xref: /dragonfly/sys/netinet/tcp_subr.c (revision dca3c15d)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
67  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
68  * $DragonFly: src/sys/netinet/tcp_subr.c,v 1.63 2008/11/11 10:46:58 sephe Exp $
69  */
70 
71 #include "opt_compat.h"
72 #include "opt_inet6.h"
73 #include "opt_ipsec.h"
74 #include "opt_tcpdebug.h"
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/callout.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 #include <sys/malloc.h>
82 #include <sys/mpipe.h>
83 #include <sys/mbuf.h>
84 #ifdef INET6
85 #include <sys/domain.h>
86 #endif
87 #include <sys/proc.h>
88 #include <sys/priv.h>
89 #include <sys/socket.h>
90 #include <sys/socketvar.h>
91 #include <sys/protosw.h>
92 #include <sys/random.h>
93 #include <sys/in_cksum.h>
94 #include <sys/ktr.h>
95 
96 #include <vm/vm_zone.h>
97 
98 #include <net/route.h>
99 #include <net/if.h>
100 #include <net/netisr.h>
101 
102 #define	_IP_VHL
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/ip.h>
106 #include <netinet/ip6.h>
107 #include <netinet/in_pcb.h>
108 #include <netinet6/in6_pcb.h>
109 #include <netinet/in_var.h>
110 #include <netinet/ip_var.h>
111 #include <netinet6/ip6_var.h>
112 #include <netinet/ip_icmp.h>
113 #ifdef INET6
114 #include <netinet/icmp6.h>
115 #endif
116 #include <netinet/tcp.h>
117 #include <netinet/tcp_fsm.h>
118 #include <netinet/tcp_seq.h>
119 #include <netinet/tcp_timer.h>
120 #include <netinet/tcp_timer2.h>
121 #include <netinet/tcp_var.h>
122 #include <netinet6/tcp6_var.h>
123 #include <netinet/tcpip.h>
124 #ifdef TCPDEBUG
125 #include <netinet/tcp_debug.h>
126 #endif
127 #include <netinet6/ip6protosw.h>
128 
129 #ifdef IPSEC
130 #include <netinet6/ipsec.h>
131 #ifdef INET6
132 #include <netinet6/ipsec6.h>
133 #endif
134 #endif
135 
136 #ifdef FAST_IPSEC
137 #include <netproto/ipsec/ipsec.h>
138 #ifdef INET6
139 #include <netproto/ipsec/ipsec6.h>
140 #endif
141 #define	IPSEC
142 #endif
143 
144 #include <sys/md5.h>
145 #include <sys/msgport2.h>
146 #include <machine/smp.h>
147 
148 #include <net/netmsg2.h>
149 
150 #if !defined(KTR_TCP)
151 #define KTR_TCP		KTR_ALL
152 #endif
153 KTR_INFO_MASTER(tcp);
154 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
155 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
156 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
157 #define logtcp(name)	KTR_LOG(tcp_ ## name)
158 
159 struct inpcbinfo tcbinfo[MAXCPU];
160 struct tcpcbackqhead tcpcbackq[MAXCPU];
161 
162 int tcp_mpsafe_proto = 0;
163 TUNABLE_INT("net.inet.tcp.mpsafe_proto", &tcp_mpsafe_proto);
164 
165 static int tcp_mpsafe_thread = NETMSG_SERVICE_ADAPTIVE;
166 TUNABLE_INT("net.inet.tcp.mpsafe_thread", &tcp_mpsafe_thread);
167 SYSCTL_INT(_net_inet_tcp, OID_AUTO, mpsafe_thread, CTLFLAG_RW,
168 	   &tcp_mpsafe_thread, 0,
169 	   "0:BGL, 1:Adaptive BGL, 2:No BGL(experimental)");
170 
171 int tcp_mssdflt = TCP_MSS;
172 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
173     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
174 
175 #ifdef INET6
176 int tcp_v6mssdflt = TCP6_MSS;
177 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
178     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
179 #endif
180 
181 /*
182  * Minimum MSS we accept and use. This prevents DoS attacks where
183  * we are forced to a ridiculous low MSS like 20 and send hundreds
184  * of packets instead of one. The effect scales with the available
185  * bandwidth and quickly saturates the CPU and network interface
186  * with packet generation and sending. Set to zero to disable MINMSS
187  * checking. This setting prevents us from sending too small packets.
188  */
189 int tcp_minmss = TCP_MINMSS;
190 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
191     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
192 
193 #if 0
194 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
195 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
196     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
197 #endif
198 
199 int tcp_do_rfc1323 = 1;
200 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
201     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
202 
203 int tcp_do_rfc1644 = 0;
204 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
205     &tcp_do_rfc1644, 0, "Enable rfc1644 (TTCP) extensions");
206 
207 static int tcp_tcbhashsize = 0;
208 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
209      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
210 
211 static int do_tcpdrain = 1;
212 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
213      "Enable tcp_drain routine for extra help when low on mbufs");
214 
215 /* XXX JH */
216 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
217     &tcbinfo[0].ipi_count, 0, "Number of active PCBs");
218 
219 static int icmp_may_rst = 1;
220 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
221     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
222 
223 static int tcp_isn_reseed_interval = 0;
224 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
225     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
226 
227 /*
228  * TCP bandwidth limiting sysctls.  The inflight limiter is now turned on
229  * by default, but with generous values which should allow maximal
230  * bandwidth.  In particular, the slop defaults to 50 (5 packets).
231  *
232  * The reason for doing this is that the limiter is the only mechanism we
233  * have which seems to do a really good job preventing receiver RX rings
234  * on network interfaces from getting blown out.  Even though GigE/10GigE
235  * is supposed to flow control it looks like either it doesn't actually
236  * do it or Open Source drivers do not properly enable it.
237  *
238  * People using the limiter to reduce bottlenecks on slower WAN connections
239  * should set the slop to 20 (2 packets).
240  */
241 static int tcp_inflight_enable = 1;
242 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
243     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
244 
245 static int tcp_inflight_debug = 0;
246 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
247     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
248 
249 static int tcp_inflight_min = 6144;
250 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
251     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
252 
253 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
254 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
255     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
256 
257 static int tcp_inflight_stab = 50;
258 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
259     &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 3 packets)");
260 
261 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
262 static struct malloc_pipe tcptemp_mpipe;
263 
264 static void tcp_willblock(int);
265 static void tcp_cleartaocache (void);
266 static void tcp_notify (struct inpcb *, int);
267 
268 struct tcp_stats tcpstats_percpu[MAXCPU];
269 #ifdef SMP
270 static int
271 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
272 {
273 	int cpu, error = 0;
274 
275 	for (cpu = 0; cpu < ncpus; ++cpu) {
276 		if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
277 					sizeof(struct tcp_stats))))
278 			break;
279 		if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
280 				       sizeof(struct tcp_stats))))
281 			break;
282 	}
283 
284 	return (error);
285 }
286 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
287     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
288 #else
289 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
290     &tcpstat, tcp_stats, "TCP statistics");
291 #endif
292 
293 /*
294  * Target size of TCP PCB hash tables. Must be a power of two.
295  *
296  * Note that this can be overridden by the kernel environment
297  * variable net.inet.tcp.tcbhashsize
298  */
299 #ifndef TCBHASHSIZE
300 #define	TCBHASHSIZE	512
301 #endif
302 
303 /*
304  * This is the actual shape of what we allocate using the zone
305  * allocator.  Doing it this way allows us to protect both structures
306  * using the same generation count, and also eliminates the overhead
307  * of allocating tcpcbs separately.  By hiding the structure here,
308  * we avoid changing most of the rest of the code (although it needs
309  * to be changed, eventually, for greater efficiency).
310  */
311 #define	ALIGNMENT	32
312 #define	ALIGNM1		(ALIGNMENT - 1)
313 struct	inp_tp {
314 	union {
315 		struct	inpcb inp;
316 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
317 	} inp_tp_u;
318 	struct	tcpcb tcb;
319 	struct	tcp_callout inp_tp_rexmt;
320 	struct	tcp_callout inp_tp_persist;
321 	struct	tcp_callout inp_tp_keep;
322 	struct	tcp_callout inp_tp_2msl;
323 	struct	tcp_callout inp_tp_delack;
324 	struct	netmsg_tcp_timer inp_tp_timermsg;
325 };
326 #undef ALIGNMENT
327 #undef ALIGNM1
328 
329 /*
330  * Tcp initialization
331  */
332 void
333 tcp_init(void)
334 {
335 	struct inpcbporthead *porthashbase;
336 	u_long porthashmask;
337 	struct vm_zone *ipi_zone;
338 	int hashsize = TCBHASHSIZE;
339 	int cpu;
340 
341 	/*
342 	 * note: tcptemp is used for keepalives, and it is ok for an
343 	 * allocation to fail so do not specify MPF_INT.
344 	 */
345 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
346 		    25, -1, 0, NULL);
347 
348 	tcp_ccgen = 1;
349 	tcp_cleartaocache();
350 
351 	tcp_delacktime = TCPTV_DELACK;
352 	tcp_keepinit = TCPTV_KEEP_INIT;
353 	tcp_keepidle = TCPTV_KEEP_IDLE;
354 	tcp_keepintvl = TCPTV_KEEPINTVL;
355 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
356 	tcp_msl = TCPTV_MSL;
357 	tcp_rexmit_min = TCPTV_MIN;
358 	tcp_rexmit_slop = TCPTV_CPU_VAR;
359 
360 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
361 	if (!powerof2(hashsize)) {
362 		kprintf("WARNING: TCB hash size not a power of 2\n");
363 		hashsize = 512; /* safe default */
364 	}
365 	tcp_tcbhashsize = hashsize;
366 	porthashbase = hashinit(hashsize, M_PCB, &porthashmask);
367 	ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets,
368 			 ZONE_INTERRUPT, 0);
369 
370 	for (cpu = 0; cpu < ncpus2; cpu++) {
371 		in_pcbinfo_init(&tcbinfo[cpu]);
372 		tcbinfo[cpu].cpu = cpu;
373 		tcbinfo[cpu].hashbase = hashinit(hashsize, M_PCB,
374 		    &tcbinfo[cpu].hashmask);
375 		tcbinfo[cpu].porthashbase = porthashbase;
376 		tcbinfo[cpu].porthashmask = porthashmask;
377 		tcbinfo[cpu].wildcardhashbase = hashinit(hashsize, M_PCB,
378 		    &tcbinfo[cpu].wildcardhashmask);
379 		tcbinfo[cpu].ipi_zone = ipi_zone;
380 		TAILQ_INIT(&tcpcbackq[cpu]);
381 	}
382 
383 	tcp_reass_maxseg = nmbclusters / 16;
384 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
385 
386 #ifdef INET6
387 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
388 #else
389 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
390 #endif
391 	if (max_protohdr < TCP_MINPROTOHDR)
392 		max_protohdr = TCP_MINPROTOHDR;
393 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
394 		panic("tcp_init");
395 #undef TCP_MINPROTOHDR
396 
397 	/*
398 	 * Initialize TCP statistics counters for each CPU.
399 	 */
400 #ifdef SMP
401 	for (cpu = 0; cpu < ncpus; ++cpu) {
402 		bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
403 	}
404 #else
405 	bzero(&tcpstat, sizeof(struct tcp_stats));
406 #endif
407 
408 	syncache_init();
409 	tcp_thread_init();
410 }
411 
412 void
413 tcpmsg_service_loop(void *dummy)
414 {
415 	struct netmsg *msg;
416 	int mplocked;
417 
418 	/*
419 	 * Thread was started with TDF_MPSAFE
420 	 */
421 	mplocked = 0;
422 
423 	while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) {
424 		do {
425 			logtcp(rxmsg);
426 			mplocked = netmsg_service(msg, tcp_mpsafe_thread,
427 						  mplocked);
428 		} while ((msg = lwkt_getport(&curthread->td_msgport)) != NULL);
429 
430 		logtcp(delayed);
431 		tcp_willblock(mplocked);
432 		logtcp(wait);
433 	}
434 }
435 
436 static void
437 tcp_willblock(int mplocked)
438 {
439 	struct tcpcb *tp;
440 	int cpu = mycpu->gd_cpuid;
441 	int unlock = 0;
442 
443 	if (!mplocked && !tcp_mpsafe_proto) {
444 		if (TAILQ_EMPTY(&tcpcbackq[cpu]))
445 			return;
446 
447 		get_mplock();
448 		mplocked = 1;
449 		unlock = 1;
450 	}
451 
452 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
453 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
454 		tp->t_flags &= ~TF_ONOUTPUTQ;
455 		TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
456 		tcp_output(tp);
457 	}
458 
459 	if (unlock)
460 		rel_mplock();
461 }
462 
463 
464 /*
465  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
466  * tcp_template used to store this data in mbufs, but we now recopy it out
467  * of the tcpcb each time to conserve mbufs.
468  */
469 void
470 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr)
471 {
472 	struct inpcb *inp = tp->t_inpcb;
473 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
474 
475 #ifdef INET6
476 	if (inp->inp_vflag & INP_IPV6) {
477 		struct ip6_hdr *ip6;
478 
479 		ip6 = (struct ip6_hdr *)ip_ptr;
480 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
481 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
482 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
483 			(IPV6_VERSION & IPV6_VERSION_MASK);
484 		ip6->ip6_nxt = IPPROTO_TCP;
485 		ip6->ip6_plen = sizeof(struct tcphdr);
486 		ip6->ip6_src = inp->in6p_laddr;
487 		ip6->ip6_dst = inp->in6p_faddr;
488 		tcp_hdr->th_sum = 0;
489 	} else
490 #endif
491 	{
492 		struct ip *ip = (struct ip *) ip_ptr;
493 
494 		ip->ip_vhl = IP_VHL_BORING;
495 		ip->ip_tos = 0;
496 		ip->ip_len = 0;
497 		ip->ip_id = 0;
498 		ip->ip_off = 0;
499 		ip->ip_ttl = 0;
500 		ip->ip_sum = 0;
501 		ip->ip_p = IPPROTO_TCP;
502 		ip->ip_src = inp->inp_laddr;
503 		ip->ip_dst = inp->inp_faddr;
504 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
505 				    ip->ip_dst.s_addr,
506 				    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
507 	}
508 
509 	tcp_hdr->th_sport = inp->inp_lport;
510 	tcp_hdr->th_dport = inp->inp_fport;
511 	tcp_hdr->th_seq = 0;
512 	tcp_hdr->th_ack = 0;
513 	tcp_hdr->th_x2 = 0;
514 	tcp_hdr->th_off = 5;
515 	tcp_hdr->th_flags = 0;
516 	tcp_hdr->th_win = 0;
517 	tcp_hdr->th_urp = 0;
518 }
519 
520 /*
521  * Create template to be used to send tcp packets on a connection.
522  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
523  * use for this function is in keepalives, which use tcp_respond.
524  */
525 struct tcptemp *
526 tcp_maketemplate(struct tcpcb *tp)
527 {
528 	struct tcptemp *tmp;
529 
530 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
531 		return (NULL);
532 	tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t);
533 	return (tmp);
534 }
535 
536 void
537 tcp_freetemplate(struct tcptemp *tmp)
538 {
539 	mpipe_free(&tcptemp_mpipe, tmp);
540 }
541 
542 /*
543  * Send a single message to the TCP at address specified by
544  * the given TCP/IP header.  If m == NULL, then we make a copy
545  * of the tcpiphdr at ti and send directly to the addressed host.
546  * This is used to force keep alive messages out using the TCP
547  * template for a connection.  If flags are given then we send
548  * a message back to the TCP which originated the * segment ti,
549  * and discard the mbuf containing it and any other attached mbufs.
550  *
551  * In any case the ack and sequence number of the transmitted
552  * segment are as specified by the parameters.
553  *
554  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
555  */
556 void
557 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
558 	    tcp_seq ack, tcp_seq seq, int flags)
559 {
560 	int tlen;
561 	int win = 0;
562 	struct route *ro = NULL;
563 	struct route sro;
564 	struct ip *ip = ipgen;
565 	struct tcphdr *nth;
566 	int ipflags = 0;
567 	struct route_in6 *ro6 = NULL;
568 	struct route_in6 sro6;
569 	struct ip6_hdr *ip6 = ipgen;
570 	boolean_t use_tmpro = TRUE;
571 #ifdef INET6
572 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
573 #else
574 	const boolean_t isipv6 = FALSE;
575 #endif
576 
577 	if (tp != NULL) {
578 		if (!(flags & TH_RST)) {
579 			win = ssb_space(&tp->t_inpcb->inp_socket->so_rcv);
580 			if (win < 0)
581 				win = 0;
582 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
583 				win = (long)TCP_MAXWIN << tp->rcv_scale;
584 		}
585 		/*
586 		 * Don't use the route cache of a listen socket,
587 		 * it is not MPSAFE; use temporary route cache.
588 		 */
589 		if (tp->t_state != TCPS_LISTEN) {
590 			if (isipv6)
591 				ro6 = &tp->t_inpcb->in6p_route;
592 			else
593 				ro = &tp->t_inpcb->inp_route;
594 			use_tmpro = FALSE;
595 		}
596 	}
597 	if (use_tmpro) {
598 		if (isipv6) {
599 			ro6 = &sro6;
600 			bzero(ro6, sizeof *ro6);
601 		} else {
602 			ro = &sro;
603 			bzero(ro, sizeof *ro);
604 		}
605 	}
606 	if (m == NULL) {
607 		m = m_gethdr(MB_DONTWAIT, MT_HEADER);
608 		if (m == NULL)
609 			return;
610 		tlen = 0;
611 		m->m_data += max_linkhdr;
612 		if (isipv6) {
613 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
614 			ip6 = mtod(m, struct ip6_hdr *);
615 			nth = (struct tcphdr *)(ip6 + 1);
616 		} else {
617 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
618 			ip = mtod(m, struct ip *);
619 			nth = (struct tcphdr *)(ip + 1);
620 		}
621 		bcopy(th, nth, sizeof(struct tcphdr));
622 		flags = TH_ACK;
623 	} else {
624 		m_freem(m->m_next);
625 		m->m_next = NULL;
626 		m->m_data = (caddr_t)ipgen;
627 		/* m_len is set later */
628 		tlen = 0;
629 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
630 		if (isipv6) {
631 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
632 			nth = (struct tcphdr *)(ip6 + 1);
633 		} else {
634 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
635 			nth = (struct tcphdr *)(ip + 1);
636 		}
637 		if (th != nth) {
638 			/*
639 			 * this is usually a case when an extension header
640 			 * exists between the IPv6 header and the
641 			 * TCP header.
642 			 */
643 			nth->th_sport = th->th_sport;
644 			nth->th_dport = th->th_dport;
645 		}
646 		xchg(nth->th_dport, nth->th_sport, n_short);
647 #undef xchg
648 	}
649 	if (isipv6) {
650 		ip6->ip6_flow = 0;
651 		ip6->ip6_vfc = IPV6_VERSION;
652 		ip6->ip6_nxt = IPPROTO_TCP;
653 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
654 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
655 	} else {
656 		tlen += sizeof(struct tcpiphdr);
657 		ip->ip_len = tlen;
658 		ip->ip_ttl = ip_defttl;
659 	}
660 	m->m_len = tlen;
661 	m->m_pkthdr.len = tlen;
662 	m->m_pkthdr.rcvif = NULL;
663 	nth->th_seq = htonl(seq);
664 	nth->th_ack = htonl(ack);
665 	nth->th_x2 = 0;
666 	nth->th_off = sizeof(struct tcphdr) >> 2;
667 	nth->th_flags = flags;
668 	if (tp != NULL)
669 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
670 	else
671 		nth->th_win = htons((u_short)win);
672 	nth->th_urp = 0;
673 	if (isipv6) {
674 		nth->th_sum = 0;
675 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
676 					sizeof(struct ip6_hdr),
677 					tlen - sizeof(struct ip6_hdr));
678 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
679 					       (ro6 && ro6->ro_rt) ?
680 						ro6->ro_rt->rt_ifp : NULL);
681 	} else {
682 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
683 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
684 		m->m_pkthdr.csum_flags = CSUM_TCP;
685 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
686 	}
687 #ifdef TCPDEBUG
688 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
689 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
690 #endif
691 	if (isipv6) {
692 		ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
693 			   tp ? tp->t_inpcb : NULL);
694 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
695 			RTFREE(ro6->ro_rt);
696 			ro6->ro_rt = NULL;
697 		}
698 	} else {
699 		ipflags |= IP_DEBUGROUTE;
700 		ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
701 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
702 			RTFREE(ro->ro_rt);
703 			ro->ro_rt = NULL;
704 		}
705 	}
706 }
707 
708 /*
709  * Create a new TCP control block, making an
710  * empty reassembly queue and hooking it to the argument
711  * protocol control block.  The `inp' parameter must have
712  * come from the zone allocator set up in tcp_init().
713  */
714 struct tcpcb *
715 tcp_newtcpcb(struct inpcb *inp)
716 {
717 	struct inp_tp *it;
718 	struct tcpcb *tp;
719 #ifdef INET6
720 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
721 #else
722 	const boolean_t isipv6 = FALSE;
723 #endif
724 
725 	it = (struct inp_tp *)inp;
726 	tp = &it->tcb;
727 	bzero(tp, sizeof(struct tcpcb));
728 	LIST_INIT(&tp->t_segq);
729 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
730 
731 	/* Set up our timeouts. */
732 	tp->tt_rexmt = &it->inp_tp_rexmt;
733 	tp->tt_persist = &it->inp_tp_persist;
734 	tp->tt_keep = &it->inp_tp_keep;
735 	tp->tt_2msl = &it->inp_tp_2msl;
736 	tp->tt_delack = &it->inp_tp_delack;
737 	tcp_inittimers(tp);
738 
739 	/*
740 	 * Zero out timer message.  We don't create it here,
741 	 * since the current CPU may not be the owner of this
742 	 * inpcb.
743 	 */
744 	tp->tt_msg = &it->inp_tp_timermsg;
745 	bzero(tp->tt_msg, sizeof(*tp->tt_msg));
746 
747 	if (tcp_do_rfc1323)
748 		tp->t_flags = (TF_REQ_SCALE | TF_REQ_TSTMP);
749 	if (tcp_do_rfc1644)
750 		tp->t_flags |= TF_REQ_CC;
751 	tp->t_inpcb = inp;	/* XXX */
752 	tp->t_state = TCPS_CLOSED;
753 	/*
754 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
755 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
756 	 * reasonable initial retransmit time.
757 	 */
758 	tp->t_srtt = TCPTV_SRTTBASE;
759 	tp->t_rttvar =
760 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
761 	tp->t_rttmin = tcp_rexmit_min;
762 	tp->t_rxtcur = TCPTV_RTOBASE;
763 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
764 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
765 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
766 	tp->t_rcvtime = ticks;
767 	/*
768 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
769 	 * because the socket may be bound to an IPv6 wildcard address,
770 	 * which may match an IPv4-mapped IPv6 address.
771 	 */
772 	inp->inp_ip_ttl = ip_defttl;
773 	inp->inp_ppcb = tp;
774 	tcp_sack_tcpcb_init(tp);
775 	return (tp);		/* XXX */
776 }
777 
778 /*
779  * Drop a TCP connection, reporting the specified error.
780  * If connection is synchronized, then send a RST to peer.
781  */
782 struct tcpcb *
783 tcp_drop(struct tcpcb *tp, int error)
784 {
785 	struct socket *so = tp->t_inpcb->inp_socket;
786 
787 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
788 		tp->t_state = TCPS_CLOSED;
789 		tcp_output(tp);
790 		tcpstat.tcps_drops++;
791 	} else
792 		tcpstat.tcps_conndrops++;
793 	if (error == ETIMEDOUT && tp->t_softerror)
794 		error = tp->t_softerror;
795 	so->so_error = error;
796 	return (tcp_close(tp));
797 }
798 
799 #ifdef SMP
800 
801 struct netmsg_remwildcard {
802 	struct netmsg		nm_netmsg;
803 	struct inpcb		*nm_inp;
804 	struct inpcbinfo	*nm_pcbinfo;
805 #if defined(INET6)
806 	int			nm_isinet6;
807 #else
808 	int			nm_unused01;
809 #endif
810 };
811 
812 /*
813  * Wildcard inpcb's on SMP boxes must be removed from all cpus before the
814  * inp can be detached.  We do this by cycling through the cpus, ending up
815  * on the cpu controlling the inp last and then doing the disconnect.
816  */
817 static void
818 in_pcbremwildcardhash_handler(struct netmsg *msg0)
819 {
820 	struct netmsg_remwildcard *msg = (struct netmsg_remwildcard *)msg0;
821 	int cpu;
822 
823 	cpu = msg->nm_pcbinfo->cpu;
824 
825 	if (cpu == msg->nm_inp->inp_pcbinfo->cpu) {
826 		/* note: detach removes any wildcard hash entry */
827 #ifdef INET6
828 		if (msg->nm_isinet6)
829 			in6_pcbdetach(msg->nm_inp);
830 		else
831 #endif
832 			in_pcbdetach(msg->nm_inp);
833 		lwkt_replymsg(&msg->nm_netmsg.nm_lmsg, 0);
834 	} else {
835 		in_pcbremwildcardhash_oncpu(msg->nm_inp, msg->nm_pcbinfo);
836 		cpu = (cpu + 1) % ncpus2;
837 		msg->nm_pcbinfo = &tcbinfo[cpu];
838 		lwkt_forwardmsg(tcp_cport(cpu), &msg->nm_netmsg.nm_lmsg);
839 	}
840 }
841 
842 #endif
843 
844 /*
845  * Close a TCP control block:
846  *	discard all space held by the tcp
847  *	discard internet protocol block
848  *	wake up any sleepers
849  */
850 struct tcpcb *
851 tcp_close(struct tcpcb *tp)
852 {
853 	struct tseg_qent *q;
854 	struct inpcb *inp = tp->t_inpcb;
855 	struct socket *so = inp->inp_socket;
856 	struct rtentry *rt;
857 	boolean_t dosavessthresh;
858 #ifdef SMP
859 	int cpu;
860 #endif
861 #ifdef INET6
862 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
863 	boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
864 #else
865 	const boolean_t isipv6 = FALSE;
866 #endif
867 
868 	/*
869 	 * The tp is not instantly destroyed in the wildcard case.  Setting
870 	 * the state to TCPS_TERMINATING will prevent the TCP stack from
871 	 * messing with it, though it should be noted that this change may
872 	 * not take effect on other cpus until we have chained the wildcard
873 	 * hash removal.
874 	 *
875 	 * XXX we currently depend on the BGL to synchronize the tp->t_state
876 	 * update and prevent other tcp protocol threads from accepting new
877 	 * connections on the listen socket we might be trying to close down.
878 	 */
879 	KKASSERT(tp->t_state != TCPS_TERMINATING);
880 	tp->t_state = TCPS_TERMINATING;
881 
882 	/*
883 	 * Make sure that all of our timers are stopped before we
884 	 * delete the PCB.  For listen TCP socket (tp->tt_msg == NULL),
885 	 * timers are never used.  If timer message is never created
886 	 * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
887 	 */
888 	if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
889 		tcp_callout_stop(tp, tp->tt_rexmt);
890 		tcp_callout_stop(tp, tp->tt_persist);
891 		tcp_callout_stop(tp, tp->tt_keep);
892 		tcp_callout_stop(tp, tp->tt_2msl);
893 		tcp_callout_stop(tp, tp->tt_delack);
894 	}
895 
896 	if (tp->t_flags & TF_ONOUTPUTQ) {
897 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
898 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
899 		tp->t_flags &= ~TF_ONOUTPUTQ;
900 	}
901 
902 	/*
903 	 * If we got enough samples through the srtt filter,
904 	 * save the rtt and rttvar in the routing entry.
905 	 * 'Enough' is arbitrarily defined as the 16 samples.
906 	 * 16 samples is enough for the srtt filter to converge
907 	 * to within 5% of the correct value; fewer samples and
908 	 * we could save a very bogus rtt.
909 	 *
910 	 * Don't update the default route's characteristics and don't
911 	 * update anything that the user "locked".
912 	 */
913 	if (tp->t_rttupdated >= 16) {
914 		u_long i = 0;
915 
916 		if (isipv6) {
917 			struct sockaddr_in6 *sin6;
918 
919 			if ((rt = inp->in6p_route.ro_rt) == NULL)
920 				goto no_valid_rt;
921 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
922 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
923 				goto no_valid_rt;
924 		} else
925 			if ((rt = inp->inp_route.ro_rt) == NULL ||
926 			    ((struct sockaddr_in *)rt_key(rt))->
927 			     sin_addr.s_addr == INADDR_ANY)
928 				goto no_valid_rt;
929 
930 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
931 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
932 			if (rt->rt_rmx.rmx_rtt && i)
933 				/*
934 				 * filter this update to half the old & half
935 				 * the new values, converting scale.
936 				 * See route.h and tcp_var.h for a
937 				 * description of the scaling constants.
938 				 */
939 				rt->rt_rmx.rmx_rtt =
940 				    (rt->rt_rmx.rmx_rtt + i) / 2;
941 			else
942 				rt->rt_rmx.rmx_rtt = i;
943 			tcpstat.tcps_cachedrtt++;
944 		}
945 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
946 			i = tp->t_rttvar *
947 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
948 			if (rt->rt_rmx.rmx_rttvar && i)
949 				rt->rt_rmx.rmx_rttvar =
950 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
951 			else
952 				rt->rt_rmx.rmx_rttvar = i;
953 			tcpstat.tcps_cachedrttvar++;
954 		}
955 		/*
956 		 * The old comment here said:
957 		 * update the pipelimit (ssthresh) if it has been updated
958 		 * already or if a pipesize was specified & the threshhold
959 		 * got below half the pipesize.  I.e., wait for bad news
960 		 * before we start updating, then update on both good
961 		 * and bad news.
962 		 *
963 		 * But we want to save the ssthresh even if no pipesize is
964 		 * specified explicitly in the route, because such
965 		 * connections still have an implicit pipesize specified
966 		 * by the global tcp_sendspace.  In the absence of a reliable
967 		 * way to calculate the pipesize, it will have to do.
968 		 */
969 		i = tp->snd_ssthresh;
970 		if (rt->rt_rmx.rmx_sendpipe != 0)
971 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
972 		else
973 			dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
974 		if (dosavessthresh ||
975 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
976 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
977 			/*
978 			 * convert the limit from user data bytes to
979 			 * packets then to packet data bytes.
980 			 */
981 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
982 			if (i < 2)
983 				i = 2;
984 			i *= tp->t_maxseg +
985 			     (isipv6 ?
986 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
987 			      sizeof(struct tcpiphdr));
988 			if (rt->rt_rmx.rmx_ssthresh)
989 				rt->rt_rmx.rmx_ssthresh =
990 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
991 			else
992 				rt->rt_rmx.rmx_ssthresh = i;
993 			tcpstat.tcps_cachedssthresh++;
994 		}
995 	}
996 
997 no_valid_rt:
998 	/* free the reassembly queue, if any */
999 	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
1000 		LIST_REMOVE(q, tqe_q);
1001 		m_freem(q->tqe_m);
1002 		FREE(q, M_TSEGQ);
1003 		tcp_reass_qsize--;
1004 	}
1005 	/* throw away SACK blocks in scoreboard*/
1006 	if (TCP_DO_SACK(tp))
1007 		tcp_sack_cleanup(&tp->scb);
1008 
1009 	inp->inp_ppcb = NULL;
1010 	soisdisconnected(so);
1011 
1012 	tcp_destroy_timermsg(tp);
1013 
1014 	/*
1015 	 * Discard the inp.  In the SMP case a wildcard inp's hash (created
1016 	 * by a listen socket or an INADDR_ANY udp socket) is replicated
1017 	 * for each protocol thread and must be removed in the context of
1018 	 * that thread.  This is accomplished by chaining the message
1019 	 * through the cpus.
1020 	 *
1021 	 * If the inp is not wildcarded we simply detach, which will remove
1022 	 * the any hashes still present for this inp.
1023 	 */
1024 #ifdef SMP
1025 	if (inp->inp_flags & INP_WILDCARD_MP) {
1026 		struct netmsg_remwildcard *msg;
1027 
1028 		cpu = (inp->inp_pcbinfo->cpu + 1) % ncpus2;
1029 		msg = kmalloc(sizeof(struct netmsg_remwildcard),
1030 			      M_LWKTMSG, M_INTWAIT);
1031 		netmsg_init(&msg->nm_netmsg, &netisr_afree_rport, 0,
1032 			    in_pcbremwildcardhash_handler);
1033 #ifdef INET6
1034 		msg->nm_isinet6 = isafinet6;
1035 #endif
1036 		msg->nm_inp = inp;
1037 		msg->nm_pcbinfo = &tcbinfo[cpu];
1038 		lwkt_sendmsg(tcp_cport(cpu), &msg->nm_netmsg.nm_lmsg);
1039 	} else
1040 #endif
1041 	{
1042 		/* note: detach removes any wildcard hash entry */
1043 #ifdef INET6
1044 		if (isafinet6)
1045 			in6_pcbdetach(inp);
1046 		else
1047 #endif
1048 			in_pcbdetach(inp);
1049 	}
1050 	tcpstat.tcps_closed++;
1051 	return (NULL);
1052 }
1053 
1054 static __inline void
1055 tcp_drain_oncpu(struct inpcbhead *head)
1056 {
1057 	struct inpcb *inpb;
1058 	struct tcpcb *tcpb;
1059 	struct tseg_qent *te;
1060 
1061 	LIST_FOREACH(inpb, head, inp_list) {
1062 		if (inpb->inp_flags & INP_PLACEMARKER)
1063 			continue;
1064 		if ((tcpb = intotcpcb(inpb))) {
1065 			while ((te = LIST_FIRST(&tcpb->t_segq)) != NULL) {
1066 				LIST_REMOVE(te, tqe_q);
1067 				m_freem(te->tqe_m);
1068 				FREE(te, M_TSEGQ);
1069 				tcp_reass_qsize--;
1070 			}
1071 		}
1072 	}
1073 }
1074 
1075 #ifdef SMP
1076 struct netmsg_tcp_drain {
1077 	struct netmsg		nm_netmsg;
1078 	struct inpcbhead	*nm_head;
1079 };
1080 
1081 static void
1082 tcp_drain_handler(netmsg_t netmsg)
1083 {
1084 	struct netmsg_tcp_drain *nm = (void *)netmsg;
1085 
1086 	tcp_drain_oncpu(nm->nm_head);
1087 	lwkt_replymsg(&nm->nm_netmsg.nm_lmsg, 0);
1088 }
1089 #endif
1090 
1091 void
1092 tcp_drain(void)
1093 {
1094 #ifdef SMP
1095 	int cpu;
1096 #endif
1097 
1098 	if (!do_tcpdrain)
1099 		return;
1100 
1101 	/*
1102 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1103 	 * if there is one...
1104 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1105 	 *	reassembly queue should be flushed, but in a situation
1106 	 *	where we're really low on mbufs, this is potentially
1107 	 *	useful.
1108 	 */
1109 #ifdef SMP
1110 	for (cpu = 0; cpu < ncpus2; cpu++) {
1111 		struct netmsg_tcp_drain *msg;
1112 
1113 		if (cpu == mycpu->gd_cpuid) {
1114 			tcp_drain_oncpu(&tcbinfo[cpu].pcblisthead);
1115 		} else {
1116 			msg = kmalloc(sizeof(struct netmsg_tcp_drain),
1117 				    M_LWKTMSG, M_NOWAIT);
1118 			if (msg == NULL)
1119 				continue;
1120 			netmsg_init(&msg->nm_netmsg, &netisr_afree_rport, 0,
1121 				    tcp_drain_handler);
1122 			msg->nm_head = &tcbinfo[cpu].pcblisthead;
1123 			lwkt_sendmsg(tcp_cport(cpu), &msg->nm_netmsg.nm_lmsg);
1124 		}
1125 	}
1126 #else
1127 	tcp_drain_oncpu(&tcbinfo[0].pcblisthead);
1128 #endif
1129 }
1130 
1131 /*
1132  * Notify a tcp user of an asynchronous error;
1133  * store error as soft error, but wake up user
1134  * (for now, won't do anything until can select for soft error).
1135  *
1136  * Do not wake up user since there currently is no mechanism for
1137  * reporting soft errors (yet - a kqueue filter may be added).
1138  */
1139 static void
1140 tcp_notify(struct inpcb *inp, int error)
1141 {
1142 	struct tcpcb *tp = intotcpcb(inp);
1143 
1144 	/*
1145 	 * Ignore some errors if we are hooked up.
1146 	 * If connection hasn't completed, has retransmitted several times,
1147 	 * and receives a second error, give up now.  This is better
1148 	 * than waiting a long time to establish a connection that
1149 	 * can never complete.
1150 	 */
1151 	if (tp->t_state == TCPS_ESTABLISHED &&
1152 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1153 	      error == EHOSTDOWN)) {
1154 		return;
1155 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1156 	    tp->t_softerror)
1157 		tcp_drop(tp, error);
1158 	else
1159 		tp->t_softerror = error;
1160 #if 0
1161 	wakeup(&so->so_timeo);
1162 	sorwakeup(so);
1163 	sowwakeup(so);
1164 #endif
1165 }
1166 
1167 static int
1168 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1169 {
1170 	int error, i, n;
1171 	struct inpcb *marker;
1172 	struct inpcb *inp;
1173 	inp_gen_t gencnt;
1174 	globaldata_t gd;
1175 	int origcpu, ccpu;
1176 
1177 	error = 0;
1178 	n = 0;
1179 
1180 	/*
1181 	 * The process of preparing the TCB list is too time-consuming and
1182 	 * resource-intensive to repeat twice on every request.
1183 	 */
1184 	if (req->oldptr == NULL) {
1185 		for (ccpu = 0; ccpu < ncpus; ++ccpu) {
1186 			gd = globaldata_find(ccpu);
1187 			n += tcbinfo[gd->gd_cpuid].ipi_count;
1188 		}
1189 		req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1190 		return (0);
1191 	}
1192 
1193 	if (req->newptr != NULL)
1194 		return (EPERM);
1195 
1196 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1197 	marker->inp_flags |= INP_PLACEMARKER;
1198 
1199 	/*
1200 	 * OK, now we're committed to doing something.  Run the inpcb list
1201 	 * for each cpu in the system and construct the output.  Use a
1202 	 * list placemarker to deal with list changes occuring during
1203 	 * copyout blockages (but otherwise depend on being on the correct
1204 	 * cpu to avoid races).
1205 	 */
1206 	origcpu = mycpu->gd_cpuid;
1207 	for (ccpu = 1; ccpu <= ncpus && error == 0; ++ccpu) {
1208 		globaldata_t rgd;
1209 		caddr_t inp_ppcb;
1210 		struct xtcpcb xt;
1211 		int cpu_id;
1212 
1213 		cpu_id = (origcpu + ccpu) % ncpus;
1214 		if ((smp_active_mask & (1 << cpu_id)) == 0)
1215 			continue;
1216 		rgd = globaldata_find(cpu_id);
1217 		lwkt_setcpu_self(rgd);
1218 
1219 		gencnt = tcbinfo[cpu_id].ipi_gencnt;
1220 		n = tcbinfo[cpu_id].ipi_count;
1221 
1222 		LIST_INSERT_HEAD(&tcbinfo[cpu_id].pcblisthead, marker, inp_list);
1223 		i = 0;
1224 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1225 			/*
1226 			 * process a snapshot of pcbs, ignoring placemarkers
1227 			 * and using our own to allow SYSCTL_OUT to block.
1228 			 */
1229 			LIST_REMOVE(marker, inp_list);
1230 			LIST_INSERT_AFTER(inp, marker, inp_list);
1231 
1232 			if (inp->inp_flags & INP_PLACEMARKER)
1233 				continue;
1234 			if (inp->inp_gencnt > gencnt)
1235 				continue;
1236 			if (prison_xinpcb(req->td, inp))
1237 				continue;
1238 
1239 			xt.xt_len = sizeof xt;
1240 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1241 			inp_ppcb = inp->inp_ppcb;
1242 			if (inp_ppcb != NULL)
1243 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1244 			else
1245 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1246 			if (inp->inp_socket)
1247 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1248 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1249 				break;
1250 			++i;
1251 		}
1252 		LIST_REMOVE(marker, inp_list);
1253 		if (error == 0 && i < n) {
1254 			bzero(&xt, sizeof xt);
1255 			xt.xt_len = sizeof xt;
1256 			while (i < n) {
1257 				error = SYSCTL_OUT(req, &xt, sizeof xt);
1258 				if (error)
1259 					break;
1260 				++i;
1261 			}
1262 		}
1263 	}
1264 
1265 	/*
1266 	 * Make sure we are on the same cpu we were on originally, since
1267 	 * higher level callers expect this.  Also don't pollute caches with
1268 	 * migrated userland data by (eventually) returning to userland
1269 	 * on a different cpu.
1270 	 */
1271 	lwkt_setcpu_self(globaldata_find(origcpu));
1272 	kfree(marker, M_TEMP);
1273 	return (error);
1274 }
1275 
1276 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1277 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1278 
1279 static int
1280 tcp_getcred(SYSCTL_HANDLER_ARGS)
1281 {
1282 	struct sockaddr_in addrs[2];
1283 	struct inpcb *inp;
1284 	int cpu;
1285 	int error;
1286 
1287 	error = priv_check(req->td, PRIV_ROOT);
1288 	if (error != 0)
1289 		return (error);
1290 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1291 	if (error != 0)
1292 		return (error);
1293 	crit_enter();
1294 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1295 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1296 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1297 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1298 	if (inp == NULL || inp->inp_socket == NULL) {
1299 		error = ENOENT;
1300 		goto out;
1301 	}
1302 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1303 out:
1304 	crit_exit();
1305 	return (error);
1306 }
1307 
1308 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1309     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1310 
1311 #ifdef INET6
1312 static int
1313 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1314 {
1315 	struct sockaddr_in6 addrs[2];
1316 	struct inpcb *inp;
1317 	int error;
1318 	boolean_t mapped = FALSE;
1319 
1320 	error = priv_check(req->td, PRIV_ROOT);
1321 	if (error != 0)
1322 		return (error);
1323 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1324 	if (error != 0)
1325 		return (error);
1326 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1327 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1328 			mapped = TRUE;
1329 		else
1330 			return (EINVAL);
1331 	}
1332 	crit_enter();
1333 	if (mapped) {
1334 		inp = in_pcblookup_hash(&tcbinfo[0],
1335 		    *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1336 		    addrs[1].sin6_port,
1337 		    *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1338 		    addrs[0].sin6_port,
1339 		    0, NULL);
1340 	} else {
1341 		inp = in6_pcblookup_hash(&tcbinfo[0],
1342 		    &addrs[1].sin6_addr, addrs[1].sin6_port,
1343 		    &addrs[0].sin6_addr, addrs[0].sin6_port,
1344 		    0, NULL);
1345 	}
1346 	if (inp == NULL || inp->inp_socket == NULL) {
1347 		error = ENOENT;
1348 		goto out;
1349 	}
1350 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1351 out:
1352 	crit_exit();
1353 	return (error);
1354 }
1355 
1356 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1357 	    0, 0,
1358 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1359 #endif
1360 
1361 struct netmsg_tcp_notify {
1362 	struct netmsg	nm_nmsg;
1363 	void		(*nm_notify)(struct inpcb *, int);
1364 	struct in_addr	nm_faddr;
1365 	int		nm_arg;
1366 };
1367 
1368 static void
1369 tcp_notifyall_oncpu(struct netmsg *netmsg)
1370 {
1371 	struct netmsg_tcp_notify *nmsg = (struct netmsg_tcp_notify *)netmsg;
1372 	int nextcpu;
1373 
1374 	in_pcbnotifyall(&tcbinfo[mycpuid].pcblisthead, nmsg->nm_faddr,
1375 			nmsg->nm_arg, nmsg->nm_notify);
1376 
1377 	nextcpu = mycpuid + 1;
1378 	if (nextcpu < ncpus2)
1379 		lwkt_forwardmsg(tcp_cport(nextcpu), &netmsg->nm_lmsg);
1380 	else
1381 		lwkt_replymsg(&netmsg->nm_lmsg, 0);
1382 }
1383 
1384 void
1385 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1386 {
1387 	struct ip *ip = vip;
1388 	struct tcphdr *th;
1389 	struct in_addr faddr;
1390 	struct inpcb *inp;
1391 	struct tcpcb *tp;
1392 	void (*notify)(struct inpcb *, int) = tcp_notify;
1393 	tcp_seq icmpseq;
1394 	int arg, cpu;
1395 
1396 	if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1397 		return;
1398 	}
1399 
1400 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1401 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1402 		return;
1403 
1404 	arg = inetctlerrmap[cmd];
1405 	if (cmd == PRC_QUENCH) {
1406 		notify = tcp_quench;
1407 	} else if (icmp_may_rst &&
1408 		   (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1409 		    cmd == PRC_UNREACH_PORT ||
1410 		    cmd == PRC_TIMXCEED_INTRANS) &&
1411 		   ip != NULL) {
1412 		notify = tcp_drop_syn_sent;
1413 	} else if (cmd == PRC_MSGSIZE) {
1414 		struct icmp *icmp = (struct icmp *)
1415 		    ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1416 
1417 		arg = ntohs(icmp->icmp_nextmtu);
1418 		notify = tcp_mtudisc;
1419 	} else if (PRC_IS_REDIRECT(cmd)) {
1420 		ip = NULL;
1421 		notify = in_rtchange;
1422 	} else if (cmd == PRC_HOSTDEAD) {
1423 		ip = NULL;
1424 	}
1425 
1426 	if (ip != NULL) {
1427 		crit_enter();
1428 		th = (struct tcphdr *)((caddr_t)ip +
1429 				       (IP_VHL_HL(ip->ip_vhl) << 2));
1430 		cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
1431 				  ip->ip_src.s_addr, th->th_sport);
1432 		inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
1433 					ip->ip_src, th->th_sport, 0, NULL);
1434 		if ((inp != NULL) && (inp->inp_socket != NULL)) {
1435 			icmpseq = htonl(th->th_seq);
1436 			tp = intotcpcb(inp);
1437 			if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1438 			    SEQ_LT(icmpseq, tp->snd_max))
1439 				(*notify)(inp, arg);
1440 		} else {
1441 			struct in_conninfo inc;
1442 
1443 			inc.inc_fport = th->th_dport;
1444 			inc.inc_lport = th->th_sport;
1445 			inc.inc_faddr = faddr;
1446 			inc.inc_laddr = ip->ip_src;
1447 #ifdef INET6
1448 			inc.inc_isipv6 = 0;
1449 #endif
1450 			syncache_unreach(&inc, th);
1451 		}
1452 		crit_exit();
1453 	} else {
1454 		struct netmsg_tcp_notify nmsg;
1455 
1456 		KKASSERT(&curthread->td_msgport == cpu_portfn(0));
1457 		netmsg_init(&nmsg.nm_nmsg, &curthread->td_msgport, 0,
1458 			    tcp_notifyall_oncpu);
1459 		nmsg.nm_faddr = faddr;
1460 		nmsg.nm_arg = arg;
1461 		nmsg.nm_notify = notify;
1462 
1463 		lwkt_domsg(tcp_cport(0), &nmsg.nm_nmsg.nm_lmsg, 0);
1464 	}
1465 }
1466 
1467 #ifdef INET6
1468 void
1469 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1470 {
1471 	struct tcphdr th;
1472 	void (*notify) (struct inpcb *, int) = tcp_notify;
1473 	struct ip6_hdr *ip6;
1474 	struct mbuf *m;
1475 	struct ip6ctlparam *ip6cp = NULL;
1476 	const struct sockaddr_in6 *sa6_src = NULL;
1477 	int off;
1478 	struct tcp_portonly {
1479 		u_int16_t th_sport;
1480 		u_int16_t th_dport;
1481 	} *thp;
1482 	int arg;
1483 
1484 	if (sa->sa_family != AF_INET6 ||
1485 	    sa->sa_len != sizeof(struct sockaddr_in6))
1486 		return;
1487 
1488 	arg = 0;
1489 	if (cmd == PRC_QUENCH)
1490 		notify = tcp_quench;
1491 	else if (cmd == PRC_MSGSIZE) {
1492 		struct ip6ctlparam *ip6cp = d;
1493 		struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1494 
1495 		arg = ntohl(icmp6->icmp6_mtu);
1496 		notify = tcp_mtudisc;
1497 	} else if (!PRC_IS_REDIRECT(cmd) &&
1498 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1499 		return;
1500 	}
1501 
1502 	/* if the parameter is from icmp6, decode it. */
1503 	if (d != NULL) {
1504 		ip6cp = (struct ip6ctlparam *)d;
1505 		m = ip6cp->ip6c_m;
1506 		ip6 = ip6cp->ip6c_ip6;
1507 		off = ip6cp->ip6c_off;
1508 		sa6_src = ip6cp->ip6c_src;
1509 	} else {
1510 		m = NULL;
1511 		ip6 = NULL;
1512 		off = 0;	/* fool gcc */
1513 		sa6_src = &sa6_any;
1514 	}
1515 
1516 	if (ip6 != NULL) {
1517 		struct in_conninfo inc;
1518 		/*
1519 		 * XXX: We assume that when IPV6 is non NULL,
1520 		 * M and OFF are valid.
1521 		 */
1522 
1523 		/* check if we can safely examine src and dst ports */
1524 		if (m->m_pkthdr.len < off + sizeof *thp)
1525 			return;
1526 
1527 		bzero(&th, sizeof th);
1528 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1529 
1530 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, th.th_dport,
1531 		    (struct sockaddr *)ip6cp->ip6c_src,
1532 		    th.th_sport, cmd, arg, notify);
1533 
1534 		inc.inc_fport = th.th_dport;
1535 		inc.inc_lport = th.th_sport;
1536 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1537 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1538 		inc.inc_isipv6 = 1;
1539 		syncache_unreach(&inc, &th);
1540 	} else
1541 		in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, 0,
1542 		    (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1543 }
1544 #endif
1545 
1546 /*
1547  * Following is where TCP initial sequence number generation occurs.
1548  *
1549  * There are two places where we must use initial sequence numbers:
1550  * 1.  In SYN-ACK packets.
1551  * 2.  In SYN packets.
1552  *
1553  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1554  * tcp_syncache.c for details.
1555  *
1556  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1557  * depends on this property.  In addition, these ISNs should be
1558  * unguessable so as to prevent connection hijacking.  To satisfy
1559  * the requirements of this situation, the algorithm outlined in
1560  * RFC 1948 is used to generate sequence numbers.
1561  *
1562  * Implementation details:
1563  *
1564  * Time is based off the system timer, and is corrected so that it
1565  * increases by one megabyte per second.  This allows for proper
1566  * recycling on high speed LANs while still leaving over an hour
1567  * before rollover.
1568  *
1569  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1570  * between seeding of isn_secret.  This is normally set to zero,
1571  * as reseeding should not be necessary.
1572  *
1573  */
1574 
1575 #define	ISN_BYTES_PER_SECOND 1048576
1576 
1577 u_char isn_secret[32];
1578 int isn_last_reseed;
1579 MD5_CTX isn_ctx;
1580 
1581 tcp_seq
1582 tcp_new_isn(struct tcpcb *tp)
1583 {
1584 	u_int32_t md5_buffer[4];
1585 	tcp_seq new_isn;
1586 
1587 	/* Seed if this is the first use, reseed if requested. */
1588 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1589 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1590 		< (u_int)ticks))) {
1591 		read_random_unlimited(&isn_secret, sizeof isn_secret);
1592 		isn_last_reseed = ticks;
1593 	}
1594 
1595 	/* Compute the md5 hash and return the ISN. */
1596 	MD5Init(&isn_ctx);
1597 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1598 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1599 #ifdef INET6
1600 	if (tp->t_inpcb->inp_vflag & INP_IPV6) {
1601 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1602 			  sizeof(struct in6_addr));
1603 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1604 			  sizeof(struct in6_addr));
1605 	} else
1606 #endif
1607 	{
1608 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1609 			  sizeof(struct in_addr));
1610 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1611 			  sizeof(struct in_addr));
1612 	}
1613 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1614 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1615 	new_isn = (tcp_seq) md5_buffer[0];
1616 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1617 	return (new_isn);
1618 }
1619 
1620 /*
1621  * When a source quench is received, close congestion window
1622  * to one segment.  We will gradually open it again as we proceed.
1623  */
1624 void
1625 tcp_quench(struct inpcb *inp, int error)
1626 {
1627 	struct tcpcb *tp = intotcpcb(inp);
1628 
1629 	if (tp != NULL) {
1630 		tp->snd_cwnd = tp->t_maxseg;
1631 		tp->snd_wacked = 0;
1632 	}
1633 }
1634 
1635 /*
1636  * When a specific ICMP unreachable message is received and the
1637  * connection state is SYN-SENT, drop the connection.  This behavior
1638  * is controlled by the icmp_may_rst sysctl.
1639  */
1640 void
1641 tcp_drop_syn_sent(struct inpcb *inp, int error)
1642 {
1643 	struct tcpcb *tp = intotcpcb(inp);
1644 
1645 	if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
1646 		tcp_drop(tp, error);
1647 }
1648 
1649 /*
1650  * When a `need fragmentation' ICMP is received, update our idea of the MSS
1651  * based on the new value in the route.  Also nudge TCP to send something,
1652  * since we know the packet we just sent was dropped.
1653  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1654  */
1655 void
1656 tcp_mtudisc(struct inpcb *inp, int mtu)
1657 {
1658 	struct tcpcb *tp = intotcpcb(inp);
1659 	struct rtentry *rt;
1660 	struct socket *so = inp->inp_socket;
1661 	int maxopd, mss;
1662 #ifdef INET6
1663 	boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1664 #else
1665 	const boolean_t isipv6 = FALSE;
1666 #endif
1667 
1668 	if (tp == NULL)
1669 		return;
1670 
1671 	/*
1672 	 * If no MTU is provided in the ICMP message, use the
1673 	 * next lower likely value, as specified in RFC 1191.
1674 	 */
1675 	if (mtu == 0) {
1676 		int oldmtu;
1677 
1678 		oldmtu = tp->t_maxopd +
1679 		    (isipv6 ?
1680 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1681 		     sizeof(struct tcpiphdr));
1682 		mtu = ip_next_mtu(oldmtu, 0);
1683 	}
1684 
1685 	if (isipv6)
1686 		rt = tcp_rtlookup6(&inp->inp_inc);
1687 	else
1688 		rt = tcp_rtlookup(&inp->inp_inc);
1689 	if (rt != NULL) {
1690 		struct rmxp_tao *taop = rmx_taop(rt->rt_rmx);
1691 
1692 		if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1693 			mtu = rt->rt_rmx.rmx_mtu;
1694 
1695 		maxopd = mtu -
1696 		    (isipv6 ?
1697 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1698 		     sizeof(struct tcpiphdr));
1699 
1700 		/*
1701 		 * XXX - The following conditional probably violates the TCP
1702 		 * spec.  The problem is that, since we don't know the
1703 		 * other end's MSS, we are supposed to use a conservative
1704 		 * default.  But, if we do that, then MTU discovery will
1705 		 * never actually take place, because the conservative
1706 		 * default is much less than the MTUs typically seen
1707 		 * on the Internet today.  For the moment, we'll sweep
1708 		 * this under the carpet.
1709 		 *
1710 		 * The conservative default might not actually be a problem
1711 		 * if the only case this occurs is when sending an initial
1712 		 * SYN with options and data to a host we've never talked
1713 		 * to before.  Then, they will reply with an MSS value which
1714 		 * will get recorded and the new parameters should get
1715 		 * recomputed.  For Further Study.
1716 		 */
1717 		if (taop->tao_mssopt != 0 && taop->tao_mssopt < maxopd)
1718 			maxopd = taop->tao_mssopt;
1719 	} else
1720 		maxopd = mtu -
1721 		    (isipv6 ?
1722 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1723 		     sizeof(struct tcpiphdr));
1724 
1725 	if (tp->t_maxopd <= maxopd)
1726 		return;
1727 	tp->t_maxopd = maxopd;
1728 
1729 	mss = maxopd;
1730 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1731 			   (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1732 		mss -= TCPOLEN_TSTAMP_APPA;
1733 
1734 	if ((tp->t_flags & (TF_REQ_CC | TF_RCVD_CC | TF_NOOPT)) ==
1735 			   (TF_REQ_CC | TF_RCVD_CC))
1736 		mss -= TCPOLEN_CC_APPA;
1737 
1738 	/* round down to multiple of MCLBYTES */
1739 #if	(MCLBYTES & (MCLBYTES - 1)) == 0    /* test if MCLBYTES power of 2 */
1740 	if (mss > MCLBYTES)
1741 		mss &= ~(MCLBYTES - 1);
1742 #else
1743 	if (mss > MCLBYTES)
1744 		mss = (mss / MCLBYTES) * MCLBYTES;
1745 #endif
1746 
1747 	if (so->so_snd.ssb_hiwat < mss)
1748 		mss = so->so_snd.ssb_hiwat;
1749 
1750 	tp->t_maxseg = mss;
1751 	tp->t_rtttime = 0;
1752 	tp->snd_nxt = tp->snd_una;
1753 	tcp_output(tp);
1754 	tcpstat.tcps_mturesent++;
1755 }
1756 
1757 /*
1758  * Look-up the routing entry to the peer of this inpcb.  If no route
1759  * is found and it cannot be allocated the return NULL.  This routine
1760  * is called by TCP routines that access the rmx structure and by tcp_mss
1761  * to get the interface MTU.
1762  */
1763 struct rtentry *
1764 tcp_rtlookup(struct in_conninfo *inc)
1765 {
1766 	struct route *ro = &inc->inc_route;
1767 
1768 	if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1769 		/* No route yet, so try to acquire one */
1770 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1771 			/*
1772 			 * unused portions of the structure MUST be zero'd
1773 			 * out because rtalloc() treats it as opaque data
1774 			 */
1775 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1776 			ro->ro_dst.sa_family = AF_INET;
1777 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1778 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1779 			    inc->inc_faddr;
1780 			rtalloc(ro);
1781 		}
1782 	}
1783 	return (ro->ro_rt);
1784 }
1785 
1786 #ifdef INET6
1787 struct rtentry *
1788 tcp_rtlookup6(struct in_conninfo *inc)
1789 {
1790 	struct route_in6 *ro6 = &inc->inc6_route;
1791 
1792 	if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1793 		/* No route yet, so try to acquire one */
1794 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1795 			/*
1796 			 * unused portions of the structure MUST be zero'd
1797 			 * out because rtalloc() treats it as opaque data
1798 			 */
1799 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1800 			ro6->ro_dst.sin6_family = AF_INET6;
1801 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1802 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1803 			rtalloc((struct route *)ro6);
1804 		}
1805 	}
1806 	return (ro6->ro_rt);
1807 }
1808 #endif
1809 
1810 #ifdef IPSEC
1811 /* compute ESP/AH header size for TCP, including outer IP header. */
1812 size_t
1813 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1814 {
1815 	struct inpcb *inp;
1816 	struct mbuf *m;
1817 	size_t hdrsiz;
1818 	struct ip *ip;
1819 	struct tcphdr *th;
1820 
1821 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1822 		return (0);
1823 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1824 	if (!m)
1825 		return (0);
1826 
1827 #ifdef INET6
1828 	if (inp->inp_vflag & INP_IPV6) {
1829 		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1830 
1831 		th = (struct tcphdr *)(ip6 + 1);
1832 		m->m_pkthdr.len = m->m_len =
1833 		    sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1834 		tcp_fillheaders(tp, ip6, th);
1835 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1836 	} else
1837 #endif
1838 	{
1839 		ip = mtod(m, struct ip *);
1840 		th = (struct tcphdr *)(ip + 1);
1841 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1842 		tcp_fillheaders(tp, ip, th);
1843 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1844 	}
1845 
1846 	m_free(m);
1847 	return (hdrsiz);
1848 }
1849 #endif
1850 
1851 /*
1852  * Return a pointer to the cached information about the remote host.
1853  * The cached information is stored in the protocol specific part of
1854  * the route metrics.
1855  */
1856 struct rmxp_tao *
1857 tcp_gettaocache(struct in_conninfo *inc)
1858 {
1859 	struct rtentry *rt;
1860 
1861 #ifdef INET6
1862 	if (inc->inc_isipv6)
1863 		rt = tcp_rtlookup6(inc);
1864 	else
1865 #endif
1866 		rt = tcp_rtlookup(inc);
1867 
1868 	/* Make sure this is a host route and is up. */
1869 	if (rt == NULL ||
1870 	    (rt->rt_flags & (RTF_UP | RTF_HOST)) != (RTF_UP | RTF_HOST))
1871 		return (NULL);
1872 
1873 	return (rmx_taop(rt->rt_rmx));
1874 }
1875 
1876 /*
1877  * Clear all the TAO cache entries, called from tcp_init.
1878  *
1879  * XXX
1880  * This routine is just an empty one, because we assume that the routing
1881  * routing tables are initialized at the same time when TCP, so there is
1882  * nothing in the cache left over.
1883  */
1884 static void
1885 tcp_cleartaocache(void)
1886 {
1887 }
1888 
1889 /*
1890  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1891  *
1892  * This code attempts to calculate the bandwidth-delay product as a
1893  * means of determining the optimal window size to maximize bandwidth,
1894  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1895  * routers.  This code also does a fairly good job keeping RTTs in check
1896  * across slow links like modems.  We implement an algorithm which is very
1897  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1898  * transmitter side of a TCP connection and so only effects the transmit
1899  * side of the connection.
1900  *
1901  * BACKGROUND:  TCP makes no provision for the management of buffer space
1902  * at the end points or at the intermediate routers and switches.  A TCP
1903  * stream, whether using NewReno or not, will eventually buffer as
1904  * many packets as it is able and the only reason this typically works is
1905  * due to the fairly small default buffers made available for a connection
1906  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1907  * scaling it is now fairly easy for even a single TCP connection to blow-out
1908  * all available buffer space not only on the local interface, but on
1909  * intermediate routers and switches as well.  NewReno makes a misguided
1910  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1911  * then backing off, then steadily increasing the window again until another
1912  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1913  * is only made worse as network loads increase and the idea of intentionally
1914  * blowing out network buffers is, frankly, a terrible way to manage network
1915  * resources.
1916  *
1917  * It is far better to limit the transmit window prior to the failure
1918  * condition being achieved.  There are two general ways to do this:  First
1919  * you can 'scan' through different transmit window sizes and locate the
1920  * point where the RTT stops increasing, indicating that you have filled the
1921  * pipe, then scan backwards until you note that RTT stops decreasing, then
1922  * repeat ad-infinitum.  This method works in principle but has severe
1923  * implementation issues due to RTT variances, timer granularity, and
1924  * instability in the algorithm which can lead to many false positives and
1925  * create oscillations as well as interact badly with other TCP streams
1926  * implementing the same algorithm.
1927  *
1928  * The second method is to limit the window to the bandwidth delay product
1929  * of the link.  This is the method we implement.  RTT variances and our
1930  * own manipulation of the congestion window, bwnd, can potentially
1931  * destabilize the algorithm.  For this reason we have to stabilize the
1932  * elements used to calculate the window.  We do this by using the minimum
1933  * observed RTT, the long term average of the observed bandwidth, and
1934  * by adding two segments worth of slop.  It isn't perfect but it is able
1935  * to react to changing conditions and gives us a very stable basis on
1936  * which to extend the algorithm.
1937  */
1938 void
1939 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1940 {
1941 	u_long bw;
1942 	u_long bwnd;
1943 	int save_ticks;
1944 	int delta_ticks;
1945 
1946 	/*
1947 	 * If inflight_enable is disabled in the middle of a tcp connection,
1948 	 * make sure snd_bwnd is effectively disabled.
1949 	 */
1950 	if (!tcp_inflight_enable) {
1951 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1952 		tp->snd_bandwidth = 0;
1953 		return;
1954 	}
1955 
1956 	/*
1957 	 * Validate the delta time.  If a connection is new or has been idle
1958 	 * a long time we have to reset the bandwidth calculator.
1959 	 */
1960 	save_ticks = ticks;
1961 	delta_ticks = save_ticks - tp->t_bw_rtttime;
1962 	if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1963 		tp->t_bw_rtttime = ticks;
1964 		tp->t_bw_rtseq = ack_seq;
1965 		if (tp->snd_bandwidth == 0)
1966 			tp->snd_bandwidth = tcp_inflight_min;
1967 		return;
1968 	}
1969 	if (delta_ticks == 0)
1970 		return;
1971 
1972 	/*
1973 	 * Sanity check, plus ignore pure window update acks.
1974 	 */
1975 	if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1976 		return;
1977 
1978 	/*
1979 	 * Figure out the bandwidth.  Due to the tick granularity this
1980 	 * is a very rough number and it MUST be averaged over a fairly
1981 	 * long period of time.  XXX we need to take into account a link
1982 	 * that is not using all available bandwidth, but for now our
1983 	 * slop will ramp us up if this case occurs and the bandwidth later
1984 	 * increases.
1985 	 */
1986 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
1987 	tp->t_bw_rtttime = save_ticks;
1988 	tp->t_bw_rtseq = ack_seq;
1989 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1990 
1991 	tp->snd_bandwidth = bw;
1992 
1993 	/*
1994 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1995 	 * segments.  The additional slop puts us squarely in the sweet
1996 	 * spot and also handles the bandwidth run-up case.  Without the
1997 	 * slop we could be locking ourselves into a lower bandwidth.
1998 	 *
1999 	 * Situations Handled:
2000 	 *	(1) Prevents over-queueing of packets on LANs, especially on
2001 	 *	    high speed LANs, allowing larger TCP buffers to be
2002 	 *	    specified, and also does a good job preventing
2003 	 *	    over-queueing of packets over choke points like modems
2004 	 *	    (at least for the transmit side).
2005 	 *
2006 	 *	(2) Is able to handle changing network loads (bandwidth
2007 	 *	    drops so bwnd drops, bandwidth increases so bwnd
2008 	 *	    increases).
2009 	 *
2010 	 *	(3) Theoretically should stabilize in the face of multiple
2011 	 *	    connections implementing the same algorithm (this may need
2012 	 *	    a little work).
2013 	 *
2014 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2015 	 *	    be adjusted with a sysctl but typically only needs to be on
2016 	 *	    very slow connections.  A value no smaller then 5 should
2017 	 *	    be used, but only reduce this default if you have no other
2018 	 *	    choice.
2019 	 */
2020 
2021 #define	USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
2022 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
2023 	       tcp_inflight_stab * (int)tp->t_maxseg / 10;
2024 #undef USERTT
2025 
2026 	if (tcp_inflight_debug > 0) {
2027 		static int ltime;
2028 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2029 			ltime = ticks;
2030 			kprintf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
2031 				tp, bw, tp->t_rttbest, tp->t_srtt, bwnd);
2032 		}
2033 	}
2034 	if ((long)bwnd < tcp_inflight_min)
2035 		bwnd = tcp_inflight_min;
2036 	if (bwnd > tcp_inflight_max)
2037 		bwnd = tcp_inflight_max;
2038 	if ((long)bwnd < tp->t_maxseg * 2)
2039 		bwnd = tp->t_maxseg * 2;
2040 	tp->snd_bwnd = bwnd;
2041 }
2042