xref: /dragonfly/sys/netinet/tcp_subr.c (revision d4ef6694)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. Neither the name of the University nor the names of its contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  *
62  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
63  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
64  */
65 
66 #include "opt_compat.h"
67 #include "opt_inet.h"
68 #include "opt_inet6.h"
69 #include "opt_ipsec.h"
70 #include "opt_tcpdebug.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/callout.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/malloc.h>
78 #include <sys/mpipe.h>
79 #include <sys/mbuf.h>
80 #ifdef INET6
81 #include <sys/domain.h>
82 #endif
83 #include <sys/proc.h>
84 #include <sys/priv.h>
85 #include <sys/socket.h>
86 #include <sys/socketops.h>
87 #include <sys/socketvar.h>
88 #include <sys/protosw.h>
89 #include <sys/random.h>
90 #include <sys/in_cksum.h>
91 #include <sys/ktr.h>
92 
93 #include <net/route.h>
94 #include <net/if.h>
95 #include <net/netisr2.h>
96 
97 #define	_IP_VHL
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/ip.h>
101 #include <netinet/ip6.h>
102 #include <netinet/in_pcb.h>
103 #include <netinet6/in6_pcb.h>
104 #include <netinet/in_var.h>
105 #include <netinet/ip_var.h>
106 #include <netinet6/ip6_var.h>
107 #include <netinet/ip_icmp.h>
108 #ifdef INET6
109 #include <netinet/icmp6.h>
110 #endif
111 #include <netinet/tcp.h>
112 #include <netinet/tcp_fsm.h>
113 #include <netinet/tcp_seq.h>
114 #include <netinet/tcp_timer.h>
115 #include <netinet/tcp_timer2.h>
116 #include <netinet/tcp_var.h>
117 #include <netinet6/tcp6_var.h>
118 #include <netinet/tcpip.h>
119 #ifdef TCPDEBUG
120 #include <netinet/tcp_debug.h>
121 #endif
122 #include <netinet6/ip6protosw.h>
123 
124 #ifdef IPSEC
125 #include <netinet6/ipsec.h>
126 #include <netproto/key/key.h>
127 #ifdef INET6
128 #include <netinet6/ipsec6.h>
129 #endif
130 #endif
131 
132 #ifdef FAST_IPSEC
133 #include <netproto/ipsec/ipsec.h>
134 #ifdef INET6
135 #include <netproto/ipsec/ipsec6.h>
136 #endif
137 #define	IPSEC
138 #endif
139 
140 #include <sys/md5.h>
141 #include <machine/smp.h>
142 
143 #include <sys/msgport2.h>
144 #include <sys/mplock2.h>
145 #include <net/netmsg2.h>
146 
147 #if !defined(KTR_TCP)
148 #define KTR_TCP		KTR_ALL
149 #endif
150 /*
151 KTR_INFO_MASTER(tcp);
152 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
153 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
154 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
155 #define logtcp(name)	KTR_LOG(tcp_ ## name)
156 */
157 
158 #define TCP_IW_MAXSEGS_DFLT	4
159 #define TCP_IW_CAPSEGS_DFLT	3
160 
161 struct inpcbinfo tcbinfo[MAXCPU];
162 struct tcpcbackqhead tcpcbackq[MAXCPU];
163 
164 int tcp_mssdflt = TCP_MSS;
165 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
166     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
167 
168 #ifdef INET6
169 int tcp_v6mssdflt = TCP6_MSS;
170 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
171     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
172 #endif
173 
174 /*
175  * Minimum MSS we accept and use. This prevents DoS attacks where
176  * we are forced to a ridiculous low MSS like 20 and send hundreds
177  * of packets instead of one. The effect scales with the available
178  * bandwidth and quickly saturates the CPU and network interface
179  * with packet generation and sending. Set to zero to disable MINMSS
180  * checking. This setting prevents us from sending too small packets.
181  */
182 int tcp_minmss = TCP_MINMSS;
183 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
184     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
185 
186 #if 0
187 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
188 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
189     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
190 #endif
191 
192 int tcp_do_rfc1323 = 1;
193 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
194     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
195 
196 static int tcp_tcbhashsize = 0;
197 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
198      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
199 
200 static int do_tcpdrain = 1;
201 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
202      "Enable tcp_drain routine for extra help when low on mbufs");
203 
204 static int icmp_may_rst = 1;
205 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
206     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
207 
208 static int tcp_isn_reseed_interval = 0;
209 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
210     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
211 
212 /*
213  * TCP bandwidth limiting sysctls.  The inflight limiter is now turned on
214  * by default, but with generous values which should allow maximal
215  * bandwidth.  In particular, the slop defaults to 50 (5 packets).
216  *
217  * The reason for doing this is that the limiter is the only mechanism we
218  * have which seems to do a really good job preventing receiver RX rings
219  * on network interfaces from getting blown out.  Even though GigE/10GigE
220  * is supposed to flow control it looks like either it doesn't actually
221  * do it or Open Source drivers do not properly enable it.
222  *
223  * People using the limiter to reduce bottlenecks on slower WAN connections
224  * should set the slop to 20 (2 packets).
225  */
226 static int tcp_inflight_enable = 1;
227 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
228     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
229 
230 static int tcp_inflight_debug = 0;
231 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
232     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
233 
234 static int tcp_inflight_min = 6144;
235 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
236     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
237 
238 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
239 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
240     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
241 
242 static int tcp_inflight_stab = 50;
243 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
244     &tcp_inflight_stab, 0, "Fudge bw 1/10% (50=5%)");
245 
246 static int tcp_inflight_adjrtt = 2;
247 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_adjrtt, CTLFLAG_RW,
248     &tcp_inflight_adjrtt, 0, "Slop for rtt 1/(hz*32)");
249 
250 static int tcp_do_rfc3390 = 1;
251 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
252     &tcp_do_rfc3390, 0,
253     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
254 
255 static u_long tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
256 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwmaxsegs, CTLFLAG_RW,
257     &tcp_iw_maxsegs, 0, "TCP IW segments max");
258 
259 static u_long tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
260 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwcapsegs, CTLFLAG_RW,
261     &tcp_iw_capsegs, 0, "TCP IW segments");
262 
263 int tcp_low_rtobase = 1;
264 SYSCTL_INT(_net_inet_tcp, OID_AUTO, low_rtobase, CTLFLAG_RW,
265     &tcp_low_rtobase, 0, "Lowering the Initial RTO (RFC 6298)");
266 
267 static int tcp_do_ncr = 1;
268 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr, CTLFLAG_RW,
269     &tcp_do_ncr, 0, "Non-Congestion Robustness (RFC 4653)");
270 
271 int tcp_ncr_rxtthresh_max = 16;
272 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr_rxtthresh_max, CTLFLAG_RW,
273     &tcp_ncr_rxtthresh_max, 0,
274     "Non-Congestion Robustness (RFC 4653), DupThresh upper limit");
275 
276 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
277 static struct malloc_pipe tcptemp_mpipe;
278 
279 static void tcp_willblock(void);
280 static void tcp_notify (struct inpcb *, int);
281 
282 struct tcp_stats tcpstats_percpu[MAXCPU] __cachealign;
283 
284 static struct netmsg_base tcp_drain_netmsg[MAXCPU];
285 static void	tcp_drain_dispatch(netmsg_t nmsg);
286 
287 static int
288 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
289 {
290 	int cpu, error = 0;
291 
292 	for (cpu = 0; cpu < ncpus2; ++cpu) {
293 		if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
294 					sizeof(struct tcp_stats))))
295 			break;
296 		if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
297 				       sizeof(struct tcp_stats))))
298 			break;
299 	}
300 
301 	return (error);
302 }
303 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
304     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
305 
306 /*
307  * Target size of TCP PCB hash tables. Must be a power of two.
308  *
309  * Note that this can be overridden by the kernel environment
310  * variable net.inet.tcp.tcbhashsize
311  */
312 #ifndef TCBHASHSIZE
313 #define	TCBHASHSIZE	512
314 #endif
315 
316 /*
317  * This is the actual shape of what we allocate using the zone
318  * allocator.  Doing it this way allows us to protect both structures
319  * using the same generation count, and also eliminates the overhead
320  * of allocating tcpcbs separately.  By hiding the structure here,
321  * we avoid changing most of the rest of the code (although it needs
322  * to be changed, eventually, for greater efficiency).
323  */
324 #define	ALIGNMENT	32
325 #define	ALIGNM1		(ALIGNMENT - 1)
326 struct	inp_tp {
327 	union {
328 		struct	inpcb inp;
329 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
330 	} inp_tp_u;
331 	struct	tcpcb tcb;
332 	struct	tcp_callout inp_tp_rexmt;
333 	struct	tcp_callout inp_tp_persist;
334 	struct	tcp_callout inp_tp_keep;
335 	struct	tcp_callout inp_tp_2msl;
336 	struct	tcp_callout inp_tp_delack;
337 	struct	netmsg_tcp_timer inp_tp_timermsg;
338 	struct	netmsg_base inp_tp_sndmore;
339 };
340 #undef ALIGNMENT
341 #undef ALIGNM1
342 
343 /*
344  * Tcp initialization
345  */
346 void
347 tcp_init(void)
348 {
349 	struct inpcbportinfo *portinfo;
350 	struct inpcbinfo *ticb;
351 	int hashsize = TCBHASHSIZE;
352 	int cpu;
353 
354 	/*
355 	 * note: tcptemp is used for keepalives, and it is ok for an
356 	 * allocation to fail so do not specify MPF_INT.
357 	 */
358 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
359 		    25, -1, 0, NULL, NULL, NULL);
360 
361 	tcp_delacktime = TCPTV_DELACK;
362 	tcp_keepinit = TCPTV_KEEP_INIT;
363 	tcp_keepidle = TCPTV_KEEP_IDLE;
364 	tcp_keepintvl = TCPTV_KEEPINTVL;
365 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
366 	tcp_msl = TCPTV_MSL;
367 	tcp_rexmit_min = TCPTV_MIN;
368 	tcp_rexmit_slop = TCPTV_CPU_VAR;
369 
370 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
371 	if (!powerof2(hashsize)) {
372 		kprintf("WARNING: TCB hash size not a power of 2\n");
373 		hashsize = 512; /* safe default */
374 	}
375 	tcp_tcbhashsize = hashsize;
376 
377 	portinfo = kmalloc_cachealign(sizeof(*portinfo) * ncpus2, M_PCB,
378 	    M_WAITOK);
379 
380 	for (cpu = 0; cpu < ncpus2; cpu++) {
381 		ticb = &tcbinfo[cpu];
382 		in_pcbinfo_init(ticb, cpu, FALSE);
383 		ticb->hashbase = hashinit(hashsize, M_PCB,
384 					  &ticb->hashmask);
385 		in_pcbportinfo_init(&portinfo[cpu], hashsize, TRUE, cpu);
386 		ticb->portinfo = portinfo;
387 		ticb->portinfo_mask = ncpus2_mask;
388 		ticb->wildcardhashbase = hashinit(hashsize, M_PCB,
389 						  &ticb->wildcardhashmask);
390 		ticb->localgrphashbase = hashinit(hashsize, M_PCB,
391 						  &ticb->localgrphashmask);
392 		ticb->ipi_size = sizeof(struct inp_tp);
393 		TAILQ_INIT(&tcpcbackq[cpu]);
394 	}
395 
396 	tcp_reass_maxseg = nmbclusters / 16;
397 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
398 
399 #ifdef INET6
400 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
401 #else
402 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
403 #endif
404 	if (max_protohdr < TCP_MINPROTOHDR)
405 		max_protohdr = TCP_MINPROTOHDR;
406 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
407 		panic("tcp_init");
408 #undef TCP_MINPROTOHDR
409 
410 	/*
411 	 * Initialize TCP statistics counters for each CPU.
412 	 */
413 	for (cpu = 0; cpu < ncpus2; ++cpu)
414 		bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
415 
416 	/*
417 	 * Initialize netmsgs for TCP drain
418 	 */
419 	for (cpu = 0; cpu < ncpus2; ++cpu) {
420 		netmsg_init(&tcp_drain_netmsg[cpu], NULL, &netisr_adone_rport,
421 		    MSGF_PRIORITY, tcp_drain_dispatch);
422 	}
423 
424 	syncache_init();
425 	netisr_register_rollup(tcp_willblock, NETISR_ROLLUP_PRIO_TCP);
426 }
427 
428 static void
429 tcp_willblock(void)
430 {
431 	struct tcpcb *tp;
432 	int cpu = mycpu->gd_cpuid;
433 
434 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
435 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
436 		tp->t_flags &= ~TF_ONOUTPUTQ;
437 		TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
438 		tcp_output(tp);
439 	}
440 }
441 
442 /*
443  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
444  * tcp_template used to store this data in mbufs, but we now recopy it out
445  * of the tcpcb each time to conserve mbufs.
446  */
447 void
448 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr, boolean_t tso)
449 {
450 	struct inpcb *inp = tp->t_inpcb;
451 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
452 
453 #ifdef INET6
454 	if (inp->inp_vflag & INP_IPV6) {
455 		struct ip6_hdr *ip6;
456 
457 		ip6 = (struct ip6_hdr *)ip_ptr;
458 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
459 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
460 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
461 			(IPV6_VERSION & IPV6_VERSION_MASK);
462 		ip6->ip6_nxt = IPPROTO_TCP;
463 		ip6->ip6_plen = sizeof(struct tcphdr);
464 		ip6->ip6_src = inp->in6p_laddr;
465 		ip6->ip6_dst = inp->in6p_faddr;
466 		tcp_hdr->th_sum = 0;
467 	} else
468 #endif
469 	{
470 		struct ip *ip = (struct ip *) ip_ptr;
471 		u_int plen;
472 
473 		ip->ip_vhl = IP_VHL_BORING;
474 		ip->ip_tos = 0;
475 		ip->ip_len = 0;
476 		ip->ip_id = 0;
477 		ip->ip_off = 0;
478 		ip->ip_ttl = 0;
479 		ip->ip_sum = 0;
480 		ip->ip_p = IPPROTO_TCP;
481 		ip->ip_src = inp->inp_laddr;
482 		ip->ip_dst = inp->inp_faddr;
483 
484 		if (tso)
485 			plen = htons(IPPROTO_TCP);
486 		else
487 			plen = htons(sizeof(struct tcphdr) + IPPROTO_TCP);
488 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
489 		    ip->ip_dst.s_addr, plen);
490 	}
491 
492 	tcp_hdr->th_sport = inp->inp_lport;
493 	tcp_hdr->th_dport = inp->inp_fport;
494 	tcp_hdr->th_seq = 0;
495 	tcp_hdr->th_ack = 0;
496 	tcp_hdr->th_x2 = 0;
497 	tcp_hdr->th_off = 5;
498 	tcp_hdr->th_flags = 0;
499 	tcp_hdr->th_win = 0;
500 	tcp_hdr->th_urp = 0;
501 }
502 
503 /*
504  * Create template to be used to send tcp packets on a connection.
505  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
506  * use for this function is in keepalives, which use tcp_respond.
507  */
508 struct tcptemp *
509 tcp_maketemplate(struct tcpcb *tp)
510 {
511 	struct tcptemp *tmp;
512 
513 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
514 		return (NULL);
515 	tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t, FALSE);
516 	return (tmp);
517 }
518 
519 void
520 tcp_freetemplate(struct tcptemp *tmp)
521 {
522 	mpipe_free(&tcptemp_mpipe, tmp);
523 }
524 
525 /*
526  * Send a single message to the TCP at address specified by
527  * the given TCP/IP header.  If m == NULL, then we make a copy
528  * of the tcpiphdr at ti and send directly to the addressed host.
529  * This is used to force keep alive messages out using the TCP
530  * template for a connection.  If flags are given then we send
531  * a message back to the TCP which originated the * segment ti,
532  * and discard the mbuf containing it and any other attached mbufs.
533  *
534  * In any case the ack and sequence number of the transmitted
535  * segment are as specified by the parameters.
536  *
537  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
538  */
539 void
540 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
541 	    tcp_seq ack, tcp_seq seq, int flags)
542 {
543 	int tlen;
544 	long win = 0;
545 	struct route *ro = NULL;
546 	struct route sro;
547 	struct ip *ip = ipgen;
548 	struct tcphdr *nth;
549 	int ipflags = 0;
550 	struct route_in6 *ro6 = NULL;
551 	struct route_in6 sro6;
552 	struct ip6_hdr *ip6 = ipgen;
553 	boolean_t use_tmpro = TRUE;
554 #ifdef INET6
555 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
556 #else
557 	const boolean_t isipv6 = FALSE;
558 #endif
559 
560 	if (tp != NULL) {
561 		if (!(flags & TH_RST)) {
562 			win = ssb_space(&tp->t_inpcb->inp_socket->so_rcv);
563 			if (win < 0)
564 				win = 0;
565 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
566 				win = (long)TCP_MAXWIN << tp->rcv_scale;
567 		}
568 		/*
569 		 * Don't use the route cache of a listen socket,
570 		 * it is not MPSAFE; use temporary route cache.
571 		 */
572 		if (tp->t_state != TCPS_LISTEN) {
573 			if (isipv6)
574 				ro6 = &tp->t_inpcb->in6p_route;
575 			else
576 				ro = &tp->t_inpcb->inp_route;
577 			use_tmpro = FALSE;
578 		}
579 	}
580 	if (use_tmpro) {
581 		if (isipv6) {
582 			ro6 = &sro6;
583 			bzero(ro6, sizeof *ro6);
584 		} else {
585 			ro = &sro;
586 			bzero(ro, sizeof *ro);
587 		}
588 	}
589 	if (m == NULL) {
590 		m = m_gethdr(MB_DONTWAIT, MT_HEADER);
591 		if (m == NULL)
592 			return;
593 		tlen = 0;
594 		m->m_data += max_linkhdr;
595 		if (isipv6) {
596 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
597 			ip6 = mtod(m, struct ip6_hdr *);
598 			nth = (struct tcphdr *)(ip6 + 1);
599 		} else {
600 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
601 			ip = mtod(m, struct ip *);
602 			nth = (struct tcphdr *)(ip + 1);
603 		}
604 		bcopy(th, nth, sizeof(struct tcphdr));
605 		flags = TH_ACK;
606 	} else {
607 		m_freem(m->m_next);
608 		m->m_next = NULL;
609 		m->m_data = (caddr_t)ipgen;
610 		/* m_len is set later */
611 		tlen = 0;
612 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
613 		if (isipv6) {
614 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
615 			nth = (struct tcphdr *)(ip6 + 1);
616 		} else {
617 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
618 			nth = (struct tcphdr *)(ip + 1);
619 		}
620 		if (th != nth) {
621 			/*
622 			 * this is usually a case when an extension header
623 			 * exists between the IPv6 header and the
624 			 * TCP header.
625 			 */
626 			nth->th_sport = th->th_sport;
627 			nth->th_dport = th->th_dport;
628 		}
629 		xchg(nth->th_dport, nth->th_sport, n_short);
630 #undef xchg
631 	}
632 	if (isipv6) {
633 		ip6->ip6_flow = 0;
634 		ip6->ip6_vfc = IPV6_VERSION;
635 		ip6->ip6_nxt = IPPROTO_TCP;
636 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
637 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
638 	} else {
639 		tlen += sizeof(struct tcpiphdr);
640 		ip->ip_len = tlen;
641 		ip->ip_ttl = ip_defttl;
642 	}
643 	m->m_len = tlen;
644 	m->m_pkthdr.len = tlen;
645 	m->m_pkthdr.rcvif = NULL;
646 	nth->th_seq = htonl(seq);
647 	nth->th_ack = htonl(ack);
648 	nth->th_x2 = 0;
649 	nth->th_off = sizeof(struct tcphdr) >> 2;
650 	nth->th_flags = flags;
651 	if (tp != NULL)
652 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
653 	else
654 		nth->th_win = htons((u_short)win);
655 	nth->th_urp = 0;
656 	if (isipv6) {
657 		nth->th_sum = 0;
658 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
659 					sizeof(struct ip6_hdr),
660 					tlen - sizeof(struct ip6_hdr));
661 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
662 					       (ro6 && ro6->ro_rt) ?
663 						ro6->ro_rt->rt_ifp : NULL);
664 	} else {
665 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
666 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
667 		m->m_pkthdr.csum_flags = CSUM_TCP;
668 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
669 		m->m_pkthdr.csum_thlen = sizeof(struct tcphdr);
670 	}
671 #ifdef TCPDEBUG
672 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
673 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
674 #endif
675 	if (isipv6) {
676 		ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
677 			   tp ? tp->t_inpcb : NULL);
678 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
679 			RTFREE(ro6->ro_rt);
680 			ro6->ro_rt = NULL;
681 		}
682 	} else {
683 		ipflags |= IP_DEBUGROUTE;
684 		ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
685 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
686 			RTFREE(ro->ro_rt);
687 			ro->ro_rt = NULL;
688 		}
689 	}
690 }
691 
692 /*
693  * Create a new TCP control block, making an
694  * empty reassembly queue and hooking it to the argument
695  * protocol control block.  The `inp' parameter must have
696  * come from the zone allocator set up in tcp_init().
697  */
698 struct tcpcb *
699 tcp_newtcpcb(struct inpcb *inp)
700 {
701 	struct inp_tp *it;
702 	struct tcpcb *tp;
703 #ifdef INET6
704 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
705 #else
706 	const boolean_t isipv6 = FALSE;
707 #endif
708 
709 	it = (struct inp_tp *)inp;
710 	tp = &it->tcb;
711 	bzero(tp, sizeof(struct tcpcb));
712 	TAILQ_INIT(&tp->t_segq);
713 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
714 	tp->t_rxtthresh = tcprexmtthresh;
715 
716 	/* Set up our timeouts. */
717 	tp->tt_rexmt = &it->inp_tp_rexmt;
718 	tp->tt_persist = &it->inp_tp_persist;
719 	tp->tt_keep = &it->inp_tp_keep;
720 	tp->tt_2msl = &it->inp_tp_2msl;
721 	tp->tt_delack = &it->inp_tp_delack;
722 	tcp_inittimers(tp);
723 
724 	/*
725 	 * Zero out timer message.  We don't create it here,
726 	 * since the current CPU may not be the owner of this
727 	 * inpcb.
728 	 */
729 	tp->tt_msg = &it->inp_tp_timermsg;
730 	bzero(tp->tt_msg, sizeof(*tp->tt_msg));
731 
732 	tp->t_keepinit = tcp_keepinit;
733 	tp->t_keepidle = tcp_keepidle;
734 	tp->t_keepintvl = tcp_keepintvl;
735 	tp->t_keepcnt = tcp_keepcnt;
736 	tp->t_maxidle = tp->t_keepintvl * tp->t_keepcnt;
737 
738 	if (tcp_do_ncr)
739 		tp->t_flags |= TF_NCR;
740 	if (tcp_do_rfc1323)
741 		tp->t_flags |= (TF_REQ_SCALE | TF_REQ_TSTMP);
742 
743 	tp->t_inpcb = inp;	/* XXX */
744 	tp->t_state = TCPS_CLOSED;
745 	/*
746 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
747 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
748 	 * reasonable initial retransmit time.
749 	 */
750 	tp->t_srtt = TCPTV_SRTTBASE;
751 	tp->t_rttvar =
752 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
753 	tp->t_rttmin = tcp_rexmit_min;
754 	tp->t_rxtcur = TCPTV_RTOBASE;
755 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
756 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
757 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
758 	tp->snd_last = ticks;
759 	tp->t_rcvtime = ticks;
760 	/*
761 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
762 	 * because the socket may be bound to an IPv6 wildcard address,
763 	 * which may match an IPv4-mapped IPv6 address.
764 	 */
765 	inp->inp_ip_ttl = ip_defttl;
766 	inp->inp_ppcb = tp;
767 	tcp_sack_tcpcb_init(tp);
768 
769 	tp->tt_sndmore = &it->inp_tp_sndmore;
770 	tcp_output_init(tp);
771 
772 	return (tp);		/* XXX */
773 }
774 
775 /*
776  * Drop a TCP connection, reporting the specified error.
777  * If connection is synchronized, then send a RST to peer.
778  */
779 struct tcpcb *
780 tcp_drop(struct tcpcb *tp, int error)
781 {
782 	struct socket *so = tp->t_inpcb->inp_socket;
783 
784 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
785 		tp->t_state = TCPS_CLOSED;
786 		tcp_output(tp);
787 		tcpstat.tcps_drops++;
788 	} else
789 		tcpstat.tcps_conndrops++;
790 	if (error == ETIMEDOUT && tp->t_softerror)
791 		error = tp->t_softerror;
792 	so->so_error = error;
793 	return (tcp_close(tp));
794 }
795 
796 struct netmsg_listen_detach {
797 	struct netmsg_base	base;
798 	struct tcpcb		*nm_tp;
799 	struct tcpcb		*nm_tp_inh;
800 };
801 
802 static void
803 tcp_listen_detach_handler(netmsg_t msg)
804 {
805 	struct netmsg_listen_detach *nmsg = (struct netmsg_listen_detach *)msg;
806 	struct tcpcb *tp = nmsg->nm_tp;
807 	int cpu = mycpuid, nextcpu;
808 
809 	if (tp->t_flags & TF_LISTEN)
810 		syncache_destroy(tp, nmsg->nm_tp_inh);
811 
812 	in_pcbremwildcardhash_oncpu(tp->t_inpcb, &tcbinfo[cpu]);
813 
814 	nextcpu = cpu + 1;
815 	if (nextcpu < ncpus2)
816 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &nmsg->base.lmsg);
817 	else
818 		lwkt_replymsg(&nmsg->base.lmsg, 0);
819 }
820 
821 /*
822  * Close a TCP control block:
823  *	discard all space held by the tcp
824  *	discard internet protocol block
825  *	wake up any sleepers
826  */
827 struct tcpcb *
828 tcp_close(struct tcpcb *tp)
829 {
830 	struct tseg_qent *q;
831 	struct inpcb *inp = tp->t_inpcb;
832 	struct inpcb *inp_inh = NULL;
833 	struct tcpcb *tp_inh = NULL;
834 	struct socket *so = inp->inp_socket;
835 	struct rtentry *rt;
836 	boolean_t dosavessthresh;
837 #ifdef INET6
838 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
839 	boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
840 #else
841 	const boolean_t isipv6 = FALSE;
842 #endif
843 
844 	if (tp->t_flags & TF_LISTEN) {
845 		/*
846 		 * Pending socket/syncache inheritance
847 		 *
848 		 * If this is a listen(2) socket, find another listen(2)
849 		 * socket in the same local group, which could inherit
850 		 * the syncache and sockets pending on the completion
851 		 * and incompletion queues.
852 		 *
853 		 * NOTE:
854 		 * Currently the inheritance could only happen on the
855 		 * listen(2) sockets w/ SO_REUSEPORT set.
856 		 */
857 		KASSERT(&curthread->td_msgport == netisr_cpuport(0),
858 		    ("listen socket close not in netisr0"));
859 		inp_inh = in_pcblocalgroup_last(&tcbinfo[0], inp);
860 		if (inp_inh != NULL)
861 			tp_inh = intotcpcb(inp_inh);
862 	}
863 
864 	/*
865 	 * INP_WILDCARD indicates that listen(2) has been called on
866 	 * this socket.  This implies:
867 	 * - A wildcard inp's hash is replicated for each protocol thread.
868 	 * - Syncache for this inp grows independently in each protocol
869 	 *   thread.
870 	 * - There is more than one cpu
871 	 *
872 	 * We have to chain a message to the rest of the protocol threads
873 	 * to cleanup the wildcard hash and the syncache.  The cleanup
874 	 * in the current protocol thread is defered till the end of this
875 	 * function (syncache_destroy and in_pcbdetach).
876 	 *
877 	 * NOTE:
878 	 * After cleanup the inp's hash and syncache entries, this inp will
879 	 * no longer be available to the rest of the protocol threads, so we
880 	 * are safe to whack the inp in the following code.
881 	 */
882 	if ((inp->inp_flags & INP_WILDCARD) && ncpus2 > 1) {
883 		struct netmsg_listen_detach nmsg;
884 
885 		KKASSERT(so->so_port == netisr_cpuport(0));
886 		KKASSERT(&curthread->td_msgport == netisr_cpuport(0));
887 		KKASSERT(inp->inp_pcbinfo == &tcbinfo[0]);
888 
889 		netmsg_init(&nmsg.base, NULL, &curthread->td_msgport,
890 			    MSGF_PRIORITY, tcp_listen_detach_handler);
891 		nmsg.nm_tp = tp;
892 		nmsg.nm_tp_inh = tp_inh;
893 		lwkt_domsg(netisr_cpuport(1), &nmsg.base.lmsg, 0);
894 	}
895 
896 	KKASSERT(tp->t_state != TCPS_TERMINATING);
897 	tp->t_state = TCPS_TERMINATING;
898 
899 	/*
900 	 * Make sure that all of our timers are stopped before we
901 	 * delete the PCB.  For listen TCP socket (tp->tt_msg == NULL),
902 	 * timers are never used.  If timer message is never created
903 	 * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
904 	 */
905 	if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
906 		tcp_callout_stop(tp, tp->tt_rexmt);
907 		tcp_callout_stop(tp, tp->tt_persist);
908 		tcp_callout_stop(tp, tp->tt_keep);
909 		tcp_callout_stop(tp, tp->tt_2msl);
910 		tcp_callout_stop(tp, tp->tt_delack);
911 	}
912 
913 	if (tp->t_flags & TF_ONOUTPUTQ) {
914 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
915 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
916 		tp->t_flags &= ~TF_ONOUTPUTQ;
917 	}
918 
919 	/*
920 	 * If we got enough samples through the srtt filter,
921 	 * save the rtt and rttvar in the routing entry.
922 	 * 'Enough' is arbitrarily defined as the 16 samples.
923 	 * 16 samples is enough for the srtt filter to converge
924 	 * to within 5% of the correct value; fewer samples and
925 	 * we could save a very bogus rtt.
926 	 *
927 	 * Don't update the default route's characteristics and don't
928 	 * update anything that the user "locked".
929 	 */
930 	if (tp->t_rttupdated >= 16) {
931 		u_long i = 0;
932 
933 		if (isipv6) {
934 			struct sockaddr_in6 *sin6;
935 
936 			if ((rt = inp->in6p_route.ro_rt) == NULL)
937 				goto no_valid_rt;
938 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
939 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
940 				goto no_valid_rt;
941 		} else
942 			if ((rt = inp->inp_route.ro_rt) == NULL ||
943 			    ((struct sockaddr_in *)rt_key(rt))->
944 			     sin_addr.s_addr == INADDR_ANY)
945 				goto no_valid_rt;
946 
947 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
948 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
949 			if (rt->rt_rmx.rmx_rtt && i)
950 				/*
951 				 * filter this update to half the old & half
952 				 * the new values, converting scale.
953 				 * See route.h and tcp_var.h for a
954 				 * description of the scaling constants.
955 				 */
956 				rt->rt_rmx.rmx_rtt =
957 				    (rt->rt_rmx.rmx_rtt + i) / 2;
958 			else
959 				rt->rt_rmx.rmx_rtt = i;
960 			tcpstat.tcps_cachedrtt++;
961 		}
962 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
963 			i = tp->t_rttvar *
964 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
965 			if (rt->rt_rmx.rmx_rttvar && i)
966 				rt->rt_rmx.rmx_rttvar =
967 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
968 			else
969 				rt->rt_rmx.rmx_rttvar = i;
970 			tcpstat.tcps_cachedrttvar++;
971 		}
972 		/*
973 		 * The old comment here said:
974 		 * update the pipelimit (ssthresh) if it has been updated
975 		 * already or if a pipesize was specified & the threshhold
976 		 * got below half the pipesize.  I.e., wait for bad news
977 		 * before we start updating, then update on both good
978 		 * and bad news.
979 		 *
980 		 * But we want to save the ssthresh even if no pipesize is
981 		 * specified explicitly in the route, because such
982 		 * connections still have an implicit pipesize specified
983 		 * by the global tcp_sendspace.  In the absence of a reliable
984 		 * way to calculate the pipesize, it will have to do.
985 		 */
986 		i = tp->snd_ssthresh;
987 		if (rt->rt_rmx.rmx_sendpipe != 0)
988 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
989 		else
990 			dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
991 		if (dosavessthresh ||
992 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
993 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
994 			/*
995 			 * convert the limit from user data bytes to
996 			 * packets then to packet data bytes.
997 			 */
998 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
999 			if (i < 2)
1000 				i = 2;
1001 			i *= tp->t_maxseg +
1002 			     (isipv6 ?
1003 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1004 			      sizeof(struct tcpiphdr));
1005 			if (rt->rt_rmx.rmx_ssthresh)
1006 				rt->rt_rmx.rmx_ssthresh =
1007 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
1008 			else
1009 				rt->rt_rmx.rmx_ssthresh = i;
1010 			tcpstat.tcps_cachedssthresh++;
1011 		}
1012 	}
1013 
1014 no_valid_rt:
1015 	/* free the reassembly queue, if any */
1016 	while((q = TAILQ_FIRST(&tp->t_segq)) != NULL) {
1017 		TAILQ_REMOVE(&tp->t_segq, q, tqe_q);
1018 		m_freem(q->tqe_m);
1019 		kfree(q, M_TSEGQ);
1020 		atomic_add_int(&tcp_reass_qsize, -1);
1021 	}
1022 	/* throw away SACK blocks in scoreboard*/
1023 	if (TCP_DO_SACK(tp))
1024 		tcp_sack_destroy(&tp->scb);
1025 
1026 	inp->inp_ppcb = NULL;
1027 	soisdisconnected(so);
1028 	/* note: pcb detached later on */
1029 
1030 	tcp_destroy_timermsg(tp);
1031 	tcp_output_cancel(tp);
1032 
1033 	if (tp->t_flags & TF_LISTEN) {
1034 		syncache_destroy(tp, tp_inh);
1035 		if (inp_inh != NULL && inp_inh->inp_socket != NULL) {
1036 			/*
1037 			 * Pending sockets inheritance only needs
1038 			 * to be done once in the current thread,
1039 			 * i.e. netisr0.
1040 			 */
1041 			soinherit(so, inp_inh->inp_socket);
1042 		}
1043 	}
1044 
1045 	so_async_rcvd_drop(so);
1046 	/* Drop the reference for the asynchronized pru_rcvd */
1047 	sofree(so);
1048 
1049 	/*
1050 	 * NOTE:
1051 	 * pcbdetach removes any wildcard hash entry on the current CPU.
1052 	 */
1053 #ifdef INET6
1054 	if (isafinet6)
1055 		in6_pcbdetach(inp);
1056 	else
1057 #endif
1058 		in_pcbdetach(inp);
1059 
1060 	tcpstat.tcps_closed++;
1061 	return (NULL);
1062 }
1063 
1064 static __inline void
1065 tcp_drain_oncpu(struct inpcbinfo *pcbinfo)
1066 {
1067 	struct inpcbhead *head = &pcbinfo->pcblisthead;
1068 	struct inpcb *inpb;
1069 
1070 	/*
1071 	 * Since we run in netisr, it is MP safe, even if
1072 	 * we block during the inpcb list iteration, i.e.
1073 	 * we don't need to use inpcb marker here.
1074 	 */
1075 	KASSERT(&curthread->td_msgport == netisr_cpuport(pcbinfo->cpu),
1076 	    ("not in correct netisr"));
1077 
1078 	LIST_FOREACH(inpb, head, inp_list) {
1079 		struct tcpcb *tcpb;
1080 		struct tseg_qent *te;
1081 
1082 		if ((inpb->inp_flags & INP_PLACEMARKER) == 0 &&
1083 		    (tcpb = intotcpcb(inpb)) != NULL &&
1084 		    (te = TAILQ_FIRST(&tcpb->t_segq)) != NULL) {
1085 			TAILQ_REMOVE(&tcpb->t_segq, te, tqe_q);
1086 			if (te->tqe_th->th_flags & TH_FIN)
1087 				tcpb->t_flags &= ~TF_QUEDFIN;
1088 			m_freem(te->tqe_m);
1089 			kfree(te, M_TSEGQ);
1090 			atomic_add_int(&tcp_reass_qsize, -1);
1091 			/* retry */
1092 		}
1093 	}
1094 }
1095 
1096 static void
1097 tcp_drain_dispatch(netmsg_t nmsg)
1098 {
1099 	crit_enter();
1100 	lwkt_replymsg(&nmsg->lmsg, 0);  /* reply ASAP */
1101 	crit_exit();
1102 
1103 	tcp_drain_oncpu(&tcbinfo[mycpuid]);
1104 }
1105 
1106 static void
1107 tcp_drain_ipi(void *arg __unused)
1108 {
1109 	int cpu = mycpuid;
1110 	struct lwkt_msg *msg = &tcp_drain_netmsg[cpu].lmsg;
1111 
1112 	crit_enter();
1113 	if (msg->ms_flags & MSGF_DONE)
1114 		lwkt_sendmsg_oncpu(netisr_cpuport(cpu), msg);
1115 	crit_exit();
1116 }
1117 
1118 void
1119 tcp_drain(void)
1120 {
1121 	cpumask_t mask;
1122 
1123 	if (!do_tcpdrain)
1124 		return;
1125 
1126 	/*
1127 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1128 	 * if there is one...
1129 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1130 	 *	reassembly queue should be flushed, but in a situation
1131 	 *	where we're really low on mbufs, this is potentially
1132 	 *	useful.
1133 	 * YYY: We may consider run tcp_drain_oncpu directly here,
1134 	 *      however, that will require M_WAITOK memory allocation
1135 	 *      for the inpcb marker.
1136 	 */
1137 	CPUMASK_ASSBMASK(mask, ncpus2);
1138 	CPUMASK_ANDMASK(mask, smp_active_mask);
1139 	if (CPUMASK_TESTNZERO(mask))
1140 		lwkt_send_ipiq_mask(mask, tcp_drain_ipi, NULL);
1141 }
1142 
1143 /*
1144  * Notify a tcp user of an asynchronous error;
1145  * store error as soft error, but wake up user
1146  * (for now, won't do anything until can select for soft error).
1147  *
1148  * Do not wake up user since there currently is no mechanism for
1149  * reporting soft errors (yet - a kqueue filter may be added).
1150  */
1151 static void
1152 tcp_notify(struct inpcb *inp, int error)
1153 {
1154 	struct tcpcb *tp = intotcpcb(inp);
1155 
1156 	/*
1157 	 * Ignore some errors if we are hooked up.
1158 	 * If connection hasn't completed, has retransmitted several times,
1159 	 * and receives a second error, give up now.  This is better
1160 	 * than waiting a long time to establish a connection that
1161 	 * can never complete.
1162 	 */
1163 	if (tp->t_state == TCPS_ESTABLISHED &&
1164 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1165 	      error == EHOSTDOWN)) {
1166 		return;
1167 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1168 	    tp->t_softerror)
1169 		tcp_drop(tp, error);
1170 	else
1171 		tp->t_softerror = error;
1172 #if 0
1173 	wakeup(&so->so_timeo);
1174 	sorwakeup(so);
1175 	sowwakeup(so);
1176 #endif
1177 }
1178 
1179 static int
1180 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1181 {
1182 	int error, i, n;
1183 	struct inpcb *marker;
1184 	struct inpcb *inp;
1185 	int origcpu, ccpu;
1186 
1187 	error = 0;
1188 	n = 0;
1189 
1190 	/*
1191 	 * The process of preparing the TCB list is too time-consuming and
1192 	 * resource-intensive to repeat twice on every request.
1193 	 */
1194 	if (req->oldptr == NULL) {
1195 		for (ccpu = 0; ccpu < ncpus2; ++ccpu)
1196 			n += tcbinfo[ccpu].ipi_count;
1197 		req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1198 		return (0);
1199 	}
1200 
1201 	if (req->newptr != NULL)
1202 		return (EPERM);
1203 
1204 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1205 	marker->inp_flags |= INP_PLACEMARKER;
1206 
1207 	/*
1208 	 * OK, now we're committed to doing something.  Run the inpcb list
1209 	 * for each cpu in the system and construct the output.  Use a
1210 	 * list placemarker to deal with list changes occuring during
1211 	 * copyout blockages (but otherwise depend on being on the correct
1212 	 * cpu to avoid races).
1213 	 */
1214 	origcpu = mycpu->gd_cpuid;
1215 	for (ccpu = 0; ccpu < ncpus2 && error == 0; ++ccpu) {
1216 		caddr_t inp_ppcb;
1217 		struct xtcpcb xt;
1218 
1219 		lwkt_migratecpu(ccpu);
1220 
1221 		n = tcbinfo[ccpu].ipi_count;
1222 
1223 		LIST_INSERT_HEAD(&tcbinfo[ccpu].pcblisthead, marker, inp_list);
1224 		i = 0;
1225 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1226 			/*
1227 			 * process a snapshot of pcbs, ignoring placemarkers
1228 			 * and using our own to allow SYSCTL_OUT to block.
1229 			 */
1230 			LIST_REMOVE(marker, inp_list);
1231 			LIST_INSERT_AFTER(inp, marker, inp_list);
1232 
1233 			if (inp->inp_flags & INP_PLACEMARKER)
1234 				continue;
1235 			if (prison_xinpcb(req->td, inp))
1236 				continue;
1237 
1238 			xt.xt_len = sizeof xt;
1239 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1240 			inp_ppcb = inp->inp_ppcb;
1241 			if (inp_ppcb != NULL)
1242 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1243 			else
1244 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1245 			if (inp->inp_socket)
1246 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1247 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1248 				break;
1249 			++i;
1250 		}
1251 		LIST_REMOVE(marker, inp_list);
1252 		if (error == 0 && i < n) {
1253 			bzero(&xt, sizeof xt);
1254 			xt.xt_len = sizeof xt;
1255 			while (i < n) {
1256 				error = SYSCTL_OUT(req, &xt, sizeof xt);
1257 				if (error)
1258 					break;
1259 				++i;
1260 			}
1261 		}
1262 	}
1263 
1264 	/*
1265 	 * Make sure we are on the same cpu we were on originally, since
1266 	 * higher level callers expect this.  Also don't pollute caches with
1267 	 * migrated userland data by (eventually) returning to userland
1268 	 * on a different cpu.
1269 	 */
1270 	lwkt_migratecpu(origcpu);
1271 	kfree(marker, M_TEMP);
1272 	return (error);
1273 }
1274 
1275 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1276 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1277 
1278 static int
1279 tcp_getcred(SYSCTL_HANDLER_ARGS)
1280 {
1281 	struct sockaddr_in addrs[2];
1282 	struct ucred cred0, *cred = NULL;
1283 	struct inpcb *inp;
1284 	int cpu, origcpu, error;
1285 
1286 	error = priv_check(req->td, PRIV_ROOT);
1287 	if (error != 0)
1288 		return (error);
1289 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1290 	if (error != 0)
1291 		return (error);
1292 
1293 	origcpu = mycpuid;
1294 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1295 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1296 
1297 	lwkt_migratecpu(cpu);
1298 
1299 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1300 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1301 	if (inp == NULL || inp->inp_socket == NULL) {
1302 		error = ENOENT;
1303 	} else if (inp->inp_socket->so_cred != NULL) {
1304 		cred0 = *(inp->inp_socket->so_cred);
1305 		cred = &cred0;
1306 	}
1307 
1308 	lwkt_migratecpu(origcpu);
1309 
1310 	if (error)
1311 		return (error);
1312 
1313 	return SYSCTL_OUT(req, cred, sizeof(struct ucred));
1314 }
1315 
1316 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1317     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1318 
1319 #ifdef INET6
1320 static int
1321 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1322 {
1323 	struct sockaddr_in6 addrs[2];
1324 	struct inpcb *inp;
1325 	int error;
1326 	boolean_t mapped = FALSE;
1327 
1328 	error = priv_check(req->td, PRIV_ROOT);
1329 	if (error != 0)
1330 		return (error);
1331 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1332 	if (error != 0)
1333 		return (error);
1334 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1335 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1336 			mapped = TRUE;
1337 		else
1338 			return (EINVAL);
1339 	}
1340 	crit_enter();
1341 	if (mapped) {
1342 		inp = in_pcblookup_hash(&tcbinfo[0],
1343 		    *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1344 		    addrs[1].sin6_port,
1345 		    *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1346 		    addrs[0].sin6_port,
1347 		    0, NULL);
1348 	} else {
1349 		inp = in6_pcblookup_hash(&tcbinfo[0],
1350 		    &addrs[1].sin6_addr, addrs[1].sin6_port,
1351 		    &addrs[0].sin6_addr, addrs[0].sin6_port,
1352 		    0, NULL);
1353 	}
1354 	if (inp == NULL || inp->inp_socket == NULL) {
1355 		error = ENOENT;
1356 		goto out;
1357 	}
1358 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1359 out:
1360 	crit_exit();
1361 	return (error);
1362 }
1363 
1364 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1365 	    0, 0,
1366 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1367 #endif
1368 
1369 struct netmsg_tcp_notify {
1370 	struct netmsg_base base;
1371 	void		(*nm_notify)(struct inpcb *, int);
1372 	struct in_addr	nm_faddr;
1373 	int		nm_arg;
1374 };
1375 
1376 static void
1377 tcp_notifyall_oncpu(netmsg_t msg)
1378 {
1379 	struct netmsg_tcp_notify *nm = (struct netmsg_tcp_notify *)msg;
1380 	int nextcpu;
1381 
1382 	in_pcbnotifyall(&tcbinfo[mycpuid], nm->nm_faddr,
1383 			nm->nm_arg, nm->nm_notify);
1384 
1385 	nextcpu = mycpuid + 1;
1386 	if (nextcpu < ncpus2)
1387 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &nm->base.lmsg);
1388 	else
1389 		lwkt_replymsg(&nm->base.lmsg, 0);
1390 }
1391 
1392 void
1393 tcp_ctlinput(netmsg_t msg)
1394 {
1395 	int cmd = msg->ctlinput.nm_cmd;
1396 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1397 	struct ip *ip = msg->ctlinput.nm_extra;
1398 	struct tcphdr *th;
1399 	struct in_addr faddr;
1400 	struct inpcb *inp;
1401 	struct tcpcb *tp;
1402 	void (*notify)(struct inpcb *, int) = tcp_notify;
1403 	tcp_seq icmpseq;
1404 	int arg, cpu;
1405 
1406 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1407 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1408 		goto done;
1409 
1410 	arg = inetctlerrmap[cmd];
1411 	if (cmd == PRC_QUENCH) {
1412 		notify = tcp_quench;
1413 	} else if (icmp_may_rst &&
1414 		   (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1415 		    cmd == PRC_UNREACH_PORT ||
1416 		    cmd == PRC_TIMXCEED_INTRANS) &&
1417 		   ip != NULL) {
1418 		notify = tcp_drop_syn_sent;
1419 	} else if (cmd == PRC_MSGSIZE) {
1420 		const struct icmp *icmp = (const struct icmp *)
1421 		    ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1422 
1423 		arg = ntohs(icmp->icmp_nextmtu);
1424 		notify = tcp_mtudisc;
1425 	} else if (PRC_IS_REDIRECT(cmd)) {
1426 		ip = NULL;
1427 		notify = in_rtchange;
1428 	} else if (cmd == PRC_HOSTDEAD) {
1429 		ip = NULL;
1430 	} else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1431 		goto done;
1432 	}
1433 
1434 	if (ip != NULL) {
1435 		th = (struct tcphdr *)((caddr_t)ip +
1436 				       (IP_VHL_HL(ip->ip_vhl) << 2));
1437 		cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
1438 				  ip->ip_src.s_addr, th->th_sport);
1439 		inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
1440 					ip->ip_src, th->th_sport, 0, NULL);
1441 		if (inp != NULL && inp->inp_socket != NULL) {
1442 			icmpseq = htonl(th->th_seq);
1443 			tp = intotcpcb(inp);
1444 			if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1445 			    SEQ_LT(icmpseq, tp->snd_max))
1446 				notify(inp, arg);
1447 		} else {
1448 			struct in_conninfo inc;
1449 
1450 			inc.inc_fport = th->th_dport;
1451 			inc.inc_lport = th->th_sport;
1452 			inc.inc_faddr = faddr;
1453 			inc.inc_laddr = ip->ip_src;
1454 #ifdef INET6
1455 			inc.inc_isipv6 = 0;
1456 #endif
1457 			syncache_unreach(&inc, th);
1458 		}
1459 	} else {
1460 		struct netmsg_tcp_notify *nm;
1461 
1462 		KKASSERT(&curthread->td_msgport == netisr_cpuport(0));
1463 		nm = kmalloc(sizeof(*nm), M_LWKTMSG, M_INTWAIT);
1464 		netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1465 			    0, tcp_notifyall_oncpu);
1466 		nm->nm_faddr = faddr;
1467 		nm->nm_arg = arg;
1468 		nm->nm_notify = notify;
1469 
1470 		lwkt_sendmsg(netisr_cpuport(0), &nm->base.lmsg);
1471 	}
1472 done:
1473 	lwkt_replymsg(&msg->lmsg, 0);
1474 }
1475 
1476 #ifdef INET6
1477 
1478 void
1479 tcp6_ctlinput(netmsg_t msg)
1480 {
1481 	int cmd = msg->ctlinput.nm_cmd;
1482 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1483 	void *d = msg->ctlinput.nm_extra;
1484 	struct tcphdr th;
1485 	void (*notify) (struct inpcb *, int) = tcp_notify;
1486 	struct ip6_hdr *ip6;
1487 	struct mbuf *m;
1488 	struct ip6ctlparam *ip6cp = NULL;
1489 	const struct sockaddr_in6 *sa6_src = NULL;
1490 	int off;
1491 	struct tcp_portonly {
1492 		u_int16_t th_sport;
1493 		u_int16_t th_dport;
1494 	} *thp;
1495 	int arg;
1496 
1497 	if (sa->sa_family != AF_INET6 ||
1498 	    sa->sa_len != sizeof(struct sockaddr_in6)) {
1499 		goto out;
1500 	}
1501 
1502 	arg = 0;
1503 	if (cmd == PRC_QUENCH)
1504 		notify = tcp_quench;
1505 	else if (cmd == PRC_MSGSIZE) {
1506 		struct ip6ctlparam *ip6cp = d;
1507 		struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1508 
1509 		arg = ntohl(icmp6->icmp6_mtu);
1510 		notify = tcp_mtudisc;
1511 	} else if (!PRC_IS_REDIRECT(cmd) &&
1512 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1513 		goto out;
1514 	}
1515 
1516 	/* if the parameter is from icmp6, decode it. */
1517 	if (d != NULL) {
1518 		ip6cp = (struct ip6ctlparam *)d;
1519 		m = ip6cp->ip6c_m;
1520 		ip6 = ip6cp->ip6c_ip6;
1521 		off = ip6cp->ip6c_off;
1522 		sa6_src = ip6cp->ip6c_src;
1523 	} else {
1524 		m = NULL;
1525 		ip6 = NULL;
1526 		off = 0;	/* fool gcc */
1527 		sa6_src = &sa6_any;
1528 	}
1529 
1530 	if (ip6 != NULL) {
1531 		struct in_conninfo inc;
1532 		/*
1533 		 * XXX: We assume that when IPV6 is non NULL,
1534 		 * M and OFF are valid.
1535 		 */
1536 
1537 		/* check if we can safely examine src and dst ports */
1538 		if (m->m_pkthdr.len < off + sizeof *thp)
1539 			goto out;
1540 
1541 		bzero(&th, sizeof th);
1542 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1543 
1544 		in6_pcbnotify(&tcbinfo[0], sa, th.th_dport,
1545 		    (struct sockaddr *)ip6cp->ip6c_src,
1546 		    th.th_sport, cmd, arg, notify);
1547 
1548 		inc.inc_fport = th.th_dport;
1549 		inc.inc_lport = th.th_sport;
1550 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1551 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1552 		inc.inc_isipv6 = 1;
1553 		syncache_unreach(&inc, &th);
1554 	} else {
1555 		in6_pcbnotify(&tcbinfo[0], sa, 0,
1556 		    (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1557 	}
1558 out:
1559 	lwkt_replymsg(&msg->ctlinput.base.lmsg, 0);
1560 }
1561 
1562 #endif
1563 
1564 /*
1565  * Following is where TCP initial sequence number generation occurs.
1566  *
1567  * There are two places where we must use initial sequence numbers:
1568  * 1.  In SYN-ACK packets.
1569  * 2.  In SYN packets.
1570  *
1571  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1572  * tcp_syncache.c for details.
1573  *
1574  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1575  * depends on this property.  In addition, these ISNs should be
1576  * unguessable so as to prevent connection hijacking.  To satisfy
1577  * the requirements of this situation, the algorithm outlined in
1578  * RFC 1948 is used to generate sequence numbers.
1579  *
1580  * Implementation details:
1581  *
1582  * Time is based off the system timer, and is corrected so that it
1583  * increases by one megabyte per second.  This allows for proper
1584  * recycling on high speed LANs while still leaving over an hour
1585  * before rollover.
1586  *
1587  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1588  * between seeding of isn_secret.  This is normally set to zero,
1589  * as reseeding should not be necessary.
1590  *
1591  */
1592 
1593 #define	ISN_BYTES_PER_SECOND 1048576
1594 
1595 u_char isn_secret[32];
1596 int isn_last_reseed;
1597 MD5_CTX isn_ctx;
1598 
1599 tcp_seq
1600 tcp_new_isn(struct tcpcb *tp)
1601 {
1602 	u_int32_t md5_buffer[4];
1603 	tcp_seq new_isn;
1604 
1605 	/* Seed if this is the first use, reseed if requested. */
1606 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1607 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1608 		< (u_int)ticks))) {
1609 		read_random_unlimited(&isn_secret, sizeof isn_secret);
1610 		isn_last_reseed = ticks;
1611 	}
1612 
1613 	/* Compute the md5 hash and return the ISN. */
1614 	MD5Init(&isn_ctx);
1615 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1616 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1617 #ifdef INET6
1618 	if (tp->t_inpcb->inp_vflag & INP_IPV6) {
1619 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1620 			  sizeof(struct in6_addr));
1621 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1622 			  sizeof(struct in6_addr));
1623 	} else
1624 #endif
1625 	{
1626 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1627 			  sizeof(struct in_addr));
1628 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1629 			  sizeof(struct in_addr));
1630 	}
1631 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1632 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1633 	new_isn = (tcp_seq) md5_buffer[0];
1634 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1635 	return (new_isn);
1636 }
1637 
1638 /*
1639  * When a source quench is received, close congestion window
1640  * to one segment.  We will gradually open it again as we proceed.
1641  */
1642 void
1643 tcp_quench(struct inpcb *inp, int error)
1644 {
1645 	struct tcpcb *tp = intotcpcb(inp);
1646 
1647 	if (tp != NULL) {
1648 		tp->snd_cwnd = tp->t_maxseg;
1649 		tp->snd_wacked = 0;
1650 	}
1651 }
1652 
1653 /*
1654  * When a specific ICMP unreachable message is received and the
1655  * connection state is SYN-SENT, drop the connection.  This behavior
1656  * is controlled by the icmp_may_rst sysctl.
1657  */
1658 void
1659 tcp_drop_syn_sent(struct inpcb *inp, int error)
1660 {
1661 	struct tcpcb *tp = intotcpcb(inp);
1662 
1663 	if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
1664 		tcp_drop(tp, error);
1665 }
1666 
1667 /*
1668  * When a `need fragmentation' ICMP is received, update our idea of the MSS
1669  * based on the new value in the route.  Also nudge TCP to send something,
1670  * since we know the packet we just sent was dropped.
1671  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1672  */
1673 void
1674 tcp_mtudisc(struct inpcb *inp, int mtu)
1675 {
1676 	struct tcpcb *tp = intotcpcb(inp);
1677 	struct rtentry *rt;
1678 	struct socket *so = inp->inp_socket;
1679 	int maxopd, mss;
1680 #ifdef INET6
1681 	boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1682 #else
1683 	const boolean_t isipv6 = FALSE;
1684 #endif
1685 
1686 	if (tp == NULL)
1687 		return;
1688 
1689 	/*
1690 	 * If no MTU is provided in the ICMP message, use the
1691 	 * next lower likely value, as specified in RFC 1191.
1692 	 */
1693 	if (mtu == 0) {
1694 		int oldmtu;
1695 
1696 		oldmtu = tp->t_maxopd +
1697 		    (isipv6 ?
1698 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1699 		     sizeof(struct tcpiphdr));
1700 		mtu = ip_next_mtu(oldmtu, 0);
1701 	}
1702 
1703 	if (isipv6)
1704 		rt = tcp_rtlookup6(&inp->inp_inc);
1705 	else
1706 		rt = tcp_rtlookup(&inp->inp_inc);
1707 	if (rt != NULL) {
1708 		if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1709 			mtu = rt->rt_rmx.rmx_mtu;
1710 
1711 		maxopd = mtu -
1712 		    (isipv6 ?
1713 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1714 		     sizeof(struct tcpiphdr));
1715 
1716 		/*
1717 		 * XXX - The following conditional probably violates the TCP
1718 		 * spec.  The problem is that, since we don't know the
1719 		 * other end's MSS, we are supposed to use a conservative
1720 		 * default.  But, if we do that, then MTU discovery will
1721 		 * never actually take place, because the conservative
1722 		 * default is much less than the MTUs typically seen
1723 		 * on the Internet today.  For the moment, we'll sweep
1724 		 * this under the carpet.
1725 		 *
1726 		 * The conservative default might not actually be a problem
1727 		 * if the only case this occurs is when sending an initial
1728 		 * SYN with options and data to a host we've never talked
1729 		 * to before.  Then, they will reply with an MSS value which
1730 		 * will get recorded and the new parameters should get
1731 		 * recomputed.  For Further Study.
1732 		 */
1733 		if (rt->rt_rmx.rmx_mssopt  && rt->rt_rmx.rmx_mssopt < maxopd)
1734 			maxopd = rt->rt_rmx.rmx_mssopt;
1735 	} else
1736 		maxopd = mtu -
1737 		    (isipv6 ?
1738 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1739 		     sizeof(struct tcpiphdr));
1740 
1741 	if (tp->t_maxopd <= maxopd)
1742 		return;
1743 	tp->t_maxopd = maxopd;
1744 
1745 	mss = maxopd;
1746 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1747 			   (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1748 		mss -= TCPOLEN_TSTAMP_APPA;
1749 
1750 	/* round down to multiple of MCLBYTES */
1751 #if	(MCLBYTES & (MCLBYTES - 1)) == 0    /* test if MCLBYTES power of 2 */
1752 	if (mss > MCLBYTES)
1753 		mss &= ~(MCLBYTES - 1);
1754 #else
1755 	if (mss > MCLBYTES)
1756 		mss = (mss / MCLBYTES) * MCLBYTES;
1757 #endif
1758 
1759 	if (so->so_snd.ssb_hiwat < mss)
1760 		mss = so->so_snd.ssb_hiwat;
1761 
1762 	tp->t_maxseg = mss;
1763 	tp->t_rtttime = 0;
1764 	tp->snd_nxt = tp->snd_una;
1765 	tcp_output(tp);
1766 	tcpstat.tcps_mturesent++;
1767 }
1768 
1769 /*
1770  * Look-up the routing entry to the peer of this inpcb.  If no route
1771  * is found and it cannot be allocated the return NULL.  This routine
1772  * is called by TCP routines that access the rmx structure and by tcp_mss
1773  * to get the interface MTU.
1774  */
1775 struct rtentry *
1776 tcp_rtlookup(struct in_conninfo *inc)
1777 {
1778 	struct route *ro = &inc->inc_route;
1779 
1780 	if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1781 		/* No route yet, so try to acquire one */
1782 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1783 			/*
1784 			 * unused portions of the structure MUST be zero'd
1785 			 * out because rtalloc() treats it as opaque data
1786 			 */
1787 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1788 			ro->ro_dst.sa_family = AF_INET;
1789 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1790 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1791 			    inc->inc_faddr;
1792 			rtalloc(ro);
1793 		}
1794 	}
1795 	return (ro->ro_rt);
1796 }
1797 
1798 #ifdef INET6
1799 struct rtentry *
1800 tcp_rtlookup6(struct in_conninfo *inc)
1801 {
1802 	struct route_in6 *ro6 = &inc->inc6_route;
1803 
1804 	if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1805 		/* No route yet, so try to acquire one */
1806 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1807 			/*
1808 			 * unused portions of the structure MUST be zero'd
1809 			 * out because rtalloc() treats it as opaque data
1810 			 */
1811 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1812 			ro6->ro_dst.sin6_family = AF_INET6;
1813 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1814 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1815 			rtalloc((struct route *)ro6);
1816 		}
1817 	}
1818 	return (ro6->ro_rt);
1819 }
1820 #endif
1821 
1822 #ifdef IPSEC
1823 /* compute ESP/AH header size for TCP, including outer IP header. */
1824 size_t
1825 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1826 {
1827 	struct inpcb *inp;
1828 	struct mbuf *m;
1829 	size_t hdrsiz;
1830 	struct ip *ip;
1831 	struct tcphdr *th;
1832 
1833 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1834 		return (0);
1835 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1836 	if (!m)
1837 		return (0);
1838 
1839 #ifdef INET6
1840 	if (inp->inp_vflag & INP_IPV6) {
1841 		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1842 
1843 		th = (struct tcphdr *)(ip6 + 1);
1844 		m->m_pkthdr.len = m->m_len =
1845 		    sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1846 		tcp_fillheaders(tp, ip6, th, FALSE);
1847 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1848 	} else
1849 #endif
1850 	{
1851 		ip = mtod(m, struct ip *);
1852 		th = (struct tcphdr *)(ip + 1);
1853 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1854 		tcp_fillheaders(tp, ip, th, FALSE);
1855 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1856 	}
1857 
1858 	m_free(m);
1859 	return (hdrsiz);
1860 }
1861 #endif
1862 
1863 /*
1864  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1865  *
1866  * This code attempts to calculate the bandwidth-delay product as a
1867  * means of determining the optimal window size to maximize bandwidth,
1868  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1869  * routers.  This code also does a fairly good job keeping RTTs in check
1870  * across slow links like modems.  We implement an algorithm which is very
1871  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1872  * transmitter side of a TCP connection and so only effects the transmit
1873  * side of the connection.
1874  *
1875  * BACKGROUND:  TCP makes no provision for the management of buffer space
1876  * at the end points or at the intermediate routers and switches.  A TCP
1877  * stream, whether using NewReno or not, will eventually buffer as
1878  * many packets as it is able and the only reason this typically works is
1879  * due to the fairly small default buffers made available for a connection
1880  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1881  * scaling it is now fairly easy for even a single TCP connection to blow-out
1882  * all available buffer space not only on the local interface, but on
1883  * intermediate routers and switches as well.  NewReno makes a misguided
1884  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1885  * then backing off, then steadily increasing the window again until another
1886  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1887  * is only made worse as network loads increase and the idea of intentionally
1888  * blowing out network buffers is, frankly, a terrible way to manage network
1889  * resources.
1890  *
1891  * It is far better to limit the transmit window prior to the failure
1892  * condition being achieved.  There are two general ways to do this:  First
1893  * you can 'scan' through different transmit window sizes and locate the
1894  * point where the RTT stops increasing, indicating that you have filled the
1895  * pipe, then scan backwards until you note that RTT stops decreasing, then
1896  * repeat ad-infinitum.  This method works in principle but has severe
1897  * implementation issues due to RTT variances, timer granularity, and
1898  * instability in the algorithm which can lead to many false positives and
1899  * create oscillations as well as interact badly with other TCP streams
1900  * implementing the same algorithm.
1901  *
1902  * The second method is to limit the window to the bandwidth delay product
1903  * of the link.  This is the method we implement.  RTT variances and our
1904  * own manipulation of the congestion window, bwnd, can potentially
1905  * destabilize the algorithm.  For this reason we have to stabilize the
1906  * elements used to calculate the window.  We do this by using the minimum
1907  * observed RTT, the long term average of the observed bandwidth, and
1908  * by adding two segments worth of slop.  It isn't perfect but it is able
1909  * to react to changing conditions and gives us a very stable basis on
1910  * which to extend the algorithm.
1911  */
1912 void
1913 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1914 {
1915 	u_long bw;
1916 	u_long ibw;
1917 	u_long bwnd;
1918 	int save_ticks;
1919 	int delta_ticks;
1920 
1921 	/*
1922 	 * If inflight_enable is disabled in the middle of a tcp connection,
1923 	 * make sure snd_bwnd is effectively disabled.
1924 	 */
1925 	if (!tcp_inflight_enable) {
1926 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1927 		tp->snd_bandwidth = 0;
1928 		return;
1929 	}
1930 
1931 	/*
1932 	 * Validate the delta time.  If a connection is new or has been idle
1933 	 * a long time we have to reset the bandwidth calculator.
1934 	 */
1935 	save_ticks = ticks;
1936 	cpu_ccfence();
1937 	delta_ticks = save_ticks - tp->t_bw_rtttime;
1938 	if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1939 		tp->t_bw_rtttime = save_ticks;
1940 		tp->t_bw_rtseq = ack_seq;
1941 		if (tp->snd_bandwidth == 0)
1942 			tp->snd_bandwidth = tcp_inflight_min;
1943 		return;
1944 	}
1945 
1946 	/*
1947 	 * A delta of at least 1 tick is required.  Waiting 2 ticks will
1948 	 * result in better (bw) accuracy.  More than that and the ramp-up
1949 	 * will be too slow.
1950 	 */
1951 	if (delta_ticks == 0 || delta_ticks == 1)
1952 		return;
1953 
1954 	/*
1955 	 * Sanity check, plus ignore pure window update acks.
1956 	 */
1957 	if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1958 		return;
1959 
1960 	/*
1961 	 * Figure out the bandwidth.  Due to the tick granularity this
1962 	 * is a very rough number and it MUST be averaged over a fairly
1963 	 * long period of time.  XXX we need to take into account a link
1964 	 * that is not using all available bandwidth, but for now our
1965 	 * slop will ramp us up if this case occurs and the bandwidth later
1966 	 * increases.
1967 	 */
1968 	ibw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
1969 	tp->t_bw_rtttime = save_ticks;
1970 	tp->t_bw_rtseq = ack_seq;
1971 	bw = ((int64_t)tp->snd_bandwidth * 15 + ibw) >> 4;
1972 
1973 	tp->snd_bandwidth = bw;
1974 
1975 	/*
1976 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1977 	 * segments.  The additional slop puts us squarely in the sweet
1978 	 * spot and also handles the bandwidth run-up case.  Without the
1979 	 * slop we could be locking ourselves into a lower bandwidth.
1980 	 *
1981 	 * At very high speeds the bw calculation can become overly sensitive
1982 	 * and error prone when delta_ticks is low (e.g. usually 1).  To deal
1983 	 * with the problem the stab must be scaled to the bw.  A stab of 50
1984 	 * (the default) increases the bw for the purposes of the bwnd
1985 	 * calculation by 5%.
1986 	 *
1987 	 * Situations Handled:
1988 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1989 	 *	    high speed LANs, allowing larger TCP buffers to be
1990 	 *	    specified, and also does a good job preventing
1991 	 *	    over-queueing of packets over choke points like modems
1992 	 *	    (at least for the transmit side).
1993 	 *
1994 	 *	(2) Is able to handle changing network loads (bandwidth
1995 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1996 	 *	    increases).
1997 	 *
1998 	 *	(3) Theoretically should stabilize in the face of multiple
1999 	 *	    connections implementing the same algorithm (this may need
2000 	 *	    a little work).
2001 	 *
2002 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2003 	 *	    be adjusted with a sysctl but typically only needs to be on
2004 	 *	    very slow connections.  A value no smaller then 5 should
2005 	 *	    be used, but only reduce this default if you have no other
2006 	 *	    choice.
2007 	 */
2008 
2009 #define	USERTT	((tp->t_srtt + tp->t_rttvar) + tcp_inflight_adjrtt)
2010 	bw += bw * tcp_inflight_stab / 1000;
2011 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
2012 	       (int)tp->t_maxseg * 2;
2013 #undef USERTT
2014 
2015 	if (tcp_inflight_debug > 0) {
2016 		static int ltime;
2017 		if ((u_int)(save_ticks - ltime) >= hz / tcp_inflight_debug) {
2018 			ltime = save_ticks;
2019 			kprintf("%p ibw %ld bw %ld rttvar %d srtt %d "
2020 				"bwnd %ld delta %d snd_win %ld\n",
2021 				tp, ibw, bw, tp->t_rttvar, tp->t_srtt,
2022 				bwnd, delta_ticks, tp->snd_wnd);
2023 		}
2024 	}
2025 	if ((long)bwnd < tcp_inflight_min)
2026 		bwnd = tcp_inflight_min;
2027 	if (bwnd > tcp_inflight_max)
2028 		bwnd = tcp_inflight_max;
2029 	if ((long)bwnd < tp->t_maxseg * 2)
2030 		bwnd = tp->t_maxseg * 2;
2031 	tp->snd_bwnd = bwnd;
2032 }
2033 
2034 static void
2035 tcp_rmx_iwsegs(struct tcpcb *tp, u_long *maxsegs, u_long *capsegs)
2036 {
2037 	struct rtentry *rt;
2038 	struct inpcb *inp = tp->t_inpcb;
2039 #ifdef INET6
2040 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
2041 #else
2042 	const boolean_t isipv6 = FALSE;
2043 #endif
2044 
2045 	/* XXX */
2046 	if (tcp_iw_maxsegs < TCP_IW_MAXSEGS_DFLT)
2047 		tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
2048 	if (tcp_iw_capsegs < TCP_IW_CAPSEGS_DFLT)
2049 		tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
2050 
2051 	if (isipv6)
2052 		rt = tcp_rtlookup6(&inp->inp_inc);
2053 	else
2054 		rt = tcp_rtlookup(&inp->inp_inc);
2055 	if (rt == NULL ||
2056 	    rt->rt_rmx.rmx_iwmaxsegs < TCP_IW_MAXSEGS_DFLT ||
2057 	    rt->rt_rmx.rmx_iwcapsegs < TCP_IW_CAPSEGS_DFLT) {
2058 		*maxsegs = tcp_iw_maxsegs;
2059 		*capsegs = tcp_iw_capsegs;
2060 		return;
2061 	}
2062 	*maxsegs = rt->rt_rmx.rmx_iwmaxsegs;
2063 	*capsegs = rt->rt_rmx.rmx_iwcapsegs;
2064 }
2065 
2066 u_long
2067 tcp_initial_window(struct tcpcb *tp)
2068 {
2069 	if (tcp_do_rfc3390) {
2070 		/*
2071 		 * RFC3390:
2072 		 * "If the SYN or SYN/ACK is lost, the initial window
2073 		 *  used by a sender after a correctly transmitted SYN
2074 		 *  MUST be one segment consisting of MSS bytes."
2075 		 *
2076 		 * However, we do something a little bit more aggressive
2077 		 * then RFC3390 here:
2078 		 * - Only if time spent in the SYN or SYN|ACK retransmition
2079 		 *   >= 3 seconds, the IW is reduced.  We do this mainly
2080 		 *   because when RFC3390 is published, the initial RTO is
2081 		 *   still 3 seconds (the threshold we test here), while
2082 		 *   after RFC6298, the initial RTO is 1 second.  This
2083 		 *   behaviour probably still falls within the spirit of
2084 		 *   RFC3390.
2085 		 * - When IW is reduced, 2*MSS is used instead of 1*MSS.
2086 		 *   Mainly to avoid sender and receiver deadlock until
2087 		 *   delayed ACK timer expires.  And even RFC2581 does not
2088 		 *   try to reduce IW upon SYN or SYN|ACK retransmition
2089 		 *   timeout.
2090 		 *
2091 		 * See also:
2092 		 * http://tools.ietf.org/html/draft-ietf-tcpm-initcwnd-03
2093 		 */
2094 		if (tp->t_rxtsyn >= TCPTV_RTOBASE3) {
2095 			return (2 * tp->t_maxseg);
2096 		} else {
2097 			u_long maxsegs, capsegs;
2098 
2099 			tcp_rmx_iwsegs(tp, &maxsegs, &capsegs);
2100 			return min(maxsegs * tp->t_maxseg,
2101 				   max(2 * tp->t_maxseg, capsegs * 1460));
2102 		}
2103 	} else {
2104 		/*
2105 		 * Even RFC2581 (back to 1999) allows 2*SMSS IW.
2106 		 *
2107 		 * Mainly to avoid sender and receiver deadlock
2108 		 * until delayed ACK timer expires.
2109 		 */
2110 		return (2 * tp->t_maxseg);
2111 	}
2112 }
2113 
2114 #ifdef TCP_SIGNATURE
2115 /*
2116  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2117  *
2118  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2119  * When called from tcp_input(), we can be sure that th_sum has been
2120  * zeroed out and verified already.
2121  *
2122  * Return 0 if successful, otherwise return -1.
2123  *
2124  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2125  * search with the destination IP address, and a 'magic SPI' to be
2126  * determined by the application. This is hardcoded elsewhere to 1179
2127  * right now. Another branch of this code exists which uses the SPD to
2128  * specify per-application flows but it is unstable.
2129  */
2130 int
2131 tcpsignature_compute(
2132 	struct mbuf *m,		/* mbuf chain */
2133 	int len,		/* length of TCP data */
2134 	int optlen,		/* length of TCP options */
2135 	u_char *buf,		/* storage for MD5 digest */
2136 	u_int direction)	/* direction of flow */
2137 {
2138 	struct ippseudo ippseudo;
2139 	MD5_CTX ctx;
2140 	int doff;
2141 	struct ip *ip;
2142 	struct ipovly *ipovly;
2143 	struct secasvar *sav;
2144 	struct tcphdr *th;
2145 #ifdef INET6
2146 	struct ip6_hdr *ip6;
2147 	struct in6_addr in6;
2148 	uint32_t plen;
2149 	uint16_t nhdr;
2150 #endif /* INET6 */
2151 	u_short savecsum;
2152 
2153 	KASSERT(m != NULL, ("passed NULL mbuf. Game over."));
2154 	KASSERT(buf != NULL, ("passed NULL storage pointer for MD5 signature"));
2155 	/*
2156 	 * Extract the destination from the IP header in the mbuf.
2157 	 */
2158 	ip = mtod(m, struct ip *);
2159 #ifdef INET6
2160 	ip6 = NULL;     /* Make the compiler happy. */
2161 #endif /* INET6 */
2162 	/*
2163 	 * Look up an SADB entry which matches the address found in
2164 	 * the segment.
2165 	 */
2166 	switch (IP_VHL_V(ip->ip_vhl)) {
2167 	case IPVERSION:
2168 		sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src, (caddr_t)&ip->ip_dst,
2169 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2170 		break;
2171 #ifdef INET6
2172 	case (IPV6_VERSION >> 4):
2173 		ip6 = mtod(m, struct ip6_hdr *);
2174 		sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src, (caddr_t)&ip6->ip6_dst,
2175 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2176 		break;
2177 #endif /* INET6 */
2178 	default:
2179 		return (EINVAL);
2180 		/* NOTREACHED */
2181 		break;
2182 	}
2183 	if (sav == NULL) {
2184 		kprintf("%s: SADB lookup failed\n", __func__);
2185 		return (EINVAL);
2186 	}
2187 	MD5Init(&ctx);
2188 
2189 	/*
2190 	 * Step 1: Update MD5 hash with IP pseudo-header.
2191 	 *
2192 	 * XXX The ippseudo header MUST be digested in network byte order,
2193 	 * or else we'll fail the regression test. Assume all fields we've
2194 	 * been doing arithmetic on have been in host byte order.
2195 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2196 	 * tcp_output(), the underlying ip_len member has not yet been set.
2197 	 */
2198 	switch (IP_VHL_V(ip->ip_vhl)) {
2199 	case IPVERSION:
2200 		ipovly = (struct ipovly *)ip;
2201 		ippseudo.ippseudo_src = ipovly->ih_src;
2202 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2203 		ippseudo.ippseudo_pad = 0;
2204 		ippseudo.ippseudo_p = IPPROTO_TCP;
2205 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2206 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2207 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2208 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2209 		break;
2210 #ifdef INET6
2211 	/*
2212 	 * RFC 2385, 2.0  Proposal
2213 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2214 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2215 	 * extended next header value (to form 32 bits), and 32-bit segment
2216 	 * length.
2217 	 * Note: Upper-Layer Packet Length comes before Next Header.
2218 	 */
2219 	case (IPV6_VERSION >> 4):
2220 		in6 = ip6->ip6_src;
2221 		in6_clearscope(&in6);
2222 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2223 		in6 = ip6->ip6_dst;
2224 		in6_clearscope(&in6);
2225 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2226 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2227 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2228 		nhdr = 0;
2229 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2230 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2231 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2232 		nhdr = IPPROTO_TCP;
2233 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2234 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2235 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2236 		break;
2237 #endif /* INET6 */
2238 	default:
2239 		return (EINVAL);
2240 		/* NOTREACHED */
2241 		break;
2242 	}
2243 	/*
2244 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2245 	 * The TCP checksum must be set to zero.
2246 	 */
2247 	savecsum = th->th_sum;
2248 	th->th_sum = 0;
2249 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2250 	th->th_sum = savecsum;
2251 	/*
2252 	 * Step 3: Update MD5 hash with TCP segment data.
2253 	 *         Use m_apply() to avoid an early m_pullup().
2254 	 */
2255 	if (len > 0)
2256 		m_apply(m, doff, len, tcpsignature_apply, &ctx);
2257 	/*
2258 	 * Step 4: Update MD5 hash with shared secret.
2259 	 */
2260 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2261 	MD5Final(buf, &ctx);
2262 	key_sa_recordxfer(sav, m);
2263 	key_freesav(sav);
2264 	return (0);
2265 }
2266 
2267 int
2268 tcpsignature_apply(void *fstate, void *data, unsigned int len)
2269 {
2270 
2271 	MD5Update((MD5_CTX *)fstate, (unsigned char *)data, len);
2272 	return (0);
2273 }
2274 #endif /* TCP_SIGNATURE */
2275