 	int cpu;
2514 
2515 	KASSERT((tp->t_flags & TF_LISTEN) && tp->t_state == TCPS_LISTEN,
2516 	    ("not a listen tcpcb"));
2517 
2518 	KASSERT(tp->t_pcbport == NULL, ("tcpcb port cache was created"));
2519 	tp->t_pcbport = kmalloc_cachealign(
2520 	    sizeof(struct tcp_pcbport) * netisr_ncpus, M_PCB, M_WAITOK);
2521 
2522 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
2523 		struct inpcbport *phd;
2524 
2525 		phd = &tp->t_pcbport[cpu].t_phd;
2526 		LIST_INIT(&phd->phd_pcblist);
2527 		/* Though, not used ... */
2528 		phd->phd_port = tp->t_inpcb->inp_lport;
2529 	}
2530 }
2531 
2532 void
2533 tcp_pcbport_merge_oncpu(struct tcpcb *tp)
2534 {
2535 	struct inpcbport *phd;
2536 	struct inpcb *inp;
2537 	int cpu = mycpuid;
2538 
2539 	KASSERT(cpu < netisr_ncpus, ("invalid cpu%d", cpu));
2540 	phd = &tp->t_pcbport[cpu].t_phd;
2541 
2542 	while ((inp = LIST_FIRST(&phd->phd_pcblist)) != NULL) {
2543 		KASSERT(inp->inp_phd == phd && inp->inp_porthash == NULL,
2544 		    ("not on tcpcb port cache"));
2545 		LIST_REMOVE(inp, inp_portlist);
2546 		in_pcbinsporthash_lport(inp);
2547 		KASSERT(inp->inp_phd == tp->t_inpcb->inp_phd &&
2548 		    inp->inp_porthash == tp->t_inpcb->inp_porthash,
2549 		    ("tcpcb port cache merge failed"));
2550 	}
2551 }
2552 
2553 void
2554 tcp_pcbport_destroy(struct tcpcb *tp)
2555 {
2556 #ifdef INVARIANTS
2557 	int cpu;
2558 
2559 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
2560 		KASSERT(LIST_EMPTY(&tp->t_pcbport[cpu].t_phd.phd_pcblist),
2561 		    ("tcpcb port cache is not empty"));
2562 	}
2563 #endif
2564 	kfree(tp->t_pcbport, M_PCB);
2565 	tp->t_pcbport = NULL;
2566 }
2567