xref: /dragonfly/sys/netinet/tcp_subr.c (revision d600454b)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
36  *
37  * License terms: all terms for the DragonFly license above plus the following:
38  *
39  * 4. All advertising materials mentioning features or use of this software
40  *    must display the following acknowledgement:
41  *
42  *	This product includes software developed by Jeffrey M. Hsu
43  *	for the DragonFly Project.
44  *
45  *    This requirement may be waived with permission from Jeffrey Hsu.
46  *    This requirement will sunset and may be removed on July 8 2005,
47  *    after which the standard DragonFly license (as shown above) will
48  *    apply.
49  */
50 
51 /*
52  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
53  *	The Regents of the University of California.  All rights reserved.
54  *
55  * Redistribution and use in source and binary forms, with or without
56  * modification, are permitted provided that the following conditions
57  * are met:
58  * 1. Redistributions of source code must retain the above copyright
59  *    notice, this list of conditions and the following disclaimer.
60  * 2. Redistributions in binary form must reproduce the above copyright
61  *    notice, this list of conditions and the following disclaimer in the
62  *    documentation and/or other materials provided with the distribution.
63  * 3. All advertising materials mentioning features or use of this software
64  *    must display the following acknowledgement:
65  *	This product includes software developed by the University of
66  *	California, Berkeley and its contributors.
67  * 4. Neither the name of the University nor the names of its contributors
68  *    may be used to endorse or promote products derived from this software
69  *    without specific prior written permission.
70  *
71  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
72  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
75  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81  * SUCH DAMAGE.
82  *
83  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
84  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
85  * $DragonFly: src/sys/netinet/tcp_subr.c,v 1.51 2006/01/14 11:33:50 swildner Exp $
86  */
87 
88 #include "opt_compat.h"
89 #include "opt_inet6.h"
90 #include "opt_ipsec.h"
91 #include "opt_tcpdebug.h"
92 
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/callout.h>
96 #include <sys/kernel.h>
97 #include <sys/sysctl.h>
98 #include <sys/malloc.h>
99 #include <sys/mpipe.h>
100 #include <sys/mbuf.h>
101 #ifdef INET6
102 #include <sys/domain.h>
103 #endif
104 #include <sys/proc.h>
105 #include <sys/socket.h>
106 #include <sys/socketvar.h>
107 #include <sys/protosw.h>
108 #include <sys/random.h>
109 #include <sys/in_cksum.h>
110 #include <sys/ktr.h>
111 
112 #include <vm/vm_zone.h>
113 
114 #include <net/route.h>
115 #include <net/if.h>
116 #include <net/netisr.h>
117 
118 #define	_IP_VHL
119 #include <netinet/in.h>
120 #include <netinet/in_systm.h>
121 #include <netinet/ip.h>
122 #include <netinet/ip6.h>
123 #include <netinet/in_pcb.h>
124 #include <netinet6/in6_pcb.h>
125 #include <netinet/in_var.h>
126 #include <netinet/ip_var.h>
127 #include <netinet6/ip6_var.h>
128 #include <netinet/ip_icmp.h>
129 #ifdef INET6
130 #include <netinet/icmp6.h>
131 #endif
132 #include <netinet/tcp.h>
133 #include <netinet/tcp_fsm.h>
134 #include <netinet/tcp_seq.h>
135 #include <netinet/tcp_timer.h>
136 #include <netinet/tcp_var.h>
137 #include <netinet6/tcp6_var.h>
138 #include <netinet/tcpip.h>
139 #ifdef TCPDEBUG
140 #include <netinet/tcp_debug.h>
141 #endif
142 #include <netinet6/ip6protosw.h>
143 
144 #ifdef IPSEC
145 #include <netinet6/ipsec.h>
146 #ifdef INET6
147 #include <netinet6/ipsec6.h>
148 #endif
149 #endif
150 
151 #ifdef FAST_IPSEC
152 #include <netproto/ipsec/ipsec.h>
153 #ifdef INET6
154 #include <netproto/ipsec/ipsec6.h>
155 #endif
156 #define	IPSEC
157 #endif
158 
159 #include <sys/md5.h>
160 #include <sys/msgport2.h>
161 #include <machine/smp.h>
162 
163 #if !defined(KTR_TCP)
164 #define KTR_TCP		KTR_ALL
165 #endif
166 KTR_INFO_MASTER(tcp);
167 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
168 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
169 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
170 #define logtcp(name)	KTR_LOG(tcp_ ## name)
171 
172 struct inpcbinfo tcbinfo[MAXCPU];
173 struct tcpcbackqhead tcpcbackq[MAXCPU];
174 
175 int tcp_mssdflt = TCP_MSS;
176 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
177     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
178 
179 #ifdef INET6
180 int tcp_v6mssdflt = TCP6_MSS;
181 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
182     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
183 #endif
184 
185 #if 0
186 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
187 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
188     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
189 #endif
190 
191 int tcp_do_rfc1323 = 1;
192 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
193     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
194 
195 int tcp_do_rfc1644 = 0;
196 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
197     &tcp_do_rfc1644, 0, "Enable rfc1644 (TTCP) extensions");
198 
199 static int tcp_tcbhashsize = 0;
200 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
201      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
202 
203 static int do_tcpdrain = 1;
204 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
205      "Enable tcp_drain routine for extra help when low on mbufs");
206 
207 /* XXX JH */
208 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
209     &tcbinfo[0].ipi_count, 0, "Number of active PCBs");
210 
211 static int icmp_may_rst = 1;
212 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
213     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
214 
215 static int tcp_isn_reseed_interval = 0;
216 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
217     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
218 
219 /*
220  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
221  * 1024 exists only for debugging.  A good production default would be
222  * something like 6100.
223  */
224 static int tcp_inflight_enable = 0;
225 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
226     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
227 
228 static int tcp_inflight_debug = 0;
229 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
230     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
231 
232 static int tcp_inflight_min = 6144;
233 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
234     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
235 
236 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
237 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
238     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
239 
240 static int tcp_inflight_stab = 20;
241 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
242     &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 2 packets)");
243 
244 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
245 static struct malloc_pipe tcptemp_mpipe;
246 
247 static void tcp_willblock(void);
248 static void tcp_cleartaocache (void);
249 static void tcp_notify (struct inpcb *, int);
250 
251 struct tcp_stats tcpstats_percpu[MAXCPU];
252 #ifdef SMP
253 static int
254 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
255 {
256 	int cpu, error = 0;
257 
258 	for (cpu = 0; cpu < ncpus; ++cpu) {
259 		if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
260 					sizeof(struct tcp_stats))))
261 			break;
262 		if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
263 				       sizeof(struct tcp_stats))))
264 			break;
265 	}
266 
267 	return (error);
268 }
269 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
270     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
271 #else
272 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
273     &tcpstat, tcp_stats, "TCP statistics");
274 #endif
275 
276 /*
277  * Target size of TCP PCB hash tables. Must be a power of two.
278  *
279  * Note that this can be overridden by the kernel environment
280  * variable net.inet.tcp.tcbhashsize
281  */
282 #ifndef TCBHASHSIZE
283 #define	TCBHASHSIZE	512
284 #endif
285 
286 /*
287  * This is the actual shape of what we allocate using the zone
288  * allocator.  Doing it this way allows us to protect both structures
289  * using the same generation count, and also eliminates the overhead
290  * of allocating tcpcbs separately.  By hiding the structure here,
291  * we avoid changing most of the rest of the code (although it needs
292  * to be changed, eventually, for greater efficiency).
293  */
294 #define	ALIGNMENT	32
295 #define	ALIGNM1		(ALIGNMENT - 1)
296 struct	inp_tp {
297 	union {
298 		struct	inpcb inp;
299 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
300 	} inp_tp_u;
301 	struct	tcpcb tcb;
302 	struct	callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
303 	struct	callout inp_tp_delack;
304 };
305 #undef ALIGNMENT
306 #undef ALIGNM1
307 
308 /*
309  * Tcp initialization
310  */
311 void
312 tcp_init(void)
313 {
314 	struct inpcbporthead *porthashbase;
315 	u_long porthashmask;
316 	struct vm_zone *ipi_zone;
317 	int hashsize = TCBHASHSIZE;
318 	int cpu;
319 
320 	/*
321 	 * note: tcptemp is used for keepalives, and it is ok for an
322 	 * allocation to fail so do not specify MPF_INT.
323 	 */
324 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
325 		    25, -1, 0, NULL);
326 
327 	tcp_ccgen = 1;
328 	tcp_cleartaocache();
329 
330 	tcp_delacktime = TCPTV_DELACK;
331 	tcp_keepinit = TCPTV_KEEP_INIT;
332 	tcp_keepidle = TCPTV_KEEP_IDLE;
333 	tcp_keepintvl = TCPTV_KEEPINTVL;
334 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
335 	tcp_msl = TCPTV_MSL;
336 	tcp_rexmit_min = TCPTV_MIN;
337 	tcp_rexmit_slop = TCPTV_CPU_VAR;
338 
339 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
340 	if (!powerof2(hashsize)) {
341 		printf("WARNING: TCB hash size not a power of 2\n");
342 		hashsize = 512; /* safe default */
343 	}
344 	tcp_tcbhashsize = hashsize;
345 	porthashbase = hashinit(hashsize, M_PCB, &porthashmask);
346 	ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets,
347 			 ZONE_INTERRUPT, 0);
348 
349 	for (cpu = 0; cpu < ncpus2; cpu++) {
350 		in_pcbinfo_init(&tcbinfo[cpu]);
351 		tcbinfo[cpu].cpu = cpu;
352 		tcbinfo[cpu].hashbase = hashinit(hashsize, M_PCB,
353 		    &tcbinfo[cpu].hashmask);
354 		tcbinfo[cpu].porthashbase = porthashbase;
355 		tcbinfo[cpu].porthashmask = porthashmask;
356 		tcbinfo[cpu].wildcardhashbase = hashinit(hashsize, M_PCB,
357 		    &tcbinfo[cpu].wildcardhashmask);
358 		tcbinfo[cpu].ipi_zone = ipi_zone;
359 		TAILQ_INIT(&tcpcbackq[cpu]);
360 	}
361 
362 	tcp_reass_maxseg = nmbclusters / 16;
363 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
364 
365 #ifdef INET6
366 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
367 #else
368 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
369 #endif
370 	if (max_protohdr < TCP_MINPROTOHDR)
371 		max_protohdr = TCP_MINPROTOHDR;
372 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
373 		panic("tcp_init");
374 #undef TCP_MINPROTOHDR
375 
376 	/*
377 	 * Initialize TCP statistics counters for each CPU.
378 	 */
379 #ifdef SMP
380 	for (cpu = 0; cpu < ncpus; ++cpu) {
381 		bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
382 	}
383 #else
384 	bzero(&tcpstat, sizeof(struct tcp_stats));
385 #endif
386 
387 	syncache_init();
388 	tcp_sack_init();
389 	tcp_thread_init();
390 }
391 
392 void
393 tcpmsg_service_loop(void *dummy)
394 {
395 	struct netmsg *msg;
396 
397 	while ((msg = lwkt_waitport(&curthread->td_msgport, NULL))) {
398 		do {
399 			logtcp(rxmsg);
400 			msg->nm_lmsg.ms_cmd.cm_func(&msg->nm_lmsg);
401 		} while ((msg = lwkt_getport(&curthread->td_msgport)) != NULL);
402 		logtcp(delayed);
403 		tcp_willblock();
404 		logtcp(wait);
405 	}
406 }
407 
408 static void
409 tcp_willblock(void)
410 {
411 	struct tcpcb *tp;
412 	int cpu = mycpu->gd_cpuid;
413 
414 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
415 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
416 		tp->t_flags &= ~TF_ONOUTPUTQ;
417 		TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
418 		tcp_output(tp);
419 	}
420 }
421 
422 
423 /*
424  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
425  * tcp_template used to store this data in mbufs, but we now recopy it out
426  * of the tcpcb each time to conserve mbufs.
427  */
428 void
429 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr)
430 {
431 	struct inpcb *inp = tp->t_inpcb;
432 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
433 
434 #ifdef INET6
435 	if (inp->inp_vflag & INP_IPV6) {
436 		struct ip6_hdr *ip6;
437 
438 		ip6 = (struct ip6_hdr *)ip_ptr;
439 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
440 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
441 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
442 			(IPV6_VERSION & IPV6_VERSION_MASK);
443 		ip6->ip6_nxt = IPPROTO_TCP;
444 		ip6->ip6_plen = sizeof(struct tcphdr);
445 		ip6->ip6_src = inp->in6p_laddr;
446 		ip6->ip6_dst = inp->in6p_faddr;
447 		tcp_hdr->th_sum = 0;
448 	} else
449 #endif
450 	{
451 		struct ip *ip = (struct ip *) ip_ptr;
452 
453 		ip->ip_vhl = IP_VHL_BORING;
454 		ip->ip_tos = 0;
455 		ip->ip_len = 0;
456 		ip->ip_id = 0;
457 		ip->ip_off = 0;
458 		ip->ip_ttl = 0;
459 		ip->ip_sum = 0;
460 		ip->ip_p = IPPROTO_TCP;
461 		ip->ip_src = inp->inp_laddr;
462 		ip->ip_dst = inp->inp_faddr;
463 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
464 				    ip->ip_dst.s_addr,
465 				    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
466 	}
467 
468 	tcp_hdr->th_sport = inp->inp_lport;
469 	tcp_hdr->th_dport = inp->inp_fport;
470 	tcp_hdr->th_seq = 0;
471 	tcp_hdr->th_ack = 0;
472 	tcp_hdr->th_x2 = 0;
473 	tcp_hdr->th_off = 5;
474 	tcp_hdr->th_flags = 0;
475 	tcp_hdr->th_win = 0;
476 	tcp_hdr->th_urp = 0;
477 }
478 
479 /*
480  * Create template to be used to send tcp packets on a connection.
481  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
482  * use for this function is in keepalives, which use tcp_respond.
483  */
484 struct tcptemp *
485 tcp_maketemplate(struct tcpcb *tp)
486 {
487 	struct tcptemp *tmp;
488 
489 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
490 		return (NULL);
491 	tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t);
492 	return (tmp);
493 }
494 
495 void
496 tcp_freetemplate(struct tcptemp *tmp)
497 {
498 	mpipe_free(&tcptemp_mpipe, tmp);
499 }
500 
501 /*
502  * Send a single message to the TCP at address specified by
503  * the given TCP/IP header.  If m == NULL, then we make a copy
504  * of the tcpiphdr at ti and send directly to the addressed host.
505  * This is used to force keep alive messages out using the TCP
506  * template for a connection.  If flags are given then we send
507  * a message back to the TCP which originated the * segment ti,
508  * and discard the mbuf containing it and any other attached mbufs.
509  *
510  * In any case the ack and sequence number of the transmitted
511  * segment are as specified by the parameters.
512  *
513  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
514  */
515 void
516 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
517 	    tcp_seq ack, tcp_seq seq, int flags)
518 {
519 	int tlen;
520 	int win = 0;
521 	struct route *ro = NULL;
522 	struct route sro;
523 	struct ip *ip = ipgen;
524 	struct tcphdr *nth;
525 	int ipflags = 0;
526 	struct route_in6 *ro6 = NULL;
527 	struct route_in6 sro6;
528 	struct ip6_hdr *ip6 = ipgen;
529 #ifdef INET6
530 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
531 #else
532 	const boolean_t isipv6 = FALSE;
533 #endif
534 
535 	if (tp != NULL) {
536 		if (!(flags & TH_RST)) {
537 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
538 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
539 				win = (long)TCP_MAXWIN << tp->rcv_scale;
540 		}
541 		if (isipv6)
542 			ro6 = &tp->t_inpcb->in6p_route;
543 		else
544 			ro = &tp->t_inpcb->inp_route;
545 	} else {
546 		if (isipv6) {
547 			ro6 = &sro6;
548 			bzero(ro6, sizeof *ro6);
549 		} else {
550 			ro = &sro;
551 			bzero(ro, sizeof *ro);
552 		}
553 	}
554 	if (m == NULL) {
555 		m = m_gethdr(MB_DONTWAIT, MT_HEADER);
556 		if (m == NULL)
557 			return;
558 		tlen = 0;
559 		m->m_data += max_linkhdr;
560 		if (isipv6) {
561 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
562 			ip6 = mtod(m, struct ip6_hdr *);
563 			nth = (struct tcphdr *)(ip6 + 1);
564 		} else {
565 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
566 			ip = mtod(m, struct ip *);
567 			nth = (struct tcphdr *)(ip + 1);
568 		}
569 		bcopy(th, nth, sizeof(struct tcphdr));
570 		flags = TH_ACK;
571 	} else {
572 		m_freem(m->m_next);
573 		m->m_next = NULL;
574 		m->m_data = (caddr_t)ipgen;
575 		/* m_len is set later */
576 		tlen = 0;
577 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
578 		if (isipv6) {
579 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
580 			nth = (struct tcphdr *)(ip6 + 1);
581 		} else {
582 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
583 			nth = (struct tcphdr *)(ip + 1);
584 		}
585 		if (th != nth) {
586 			/*
587 			 * this is usually a case when an extension header
588 			 * exists between the IPv6 header and the
589 			 * TCP header.
590 			 */
591 			nth->th_sport = th->th_sport;
592 			nth->th_dport = th->th_dport;
593 		}
594 		xchg(nth->th_dport, nth->th_sport, n_short);
595 #undef xchg
596 	}
597 	if (isipv6) {
598 		ip6->ip6_flow = 0;
599 		ip6->ip6_vfc = IPV6_VERSION;
600 		ip6->ip6_nxt = IPPROTO_TCP;
601 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
602 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
603 	} else {
604 		tlen += sizeof(struct tcpiphdr);
605 		ip->ip_len = tlen;
606 		ip->ip_ttl = ip_defttl;
607 	}
608 	m->m_len = tlen;
609 	m->m_pkthdr.len = tlen;
610 	m->m_pkthdr.rcvif = (struct ifnet *) NULL;
611 	nth->th_seq = htonl(seq);
612 	nth->th_ack = htonl(ack);
613 	nth->th_x2 = 0;
614 	nth->th_off = sizeof(struct tcphdr) >> 2;
615 	nth->th_flags = flags;
616 	if (tp != NULL)
617 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
618 	else
619 		nth->th_win = htons((u_short)win);
620 	nth->th_urp = 0;
621 	if (isipv6) {
622 		nth->th_sum = 0;
623 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
624 					sizeof(struct ip6_hdr),
625 					tlen - sizeof(struct ip6_hdr));
626 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
627 					       (ro6 && ro6->ro_rt) ?
628 						ro6->ro_rt->rt_ifp : NULL);
629 	} else {
630 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
631 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
632 		m->m_pkthdr.csum_flags = CSUM_TCP;
633 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
634 	}
635 #ifdef TCPDEBUG
636 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
637 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
638 #endif
639 	if (isipv6) {
640 		ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
641 			   tp ? tp->t_inpcb : NULL);
642 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
643 			RTFREE(ro6->ro_rt);
644 			ro6->ro_rt = NULL;
645 		}
646 	} else {
647 		ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
648 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
649 			RTFREE(ro->ro_rt);
650 			ro->ro_rt = NULL;
651 		}
652 	}
653 }
654 
655 /*
656  * Create a new TCP control block, making an
657  * empty reassembly queue and hooking it to the argument
658  * protocol control block.  The `inp' parameter must have
659  * come from the zone allocator set up in tcp_init().
660  */
661 struct tcpcb *
662 tcp_newtcpcb(struct inpcb *inp)
663 {
664 	struct inp_tp *it;
665 	struct tcpcb *tp;
666 #ifdef INET6
667 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
668 #else
669 	const boolean_t isipv6 = FALSE;
670 #endif
671 
672 	it = (struct inp_tp *)inp;
673 	tp = &it->tcb;
674 	bzero(tp, sizeof(struct tcpcb));
675 	LIST_INIT(&tp->t_segq);
676 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
677 
678 	/* Set up our timeouts. */
679 	callout_init(tp->tt_rexmt = &it->inp_tp_rexmt);
680 	callout_init(tp->tt_persist = &it->inp_tp_persist);
681 	callout_init(tp->tt_keep = &it->inp_tp_keep);
682 	callout_init(tp->tt_2msl = &it->inp_tp_2msl);
683 	callout_init(tp->tt_delack = &it->inp_tp_delack);
684 
685 	if (tcp_do_rfc1323)
686 		tp->t_flags = (TF_REQ_SCALE | TF_REQ_TSTMP);
687 	if (tcp_do_rfc1644)
688 		tp->t_flags |= TF_REQ_CC;
689 	tp->t_inpcb = inp;	/* XXX */
690 	tp->t_state = TCPS_CLOSED;
691 	/*
692 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
693 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
694 	 * reasonable initial retransmit time.
695 	 */
696 	tp->t_srtt = TCPTV_SRTTBASE;
697 	tp->t_rttvar =
698 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
699 	tp->t_rttmin = tcp_rexmit_min;
700 	tp->t_rxtcur = TCPTV_RTOBASE;
701 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
702 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
703 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
704 	tp->t_rcvtime = ticks;
705 	/*
706 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
707 	 * because the socket may be bound to an IPv6 wildcard address,
708 	 * which may match an IPv4-mapped IPv6 address.
709 	 */
710 	inp->inp_ip_ttl = ip_defttl;
711 	inp->inp_ppcb = tp;
712 	tcp_sack_tcpcb_init(tp);
713 	return (tp);		/* XXX */
714 }
715 
716 /*
717  * Drop a TCP connection, reporting the specified error.
718  * If connection is synchronized, then send a RST to peer.
719  */
720 struct tcpcb *
721 tcp_drop(struct tcpcb *tp, int errno)
722 {
723 	struct socket *so = tp->t_inpcb->inp_socket;
724 
725 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
726 		tp->t_state = TCPS_CLOSED;
727 		tcp_output(tp);
728 		tcpstat.tcps_drops++;
729 	} else
730 		tcpstat.tcps_conndrops++;
731 	if (errno == ETIMEDOUT && tp->t_softerror)
732 		errno = tp->t_softerror;
733 	so->so_error = errno;
734 	return (tcp_close(tp));
735 }
736 
737 #ifdef SMP
738 
739 struct netmsg_remwildcard {
740 	struct lwkt_msg		nm_lmsg;
741 	struct inpcb		*nm_inp;
742 	struct inpcbinfo	*nm_pcbinfo;
743 #if defined(INET6)
744 	int			nm_isinet6;
745 #else
746 	int			nm_unused01;
747 #endif
748 };
749 
750 /*
751  * Wildcard inpcb's on SMP boxes must be removed from all cpus before the
752  * inp can be detached.  We do this by cycling through the cpus, ending up
753  * on the cpu controlling the inp last and then doing the disconnect.
754  */
755 static int
756 in_pcbremwildcardhash_handler(struct lwkt_msg *msg0)
757 {
758 	struct netmsg_remwildcard *msg = (struct netmsg_remwildcard *)msg0;
759 	int cpu;
760 
761 	cpu = msg->nm_pcbinfo->cpu;
762 
763 	if (cpu == msg->nm_inp->inp_pcbinfo->cpu) {
764 		/* note: detach removes any wildcard hash entry */
765 #ifdef INET6
766 		if (msg->nm_isinet6)
767 			in6_pcbdetach(msg->nm_inp);
768 		else
769 #endif
770 			in_pcbdetach(msg->nm_inp);
771 		lwkt_replymsg(&msg->nm_lmsg, 0);
772 	} else {
773 		in_pcbremwildcardhash_oncpu(msg->nm_inp, msg->nm_pcbinfo);
774 		cpu = (cpu + 1) % ncpus2;
775 		msg->nm_pcbinfo = &tcbinfo[cpu];
776 		lwkt_forwardmsg(tcp_cport(cpu), &msg->nm_lmsg);
777 	}
778 	return (EASYNC);
779 }
780 
781 #endif
782 
783 /*
784  * Close a TCP control block:
785  *	discard all space held by the tcp
786  *	discard internet protocol block
787  *	wake up any sleepers
788  */
789 struct tcpcb *
790 tcp_close(struct tcpcb *tp)
791 {
792 	struct tseg_qent *q;
793 	struct inpcb *inp = tp->t_inpcb;
794 	struct socket *so = inp->inp_socket;
795 	struct rtentry *rt;
796 	boolean_t dosavessthresh;
797 #ifdef SMP
798 	int cpu;
799 #endif
800 #ifdef INET6
801 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
802 	boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
803 #else
804 	const boolean_t isipv6 = FALSE;
805 #endif
806 
807 	/*
808 	 * The tp is not instantly destroyed in the wildcard case.  Setting
809 	 * the state to TCPS_TERMINATING will prevent the TCP stack from
810 	 * messing with it, though it should be noted that this change may
811 	 * not take effect on other cpus until we have chained the wildcard
812 	 * hash removal.
813 	 *
814 	 * XXX we currently depend on the BGL to synchronize the tp->t_state
815 	 * update and prevent other tcp protocol threads from accepting new
816 	 * connections on the listen socket we might be trying to close down.
817 	 */
818 	KKASSERT(tp->t_state != TCPS_TERMINATING);
819 	tp->t_state = TCPS_TERMINATING;
820 
821 	/*
822 	 * Make sure that all of our timers are stopped before we
823 	 * delete the PCB.
824 	 */
825 	callout_stop(tp->tt_rexmt);
826 	callout_stop(tp->tt_persist);
827 	callout_stop(tp->tt_keep);
828 	callout_stop(tp->tt_2msl);
829 	callout_stop(tp->tt_delack);
830 
831 	if (tp->t_flags & TF_ONOUTPUTQ) {
832 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
833 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
834 		tp->t_flags &= ~TF_ONOUTPUTQ;
835 	}
836 
837 	/*
838 	 * If we got enough samples through the srtt filter,
839 	 * save the rtt and rttvar in the routing entry.
840 	 * 'Enough' is arbitrarily defined as the 16 samples.
841 	 * 16 samples is enough for the srtt filter to converge
842 	 * to within 5% of the correct value; fewer samples and
843 	 * we could save a very bogus rtt.
844 	 *
845 	 * Don't update the default route's characteristics and don't
846 	 * update anything that the user "locked".
847 	 */
848 	if (tp->t_rttupdated >= 16) {
849 		u_long i = 0;
850 
851 		if (isipv6) {
852 			struct sockaddr_in6 *sin6;
853 
854 			if ((rt = inp->in6p_route.ro_rt) == NULL)
855 				goto no_valid_rt;
856 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
857 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
858 				goto no_valid_rt;
859 		} else
860 			if ((rt = inp->inp_route.ro_rt) == NULL ||
861 			    ((struct sockaddr_in *)rt_key(rt))->
862 			     sin_addr.s_addr == INADDR_ANY)
863 				goto no_valid_rt;
864 
865 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
866 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
867 			if (rt->rt_rmx.rmx_rtt && i)
868 				/*
869 				 * filter this update to half the old & half
870 				 * the new values, converting scale.
871 				 * See route.h and tcp_var.h for a
872 				 * description of the scaling constants.
873 				 */
874 				rt->rt_rmx.rmx_rtt =
875 				    (rt->rt_rmx.rmx_rtt + i) / 2;
876 			else
877 				rt->rt_rmx.rmx_rtt = i;
878 			tcpstat.tcps_cachedrtt++;
879 		}
880 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
881 			i = tp->t_rttvar *
882 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
883 			if (rt->rt_rmx.rmx_rttvar && i)
884 				rt->rt_rmx.rmx_rttvar =
885 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
886 			else
887 				rt->rt_rmx.rmx_rttvar = i;
888 			tcpstat.tcps_cachedrttvar++;
889 		}
890 		/*
891 		 * The old comment here said:
892 		 * update the pipelimit (ssthresh) if it has been updated
893 		 * already or if a pipesize was specified & the threshhold
894 		 * got below half the pipesize.  I.e., wait for bad news
895 		 * before we start updating, then update on both good
896 		 * and bad news.
897 		 *
898 		 * But we want to save the ssthresh even if no pipesize is
899 		 * specified explicitly in the route, because such
900 		 * connections still have an implicit pipesize specified
901 		 * by the global tcp_sendspace.  In the absence of a reliable
902 		 * way to calculate the pipesize, it will have to do.
903 		 */
904 		i = tp->snd_ssthresh;
905 		if (rt->rt_rmx.rmx_sendpipe != 0)
906 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
907 		else
908 			dosavessthresh = (i < so->so_snd.sb_hiwat/2);
909 		if (dosavessthresh ||
910 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
911 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
912 			/*
913 			 * convert the limit from user data bytes to
914 			 * packets then to packet data bytes.
915 			 */
916 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
917 			if (i < 2)
918 				i = 2;
919 			i *= tp->t_maxseg +
920 			     (isipv6 ?
921 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
922 			      sizeof(struct tcpiphdr));
923 			if (rt->rt_rmx.rmx_ssthresh)
924 				rt->rt_rmx.rmx_ssthresh =
925 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
926 			else
927 				rt->rt_rmx.rmx_ssthresh = i;
928 			tcpstat.tcps_cachedssthresh++;
929 		}
930 	}
931 
932 no_valid_rt:
933 	/* free the reassembly queue, if any */
934 	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
935 		LIST_REMOVE(q, tqe_q);
936 		m_freem(q->tqe_m);
937 		FREE(q, M_TSEGQ);
938 		tcp_reass_qsize--;
939 	}
940 	/* throw away SACK blocks in scoreboard*/
941 	if (TCP_DO_SACK(tp))
942 		tcp_sack_cleanup(&tp->scb);
943 
944 	inp->inp_ppcb = NULL;
945 	soisdisconnected(so);
946 	/*
947 	 * Discard the inp.  In the SMP case a wildcard inp's hash (created
948 	 * by a listen socket or an INADDR_ANY udp socket) is replicated
949 	 * for each protocol thread and must be removed in the context of
950 	 * that thread.  This is accomplished by chaining the message
951 	 * through the cpus.
952 	 *
953 	 * If the inp is not wildcarded we simply detach, which will remove
954 	 * the any hashes still present for this inp.
955 	 */
956 #ifdef SMP
957 	if (inp->inp_flags & INP_WILDCARD_MP) {
958 		struct netmsg_remwildcard *msg;
959 
960 		cpu = (inp->inp_pcbinfo->cpu + 1) % ncpus2;
961 		msg = malloc(sizeof(struct netmsg_remwildcard),
962 			    M_LWKTMSG, M_INTWAIT);
963 		lwkt_initmsg(&msg->nm_lmsg, &netisr_afree_rport, 0,
964 		    lwkt_cmd_func(in_pcbremwildcardhash_handler),
965 		    lwkt_cmd_op_none);
966 #ifdef INET6
967 		msg->nm_isinet6 = isafinet6;
968 #endif
969 		msg->nm_inp = inp;
970 		msg->nm_pcbinfo = &tcbinfo[cpu];
971 		lwkt_sendmsg(tcp_cport(cpu), &msg->nm_lmsg);
972 	} else
973 #endif
974 	{
975 		/* note: detach removes any wildcard hash entry */
976 #ifdef INET6
977 		if (isafinet6)
978 			in6_pcbdetach(inp);
979 		else
980 #endif
981 			in_pcbdetach(inp);
982 	}
983 	tcpstat.tcps_closed++;
984 	return (NULL);
985 }
986 
987 static __inline void
988 tcp_drain_oncpu(struct inpcbhead *head)
989 {
990 	struct inpcb *inpb;
991 	struct tcpcb *tcpb;
992 	struct tseg_qent *te;
993 
994 	LIST_FOREACH(inpb, head, inp_list) {
995 		if (inpb->inp_flags & INP_PLACEMARKER)
996 			continue;
997 		if ((tcpb = intotcpcb(inpb))) {
998 			while ((te = LIST_FIRST(&tcpb->t_segq)) != NULL) {
999 				LIST_REMOVE(te, tqe_q);
1000 				m_freem(te->tqe_m);
1001 				FREE(te, M_TSEGQ);
1002 				tcp_reass_qsize--;
1003 			}
1004 		}
1005 	}
1006 }
1007 
1008 #ifdef SMP
1009 struct netmsg_tcp_drain {
1010 	struct lwkt_msg		nm_lmsg;
1011 	struct inpcbhead	*nm_head;
1012 };
1013 
1014 static int
1015 tcp_drain_handler(lwkt_msg_t lmsg)
1016 {
1017 	struct netmsg_tcp_drain *nm = (void *)lmsg;
1018 
1019 	tcp_drain_oncpu(nm->nm_head);
1020 	lwkt_replymsg(lmsg, 0);
1021 	return(EASYNC);
1022 }
1023 #endif
1024 
1025 void
1026 tcp_drain(void)
1027 {
1028 #ifdef SMP
1029 	int cpu;
1030 #endif
1031 
1032 	if (!do_tcpdrain)
1033 		return;
1034 
1035 	/*
1036 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1037 	 * if there is one...
1038 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1039 	 *	reassembly queue should be flushed, but in a situation
1040 	 *	where we're really low on mbufs, this is potentially
1041 	 *	useful.
1042 	 */
1043 #ifdef SMP
1044 	for (cpu = 0; cpu < ncpus2; cpu++) {
1045 		struct netmsg_tcp_drain *msg;
1046 
1047 		if (cpu == mycpu->gd_cpuid) {
1048 			tcp_drain_oncpu(&tcbinfo[cpu].pcblisthead);
1049 		} else {
1050 			msg = malloc(sizeof(struct netmsg_tcp_drain),
1051 				    M_LWKTMSG, M_NOWAIT);
1052 			if (msg == NULL)
1053 				continue;
1054 			lwkt_initmsg(&msg->nm_lmsg, &netisr_afree_rport, 0,
1055 				lwkt_cmd_func(tcp_drain_handler),
1056 				lwkt_cmd_op_none);
1057 			msg->nm_head = &tcbinfo[cpu].pcblisthead;
1058 			lwkt_sendmsg(tcp_cport(cpu), &msg->nm_lmsg);
1059 		}
1060 	}
1061 #else
1062 	tcp_drain_oncpu(&tcbinfo[0].pcblisthead);
1063 #endif
1064 }
1065 
1066 /*
1067  * Notify a tcp user of an asynchronous error;
1068  * store error as soft error, but wake up user
1069  * (for now, won't do anything until can select for soft error).
1070  *
1071  * Do not wake up user since there currently is no mechanism for
1072  * reporting soft errors (yet - a kqueue filter may be added).
1073  */
1074 static void
1075 tcp_notify(struct inpcb *inp, int error)
1076 {
1077 	struct tcpcb *tp = intotcpcb(inp);
1078 
1079 	/*
1080 	 * Ignore some errors if we are hooked up.
1081 	 * If connection hasn't completed, has retransmitted several times,
1082 	 * and receives a second error, give up now.  This is better
1083 	 * than waiting a long time to establish a connection that
1084 	 * can never complete.
1085 	 */
1086 	if (tp->t_state == TCPS_ESTABLISHED &&
1087 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1088 	      error == EHOSTDOWN)) {
1089 		return;
1090 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1091 	    tp->t_softerror)
1092 		tcp_drop(tp, error);
1093 	else
1094 		tp->t_softerror = error;
1095 #if 0
1096 	wakeup(&so->so_timeo);
1097 	sorwakeup(so);
1098 	sowwakeup(so);
1099 #endif
1100 }
1101 
1102 static int
1103 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1104 {
1105 	int error, i, n;
1106 	struct inpcb *marker;
1107 	struct inpcb *inp;
1108 	inp_gen_t gencnt;
1109 	globaldata_t gd;
1110 	int origcpu, ccpu;
1111 
1112 	error = 0;
1113 	n = 0;
1114 
1115 	/*
1116 	 * The process of preparing the TCB list is too time-consuming and
1117 	 * resource-intensive to repeat twice on every request.
1118 	 */
1119 	if (req->oldptr == NULL) {
1120 		for (ccpu = 0; ccpu < ncpus; ++ccpu) {
1121 			gd = globaldata_find(ccpu);
1122 			n += tcbinfo[gd->gd_cpuid].ipi_count;
1123 		}
1124 		req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1125 		return (0);
1126 	}
1127 
1128 	if (req->newptr != NULL)
1129 		return (EPERM);
1130 
1131 	marker = malloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1132 	marker->inp_flags |= INP_PLACEMARKER;
1133 
1134 	/*
1135 	 * OK, now we're committed to doing something.  Run the inpcb list
1136 	 * for each cpu in the system and construct the output.  Use a
1137 	 * list placemarker to deal with list changes occuring during
1138 	 * copyout blockages (but otherwise depend on being on the correct
1139 	 * cpu to avoid races).
1140 	 */
1141 	origcpu = mycpu->gd_cpuid;
1142 	for (ccpu = 1; ccpu <= ncpus && error == 0; ++ccpu) {
1143 		globaldata_t rgd;
1144 		caddr_t inp_ppcb;
1145 		struct xtcpcb xt;
1146 		int cpu_id;
1147 
1148 		cpu_id = (origcpu + ccpu) % ncpus;
1149 		if ((smp_active_mask & (1 << cpu_id)) == 0)
1150 			continue;
1151 		rgd = globaldata_find(cpu_id);
1152 		lwkt_setcpu_self(rgd);
1153 
1154 		gencnt = tcbinfo[cpu_id].ipi_gencnt;
1155 		n = tcbinfo[cpu_id].ipi_count;
1156 
1157 		LIST_INSERT_HEAD(&tcbinfo[cpu_id].pcblisthead, marker, inp_list);
1158 		i = 0;
1159 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1160 			/*
1161 			 * process a snapshot of pcbs, ignoring placemarkers
1162 			 * and using our own to allow SYSCTL_OUT to block.
1163 			 */
1164 			LIST_REMOVE(marker, inp_list);
1165 			LIST_INSERT_AFTER(inp, marker, inp_list);
1166 
1167 			if (inp->inp_flags & INP_PLACEMARKER)
1168 				continue;
1169 			if (inp->inp_gencnt > gencnt)
1170 				continue;
1171 			if (prison_xinpcb(req->td, inp))
1172 				continue;
1173 
1174 			xt.xt_len = sizeof xt;
1175 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1176 			inp_ppcb = inp->inp_ppcb;
1177 			if (inp_ppcb != NULL)
1178 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1179 			else
1180 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1181 			if (inp->inp_socket)
1182 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1183 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1184 				break;
1185 			++i;
1186 		}
1187 		LIST_REMOVE(marker, inp_list);
1188 		if (error == 0 && i < n) {
1189 			bzero(&xt, sizeof xt);
1190 			xt.xt_len = sizeof xt;
1191 			while (i < n) {
1192 				error = SYSCTL_OUT(req, &xt, sizeof xt);
1193 				if (error)
1194 					break;
1195 				++i;
1196 			}
1197 		}
1198 	}
1199 
1200 	/*
1201 	 * Make sure we are on the same cpu we were on originally, since
1202 	 * higher level callers expect this.  Also don't pollute caches with
1203 	 * migrated userland data by (eventually) returning to userland
1204 	 * on a different cpu.
1205 	 */
1206 	lwkt_setcpu_self(globaldata_find(origcpu));
1207 	free(marker, M_TEMP);
1208 	return (error);
1209 }
1210 
1211 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1212 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1213 
1214 static int
1215 tcp_getcred(SYSCTL_HANDLER_ARGS)
1216 {
1217 	struct sockaddr_in addrs[2];
1218 	struct inpcb *inp;
1219 	int cpu;
1220 	int error;
1221 
1222 	error = suser(req->td);
1223 	if (error != 0)
1224 		return (error);
1225 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1226 	if (error != 0)
1227 		return (error);
1228 	crit_enter();
1229 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1230 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1231 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1232 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1233 	if (inp == NULL || inp->inp_socket == NULL) {
1234 		error = ENOENT;
1235 		goto out;
1236 	}
1237 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1238 out:
1239 	crit_exit();
1240 	return (error);
1241 }
1242 
1243 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1244     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1245 
1246 #ifdef INET6
1247 static int
1248 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1249 {
1250 	struct sockaddr_in6 addrs[2];
1251 	struct inpcb *inp;
1252 	int error;
1253 	boolean_t mapped = FALSE;
1254 
1255 	error = suser(req->td);
1256 	if (error != 0)
1257 		return (error);
1258 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1259 	if (error != 0)
1260 		return (error);
1261 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1262 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1263 			mapped = TRUE;
1264 		else
1265 			return (EINVAL);
1266 	}
1267 	crit_enter();
1268 	if (mapped) {
1269 		inp = in_pcblookup_hash(&tcbinfo[0],
1270 		    *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1271 		    addrs[1].sin6_port,
1272 		    *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1273 		    addrs[0].sin6_port,
1274 		    0, NULL);
1275 	} else {
1276 		inp = in6_pcblookup_hash(&tcbinfo[0],
1277 		    &addrs[1].sin6_addr, addrs[1].sin6_port,
1278 		    &addrs[0].sin6_addr, addrs[0].sin6_port,
1279 		    0, NULL);
1280 	}
1281 	if (inp == NULL || inp->inp_socket == NULL) {
1282 		error = ENOENT;
1283 		goto out;
1284 	}
1285 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1286 out:
1287 	crit_exit();
1288 	return (error);
1289 }
1290 
1291 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1292 	    0, 0,
1293 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1294 #endif
1295 
1296 void
1297 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1298 {
1299 	struct ip *ip = vip;
1300 	struct tcphdr *th;
1301 	struct in_addr faddr;
1302 	struct inpcb *inp;
1303 	struct tcpcb *tp;
1304 	void (*notify)(struct inpcb *, int) = tcp_notify;
1305 	tcp_seq icmpseq;
1306 	int arg, cpu;
1307 
1308 	if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1309 		return;
1310 	}
1311 
1312 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1313 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1314 		return;
1315 
1316 	arg = inetctlerrmap[cmd];
1317 	if (cmd == PRC_QUENCH) {
1318 		notify = tcp_quench;
1319 	} else if (icmp_may_rst &&
1320 		   (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1321 		    cmd == PRC_UNREACH_PORT ||
1322 		    cmd == PRC_TIMXCEED_INTRANS) &&
1323 		   ip != NULL) {
1324 		notify = tcp_drop_syn_sent;
1325 	} else if (cmd == PRC_MSGSIZE) {
1326 		struct icmp *icmp = (struct icmp *)
1327 		    ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1328 
1329 		arg = ntohs(icmp->icmp_nextmtu);
1330 		notify = tcp_mtudisc;
1331 	} else if (PRC_IS_REDIRECT(cmd)) {
1332 		ip = NULL;
1333 		notify = in_rtchange;
1334 	} else if (cmd == PRC_HOSTDEAD) {
1335 		ip = NULL;
1336 	}
1337 
1338 	if (ip != NULL) {
1339 		crit_enter();
1340 		th = (struct tcphdr *)((caddr_t)ip +
1341 				       (IP_VHL_HL(ip->ip_vhl) << 2));
1342 		cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
1343 				  ip->ip_src.s_addr, th->th_sport);
1344 		inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
1345 					ip->ip_src, th->th_sport, 0, NULL);
1346 		if ((inp != NULL) && (inp->inp_socket != NULL)) {
1347 			icmpseq = htonl(th->th_seq);
1348 			tp = intotcpcb(inp);
1349 			if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1350 			    SEQ_LT(icmpseq, tp->snd_max))
1351 				(*notify)(inp, arg);
1352 		} else {
1353 			struct in_conninfo inc;
1354 
1355 			inc.inc_fport = th->th_dport;
1356 			inc.inc_lport = th->th_sport;
1357 			inc.inc_faddr = faddr;
1358 			inc.inc_laddr = ip->ip_src;
1359 #ifdef INET6
1360 			inc.inc_isipv6 = 0;
1361 #endif
1362 			syncache_unreach(&inc, th);
1363 		}
1364 		crit_exit();
1365 	} else {
1366 		for (cpu = 0; cpu < ncpus2; cpu++) {
1367 			in_pcbnotifyall(&tcbinfo[cpu].pcblisthead, faddr, arg,
1368 					notify);
1369 		}
1370 	}
1371 }
1372 
1373 #ifdef INET6
1374 void
1375 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1376 {
1377 	struct tcphdr th;
1378 	void (*notify) (struct inpcb *, int) = tcp_notify;
1379 	struct ip6_hdr *ip6;
1380 	struct mbuf *m;
1381 	struct ip6ctlparam *ip6cp = NULL;
1382 	const struct sockaddr_in6 *sa6_src = NULL;
1383 	int off;
1384 	struct tcp_portonly {
1385 		u_int16_t th_sport;
1386 		u_int16_t th_dport;
1387 	} *thp;
1388 	int arg;
1389 
1390 	if (sa->sa_family != AF_INET6 ||
1391 	    sa->sa_len != sizeof(struct sockaddr_in6))
1392 		return;
1393 
1394 	arg = 0;
1395 	if (cmd == PRC_QUENCH)
1396 		notify = tcp_quench;
1397 	else if (cmd == PRC_MSGSIZE) {
1398 		struct ip6ctlparam *ip6cp = d;
1399 		struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1400 
1401 		arg = ntohl(icmp6->icmp6_mtu);
1402 		notify = tcp_mtudisc;
1403 	} else if (!PRC_IS_REDIRECT(cmd) &&
1404 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1405 		return;
1406 	}
1407 
1408 	/* if the parameter is from icmp6, decode it. */
1409 	if (d != NULL) {
1410 		ip6cp = (struct ip6ctlparam *)d;
1411 		m = ip6cp->ip6c_m;
1412 		ip6 = ip6cp->ip6c_ip6;
1413 		off = ip6cp->ip6c_off;
1414 		sa6_src = ip6cp->ip6c_src;
1415 	} else {
1416 		m = NULL;
1417 		ip6 = NULL;
1418 		off = 0;	/* fool gcc */
1419 		sa6_src = &sa6_any;
1420 	}
1421 
1422 	if (ip6 != NULL) {
1423 		struct in_conninfo inc;
1424 		/*
1425 		 * XXX: We assume that when IPV6 is non NULL,
1426 		 * M and OFF are valid.
1427 		 */
1428 
1429 		/* check if we can safely examine src and dst ports */
1430 		if (m->m_pkthdr.len < off + sizeof *thp)
1431 			return;
1432 
1433 		bzero(&th, sizeof th);
1434 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1435 
1436 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, th.th_dport,
1437 		    (struct sockaddr *)ip6cp->ip6c_src,
1438 		    th.th_sport, cmd, arg, notify);
1439 
1440 		inc.inc_fport = th.th_dport;
1441 		inc.inc_lport = th.th_sport;
1442 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1443 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1444 		inc.inc_isipv6 = 1;
1445 		syncache_unreach(&inc, &th);
1446 	} else
1447 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, 0,
1448 		    (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1449 }
1450 #endif
1451 
1452 /*
1453  * Following is where TCP initial sequence number generation occurs.
1454  *
1455  * There are two places where we must use initial sequence numbers:
1456  * 1.  In SYN-ACK packets.
1457  * 2.  In SYN packets.
1458  *
1459  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1460  * tcp_syncache.c for details.
1461  *
1462  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1463  * depends on this property.  In addition, these ISNs should be
1464  * unguessable so as to prevent connection hijacking.  To satisfy
1465  * the requirements of this situation, the algorithm outlined in
1466  * RFC 1948 is used to generate sequence numbers.
1467  *
1468  * Implementation details:
1469  *
1470  * Time is based off the system timer, and is corrected so that it
1471  * increases by one megabyte per second.  This allows for proper
1472  * recycling on high speed LANs while still leaving over an hour
1473  * before rollover.
1474  *
1475  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1476  * between seeding of isn_secret.  This is normally set to zero,
1477  * as reseeding should not be necessary.
1478  *
1479  */
1480 
1481 #define	ISN_BYTES_PER_SECOND 1048576
1482 
1483 u_char isn_secret[32];
1484 int isn_last_reseed;
1485 MD5_CTX isn_ctx;
1486 
1487 tcp_seq
1488 tcp_new_isn(struct tcpcb *tp)
1489 {
1490 	u_int32_t md5_buffer[4];
1491 	tcp_seq new_isn;
1492 
1493 	/* Seed if this is the first use, reseed if requested. */
1494 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1495 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1496 		< (u_int)ticks))) {
1497 		read_random_unlimited(&isn_secret, sizeof isn_secret);
1498 		isn_last_reseed = ticks;
1499 	}
1500 
1501 	/* Compute the md5 hash and return the ISN. */
1502 	MD5Init(&isn_ctx);
1503 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1504 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1505 #ifdef INET6
1506 	if (tp->t_inpcb->inp_vflag & INP_IPV6) {
1507 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1508 			  sizeof(struct in6_addr));
1509 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1510 			  sizeof(struct in6_addr));
1511 	} else
1512 #endif
1513 	{
1514 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1515 			  sizeof(struct in_addr));
1516 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1517 			  sizeof(struct in_addr));
1518 	}
1519 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1520 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1521 	new_isn = (tcp_seq) md5_buffer[0];
1522 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1523 	return (new_isn);
1524 }
1525 
1526 /*
1527  * When a source quench is received, close congestion window
1528  * to one segment.  We will gradually open it again as we proceed.
1529  */
1530 void
1531 tcp_quench(struct inpcb *inp, int errno)
1532 {
1533 	struct tcpcb *tp = intotcpcb(inp);
1534 
1535 	if (tp != NULL) {
1536 		tp->snd_cwnd = tp->t_maxseg;
1537 		tp->snd_wacked = 0;
1538 	}
1539 }
1540 
1541 /*
1542  * When a specific ICMP unreachable message is received and the
1543  * connection state is SYN-SENT, drop the connection.  This behavior
1544  * is controlled by the icmp_may_rst sysctl.
1545  */
1546 void
1547 tcp_drop_syn_sent(struct inpcb *inp, int errno)
1548 {
1549 	struct tcpcb *tp = intotcpcb(inp);
1550 
1551 	if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
1552 		tcp_drop(tp, errno);
1553 }
1554 
1555 /*
1556  * When a `need fragmentation' ICMP is received, update our idea of the MSS
1557  * based on the new value in the route.  Also nudge TCP to send something,
1558  * since we know the packet we just sent was dropped.
1559  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1560  */
1561 void
1562 tcp_mtudisc(struct inpcb *inp, int mtu)
1563 {
1564 	struct tcpcb *tp = intotcpcb(inp);
1565 	struct rtentry *rt;
1566 	struct socket *so = inp->inp_socket;
1567 	int maxopd, mss;
1568 #ifdef INET6
1569 	boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1570 #else
1571 	const boolean_t isipv6 = FALSE;
1572 #endif
1573 
1574 	if (tp == NULL)
1575 		return;
1576 
1577 	/*
1578 	 * If no MTU is provided in the ICMP message, use the
1579 	 * next lower likely value, as specified in RFC 1191.
1580 	 */
1581 	if (mtu == 0) {
1582 		int oldmtu;
1583 
1584 		oldmtu = tp->t_maxopd +
1585 		    (isipv6 ?
1586 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1587 		     sizeof(struct tcpiphdr));
1588 		mtu = ip_next_mtu(oldmtu, 0);
1589 	}
1590 
1591 	if (isipv6)
1592 		rt = tcp_rtlookup6(&inp->inp_inc);
1593 	else
1594 		rt = tcp_rtlookup(&inp->inp_inc);
1595 	if (rt != NULL) {
1596 		struct rmxp_tao *taop = rmx_taop(rt->rt_rmx);
1597 
1598 		if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1599 			mtu = rt->rt_rmx.rmx_mtu;
1600 
1601 		maxopd = mtu -
1602 		    (isipv6 ?
1603 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1604 		     sizeof(struct tcpiphdr));
1605 
1606 		/*
1607 		 * XXX - The following conditional probably violates the TCP
1608 		 * spec.  The problem is that, since we don't know the
1609 		 * other end's MSS, we are supposed to use a conservative
1610 		 * default.  But, if we do that, then MTU discovery will
1611 		 * never actually take place, because the conservative
1612 		 * default is much less than the MTUs typically seen
1613 		 * on the Internet today.  For the moment, we'll sweep
1614 		 * this under the carpet.
1615 		 *
1616 		 * The conservative default might not actually be a problem
1617 		 * if the only case this occurs is when sending an initial
1618 		 * SYN with options and data to a host we've never talked
1619 		 * to before.  Then, they will reply with an MSS value which
1620 		 * will get recorded and the new parameters should get
1621 		 * recomputed.  For Further Study.
1622 		 */
1623 		if (taop->tao_mssopt != 0 && taop->tao_mssopt < maxopd)
1624 			maxopd = taop->tao_mssopt;
1625 	} else
1626 		maxopd = mtu -
1627 		    (isipv6 ?
1628 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1629 		     sizeof(struct tcpiphdr));
1630 
1631 	if (tp->t_maxopd <= maxopd)
1632 		return;
1633 	tp->t_maxopd = maxopd;
1634 
1635 	mss = maxopd;
1636 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1637 			   (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1638 		mss -= TCPOLEN_TSTAMP_APPA;
1639 
1640 	if ((tp->t_flags & (TF_REQ_CC | TF_RCVD_CC | TF_NOOPT)) ==
1641 			   (TF_REQ_CC | TF_RCVD_CC))
1642 		mss -= TCPOLEN_CC_APPA;
1643 
1644 	/* round down to multiple of MCLBYTES */
1645 #if	(MCLBYTES & (MCLBYTES - 1)) == 0    /* test if MCLBYTES power of 2 */
1646 	if (mss > MCLBYTES)
1647 		mss &= ~(MCLBYTES - 1);
1648 #else
1649 	if (mss > MCLBYTES)
1650 		mss = (mss / MCLBYTES) * MCLBYTES;
1651 #endif
1652 
1653 	if (so->so_snd.sb_hiwat < mss)
1654 		mss = so->so_snd.sb_hiwat;
1655 
1656 	tp->t_maxseg = mss;
1657 	tp->t_rtttime = 0;
1658 	tp->snd_nxt = tp->snd_una;
1659 	tcp_output(tp);
1660 	tcpstat.tcps_mturesent++;
1661 }
1662 
1663 /*
1664  * Look-up the routing entry to the peer of this inpcb.  If no route
1665  * is found and it cannot be allocated the return NULL.  This routine
1666  * is called by TCP routines that access the rmx structure and by tcp_mss
1667  * to get the interface MTU.
1668  */
1669 struct rtentry *
1670 tcp_rtlookup(struct in_conninfo *inc)
1671 {
1672 	struct route *ro = &inc->inc_route;
1673 
1674 	if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1675 		/* No route yet, so try to acquire one */
1676 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1677 			/*
1678 			 * unused portions of the structure MUST be zero'd
1679 			 * out because rtalloc() treats it as opaque data
1680 			 */
1681 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1682 			ro->ro_dst.sa_family = AF_INET;
1683 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1684 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1685 			    inc->inc_faddr;
1686 			rtalloc(ro);
1687 		}
1688 	}
1689 	return (ro->ro_rt);
1690 }
1691 
1692 #ifdef INET6
1693 struct rtentry *
1694 tcp_rtlookup6(struct in_conninfo *inc)
1695 {
1696 	struct route_in6 *ro6 = &inc->inc6_route;
1697 
1698 	if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1699 		/* No route yet, so try to acquire one */
1700 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1701 			/*
1702 			 * unused portions of the structure MUST be zero'd
1703 			 * out because rtalloc() treats it as opaque data
1704 			 */
1705 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1706 			ro6->ro_dst.sin6_family = AF_INET6;
1707 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1708 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1709 			rtalloc((struct route *)ro6);
1710 		}
1711 	}
1712 	return (ro6->ro_rt);
1713 }
1714 #endif
1715 
1716 #ifdef IPSEC
1717 /* compute ESP/AH header size for TCP, including outer IP header. */
1718 size_t
1719 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1720 {
1721 	struct inpcb *inp;
1722 	struct mbuf *m;
1723 	size_t hdrsiz;
1724 	struct ip *ip;
1725 	struct tcphdr *th;
1726 
1727 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1728 		return (0);
1729 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1730 	if (!m)
1731 		return (0);
1732 
1733 #ifdef INET6
1734 	if (inp->inp_vflag & INP_IPV6) {
1735 		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1736 
1737 		th = (struct tcphdr *)(ip6 + 1);
1738 		m->m_pkthdr.len = m->m_len =
1739 		    sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1740 		tcp_fillheaders(tp, ip6, th);
1741 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1742 	} else
1743 #endif
1744 	{
1745 		ip = mtod(m, struct ip *);
1746 		th = (struct tcphdr *)(ip + 1);
1747 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1748 		tcp_fillheaders(tp, ip, th);
1749 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1750 	}
1751 
1752 	m_free(m);
1753 	return (hdrsiz);
1754 }
1755 #endif
1756 
1757 /*
1758  * Return a pointer to the cached information about the remote host.
1759  * The cached information is stored in the protocol specific part of
1760  * the route metrics.
1761  */
1762 struct rmxp_tao *
1763 tcp_gettaocache(struct in_conninfo *inc)
1764 {
1765 	struct rtentry *rt;
1766 
1767 #ifdef INET6
1768 	if (inc->inc_isipv6)
1769 		rt = tcp_rtlookup6(inc);
1770 	else
1771 #endif
1772 		rt = tcp_rtlookup(inc);
1773 
1774 	/* Make sure this is a host route and is up. */
1775 	if (rt == NULL ||
1776 	    (rt->rt_flags & (RTF_UP | RTF_HOST)) != (RTF_UP | RTF_HOST))
1777 		return (NULL);
1778 
1779 	return (rmx_taop(rt->rt_rmx));
1780 }
1781 
1782 /*
1783  * Clear all the TAO cache entries, called from tcp_init.
1784  *
1785  * XXX
1786  * This routine is just an empty one, because we assume that the routing
1787  * routing tables are initialized at the same time when TCP, so there is
1788  * nothing in the cache left over.
1789  */
1790 static void
1791 tcp_cleartaocache(void)
1792 {
1793 }
1794 
1795 /*
1796  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1797  *
1798  * This code attempts to calculate the bandwidth-delay product as a
1799  * means of determining the optimal window size to maximize bandwidth,
1800  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1801  * routers.  This code also does a fairly good job keeping RTTs in check
1802  * across slow links like modems.  We implement an algorithm which is very
1803  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1804  * transmitter side of a TCP connection and so only effects the transmit
1805  * side of the connection.
1806  *
1807  * BACKGROUND:  TCP makes no provision for the management of buffer space
1808  * at the end points or at the intermediate routers and switches.  A TCP
1809  * stream, whether using NewReno or not, will eventually buffer as
1810  * many packets as it is able and the only reason this typically works is
1811  * due to the fairly small default buffers made available for a connection
1812  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1813  * scaling it is now fairly easy for even a single TCP connection to blow-out
1814  * all available buffer space not only on the local interface, but on
1815  * intermediate routers and switches as well.  NewReno makes a misguided
1816  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1817  * then backing off, then steadily increasing the window again until another
1818  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1819  * is only made worse as network loads increase and the idea of intentionally
1820  * blowing out network buffers is, frankly, a terrible way to manage network
1821  * resources.
1822  *
1823  * It is far better to limit the transmit window prior to the failure
1824  * condition being achieved.  There are two general ways to do this:  First
1825  * you can 'scan' through different transmit window sizes and locate the
1826  * point where the RTT stops increasing, indicating that you have filled the
1827  * pipe, then scan backwards until you note that RTT stops decreasing, then
1828  * repeat ad-infinitum.  This method works in principle but has severe
1829  * implementation issues due to RTT variances, timer granularity, and
1830  * instability in the algorithm which can lead to many false positives and
1831  * create oscillations as well as interact badly with other TCP streams
1832  * implementing the same algorithm.
1833  *
1834  * The second method is to limit the window to the bandwidth delay product
1835  * of the link.  This is the method we implement.  RTT variances and our
1836  * own manipulation of the congestion window, bwnd, can potentially
1837  * destabilize the algorithm.  For this reason we have to stabilize the
1838  * elements used to calculate the window.  We do this by using the minimum
1839  * observed RTT, the long term average of the observed bandwidth, and
1840  * by adding two segments worth of slop.  It isn't perfect but it is able
1841  * to react to changing conditions and gives us a very stable basis on
1842  * which to extend the algorithm.
1843  */
1844 void
1845 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1846 {
1847 	u_long bw;
1848 	u_long bwnd;
1849 	int save_ticks;
1850 	int delta_ticks;
1851 
1852 	/*
1853 	 * If inflight_enable is disabled in the middle of a tcp connection,
1854 	 * make sure snd_bwnd is effectively disabled.
1855 	 */
1856 	if (!tcp_inflight_enable) {
1857 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1858 		tp->snd_bandwidth = 0;
1859 		return;
1860 	}
1861 
1862 	/*
1863 	 * Validate the delta time.  If a connection is new or has been idle
1864 	 * a long time we have to reset the bandwidth calculator.
1865 	 */
1866 	save_ticks = ticks;
1867 	delta_ticks = save_ticks - tp->t_bw_rtttime;
1868 	if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1869 		tp->t_bw_rtttime = ticks;
1870 		tp->t_bw_rtseq = ack_seq;
1871 		if (tp->snd_bandwidth == 0)
1872 			tp->snd_bandwidth = tcp_inflight_min;
1873 		return;
1874 	}
1875 	if (delta_ticks == 0)
1876 		return;
1877 
1878 	/*
1879 	 * Sanity check, plus ignore pure window update acks.
1880 	 */
1881 	if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1882 		return;
1883 
1884 	/*
1885 	 * Figure out the bandwidth.  Due to the tick granularity this
1886 	 * is a very rough number and it MUST be averaged over a fairly
1887 	 * long period of time.  XXX we need to take into account a link
1888 	 * that is not using all available bandwidth, but for now our
1889 	 * slop will ramp us up if this case occurs and the bandwidth later
1890 	 * increases.
1891 	 */
1892 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
1893 	tp->t_bw_rtttime = save_ticks;
1894 	tp->t_bw_rtseq = ack_seq;
1895 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1896 
1897 	tp->snd_bandwidth = bw;
1898 
1899 	/*
1900 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1901 	 * segments.  The additional slop puts us squarely in the sweet
1902 	 * spot and also handles the bandwidth run-up case.  Without the
1903 	 * slop we could be locking ourselves into a lower bandwidth.
1904 	 *
1905 	 * Situations Handled:
1906 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1907 	 *	    high speed LANs, allowing larger TCP buffers to be
1908 	 *	    specified, and also does a good job preventing
1909 	 *	    over-queueing of packets over choke points like modems
1910 	 *	    (at least for the transmit side).
1911 	 *
1912 	 *	(2) Is able to handle changing network loads (bandwidth
1913 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1914 	 *	    increases).
1915 	 *
1916 	 *	(3) Theoretically should stabilize in the face of multiple
1917 	 *	    connections implementing the same algorithm (this may need
1918 	 *	    a little work).
1919 	 *
1920 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1921 	 *	    be adjusted with a sysctl but typically only needs to be on
1922 	 *	    very slow connections.  A value no smaller then 5 should
1923 	 *	    be used, but only reduce this default if you have no other
1924 	 *	    choice.
1925 	 */
1926 
1927 #define	USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1928 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
1929 	       tcp_inflight_stab * (int)tp->t_maxseg / 10;
1930 #undef USERTT
1931 
1932 	if (tcp_inflight_debug > 0) {
1933 		static int ltime;
1934 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1935 			ltime = ticks;
1936 			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1937 				tp, bw, tp->t_rttbest, tp->t_srtt, bwnd);
1938 		}
1939 	}
1940 	if ((long)bwnd < tcp_inflight_min)
1941 		bwnd = tcp_inflight_min;
1942 	if (bwnd > tcp_inflight_max)
1943 		bwnd = tcp_inflight_max;
1944 	if ((long)bwnd < tp->t_maxseg * 2)
1945 		bwnd = tp->t_maxseg * 2;
1946 	tp->snd_bwnd = bwnd;
1947 }
1948