xref: /dragonfly/sys/netinet/tcp_subr.c (revision d77a7c90)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
35  * $DragonFly: src/sys/netinet/tcp_subr.c,v 1.17 2004/03/14 08:26:31 hsu Exp $
36  */
37 
38 #include "opt_compat.h"
39 #include "opt_inet6.h"
40 #include "opt_ipsec.h"
41 #include "opt_tcpdebug.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/kernel.h>
47 #include <sys/sysctl.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #ifdef INET6
51 #include <sys/domain.h>
52 #endif
53 #include <sys/proc.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/protosw.h>
57 #include <sys/random.h>
58 #include <sys/in_cksum.h>
59 
60 #include <vm/vm_zone.h>
61 
62 #include <net/route.h>
63 #include <net/if.h>
64 #include <net/netisr.h>
65 
66 #define _IP_VHL
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/ip.h>
70 #ifdef INET6
71 #include <netinet/ip6.h>
72 #endif
73 #include <netinet/in_pcb.h>
74 #ifdef INET6
75 #include <netinet6/in6_pcb.h>
76 #endif
77 #include <netinet/in_var.h>
78 #include <netinet/ip_var.h>
79 #ifdef INET6
80 #include <netinet6/ip6_var.h>
81 #endif
82 #include <netinet/tcp.h>
83 #include <netinet/tcp_fsm.h>
84 #include <netinet/tcp_seq.h>
85 #include <netinet/tcp_timer.h>
86 #include <netinet/tcp_var.h>
87 #ifdef INET6
88 #include <netinet6/tcp6_var.h>
89 #endif
90 #include <netinet/tcpip.h>
91 #ifdef TCPDEBUG
92 #include <netinet/tcp_debug.h>
93 #endif
94 #include <netinet6/ip6protosw.h>
95 
96 #ifdef IPSEC
97 #include <netinet6/ipsec.h>
98 #ifdef INET6
99 #include <netinet6/ipsec6.h>
100 #endif
101 #endif /*IPSEC*/
102 
103 #ifdef FAST_IPSEC
104 #include <netipsec/ipsec.h>
105 #ifdef INET6
106 #include <netipsec/ipsec6.h>
107 #endif
108 #define	IPSEC
109 #endif /*FAST_IPSEC*/
110 
111 #include <sys/md5.h>
112 
113 #include <sys/msgport2.h>
114 
115 int 	tcp_mssdflt = TCP_MSS;
116 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
117     &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
118 
119 #ifdef INET6
120 int	tcp_v6mssdflt = TCP6_MSS;
121 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
122 	CTLFLAG_RW, &tcp_v6mssdflt , 0,
123 	"Default TCP Maximum Segment Size for IPv6");
124 #endif
125 
126 #if 0
127 static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
128 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
129     &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
130 #endif
131 
132 int	tcp_do_rfc1323 = 1;
133 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
134     &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
135 
136 int	tcp_do_rfc1644 = 0;
137 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
138     &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
139 
140 static int	tcp_tcbhashsize = 0;
141 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
142      &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
143 
144 static int	do_tcpdrain = 1;
145 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
146      "Enable tcp_drain routine for extra help when low on mbufs");
147 
148 /* XXX JH */
149 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
150     &tcbinfo[0].ipi_count, 0, "Number of active PCBs");
151 
152 static int	icmp_may_rst = 1;
153 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
154     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
155 
156 static int	tcp_isn_reseed_interval = 0;
157 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
158     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
159 
160 /*
161  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
162  * 1024 exists only for debugging.  A good production default would be
163  * something like 6100.
164  */
165 static int     tcp_inflight_enable = 0;
166 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
167     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
168 
169 static int     tcp_inflight_debug = 0;
170 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
171     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
172 
173 static int     tcp_inflight_min = 6144;
174 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
175     &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
176 
177 static int     tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
178 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
179     &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
180 
181 static int     tcp_inflight_stab = 20;
182 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
183     &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 2 packets)");
184 
185 static void	tcp_cleartaocache (void);
186 static void	tcp_notify (struct inpcb *, int);
187 
188 /*
189  * Target size of TCP PCB hash tables. Must be a power of two.
190  *
191  * Note that this can be overridden by the kernel environment
192  * variable net.inet.tcp.tcbhashsize
193  */
194 #ifndef TCBHASHSIZE
195 #define TCBHASHSIZE	512
196 #endif
197 
198 /*
199  * This is the actual shape of what we allocate using the zone
200  * allocator.  Doing it this way allows us to protect both structures
201  * using the same generation count, and also eliminates the overhead
202  * of allocating tcpcbs separately.  By hiding the structure here,
203  * we avoid changing most of the rest of the code (although it needs
204  * to be changed, eventually, for greater efficiency).
205  */
206 #define	ALIGNMENT	32
207 #define	ALIGNM1		(ALIGNMENT - 1)
208 struct	inp_tp {
209 	union {
210 		struct	inpcb inp;
211 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
212 	} inp_tp_u;
213 	struct	tcpcb tcb;
214 	struct	callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
215 	struct	callout inp_tp_delack;
216 };
217 #undef ALIGNMENT
218 #undef ALIGNM1
219 
220 /*
221  * Tcp initialization
222  */
223 void
224 tcp_init()
225 {
226 	struct inpcbporthead *porthashbase;
227 	u_long porthashmask;
228 	struct inpcbhead *bindhashbase;
229 	u_long bindhashmask;
230 	struct vm_zone *ipi_zone;
231 	int hashsize = TCBHASHSIZE;
232 	int cpu;
233 
234 	tcp_ccgen = 1;
235 	tcp_cleartaocache();
236 
237 	tcp_delacktime = TCPTV_DELACK;
238 	tcp_keepinit = TCPTV_KEEP_INIT;
239 	tcp_keepidle = TCPTV_KEEP_IDLE;
240 	tcp_keepintvl = TCPTV_KEEPINTVL;
241 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
242 	tcp_msl = TCPTV_MSL;
243 	tcp_rexmit_min = TCPTV_MIN;
244 	tcp_rexmit_slop = TCPTV_CPU_VAR;
245 
246 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
247 	if (!powerof2(hashsize)) {
248 		printf("WARNING: TCB hash size not a power of 2\n");
249 		hashsize = 512; /* safe default */
250 	}
251 	tcp_tcbhashsize = hashsize;
252 	porthashbase = hashinit(hashsize, M_PCB, &porthashmask);
253 	bindhashbase = hashinit(hashsize, M_PCB, &bindhashmask);
254 	ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets,
255 			 ZONE_INTERRUPT, 0);
256 
257 	for (cpu = 0; cpu < ncpus2; cpu++) {
258 		LIST_INIT(&tcbinfo[cpu].listhead);
259 		tcbinfo[cpu].hashbase = hashinit(hashsize, M_PCB,
260 		    &tcbinfo[cpu].hashmask);
261 		tcbinfo[cpu].porthashbase = porthashbase;
262 		tcbinfo[cpu].porthashmask = porthashmask;
263 		tcbinfo[cpu].bindhashbase = bindhashbase;
264 		tcbinfo[cpu].bindhashmask = bindhashmask;
265 		tcbinfo[cpu].ipi_zone = ipi_zone;
266 	}
267 
268 	tcp_reass_maxseg = nmbclusters / 16;
269 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments",
270 	    &tcp_reass_maxseg);
271 
272 #ifdef INET6
273 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
274 #else /* INET6 */
275 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
276 #endif /* INET6 */
277 	if (max_protohdr < TCP_MINPROTOHDR)
278 		max_protohdr = TCP_MINPROTOHDR;
279 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
280 		panic("tcp_init");
281 #undef TCP_MINPROTOHDR
282 
283 	syncache_init();
284 	tcp_thread_init();
285 }
286 
287 /*
288  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
289  * tcp_template used to store this data in mbufs, but we now recopy it out
290  * of the tcpcb each time to conserve mbufs.
291  */
292 void
293 tcp_fillheaders(tp, ip_ptr, tcp_ptr)
294 	struct tcpcb *tp;
295 	void *ip_ptr;
296 	void *tcp_ptr;
297 {
298 	struct inpcb *inp = tp->t_inpcb;
299 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
300 
301 #ifdef INET6
302 	if ((inp->inp_vflag & INP_IPV6) != 0) {
303 		struct ip6_hdr *ip6;
304 
305 		ip6 = (struct ip6_hdr *)ip_ptr;
306 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
307 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
308 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
309 			(IPV6_VERSION & IPV6_VERSION_MASK);
310 		ip6->ip6_nxt = IPPROTO_TCP;
311 		ip6->ip6_plen = sizeof(struct tcphdr);
312 		ip6->ip6_src = inp->in6p_laddr;
313 		ip6->ip6_dst = inp->in6p_faddr;
314 		tcp_hdr->th_sum = 0;
315 	} else
316 #endif
317 	{
318 	struct ip *ip = (struct ip *) ip_ptr;
319 
320 	ip->ip_vhl = IP_VHL_BORING;
321 	ip->ip_tos = 0;
322 	ip->ip_len = 0;
323 	ip->ip_id = 0;
324 	ip->ip_off = 0;
325 	ip->ip_ttl = 0;
326 	ip->ip_sum = 0;
327 	ip->ip_p = IPPROTO_TCP;
328 	ip->ip_src = inp->inp_laddr;
329 	ip->ip_dst = inp->inp_faddr;
330 	tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
331 		htons(sizeof(struct tcphdr) + IPPROTO_TCP));
332 	}
333 
334 	tcp_hdr->th_sport = inp->inp_lport;
335 	tcp_hdr->th_dport = inp->inp_fport;
336 	tcp_hdr->th_seq = 0;
337 	tcp_hdr->th_ack = 0;
338 	tcp_hdr->th_x2 = 0;
339 	tcp_hdr->th_off = 5;
340 	tcp_hdr->th_flags = 0;
341 	tcp_hdr->th_win = 0;
342 	tcp_hdr->th_urp = 0;
343 }
344 
345 /*
346  * Create template to be used to send tcp packets on a connection.
347  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
348  * use for this function is in keepalives, which use tcp_respond.
349  */
350 struct tcptemp *
351 tcp_maketemplate(tp)
352 	struct tcpcb *tp;
353 {
354 	struct mbuf *m;
355 	struct tcptemp *n;
356 
357 	m = m_get(M_DONTWAIT, MT_HEADER);
358 	if (m == NULL)
359 		return (0);
360 	m->m_len = sizeof(struct tcptemp);
361 	n = mtod(m, struct tcptemp *);
362 
363 	tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
364 	return (n);
365 }
366 
367 /*
368  * Send a single message to the TCP at address specified by
369  * the given TCP/IP header.  If m == 0, then we make a copy
370  * of the tcpiphdr at ti and send directly to the addressed host.
371  * This is used to force keep alive messages out using the TCP
372  * template for a connection.  If flags are given then we send
373  * a message back to the TCP which originated the * segment ti,
374  * and discard the mbuf containing it and any other attached mbufs.
375  *
376  * In any case the ack and sequence number of the transmitted
377  * segment are as specified by the parameters.
378  *
379  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
380  */
381 void
382 tcp_respond(tp, ipgen, th, m, ack, seq, flags)
383 	struct tcpcb *tp;
384 	void *ipgen;
385 	struct tcphdr *th;
386 	struct mbuf *m;
387 	tcp_seq ack, seq;
388 	int flags;
389 {
390 	int tlen;
391 	int win = 0;
392 	struct route *ro = 0;
393 	struct route sro;
394 	struct ip *ip;
395 	struct tcphdr *nth;
396 #ifdef INET6
397 	struct route_in6 *ro6 = 0;
398 	struct route_in6 sro6;
399 	struct ip6_hdr *ip6;
400 	int isipv6;
401 #endif /* INET6 */
402 	int ipflags = 0;
403 
404 #ifdef INET6
405 	isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6;
406 	ip6 = ipgen;
407 #endif /* INET6 */
408 	ip = ipgen;
409 
410 	if (tp) {
411 		if (!(flags & TH_RST)) {
412 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
413 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
414 				win = (long)TCP_MAXWIN << tp->rcv_scale;
415 		}
416 #ifdef INET6
417 		if (isipv6)
418 			ro6 = &tp->t_inpcb->in6p_route;
419 		else
420 #endif /* INET6 */
421 		ro = &tp->t_inpcb->inp_route;
422 	} else {
423 #ifdef INET6
424 		if (isipv6) {
425 			ro6 = &sro6;
426 			bzero(ro6, sizeof *ro6);
427 		} else
428 #endif /* INET6 */
429 	      {
430 		ro = &sro;
431 		bzero(ro, sizeof *ro);
432 	      }
433 	}
434 	if (m == 0) {
435 		m = m_gethdr(M_DONTWAIT, MT_HEADER);
436 		if (m == NULL)
437 			return;
438 		tlen = 0;
439 		m->m_data += max_linkhdr;
440 #ifdef INET6
441 		if (isipv6) {
442 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
443 			      sizeof(struct ip6_hdr));
444 			ip6 = mtod(m, struct ip6_hdr *);
445 			nth = (struct tcphdr *)(ip6 + 1);
446 		} else
447 #endif /* INET6 */
448 	      {
449 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
450 		ip = mtod(m, struct ip *);
451 		nth = (struct tcphdr *)(ip + 1);
452 	      }
453 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
454 		flags = TH_ACK;
455 	} else {
456 		m_freem(m->m_next);
457 		m->m_next = 0;
458 		m->m_data = (caddr_t)ipgen;
459 		/* m_len is set later */
460 		tlen = 0;
461 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
462 #ifdef INET6
463 		if (isipv6) {
464 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
465 			nth = (struct tcphdr *)(ip6 + 1);
466 		} else
467 #endif /* INET6 */
468 	      {
469 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
470 		nth = (struct tcphdr *)(ip + 1);
471 	      }
472 		if (th != nth) {
473 			/*
474 			 * this is usually a case when an extension header
475 			 * exists between the IPv6 header and the
476 			 * TCP header.
477 			 */
478 			nth->th_sport = th->th_sport;
479 			nth->th_dport = th->th_dport;
480 		}
481 		xchg(nth->th_dport, nth->th_sport, n_short);
482 #undef xchg
483 	}
484 #ifdef INET6
485 	if (isipv6) {
486 		ip6->ip6_flow = 0;
487 		ip6->ip6_vfc = IPV6_VERSION;
488 		ip6->ip6_nxt = IPPROTO_TCP;
489 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
490 						tlen));
491 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
492 	} else
493 #endif
494       {
495 	tlen += sizeof (struct tcpiphdr);
496 	ip->ip_len = tlen;
497 	ip->ip_ttl = ip_defttl;
498       }
499 	m->m_len = tlen;
500 	m->m_pkthdr.len = tlen;
501 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
502 	nth->th_seq = htonl(seq);
503 	nth->th_ack = htonl(ack);
504 	nth->th_x2 = 0;
505 	nth->th_off = sizeof (struct tcphdr) >> 2;
506 	nth->th_flags = flags;
507 	if (tp)
508 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
509 	else
510 		nth->th_win = htons((u_short)win);
511 	nth->th_urp = 0;
512 #ifdef INET6
513 	if (isipv6) {
514 		nth->th_sum = 0;
515 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
516 					sizeof(struct ip6_hdr),
517 					tlen - sizeof(struct ip6_hdr));
518 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
519 					       ro6 && ro6->ro_rt ?
520 					       ro6->ro_rt->rt_ifp :
521 					       NULL);
522 	} else
523 #endif /* INET6 */
524       {
525         nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
526 	    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
527         m->m_pkthdr.csum_flags = CSUM_TCP;
528         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
529       }
530 #ifdef TCPDEBUG
531 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
532 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
533 #endif
534 #ifdef INET6
535 	if (isipv6) {
536 		(void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
537 			tp ? tp->t_inpcb : NULL);
538 		if (ro6 == &sro6 && ro6->ro_rt) {
539 			RTFREE(ro6->ro_rt);
540 			ro6->ro_rt = NULL;
541 		}
542 	} else
543 #endif /* INET6 */
544       {
545 	(void) ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
546 	if (ro == &sro && ro->ro_rt) {
547 		RTFREE(ro->ro_rt);
548 		ro->ro_rt = NULL;
549 	}
550       }
551 }
552 
553 /*
554  * Create a new TCP control block, making an
555  * empty reassembly queue and hooking it to the argument
556  * protocol control block.  The `inp' parameter must have
557  * come from the zone allocator set up in tcp_init().
558  */
559 struct tcpcb *
560 tcp_newtcpcb(inp)
561 	struct inpcb *inp;
562 {
563 	struct inp_tp *it;
564 	struct tcpcb *tp;
565 #ifdef INET6
566 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
567 #endif /* INET6 */
568 
569 	it = (struct inp_tp *)inp;
570 	tp = &it->tcb;
571 	bzero((char *) tp, sizeof(struct tcpcb));
572 	LIST_INIT(&tp->t_segq);
573 	tp->t_maxseg = tp->t_maxopd =
574 #ifdef INET6
575 		isipv6 ? tcp_v6mssdflt :
576 #endif /* INET6 */
577 		tcp_mssdflt;
578 
579 	/* Set up our timeouts. */
580 	callout_init(tp->tt_rexmt = &it->inp_tp_rexmt);
581 	callout_init(tp->tt_persist = &it->inp_tp_persist);
582 	callout_init(tp->tt_keep = &it->inp_tp_keep);
583 	callout_init(tp->tt_2msl = &it->inp_tp_2msl);
584 	callout_init(tp->tt_delack = &it->inp_tp_delack);
585 
586 	if (tcp_do_rfc1323)
587 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
588 	if (tcp_do_rfc1644)
589 		tp->t_flags |= TF_REQ_CC;
590 	tp->t_inpcb = inp;	/* XXX */
591 	/*
592 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
593 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
594 	 * reasonable initial retransmit time.
595 	 */
596 	tp->t_srtt = TCPTV_SRTTBASE;
597 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
598 	tp->t_rttmin = tcp_rexmit_min;
599 	tp->t_rxtcur = TCPTV_RTOBASE;
600 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
601 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
602 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
603 	tp->t_rcvtime = ticks;
604 	tp->t_bw_rtttime = ticks;
605         /*
606 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
607 	 * because the socket may be bound to an IPv6 wildcard address,
608 	 * which may match an IPv4-mapped IPv6 address.
609 	 */
610 	inp->inp_ip_ttl = ip_defttl;
611 	inp->inp_ppcb = (caddr_t)tp;
612 	return (tp);		/* XXX */
613 }
614 
615 /*
616  * Drop a TCP connection, reporting
617  * the specified error.  If connection is synchronized,
618  * then send a RST to peer.
619  */
620 struct tcpcb *
621 tcp_drop(tp, errno)
622 	struct tcpcb *tp;
623 	int errno;
624 {
625 	struct socket *so = tp->t_inpcb->inp_socket;
626 
627 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
628 		tp->t_state = TCPS_CLOSED;
629 		(void) tcp_output(tp);
630 		tcpstat.tcps_drops++;
631 	} else
632 		tcpstat.tcps_conndrops++;
633 	if (errno == ETIMEDOUT && tp->t_softerror)
634 		errno = tp->t_softerror;
635 	so->so_error = errno;
636 	return (tcp_close(tp));
637 }
638 
639 /*
640  * Close a TCP control block:
641  *	discard all space held by the tcp
642  *	discard internet protocol block
643  *	wake up any sleepers
644  */
645 struct tcpcb *
646 tcp_close(tp)
647 	struct tcpcb *tp;
648 {
649 	struct tseg_qent *q;
650 	struct inpcb *inp = tp->t_inpcb;
651 	struct socket *so = inp->inp_socket;
652 #ifdef INET6
653 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
654 #endif /* INET6 */
655 	struct rtentry *rt;
656 	int dosavessthresh;
657 
658 	/*
659 	 * Make sure that all of our timers are stopped before we
660 	 * delete the PCB.
661 	 */
662 	callout_stop(tp->tt_rexmt);
663 	callout_stop(tp->tt_persist);
664 	callout_stop(tp->tt_keep);
665 	callout_stop(tp->tt_2msl);
666 	callout_stop(tp->tt_delack);
667 
668 	/*
669 	 * If we got enough samples through the srtt filter,
670 	 * save the rtt and rttvar in the routing entry.
671 	 * 'Enough' is arbitrarily defined as the 16 samples.
672 	 * 16 samples is enough for the srtt filter to converge
673 	 * to within 5% of the correct value; fewer samples and
674 	 * we could save a very bogus rtt.
675 	 *
676 	 * Don't update the default route's characteristics and don't
677 	 * update anything that the user "locked".
678 	 */
679 	if (tp->t_rttupdated >= 16) {
680 		u_long i = 0;
681 #ifdef INET6
682 		if (isipv6) {
683 			struct sockaddr_in6 *sin6;
684 
685 			if ((rt = inp->in6p_route.ro_rt) == NULL)
686 				goto no_valid_rt;
687 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
688 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
689 				goto no_valid_rt;
690 		}
691 		else
692 #endif /* INET6 */
693 		if ((rt = inp->inp_route.ro_rt) == NULL ||
694 		    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr
695 		    == INADDR_ANY)
696 			goto no_valid_rt;
697 
698 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
699 			i = tp->t_srtt *
700 			    (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
701 			if (rt->rt_rmx.rmx_rtt && i)
702 				/*
703 				 * filter this update to half the old & half
704 				 * the new values, converting scale.
705 				 * See route.h and tcp_var.h for a
706 				 * description of the scaling constants.
707 				 */
708 				rt->rt_rmx.rmx_rtt =
709 				    (rt->rt_rmx.rmx_rtt + i) / 2;
710 			else
711 				rt->rt_rmx.rmx_rtt = i;
712 			tcpstat.tcps_cachedrtt++;
713 		}
714 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
715 			i = tp->t_rttvar *
716 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
717 			if (rt->rt_rmx.rmx_rttvar && i)
718 				rt->rt_rmx.rmx_rttvar =
719 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
720 			else
721 				rt->rt_rmx.rmx_rttvar = i;
722 			tcpstat.tcps_cachedrttvar++;
723 		}
724 		/*
725 		 * The old comment here said:
726 		 * update the pipelimit (ssthresh) if it has been updated
727 		 * already or if a pipesize was specified & the threshhold
728 		 * got below half the pipesize.  I.e., wait for bad news
729 		 * before we start updating, then update on both good
730 		 * and bad news.
731 		 *
732 		 * But we want to save the ssthresh even if no pipesize is
733 		 * specified explicitly in the route, because such
734 		 * connections still have an implicit pipesize specified
735 		 * by the global tcp_sendspace.  In the absence of a reliable
736 		 * way to calculate the pipesize, it will have to do.
737 		 */
738 		i = tp->snd_ssthresh;
739 		if (rt->rt_rmx.rmx_sendpipe != 0)
740 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
741 		else
742 			dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
743 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
744 		     i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
745 		    || dosavessthresh) {
746 			/*
747 			 * convert the limit from user data bytes to
748 			 * packets then to packet data bytes.
749 			 */
750 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
751 			if (i < 2)
752 				i = 2;
753 			i *= (u_long)(tp->t_maxseg +
754 #ifdef INET6
755 				      (isipv6 ? sizeof (struct ip6_hdr) +
756 					       sizeof (struct tcphdr) :
757 #endif
758 				       sizeof (struct tcpiphdr)
759 #ifdef INET6
760 				       )
761 #endif
762 				      );
763 			if (rt->rt_rmx.rmx_ssthresh)
764 				rt->rt_rmx.rmx_ssthresh =
765 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
766 			else
767 				rt->rt_rmx.rmx_ssthresh = i;
768 			tcpstat.tcps_cachedssthresh++;
769 		}
770 	}
771     no_valid_rt:
772 	/* free the reassembly queue, if any */
773 	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
774 		LIST_REMOVE(q, tqe_q);
775 		m_freem(q->tqe_m);
776 		FREE(q, M_TSEGQ);
777 		tcp_reass_qsize--;
778 	}
779 	inp->inp_ppcb = NULL;
780 	soisdisconnected(so);
781 #ifdef INET6
782 	if (INP_CHECK_SOCKAF(so, AF_INET6))
783 		in6_pcbdetach(inp);
784 	else
785 #endif /* INET6 */
786 	in_pcbdetach(inp);
787 	tcpstat.tcps_closed++;
788 	return ((struct tcpcb *)0);
789 }
790 
791 static __inline void
792 tcp_drain_oncpu(struct inpcbhead *head)
793 {
794 	struct inpcb *inpb;
795 	struct tcpcb *tcpb;
796 	struct tseg_qent *te;
797 
798 	LIST_FOREACH(inpb, head, inp_list) {
799 		if ((tcpb = intotcpcb(inpb))) {
800 			while ((te = LIST_FIRST(&tcpb->t_segq)) != NULL) {
801 				LIST_REMOVE(te, tqe_q);
802 				m_freem(te->tqe_m);
803 				FREE(te, M_TSEGQ);
804 				tcp_reass_qsize--;
805 			}
806 		}
807 	}
808 }
809 
810 #ifdef SMP
811 struct netmsg_tcp_drain {
812 	struct lwkt_msg		nm_lmsg;
813 	netisr_fn_t		nm_handler;
814 	struct inpcbhead	*nm_head;
815 };
816 
817 static int		/* really should be void XXX JH */
818 tcp_drain_handler(struct netmsg *msg0)
819 {
820 	struct netmsg_tcp_drain *nm = (struct netmsg_tcp_drain *)msg0;
821 
822 	tcp_drain_oncpu(nm->nm_head);
823 
824 	return (0);	/* dummy return value */
825 }
826 #endif
827 
828 void
829 tcp_drain()
830 {
831 #ifdef SMP
832 	int cpu;
833 #endif
834 
835 	if (!do_tcpdrain)
836 		return;
837 
838 	/*
839 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
840 	 * if there is one...
841 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
842 	 *      reassembly queue should be flushed, but in a situation
843 	 * 	where we're really low on mbufs, this is potentially
844 	 *  	usefull.
845 	 */
846 #ifdef SMP
847 	for (cpu = 0; cpu < ncpus2; cpu++) {
848 		struct netmsg_tcp_drain *msg;
849 
850 		if (cpu == mycpu->gd_cpuid) {
851 			tcp_drain_oncpu(&tcbinfo[cpu].listhead);
852 		} else {
853 			msg = malloc(sizeof(struct netmsg_tcp_drain),
854 			    M_LWKTMSG, M_NOWAIT);
855 			if (!msg)
856 				continue;
857 			lwkt_initmsg_rp(&msg->nm_lmsg, &netisr_afree_rport,
858 			    CMD_NETMSG_ONCPU);
859 			msg->nm_handler = tcp_drain_handler;
860 			msg->nm_head = &tcbinfo[cpu].listhead;
861 			lwkt_sendmsg(tcp_cport(cpu), &msg->nm_lmsg);
862 		}
863 	}
864 #else
865 	tcp_drain_oncpu(&tcbinfo[0].listhead);
866 #endif
867 }
868 
869 /*
870  * Notify a tcp user of an asynchronous error;
871  * store error as soft error, but wake up user
872  * (for now, won't do anything until can select for soft error).
873  *
874  * Do not wake up user since there currently is no mechanism for
875  * reporting soft errors (yet - a kqueue filter may be added).
876  */
877 static void
878 tcp_notify(inp, error)
879 	struct inpcb *inp;
880 	int error;
881 {
882 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
883 
884 	/*
885 	 * Ignore some errors if we are hooked up.
886 	 * If connection hasn't completed, has retransmitted several times,
887 	 * and receives a second error, give up now.  This is better
888 	 * than waiting a long time to establish a connection that
889 	 * can never complete.
890 	 */
891 	if (tp->t_state == TCPS_ESTABLISHED &&
892 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
893 	      error == EHOSTDOWN)) {
894 		return;
895 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
896 	    tp->t_softerror)
897 		tcp_drop(tp, error);
898 	else
899 		tp->t_softerror = error;
900 #if 0
901 	wakeup((caddr_t) &so->so_timeo);
902 	sorwakeup(so);
903 	sowwakeup(so);
904 #endif
905 }
906 
907 static int
908 tcp_pcblist(SYSCTL_HANDLER_ARGS)
909 {
910 	int error, i, n, s;
911 	struct inpcb *inp, **inp_list;
912 	inp_gen_t gencnt;
913 	struct xinpgen xig;
914 
915 	/*
916 	 * The process of preparing the TCB list is too time-consuming and
917 	 * resource-intensive to repeat twice on every request.
918 	 */
919 	if (req->oldptr == 0) {
920 		n = tcbinfo[mycpu->gd_cpuid].ipi_count;
921 		req->oldidx = 2 * (sizeof xig)
922 			+ (n + n/8) * sizeof(struct xtcpcb);
923 		return 0;
924 	}
925 
926 	if (req->newptr != 0)
927 		return EPERM;
928 
929 	/*
930 	 * OK, now we're committed to doing something.
931 	 */
932 	s = splnet();
933 	gencnt = tcbinfo[mycpu->gd_cpuid].ipi_gencnt;
934 	n = tcbinfo[mycpu->gd_cpuid].ipi_count;
935 	splx(s);
936 
937 	xig.xig_len = sizeof xig;
938 	xig.xig_count = n;
939 	xig.xig_gen = gencnt;
940 	xig.xig_sogen = so_gencnt;
941 	error = SYSCTL_OUT(req, &xig, sizeof xig);
942 	if (error)
943 		return error;
944 
945 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
946 	if (inp_list == 0)
947 		return ENOMEM;
948 
949 	s = splnet();
950 	for (inp = LIST_FIRST(&tcbinfo[mycpu->gd_cpuid].listhead), i = 0;
951 	    inp && i < n; inp = LIST_NEXT(inp, inp_list)) {
952 		if (inp->inp_gencnt <= gencnt && !prison_xinpcb(req->td, inp))
953 			inp_list[i++] = inp;
954 	}
955 	splx(s);
956 	n = i;
957 
958 	error = 0;
959 	for (i = 0; i < n; i++) {
960 		inp = inp_list[i];
961 		if (inp->inp_gencnt <= gencnt) {
962 			struct xtcpcb xt;
963 			caddr_t inp_ppcb;
964 			xt.xt_len = sizeof xt;
965 			/* XXX should avoid extra copy */
966 			bcopy(inp, &xt.xt_inp, sizeof *inp);
967 			inp_ppcb = inp->inp_ppcb;
968 			if (inp_ppcb != NULL)
969 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
970 			else
971 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
972 			if (inp->inp_socket)
973 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
974 			error = SYSCTL_OUT(req, &xt, sizeof xt);
975 		}
976 	}
977 	if (!error) {
978 		/*
979 		 * Give the user an updated idea of our state.
980 		 * If the generation differs from what we told
981 		 * her before, she knows that something happened
982 		 * while we were processing this request, and it
983 		 * might be necessary to retry.
984 		 */
985 		s = splnet();
986 		xig.xig_gen = tcbinfo[mycpu->gd_cpuid].ipi_gencnt;
987 		xig.xig_sogen = so_gencnt;
988 		xig.xig_count = tcbinfo[mycpu->gd_cpuid].ipi_count;
989 		splx(s);
990 		error = SYSCTL_OUT(req, &xig, sizeof xig);
991 	}
992 	free(inp_list, M_TEMP);
993 	return error;
994 }
995 
996 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
997 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
998 
999 static int
1000 tcp_getcred(SYSCTL_HANDLER_ARGS)
1001 {
1002 	struct sockaddr_in addrs[2];
1003 	struct inpcb *inp;
1004 	int cpu;
1005 	int error, s;
1006 
1007 	error = suser(req->td);
1008 	if (error)
1009 		return (error);
1010 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1011 	if (error)
1012 		return (error);
1013 	s = splnet();
1014 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1015 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1016 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1017 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1018 	if (inp == NULL || inp->inp_socket == NULL) {
1019 		error = ENOENT;
1020 		goto out;
1021 	}
1022 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1023 out:
1024 	splx(s);
1025 	return (error);
1026 }
1027 
1028 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW,
1029     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1030 
1031 #ifdef INET6
1032 static int
1033 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1034 {
1035 	struct sockaddr_in6 addrs[2];
1036 	struct inpcb *inp;
1037 	int error, s, mapped = 0;
1038 
1039 	error = suser(req->td);
1040 	if (error)
1041 		return (error);
1042 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1043 	if (error)
1044 		return (error);
1045 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1046 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1047 			mapped = 1;
1048 		else
1049 			return (EINVAL);
1050 	}
1051 	s = splnet();
1052 	if (mapped == 1) {
1053 		inp = in_pcblookup_hash(&tcbinfo[0],
1054 		    *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1055 		    addrs[1].sin6_port,
1056 		    *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1057 		    addrs[0].sin6_port,
1058 		    0, NULL);
1059 	} else {
1060 		inp = in6_pcblookup_hash(&tcbinfo[0],
1061 		    &addrs[1].sin6_addr, addrs[1].sin6_port,
1062 		    &addrs[0].sin6_addr, addrs[0].sin6_port,
1063 		    0, NULL);
1064 	}
1065 	if (inp == NULL || inp->inp_socket == NULL) {
1066 		error = ENOENT;
1067 		goto out;
1068 	}
1069 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred,
1070 			   sizeof(struct ucred));
1071 out:
1072 	splx(s);
1073 	return (error);
1074 }
1075 
1076 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW,
1077 	    0, 0,
1078 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1079 #endif
1080 
1081 
1082 void
1083 tcp_ctlinput(cmd, sa, vip)
1084 	int cmd;
1085 	struct sockaddr *sa;
1086 	void *vip;
1087 {
1088 	struct ip *ip = vip;
1089 	struct tcphdr *th;
1090 	struct in_addr faddr;
1091 	struct inpcb *inp;
1092 	struct tcpcb *tp;
1093 	void (*notify) (struct inpcb *, int) = tcp_notify;
1094 	tcp_seq icmp_seq;
1095 	int cpu;
1096 	int s;
1097 
1098 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1099 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1100 		return;
1101 
1102 	if (cmd == PRC_QUENCH)
1103 		notify = tcp_quench;
1104 	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1105 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1106 		notify = tcp_drop_syn_sent;
1107 	else if (cmd == PRC_MSGSIZE)
1108 		notify = tcp_mtudisc;
1109 	else if (PRC_IS_REDIRECT(cmd)) {
1110 		ip = 0;
1111 		notify = in_rtchange;
1112 	} else if (cmd == PRC_HOSTDEAD)
1113 		ip = 0;
1114 	else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
1115 		return;
1116 	if (ip) {
1117 		s = splnet();
1118 		th = (struct tcphdr *)((caddr_t)ip
1119 				       + (IP_VHL_HL(ip->ip_vhl) << 2));
1120 		cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
1121 		    ip->ip_src.s_addr, th->th_sport);
1122 		inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
1123 		    ip->ip_src, th->th_sport, 0, NULL);
1124 		if (inp != NULL && inp->inp_socket != NULL) {
1125 			icmp_seq = htonl(th->th_seq);
1126 			tp = intotcpcb(inp);
1127 			if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1128 			    SEQ_LT(icmp_seq, tp->snd_max))
1129 				(*notify)(inp, inetctlerrmap[cmd]);
1130 		} else {
1131 			struct in_conninfo inc;
1132 
1133 			inc.inc_fport = th->th_dport;
1134 			inc.inc_lport = th->th_sport;
1135 			inc.inc_faddr = faddr;
1136 			inc.inc_laddr = ip->ip_src;
1137 #ifdef INET6
1138 			inc.inc_isipv6 = 0;
1139 #endif
1140 			syncache_unreach(&inc, th);
1141 		}
1142 		splx(s);
1143 	} else {
1144 		for (cpu = 0; cpu < ncpus2; cpu++)
1145 			in_pcbnotifyall(&tcbinfo[cpu].listhead, faddr,
1146 					inetctlerrmap[cmd], notify);
1147 	}
1148 }
1149 
1150 #ifdef INET6
1151 void
1152 tcp6_ctlinput(cmd, sa, d)
1153 	int cmd;
1154 	struct sockaddr *sa;
1155 	void *d;
1156 {
1157 	struct tcphdr th;
1158 	void (*notify) (struct inpcb *, int) = tcp_notify;
1159 	struct ip6_hdr *ip6;
1160 	struct mbuf *m;
1161 	struct ip6ctlparam *ip6cp = NULL;
1162 	const struct sockaddr_in6 *sa6_src = NULL;
1163 	int off;
1164 	struct tcp_portonly {
1165 		u_int16_t th_sport;
1166 		u_int16_t th_dport;
1167 	} *thp;
1168 
1169 	if (sa->sa_family != AF_INET6 ||
1170 	    sa->sa_len != sizeof(struct sockaddr_in6))
1171 		return;
1172 
1173 	if (cmd == PRC_QUENCH)
1174 		notify = tcp_quench;
1175 	else if (cmd == PRC_MSGSIZE)
1176 		notify = tcp_mtudisc;
1177 	else if (!PRC_IS_REDIRECT(cmd) &&
1178 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1179 		return;
1180 
1181 	/* if the parameter is from icmp6, decode it. */
1182 	if (d != NULL) {
1183 		ip6cp = (struct ip6ctlparam *)d;
1184 		m = ip6cp->ip6c_m;
1185 		ip6 = ip6cp->ip6c_ip6;
1186 		off = ip6cp->ip6c_off;
1187 		sa6_src = ip6cp->ip6c_src;
1188 	} else {
1189 		m = NULL;
1190 		ip6 = NULL;
1191 		off = 0;	/* fool gcc */
1192 		sa6_src = &sa6_any;
1193 	}
1194 
1195 	if (ip6) {
1196 		struct in_conninfo inc;
1197 		/*
1198 		 * XXX: We assume that when IPV6 is non NULL,
1199 		 * M and OFF are valid.
1200 		 */
1201 
1202 		/* check if we can safely examine src and dst ports */
1203 		if (m->m_pkthdr.len < off + sizeof(*thp))
1204 			return;
1205 
1206 		bzero(&th, sizeof(th));
1207 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1208 
1209 		in6_pcbnotify(&tcbinfo[0].listhead, sa, th.th_dport,
1210 		    (struct sockaddr *)ip6cp->ip6c_src,
1211 		    th.th_sport, cmd, notify);
1212 
1213 		inc.inc_fport = th.th_dport;
1214 		inc.inc_lport = th.th_sport;
1215 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1216 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1217 		inc.inc_isipv6 = 1;
1218 		syncache_unreach(&inc, &th);
1219 	} else
1220 		in6_pcbnotify(&tcbinfo[0].listhead, sa, 0,
1221 		    (const struct sockaddr *)sa6_src, 0, cmd, notify);
1222 }
1223 #endif /* INET6 */
1224 
1225 
1226 /*
1227  * Following is where TCP initial sequence number generation occurs.
1228  *
1229  * There are two places where we must use initial sequence numbers:
1230  * 1.  In SYN-ACK packets.
1231  * 2.  In SYN packets.
1232  *
1233  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1234  * tcp_syncache.c for details.
1235  *
1236  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1237  * depends on this property.  In addition, these ISNs should be
1238  * unguessable so as to prevent connection hijacking.  To satisfy
1239  * the requirements of this situation, the algorithm outlined in
1240  * RFC 1948 is used to generate sequence numbers.
1241  *
1242  * Implementation details:
1243  *
1244  * Time is based off the system timer, and is corrected so that it
1245  * increases by one megabyte per second.  This allows for proper
1246  * recycling on high speed LANs while still leaving over an hour
1247  * before rollover.
1248  *
1249  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1250  * between seeding of isn_secret.  This is normally set to zero,
1251  * as reseeding should not be necessary.
1252  *
1253  */
1254 
1255 #define ISN_BYTES_PER_SECOND 1048576
1256 
1257 u_char isn_secret[32];
1258 int isn_last_reseed;
1259 MD5_CTX isn_ctx;
1260 
1261 tcp_seq
1262 tcp_new_isn(tp)
1263 	struct tcpcb *tp;
1264 {
1265 	u_int32_t md5_buffer[4];
1266 	tcp_seq new_isn;
1267 
1268 	/* Seed if this is the first use, reseed if requested. */
1269 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1270 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1271 		< (u_int)ticks))) {
1272 		read_random_unlimited(&isn_secret, sizeof(isn_secret));
1273 		isn_last_reseed = ticks;
1274 	}
1275 
1276 	/* Compute the md5 hash and return the ISN. */
1277 	MD5Init(&isn_ctx);
1278 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1279 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1280 #ifdef INET6
1281 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1282 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1283 			  sizeof(struct in6_addr));
1284 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1285 			  sizeof(struct in6_addr));
1286 	} else
1287 #endif
1288 	{
1289 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1290 			  sizeof(struct in_addr));
1291 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1292 			  sizeof(struct in_addr));
1293 	}
1294 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1295 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1296 	new_isn = (tcp_seq) md5_buffer[0];
1297 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1298 	return new_isn;
1299 }
1300 
1301 /*
1302  * When a source quench is received, close congestion window
1303  * to one segment.  We will gradually open it again as we proceed.
1304  */
1305 void
1306 tcp_quench(inp, errno)
1307 	struct inpcb *inp;
1308 	int errno;
1309 {
1310 	struct tcpcb *tp = intotcpcb(inp);
1311 
1312 	if (tp)
1313 		tp->snd_cwnd = tp->t_maxseg;
1314 }
1315 
1316 /*
1317  * When a specific ICMP unreachable message is received and the
1318  * connection state is SYN-SENT, drop the connection.  This behavior
1319  * is controlled by the icmp_may_rst sysctl.
1320  */
1321 void
1322 tcp_drop_syn_sent(inp, errno)
1323 	struct inpcb *inp;
1324 	int errno;
1325 {
1326 	struct tcpcb *tp = intotcpcb(inp);
1327 
1328 	if (tp && tp->t_state == TCPS_SYN_SENT)
1329 		tcp_drop(tp, errno);
1330 }
1331 
1332 /*
1333  * When `need fragmentation' ICMP is received, update our idea of the MSS
1334  * based on the new value in the route.  Also nudge TCP to send something,
1335  * since we know the packet we just sent was dropped.
1336  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1337  */
1338 void
1339 tcp_mtudisc(inp, errno)
1340 	struct inpcb *inp;
1341 	int errno;
1342 {
1343 	struct tcpcb *tp = intotcpcb(inp);
1344 	struct rtentry *rt;
1345 	struct rmxp_tao *taop;
1346 	struct socket *so = inp->inp_socket;
1347 	int offered;
1348 	int mss;
1349 #ifdef INET6
1350 	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1351 #endif /* INET6 */
1352 
1353 	if (tp) {
1354 #ifdef INET6
1355 		if (isipv6)
1356 			rt = tcp_rtlookup6(&inp->inp_inc);
1357 		else
1358 #endif /* INET6 */
1359 		rt = tcp_rtlookup(&inp->inp_inc);
1360 		if (!rt || !rt->rt_rmx.rmx_mtu) {
1361 			tp->t_maxopd = tp->t_maxseg =
1362 #ifdef INET6
1363 				isipv6 ? tcp_v6mssdflt :
1364 #endif /* INET6 */
1365 				tcp_mssdflt;
1366 			return;
1367 		}
1368 		taop = rmx_taop(rt->rt_rmx);
1369 		offered = taop->tao_mssopt;
1370 		mss = rt->rt_rmx.rmx_mtu -
1371 #ifdef INET6
1372 			(isipv6 ?
1373 			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1374 #endif /* INET6 */
1375 			 sizeof(struct tcpiphdr)
1376 #ifdef INET6
1377 			 )
1378 #endif /* INET6 */
1379 			;
1380 
1381 		if (offered)
1382 			mss = min(mss, offered);
1383 		/*
1384 		 * XXX - The above conditional probably violates the TCP
1385 		 * spec.  The problem is that, since we don't know the
1386 		 * other end's MSS, we are supposed to use a conservative
1387 		 * default.  But, if we do that, then MTU discovery will
1388 		 * never actually take place, because the conservative
1389 		 * default is much less than the MTUs typically seen
1390 		 * on the Internet today.  For the moment, we'll sweep
1391 		 * this under the carpet.
1392 		 *
1393 		 * The conservative default might not actually be a problem
1394 		 * if the only case this occurs is when sending an initial
1395 		 * SYN with options and data to a host we've never talked
1396 		 * to before.  Then, they will reply with an MSS value which
1397 		 * will get recorded and the new parameters should get
1398 		 * recomputed.  For Further Study.
1399 		 */
1400 		if (tp->t_maxopd <= mss)
1401 			return;
1402 		tp->t_maxopd = mss;
1403 
1404 		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1405 		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1406 			mss -= TCPOLEN_TSTAMP_APPA;
1407 		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1408 		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1409 			mss -= TCPOLEN_CC_APPA;
1410 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1411 		if (mss > MCLBYTES)
1412 			mss &= ~(MCLBYTES-1);
1413 #else
1414 		if (mss > MCLBYTES)
1415 			mss = mss / MCLBYTES * MCLBYTES;
1416 #endif
1417 		if (so->so_snd.sb_hiwat < mss)
1418 			mss = so->so_snd.sb_hiwat;
1419 
1420 		tp->t_maxseg = mss;
1421 
1422 		tcpstat.tcps_mturesent++;
1423 		tp->t_rtttime = 0;
1424 		tp->snd_nxt = tp->snd_una;
1425 		tcp_output(tp);
1426 	}
1427 }
1428 
1429 /*
1430  * Look-up the routing entry to the peer of this inpcb.  If no route
1431  * is found and it cannot be allocated the return NULL.  This routine
1432  * is called by TCP routines that access the rmx structure and by tcp_mss
1433  * to get the interface MTU.
1434  */
1435 struct rtentry *
1436 tcp_rtlookup(inc)
1437 	struct in_conninfo *inc;
1438 {
1439 	struct route *ro;
1440 	struct rtentry *rt;
1441 
1442 	ro = &inc->inc_route;
1443 	rt = ro->ro_rt;
1444 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1445 		/* No route yet, so try to acquire one */
1446 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1447 			ro->ro_dst.sa_family = AF_INET;
1448 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1449 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1450 			    inc->inc_faddr;
1451 			rtalloc(ro);
1452 			rt = ro->ro_rt;
1453 		}
1454 	}
1455 	return rt;
1456 }
1457 
1458 #ifdef INET6
1459 struct rtentry *
1460 tcp_rtlookup6(inc)
1461 	struct in_conninfo *inc;
1462 {
1463 	struct route_in6 *ro6;
1464 	struct rtentry *rt;
1465 
1466 	ro6 = &inc->inc6_route;
1467 	rt = ro6->ro_rt;
1468 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1469 		/* No route yet, so try to acquire one */
1470 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1471 			ro6->ro_dst.sin6_family = AF_INET6;
1472 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1473 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1474 			rtalloc((struct route *)ro6);
1475 			rt = ro6->ro_rt;
1476 		}
1477 	}
1478 	return rt;
1479 }
1480 #endif /* INET6 */
1481 
1482 #ifdef IPSEC
1483 /* compute ESP/AH header size for TCP, including outer IP header. */
1484 size_t
1485 ipsec_hdrsiz_tcp(tp)
1486 	struct tcpcb *tp;
1487 {
1488 	struct inpcb *inp;
1489 	struct mbuf *m;
1490 	size_t hdrsiz;
1491 	struct ip *ip;
1492 #ifdef INET6
1493 	struct ip6_hdr *ip6;
1494 #endif /* INET6 */
1495 	struct tcphdr *th;
1496 
1497 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1498 		return 0;
1499 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1500 	if (!m)
1501 		return 0;
1502 
1503 #ifdef INET6
1504 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1505 		ip6 = mtod(m, struct ip6_hdr *);
1506 		th = (struct tcphdr *)(ip6 + 1);
1507 		m->m_pkthdr.len = m->m_len =
1508 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1509 		tcp_fillheaders(tp, ip6, th);
1510 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1511 	} else
1512 #endif /* INET6 */
1513       {
1514 	ip = mtod(m, struct ip *);
1515 	th = (struct tcphdr *)(ip + 1);
1516 	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1517 	tcp_fillheaders(tp, ip, th);
1518 	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1519       }
1520 
1521 	m_free(m);
1522 	return hdrsiz;
1523 }
1524 #endif /*IPSEC*/
1525 
1526 /*
1527  * Return a pointer to the cached information about the remote host.
1528  * The cached information is stored in the protocol specific part of
1529  * the route metrics.
1530  */
1531 struct rmxp_tao *
1532 tcp_gettaocache(inc)
1533 	struct in_conninfo *inc;
1534 {
1535 	struct rtentry *rt;
1536 
1537 #ifdef INET6
1538 	if (inc->inc_isipv6)
1539 		rt = tcp_rtlookup6(inc);
1540 	else
1541 #endif /* INET6 */
1542 	rt = tcp_rtlookup(inc);
1543 
1544 	/* Make sure this is a host route and is up. */
1545 	if (rt == NULL ||
1546 	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
1547 		return NULL;
1548 
1549 	return rmx_taop(rt->rt_rmx);
1550 }
1551 
1552 /*
1553  * Clear all the TAO cache entries, called from tcp_init.
1554  *
1555  * XXX
1556  * This routine is just an empty one, because we assume that the routing
1557  * routing tables are initialized at the same time when TCP, so there is
1558  * nothing in the cache left over.
1559  */
1560 static void
1561 tcp_cleartaocache()
1562 {
1563 }
1564 
1565 /*
1566  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1567  *
1568  * This code attempts to calculate the bandwidth-delay product as a
1569  * means of determining the optimal window size to maximize bandwidth,
1570  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1571  * routers.  This code also does a fairly good job keeping RTTs in check
1572  * across slow links like modems.  We implement an algorithm which is very
1573  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1574  * transmitter side of a TCP connection and so only effects the transmit
1575  * side of the connection.
1576  *
1577  * BACKGROUND:  TCP makes no provision for the management of buffer space
1578  * at the end points or at the intermediate routers and switches.  A TCP
1579  * stream, whether using NewReno or not, will eventually buffer as
1580  * many packets as it is able and the only reason this typically works is
1581  * due to the fairly small default buffers made available for a connection
1582  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1583  * scaling it is now fairly easy for even a single TCP connection to blow-out
1584  * all available buffer space not only on the local interface, but on
1585  * intermediate routers and switches as well.  NewReno makes a misguided
1586  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1587  * then backing off, then steadily increasing the window again until another
1588  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1589  * is only made worse as network loads increase and the idea of intentionally
1590  * blowing out network buffers is, frankly, a terrible way to manage network
1591  * resources.
1592  *
1593  * It is far better to limit the transmit window prior to the failure
1594  * condition being achieved.  There are two general ways to do this:  First
1595  * you can 'scan' through different transmit window sizes and locate the
1596  * point where the RTT stops increasing, indicating that you have filled the
1597  * pipe, then scan backwards until you note that RTT stops decreasing, then
1598  * repeat ad-infinitum.  This method works in principle but has severe
1599  * implementation issues due to RTT variances, timer granularity, and
1600  * instability in the algorithm which can lead to many false positives and
1601  * create oscillations as well as interact badly with other TCP streams
1602  * implementing the same algorithm.
1603  *
1604  * The second method is to limit the window to the bandwidth delay product
1605  * of the link.  This is the method we implement.  RTT variances and our
1606  * own manipulation of the congestion window, bwnd, can potentially
1607  * destabilize the algorithm.  For this reason we have to stabilize the
1608  * elements used to calculate the window.  We do this by using the minimum
1609  * observed RTT, the long term average of the observed bandwidth, and
1610  * by adding two segments worth of slop.  It isn't perfect but it is able
1611  * to react to changing conditions and gives us a very stable basis on
1612  * which to extend the algorithm.
1613  */
1614 void
1615 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1616 {
1617 	u_long bw;
1618 	u_long bwnd;
1619 	int save_ticks;
1620 
1621 	/*
1622 	 * If inflight_enable is disabled in the middle of a tcp connection,
1623 	 * make sure snd_bwnd is effectively disabled.
1624 	 */
1625 	if (tcp_inflight_enable == 0) {
1626 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1627 		tp->snd_bandwidth = 0;
1628 		return;
1629 	}
1630 
1631 	/*
1632 	 * Figure out the bandwidth.  Due to the tick granularity this
1633 	 * is a very rough number and it MUST be averaged over a fairly
1634 	 * long period of time.  XXX we need to take into account a link
1635 	 * that is not using all available bandwidth, but for now our
1636 	 * slop will ramp us up if this case occurs and the bandwidth later
1637 	 * increases.
1638 	 *
1639 	 * Note: if ticks rollover 'bw' may wind up negative.  We must
1640 	 * effectively reset t_bw_rtttime for this case.
1641 	 */
1642 	save_ticks = ticks;
1643 	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1644 		return;
1645 
1646 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1647 	    (save_ticks - tp->t_bw_rtttime);
1648 	tp->t_bw_rtttime = save_ticks;
1649 	tp->t_bw_rtseq = ack_seq;
1650 	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
1651 		return;
1652 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1653 
1654 	tp->snd_bandwidth = bw;
1655 
1656 	/*
1657 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1658 	 * segments.  The additional slop puts us squarely in the sweet
1659 	 * spot and also handles the bandwidth run-up case.  Without the
1660 	 * slop we could be locking ourselves into a lower bandwidth.
1661 	 *
1662 	 * Situations Handled:
1663 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1664 	 *	    high speed LANs, allowing larger TCP buffers to be
1665 	 *	    specified, and also does a good job preventing
1666 	 *	    over-queueing of packets over choke points like modems
1667 	 *	    (at least for the transmit side).
1668 	 *
1669 	 *	(2) Is able to handle changing network loads (bandwidth
1670 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1671 	 *	    increases).
1672 	 *
1673 	 *	(3) Theoretically should stabilize in the face of multiple
1674 	 *	    connections implementing the same algorithm (this may need
1675 	 *	    a little work).
1676 	 *
1677 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1678 	 *	    be adjusted with a sysctl but typically only needs to be on
1679 	 *	    very slow connections.  A value no smaller then 5 should
1680 	 *	    be used, but only reduce this default if you have no other
1681 	 *	    choice.
1682 	 */
1683 #define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1684 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * (int)tp->t_maxseg / 10;
1685 #undef USERTT
1686 
1687 	if (tcp_inflight_debug > 0) {
1688 		static int ltime;
1689 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1690 			ltime = ticks;
1691 			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1692 			    tp,
1693 			    bw,
1694 			    tp->t_rttbest,
1695 			    tp->t_srtt,
1696 			    bwnd
1697 			);
1698 		}
1699 	}
1700 	if ((long)bwnd < tcp_inflight_min)
1701 		bwnd = tcp_inflight_min;
1702 	if (bwnd > tcp_inflight_max)
1703 		bwnd = tcp_inflight_max;
1704 	if ((long)bwnd < tp->t_maxseg * 2)
1705 		bwnd = tp->t_maxseg * 2;
1706 	tp->snd_bwnd = bwnd;
1707 }
1708