xref: /dragonfly/sys/netinet/tcp_subr.c (revision edf2e657)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. Neither the name of the University nor the names of its contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  *
62  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
63  * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
64  */
65 
66 #include "opt_inet.h"
67 #include "opt_inet6.h"
68 #include "opt_ipsec.h"
69 #include "opt_tcpdebug.h"
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/callout.h>
74 #include <sys/kernel.h>
75 #include <sys/sysctl.h>
76 #include <sys/malloc.h>
77 #include <sys/mpipe.h>
78 #include <sys/mbuf.h>
79 #ifdef INET6
80 #include <sys/domain.h>
81 #endif
82 #include <sys/proc.h>
83 #include <sys/priv.h>
84 #include <sys/socket.h>
85 #include <sys/socketops.h>
86 #include <sys/socketvar.h>
87 #include <sys/protosw.h>
88 #include <sys/random.h>
89 #include <sys/in_cksum.h>
90 #include <sys/ktr.h>
91 
92 #include <net/route.h>
93 #include <net/if.h>
94 #include <net/netisr2.h>
95 
96 #define	_IP_VHL
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/ip.h>
100 #include <netinet/ip6.h>
101 #include <netinet/in_pcb.h>
102 #include <netinet6/in6_pcb.h>
103 #include <netinet/in_var.h>
104 #include <netinet/ip_var.h>
105 #include <netinet6/ip6_var.h>
106 #include <netinet/ip_icmp.h>
107 #ifdef INET6
108 #include <netinet/icmp6.h>
109 #endif
110 #include <netinet/tcp.h>
111 #include <netinet/tcp_fsm.h>
112 #include <netinet/tcp_seq.h>
113 #include <netinet/tcp_timer.h>
114 #include <netinet/tcp_timer2.h>
115 #include <netinet/tcp_var.h>
116 #include <netinet6/tcp6_var.h>
117 #include <netinet/tcpip.h>
118 #ifdef TCPDEBUG
119 #include <netinet/tcp_debug.h>
120 #endif
121 #include <netinet6/ip6protosw.h>
122 
123 #ifdef IPSEC
124 #include <netinet6/ipsec.h>
125 #include <netproto/key/key.h>
126 #ifdef INET6
127 #include <netinet6/ipsec6.h>
128 #endif
129 #endif
130 
131 #ifdef FAST_IPSEC
132 #include <netproto/ipsec/ipsec.h>
133 #ifdef INET6
134 #include <netproto/ipsec/ipsec6.h>
135 #endif
136 #define	IPSEC
137 #endif
138 
139 #include <sys/md5.h>
140 #include <machine/smp.h>
141 
142 #include <sys/msgport2.h>
143 #include <sys/mplock2.h>
144 #include <net/netmsg2.h>
145 
146 #if !defined(KTR_TCP)
147 #define KTR_TCP		KTR_ALL
148 #endif
149 /*
150 KTR_INFO_MASTER(tcp);
151 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
152 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
153 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
154 #define logtcp(name)	KTR_LOG(tcp_ ## name)
155 */
156 
157 #define TCP_IW_MAXSEGS_DFLT	4
158 #define TCP_IW_CAPSEGS_DFLT	4
159 
160 struct inpcbinfo tcbinfo[MAXCPU];
161 struct tcpcbackqhead tcpcbackq[MAXCPU];
162 
163 int tcp_mssdflt = TCP_MSS;
164 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
165     &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
166 
167 #ifdef INET6
168 int tcp_v6mssdflt = TCP6_MSS;
169 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
170     &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
171 #endif
172 
173 /*
174  * Minimum MSS we accept and use. This prevents DoS attacks where
175  * we are forced to a ridiculous low MSS like 20 and send hundreds
176  * of packets instead of one. The effect scales with the available
177  * bandwidth and quickly saturates the CPU and network interface
178  * with packet generation and sending. Set to zero to disable MINMSS
179  * checking. This setting prevents us from sending too small packets.
180  */
181 int tcp_minmss = TCP_MINMSS;
182 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
183     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
184 
185 #if 0
186 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
187 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
188     &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
189 #endif
190 
191 int tcp_do_rfc1323 = 1;
192 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
193     &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
194 
195 static int tcp_tcbhashsize = 0;
196 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
197      &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
198 
199 static int do_tcpdrain = 1;
200 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
201      "Enable tcp_drain routine for extra help when low on mbufs");
202 
203 static int icmp_may_rst = 1;
204 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
205     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
206 
207 static int tcp_isn_reseed_interval = 0;
208 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
209     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
210 
211 /*
212  * TCP bandwidth limiting sysctls.  The inflight limiter is now turned on
213  * by default, but with generous values which should allow maximal
214  * bandwidth.  In particular, the slop defaults to 50 (5 packets).
215  *
216  * The reason for doing this is that the limiter is the only mechanism we
217  * have which seems to do a really good job preventing receiver RX rings
218  * on network interfaces from getting blown out.  Even though GigE/10GigE
219  * is supposed to flow control it looks like either it doesn't actually
220  * do it or Open Source drivers do not properly enable it.
221  *
222  * People using the limiter to reduce bottlenecks on slower WAN connections
223  * should set the slop to 20 (2 packets).
224  */
225 static int tcp_inflight_enable = 1;
226 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
227     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
228 
229 static int tcp_inflight_debug = 0;
230 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
231     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
232 
233 /*
234  * NOTE: tcp_inflight_start is essentially the starting receive window
235  *	 for a connection.  If set too low then fetches over tcp
236  *	 connections will take noticably longer to ramp-up over
237  *	 high-latency connections.  6144 is too low for a default,
238  *	 use something more reasonable.
239  */
240 static int tcp_inflight_start = 33792;
241 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_start, CTLFLAG_RW,
242     &tcp_inflight_start, 0, "Start value for TCP inflight window");
243 
244 static int tcp_inflight_min = 6144;
245 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
246     &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
247 
248 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
249 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
250     &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
251 
252 static int tcp_inflight_stab = 50;
253 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
254     &tcp_inflight_stab, 0, "Fudge bw 1/10% (50=5%)");
255 
256 static int tcp_inflight_adjrtt = 2;
257 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_adjrtt, CTLFLAG_RW,
258     &tcp_inflight_adjrtt, 0, "Slop for rtt 1/(hz*32)");
259 
260 static int tcp_do_rfc3390 = 1;
261 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
262     &tcp_do_rfc3390, 0,
263     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
264 
265 static u_long tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
266 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwmaxsegs, CTLFLAG_RW,
267     &tcp_iw_maxsegs, 0, "TCP IW segments max");
268 
269 static u_long tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
270 SYSCTL_ULONG(_net_inet_tcp, OID_AUTO, iwcapsegs, CTLFLAG_RW,
271     &tcp_iw_capsegs, 0, "TCP IW segments");
272 
273 int tcp_low_rtobase = 1;
274 SYSCTL_INT(_net_inet_tcp, OID_AUTO, low_rtobase, CTLFLAG_RW,
275     &tcp_low_rtobase, 0, "Lowering the Initial RTO (RFC 6298)");
276 
277 static int tcp_do_ncr = 1;
278 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr, CTLFLAG_RW,
279     &tcp_do_ncr, 0, "Non-Congestion Robustness (RFC 4653)");
280 
281 int tcp_ncr_rxtthresh_max = 16;
282 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ncr_rxtthresh_max, CTLFLAG_RW,
283     &tcp_ncr_rxtthresh_max, 0,
284     "Non-Congestion Robustness (RFC 4653), DupThresh upper limit");
285 
286 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
287 static struct malloc_pipe tcptemp_mpipe;
288 
289 static void tcp_willblock(void);
290 static void tcp_notify (struct inpcb *, int);
291 
292 struct tcp_stats tcpstats_percpu[MAXCPU] __cachealign;
293 struct tcp_state_count tcpstate_count[MAXCPU] __cachealign;
294 
295 static struct netmsg_base tcp_drain_netmsg[MAXCPU];
296 static void	tcp_drain_dispatch(netmsg_t nmsg);
297 
298 static int
299 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
300 {
301 	int cpu, error = 0;
302 
303 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
304 		if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
305 					sizeof(struct tcp_stats))))
306 			break;
307 		if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
308 				       sizeof(struct tcp_stats))))
309 			break;
310 	}
311 
312 	return (error);
313 }
314 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
315     0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
316 
317 /*
318  * Target size of TCP PCB hash tables. Must be a power of two.
319  *
320  * Note that this can be overridden by the kernel environment
321  * variable net.inet.tcp.tcbhashsize
322  */
323 #ifndef TCBHASHSIZE
324 #define	TCBHASHSIZE	512
325 #endif
326 
327 /*
328  * This is the actual shape of what we allocate using the zone
329  * allocator.  Doing it this way allows us to protect both structures
330  * using the same generation count, and also eliminates the overhead
331  * of allocating tcpcbs separately.  By hiding the structure here,
332  * we avoid changing most of the rest of the code (although it needs
333  * to be changed, eventually, for greater efficiency).
334  */
335 #define	ALIGNMENT	32
336 #define	ALIGNM1		(ALIGNMENT - 1)
337 struct	inp_tp {
338 	union {
339 		struct	inpcb inp;
340 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
341 	} inp_tp_u;
342 	struct	tcpcb tcb;
343 	struct	tcp_callout inp_tp_rexmt;
344 	struct	tcp_callout inp_tp_persist;
345 	struct	tcp_callout inp_tp_keep;
346 	struct	tcp_callout inp_tp_2msl;
347 	struct	tcp_callout inp_tp_delack;
348 	struct	netmsg_tcp_timer inp_tp_timermsg;
349 	struct	netmsg_base inp_tp_sndmore;
350 };
351 #undef ALIGNMENT
352 #undef ALIGNM1
353 
354 /*
355  * Tcp initialization
356  */
357 void
358 tcp_init(void)
359 {
360 	struct inpcbportinfo *portinfo;
361 	struct inpcbinfo *ticb;
362 	int hashsize = TCBHASHSIZE;
363 	int cpu;
364 
365 	/*
366 	 * note: tcptemp is used for keepalives, and it is ok for an
367 	 * allocation to fail so do not specify MPF_INT.
368 	 */
369 	mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
370 		    25, -1, 0, NULL, NULL, NULL);
371 
372 	tcp_delacktime = TCPTV_DELACK;
373 	tcp_keepinit = TCPTV_KEEP_INIT;
374 	tcp_keepidle = TCPTV_KEEP_IDLE;
375 	tcp_keepintvl = TCPTV_KEEPINTVL;
376 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
377 	tcp_msl = TCPTV_MSL;
378 	tcp_rexmit_min = TCPTV_MIN;
379 	tcp_rexmit_slop = TCPTV_CPU_VAR;
380 
381 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
382 	if (!powerof2(hashsize)) {
383 		kprintf("WARNING: TCB hash size not a power of 2\n");
384 		hashsize = 512; /* safe default */
385 	}
386 	tcp_tcbhashsize = hashsize;
387 
388 	portinfo = kmalloc_cachealign(sizeof(*portinfo) * netisr_ncpus, M_PCB,
389 	    M_WAITOK);
390 
391 	for (cpu = 0; cpu < netisr_ncpus; cpu++) {
392 		ticb = &tcbinfo[cpu];
393 		in_pcbinfo_init(ticb, cpu, FALSE);
394 		ticb->hashbase = hashinit(hashsize, M_PCB,
395 					  &ticb->hashmask);
396 		in_pcbportinfo_init(&portinfo[cpu], hashsize, cpu);
397 		in_pcbportinfo_set(ticb, portinfo, netisr_ncpus);
398 		ticb->wildcardhashbase = hashinit(hashsize, M_PCB,
399 						  &ticb->wildcardhashmask);
400 		ticb->localgrphashbase = hashinit(hashsize, M_PCB,
401 						  &ticb->localgrphashmask);
402 		ticb->ipi_size = sizeof(struct inp_tp);
403 		TAILQ_INIT(&tcpcbackq[cpu]);
404 	}
405 
406 	tcp_reass_maxseg = nmbclusters / 16;
407 	TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
408 
409 #ifdef INET6
410 #define	TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
411 #else
412 #define	TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
413 #endif
414 	if (max_protohdr < TCP_MINPROTOHDR)
415 		max_protohdr = TCP_MINPROTOHDR;
416 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
417 		panic("tcp_init");
418 #undef TCP_MINPROTOHDR
419 
420 	/*
421 	 * Initialize TCP statistics counters for each CPU.
422 	 */
423 	for (cpu = 0; cpu < netisr_ncpus; ++cpu)
424 		bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
425 
426 	/*
427 	 * Initialize netmsgs for TCP drain
428 	 */
429 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
430 		netmsg_init(&tcp_drain_netmsg[cpu], NULL, &netisr_adone_rport,
431 		    MSGF_PRIORITY, tcp_drain_dispatch);
432 	}
433 
434 	syncache_init();
435 	netisr_register_rollup(tcp_willblock, NETISR_ROLLUP_PRIO_TCP);
436 }
437 
438 static void
439 tcp_willblock(void)
440 {
441 	struct tcpcb *tp;
442 	int cpu = mycpu->gd_cpuid;
443 
444 	while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
445 		KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
446 		tp->t_flags &= ~TF_ONOUTPUTQ;
447 		TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
448 		tcp_output(tp);
449 	}
450 }
451 
452 /*
453  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
454  * tcp_template used to store this data in mbufs, but we now recopy it out
455  * of the tcpcb each time to conserve mbufs.
456  */
457 void
458 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr, boolean_t tso)
459 {
460 	struct inpcb *inp = tp->t_inpcb;
461 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
462 
463 #ifdef INET6
464 	if (INP_ISIPV6(inp)) {
465 		struct ip6_hdr *ip6;
466 
467 		ip6 = (struct ip6_hdr *)ip_ptr;
468 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
469 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
470 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
471 			(IPV6_VERSION & IPV6_VERSION_MASK);
472 		ip6->ip6_nxt = IPPROTO_TCP;
473 		ip6->ip6_plen = sizeof(struct tcphdr);
474 		ip6->ip6_src = inp->in6p_laddr;
475 		ip6->ip6_dst = inp->in6p_faddr;
476 		tcp_hdr->th_sum = 0;
477 	} else
478 #endif
479 	{
480 		struct ip *ip = (struct ip *) ip_ptr;
481 		u_int plen;
482 
483 		ip->ip_vhl = IP_VHL_BORING;
484 		ip->ip_tos = 0;
485 		ip->ip_len = 0;
486 		ip->ip_id = 0;
487 		ip->ip_off = 0;
488 		ip->ip_ttl = 0;
489 		ip->ip_sum = 0;
490 		ip->ip_p = IPPROTO_TCP;
491 		ip->ip_src = inp->inp_laddr;
492 		ip->ip_dst = inp->inp_faddr;
493 
494 		if (tso)
495 			plen = htons(IPPROTO_TCP);
496 		else
497 			plen = htons(sizeof(struct tcphdr) + IPPROTO_TCP);
498 		tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
499 		    ip->ip_dst.s_addr, plen);
500 	}
501 
502 	tcp_hdr->th_sport = inp->inp_lport;
503 	tcp_hdr->th_dport = inp->inp_fport;
504 	tcp_hdr->th_seq = 0;
505 	tcp_hdr->th_ack = 0;
506 	tcp_hdr->th_x2 = 0;
507 	tcp_hdr->th_off = 5;
508 	tcp_hdr->th_flags = 0;
509 	tcp_hdr->th_win = 0;
510 	tcp_hdr->th_urp = 0;
511 }
512 
513 /*
514  * Create template to be used to send tcp packets on a connection.
515  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
516  * use for this function is in keepalives, which use tcp_respond.
517  */
518 struct tcptemp *
519 tcp_maketemplate(struct tcpcb *tp)
520 {
521 	struct tcptemp *tmp;
522 
523 	if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
524 		return (NULL);
525 	tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t, FALSE);
526 	return (tmp);
527 }
528 
529 void
530 tcp_freetemplate(struct tcptemp *tmp)
531 {
532 	mpipe_free(&tcptemp_mpipe, tmp);
533 }
534 
535 /*
536  * Send a single message to the TCP at address specified by
537  * the given TCP/IP header.  If m == NULL, then we make a copy
538  * of the tcpiphdr at ti and send directly to the addressed host.
539  * This is used to force keep alive messages out using the TCP
540  * template for a connection.  If flags are given then we send
541  * a message back to the TCP which originated the * segment ti,
542  * and discard the mbuf containing it and any other attached mbufs.
543  *
544  * In any case the ack and sequence number of the transmitted
545  * segment are as specified by the parameters.
546  *
547  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
548  */
549 void
550 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
551 	    tcp_seq ack, tcp_seq seq, int flags)
552 {
553 	int tlen;
554 	long win = 0;
555 	struct route *ro = NULL;
556 	struct route sro;
557 	struct ip *ip = ipgen;
558 	struct tcphdr *nth;
559 	int ipflags = 0;
560 	struct route_in6 *ro6 = NULL;
561 	struct route_in6 sro6;
562 	struct ip6_hdr *ip6 = ipgen;
563 	struct inpcb *inp = NULL;
564 	boolean_t use_tmpro = TRUE;
565 #ifdef INET6
566 	boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
567 #else
568 	const boolean_t isipv6 = FALSE;
569 #endif
570 
571 	if (tp != NULL) {
572 		inp = tp->t_inpcb;
573 		if (!(flags & TH_RST)) {
574 			win = ssb_space(&inp->inp_socket->so_rcv);
575 			if (win < 0)
576 				win = 0;
577 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
578 				win = (long)TCP_MAXWIN << tp->rcv_scale;
579 		}
580 		/*
581 		 * Don't use the route cache of a listen socket,
582 		 * it is not MPSAFE; use temporary route cache.
583 		 */
584 		if (tp->t_state != TCPS_LISTEN) {
585 			if (isipv6)
586 				ro6 = &inp->in6p_route;
587 			else
588 				ro = &inp->inp_route;
589 			use_tmpro = FALSE;
590 		}
591 	}
592 	if (use_tmpro) {
593 		if (isipv6) {
594 			ro6 = &sro6;
595 			bzero(ro6, sizeof *ro6);
596 		} else {
597 			ro = &sro;
598 			bzero(ro, sizeof *ro);
599 		}
600 	}
601 	if (m == NULL) {
602 		m = m_gethdr(M_NOWAIT, MT_HEADER);
603 		if (m == NULL)
604 			return;
605 		tlen = 0;
606 		m->m_data += max_linkhdr;
607 		if (isipv6) {
608 			bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
609 			ip6 = mtod(m, struct ip6_hdr *);
610 			nth = (struct tcphdr *)(ip6 + 1);
611 		} else {
612 			bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
613 			ip = mtod(m, struct ip *);
614 			nth = (struct tcphdr *)(ip + 1);
615 		}
616 		bcopy(th, nth, sizeof(struct tcphdr));
617 		flags = TH_ACK;
618 	} else {
619 		m_freem(m->m_next);
620 		m->m_next = NULL;
621 		m->m_data = (caddr_t)ipgen;
622 		/* m_len is set later */
623 		tlen = 0;
624 #define	xchg(a, b, type) { type t; t = a; a = b; b = t; }
625 		if (isipv6) {
626 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
627 			nth = (struct tcphdr *)(ip6 + 1);
628 		} else {
629 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
630 			nth = (struct tcphdr *)(ip + 1);
631 		}
632 		if (th != nth) {
633 			/*
634 			 * this is usually a case when an extension header
635 			 * exists between the IPv6 header and the
636 			 * TCP header.
637 			 */
638 			nth->th_sport = th->th_sport;
639 			nth->th_dport = th->th_dport;
640 		}
641 		xchg(nth->th_dport, nth->th_sport, n_short);
642 #undef xchg
643 	}
644 	if (isipv6) {
645 		ip6->ip6_flow = 0;
646 		ip6->ip6_vfc = IPV6_VERSION;
647 		ip6->ip6_nxt = IPPROTO_TCP;
648 		ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
649 		tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
650 	} else {
651 		tlen += sizeof(struct tcpiphdr);
652 		ip->ip_len = tlen;
653 		ip->ip_ttl = ip_defttl;
654 	}
655 	m->m_len = tlen;
656 	m->m_pkthdr.len = tlen;
657 	m->m_pkthdr.rcvif = NULL;
658 	nth->th_seq = htonl(seq);
659 	nth->th_ack = htonl(ack);
660 	nth->th_x2 = 0;
661 	nth->th_off = sizeof(struct tcphdr) >> 2;
662 	nth->th_flags = flags;
663 	if (tp != NULL)
664 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
665 	else
666 		nth->th_win = htons((u_short)win);
667 	nth->th_urp = 0;
668 	if (isipv6) {
669 		nth->th_sum = 0;
670 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
671 					sizeof(struct ip6_hdr),
672 					tlen - sizeof(struct ip6_hdr));
673 		ip6->ip6_hlim = in6_selecthlim(inp,
674 		    (ro6 && ro6->ro_rt) ? ro6->ro_rt->rt_ifp : NULL);
675 	} else {
676 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
677 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
678 		m->m_pkthdr.csum_flags = CSUM_TCP;
679 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
680 		m->m_pkthdr.csum_thlen = sizeof(struct tcphdr);
681 	}
682 #ifdef TCPDEBUG
683 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
684 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
685 #endif
686 	if (isipv6) {
687 		ip6_output(m, NULL, ro6, ipflags, NULL, NULL, inp);
688 		if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
689 			RTFREE(ro6->ro_rt);
690 			ro6->ro_rt = NULL;
691 		}
692 	} else {
693 		if (inp != NULL && (inp->inp_flags & INP_HASH))
694 			m_sethash(m, inp->inp_hashval);
695 		ipflags |= IP_DEBUGROUTE;
696 		ip_output(m, NULL, ro, ipflags, NULL, inp);
697 		if ((ro == &sro) && (ro->ro_rt != NULL)) {
698 			RTFREE(ro->ro_rt);
699 			ro->ro_rt = NULL;
700 		}
701 	}
702 }
703 
704 /*
705  * Create a new TCP control block, making an
706  * empty reassembly queue and hooking it to the argument
707  * protocol control block.  The `inp' parameter must have
708  * come from the zone allocator set up in tcp_init().
709  */
710 void
711 tcp_newtcpcb(struct inpcb *inp)
712 {
713 	struct inp_tp *it;
714 	struct tcpcb *tp;
715 #ifdef INET6
716 	boolean_t isipv6 = INP_ISIPV6(inp);
717 #else
718 	const boolean_t isipv6 = FALSE;
719 #endif
720 
721 	it = (struct inp_tp *)inp;
722 	tp = &it->tcb;
723 	bzero(tp, sizeof(struct tcpcb));
724 	TAILQ_INIT(&tp->t_segq);
725 	tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
726 	tp->t_rxtthresh = tcprexmtthresh;
727 
728 	/* Set up our timeouts. */
729 	tp->tt_rexmt = &it->inp_tp_rexmt;
730 	tp->tt_persist = &it->inp_tp_persist;
731 	tp->tt_keep = &it->inp_tp_keep;
732 	tp->tt_2msl = &it->inp_tp_2msl;
733 	tp->tt_delack = &it->inp_tp_delack;
734 	tcp_inittimers(tp);
735 
736 	/*
737 	 * Zero out timer message.  We don't create it here,
738 	 * since the current CPU may not be the owner of this
739 	 * inpcb.
740 	 */
741 	tp->tt_msg = &it->inp_tp_timermsg;
742 	bzero(tp->tt_msg, sizeof(*tp->tt_msg));
743 
744 	tp->t_keepinit = tcp_keepinit;
745 	tp->t_keepidle = tcp_keepidle;
746 	tp->t_keepintvl = tcp_keepintvl;
747 	tp->t_keepcnt = tcp_keepcnt;
748 	tp->t_maxidle = tp->t_keepintvl * tp->t_keepcnt;
749 
750 	if (tcp_do_ncr)
751 		tp->t_flags |= TF_NCR;
752 	if (tcp_do_rfc1323)
753 		tp->t_flags |= (TF_REQ_SCALE | TF_REQ_TSTMP);
754 
755 	tp->t_inpcb = inp;	/* XXX */
756 	TCP_STATE_INIT(tp);
757 	/*
758 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
759 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
760 	 * reasonable initial retransmit time.
761 	 */
762 	tp->t_srtt = TCPTV_SRTTBASE;
763 	tp->t_rttvar =
764 	    ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
765 	tp->t_rttmin = tcp_rexmit_min;
766 	tp->t_rxtcur = TCPTV_RTOBASE;
767 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
768 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
769 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
770 	tp->snd_last = ticks;
771 	tp->t_rcvtime = ticks;
772 	/*
773 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
774 	 * because the socket may be bound to an IPv6 wildcard address,
775 	 * which may match an IPv4-mapped IPv6 address.
776 	 */
777 	inp->inp_ip_ttl = ip_defttl;
778 	inp->inp_ppcb = tp;
779 	tcp_sack_tcpcb_init(tp);
780 
781 	tp->tt_sndmore = &it->inp_tp_sndmore;
782 	tcp_output_init(tp);
783 }
784 
785 /*
786  * Drop a TCP connection, reporting the specified error.
787  * If connection is synchronized, then send a RST to peer.
788  */
789 struct tcpcb *
790 tcp_drop(struct tcpcb *tp, int error)
791 {
792 	struct socket *so = tp->t_inpcb->inp_socket;
793 
794 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
795 		TCP_STATE_CHANGE(tp, TCPS_CLOSED);
796 		tcp_output(tp);
797 		tcpstat.tcps_drops++;
798 	} else
799 		tcpstat.tcps_conndrops++;
800 	if (error == ETIMEDOUT && tp->t_softerror)
801 		error = tp->t_softerror;
802 	so->so_error = error;
803 	return (tcp_close(tp));
804 }
805 
806 struct netmsg_listen_detach {
807 	struct netmsg_base	base;
808 	struct tcpcb		*nm_tp;
809 	struct tcpcb		*nm_tp_inh;
810 };
811 
812 static void
813 tcp_listen_detach_handler(netmsg_t msg)
814 {
815 	struct netmsg_listen_detach *nmsg = (struct netmsg_listen_detach *)msg;
816 	struct tcpcb *tp = nmsg->nm_tp;
817 	int cpu = mycpuid, nextcpu;
818 
819 	if (tp->t_flags & TF_LISTEN) {
820 		syncache_destroy(tp, nmsg->nm_tp_inh);
821 		tcp_pcbport_merge_oncpu(tp);
822 	}
823 
824 	in_pcbremwildcardhash_oncpu(tp->t_inpcb, &tcbinfo[cpu]);
825 
826 	nextcpu = cpu + 1;
827 	if (nextcpu < netisr_ncpus)
828 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &nmsg->base.lmsg);
829 	else
830 		lwkt_replymsg(&nmsg->base.lmsg, 0);
831 }
832 
833 /*
834  * Close a TCP control block:
835  *	discard all space held by the tcp
836  *	discard internet protocol block
837  *	wake up any sleepers
838  */
839 struct tcpcb *
840 tcp_close(struct tcpcb *tp)
841 {
842 	struct tseg_qent *q;
843 	struct inpcb *inp = tp->t_inpcb;
844 	struct inpcb *inp_inh = NULL;
845 	struct tcpcb *tp_inh = NULL;
846 	struct socket *so = inp->inp_socket;
847 	struct rtentry *rt;
848 	boolean_t dosavessthresh;
849 #ifdef INET6
850 	boolean_t isipv6 = INP_ISIPV6(inp);
851 #else
852 	const boolean_t isipv6 = FALSE;
853 #endif
854 
855 	if (tp->t_flags & TF_LISTEN) {
856 		/*
857 		 * Pending socket/syncache inheritance
858 		 *
859 		 * If this is a listen(2) socket, find another listen(2)
860 		 * socket in the same local group, which could inherit
861 		 * the syncache and sockets pending on the completion
862 		 * and incompletion queues.
863 		 *
864 		 * NOTE:
865 		 * Currently the inheritance could only happen on the
866 		 * listen(2) sockets w/ SO_REUSEPORT set.
867 		 */
868 		ASSERT_IN_NETISR(0);
869 		inp_inh = in_pcblocalgroup_last(&tcbinfo[0], inp);
870 		if (inp_inh != NULL)
871 			tp_inh = intotcpcb(inp_inh);
872 	}
873 
874 	/*
875 	 * INP_WILDCARD indicates that listen(2) has been called on
876 	 * this socket.  This implies:
877 	 * - A wildcard inp's hash is replicated for each protocol thread.
878 	 * - Syncache for this inp grows independently in each protocol
879 	 *   thread.
880 	 * - There is more than one cpu
881 	 *
882 	 * We have to chain a message to the rest of the protocol threads
883 	 * to cleanup the wildcard hash and the syncache.  The cleanup
884 	 * in the current protocol thread is defered till the end of this
885 	 * function (syncache_destroy and in_pcbdetach).
886 	 *
887 	 * NOTE:
888 	 * After cleanup the inp's hash and syncache entries, this inp will
889 	 * no longer be available to the rest of the protocol threads, so we
890 	 * are safe to whack the inp in the following code.
891 	 */
892 	if ((inp->inp_flags & INP_WILDCARD) && netisr_ncpus > 1) {
893 		struct netmsg_listen_detach nmsg;
894 
895 		KKASSERT(so->so_port == netisr_cpuport(0));
896 		ASSERT_IN_NETISR(0);
897 		KKASSERT(inp->inp_pcbinfo == &tcbinfo[0]);
898 
899 		netmsg_init(&nmsg.base, NULL, &curthread->td_msgport,
900 			    MSGF_PRIORITY, tcp_listen_detach_handler);
901 		nmsg.nm_tp = tp;
902 		nmsg.nm_tp_inh = tp_inh;
903 		lwkt_domsg(netisr_cpuport(1), &nmsg.base.lmsg, 0);
904 	}
905 
906 	TCP_STATE_TERM(tp);
907 
908 	/*
909 	 * Make sure that all of our timers are stopped before we
910 	 * delete the PCB.  For listen TCP socket (tp->tt_msg == NULL),
911 	 * timers are never used.  If timer message is never created
912 	 * (tp->tt_msg->tt_tcb == NULL), timers are never used too.
913 	 */
914 	if (tp->tt_msg != NULL && tp->tt_msg->tt_tcb != NULL) {
915 		tcp_callout_stop(tp, tp->tt_rexmt);
916 		tcp_callout_stop(tp, tp->tt_persist);
917 		tcp_callout_stop(tp, tp->tt_keep);
918 		tcp_callout_stop(tp, tp->tt_2msl);
919 		tcp_callout_stop(tp, tp->tt_delack);
920 	}
921 
922 	if (tp->t_flags & TF_ONOUTPUTQ) {
923 		KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
924 		TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
925 		tp->t_flags &= ~TF_ONOUTPUTQ;
926 	}
927 
928 	/*
929 	 * If we got enough samples through the srtt filter,
930 	 * save the rtt and rttvar in the routing entry.
931 	 * 'Enough' is arbitrarily defined as the 16 samples.
932 	 * 16 samples is enough for the srtt filter to converge
933 	 * to within 5% of the correct value; fewer samples and
934 	 * we could save a very bogus rtt.
935 	 *
936 	 * Don't update the default route's characteristics and don't
937 	 * update anything that the user "locked".
938 	 */
939 	if (tp->t_rttupdated >= 16) {
940 		u_long i = 0;
941 
942 		if (isipv6) {
943 			struct sockaddr_in6 *sin6;
944 
945 			if ((rt = inp->in6p_route.ro_rt) == NULL)
946 				goto no_valid_rt;
947 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
948 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
949 				goto no_valid_rt;
950 		} else
951 			if ((rt = inp->inp_route.ro_rt) == NULL ||
952 			    ((struct sockaddr_in *)rt_key(rt))->
953 			     sin_addr.s_addr == INADDR_ANY)
954 				goto no_valid_rt;
955 
956 		if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
957 			i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
958 			if (rt->rt_rmx.rmx_rtt && i)
959 				/*
960 				 * filter this update to half the old & half
961 				 * the new values, converting scale.
962 				 * See route.h and tcp_var.h for a
963 				 * description of the scaling constants.
964 				 */
965 				rt->rt_rmx.rmx_rtt =
966 				    (rt->rt_rmx.rmx_rtt + i) / 2;
967 			else
968 				rt->rt_rmx.rmx_rtt = i;
969 			tcpstat.tcps_cachedrtt++;
970 		}
971 		if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
972 			i = tp->t_rttvar *
973 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
974 			if (rt->rt_rmx.rmx_rttvar && i)
975 				rt->rt_rmx.rmx_rttvar =
976 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
977 			else
978 				rt->rt_rmx.rmx_rttvar = i;
979 			tcpstat.tcps_cachedrttvar++;
980 		}
981 		/*
982 		 * The old comment here said:
983 		 * update the pipelimit (ssthresh) if it has been updated
984 		 * already or if a pipesize was specified & the threshhold
985 		 * got below half the pipesize.  I.e., wait for bad news
986 		 * before we start updating, then update on both good
987 		 * and bad news.
988 		 *
989 		 * But we want to save the ssthresh even if no pipesize is
990 		 * specified explicitly in the route, because such
991 		 * connections still have an implicit pipesize specified
992 		 * by the global tcp_sendspace.  In the absence of a reliable
993 		 * way to calculate the pipesize, it will have to do.
994 		 */
995 		i = tp->snd_ssthresh;
996 		if (rt->rt_rmx.rmx_sendpipe != 0)
997 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
998 		else
999 			dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
1000 		if (dosavessthresh ||
1001 		    (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
1002 		     (rt->rt_rmx.rmx_ssthresh != 0))) {
1003 			/*
1004 			 * convert the limit from user data bytes to
1005 			 * packets then to packet data bytes.
1006 			 */
1007 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
1008 			if (i < 2)
1009 				i = 2;
1010 			i *= tp->t_maxseg +
1011 			     (isipv6 ?
1012 			      sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1013 			      sizeof(struct tcpiphdr));
1014 			if (rt->rt_rmx.rmx_ssthresh)
1015 				rt->rt_rmx.rmx_ssthresh =
1016 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
1017 			else
1018 				rt->rt_rmx.rmx_ssthresh = i;
1019 			tcpstat.tcps_cachedssthresh++;
1020 		}
1021 	}
1022 
1023 no_valid_rt:
1024 	/* free the reassembly queue, if any */
1025 	while((q = TAILQ_FIRST(&tp->t_segq)) != NULL) {
1026 		TAILQ_REMOVE(&tp->t_segq, q, tqe_q);
1027 		m_freem(q->tqe_m);
1028 		kfree(q, M_TSEGQ);
1029 		atomic_add_int(&tcp_reass_qsize, -1);
1030 	}
1031 	/* throw away SACK blocks in scoreboard*/
1032 	if (TCP_DO_SACK(tp))
1033 		tcp_sack_destroy(&tp->scb);
1034 
1035 	inp->inp_ppcb = NULL;
1036 	soisdisconnected(so);
1037 	/* note: pcb detached later on */
1038 
1039 	tcp_destroy_timermsg(tp);
1040 	tcp_output_cancel(tp);
1041 
1042 	if (tp->t_flags & TF_LISTEN) {
1043 		syncache_destroy(tp, tp_inh);
1044 		tcp_pcbport_merge_oncpu(tp);
1045 		tcp_pcbport_destroy(tp);
1046 		if (inp_inh != NULL && inp_inh->inp_socket != NULL) {
1047 			/*
1048 			 * Pending sockets inheritance only needs
1049 			 * to be done once in the current thread,
1050 			 * i.e. netisr0.
1051 			 */
1052 			soinherit(so, inp_inh->inp_socket);
1053 		}
1054 	}
1055 	KASSERT(tp->t_pcbport == NULL, ("tcpcb port cache is not destroyed"));
1056 
1057 	so_async_rcvd_drop(so);
1058 	/* Drop the reference for the asynchronized pru_rcvd */
1059 	sofree(so);
1060 
1061 	/*
1062 	 * NOTE:
1063 	 * - Remove self from listen tcpcb per-cpu port cache _before_
1064 	 *   pcbdetach.
1065 	 * - pcbdetach removes any wildcard hash entry on the current CPU.
1066 	 */
1067 	tcp_pcbport_remove(inp);
1068 #ifdef INET6
1069 	if (isipv6)
1070 		in6_pcbdetach(inp);
1071 	else
1072 #endif
1073 		in_pcbdetach(inp);
1074 
1075 	tcpstat.tcps_closed++;
1076 	return (NULL);
1077 }
1078 
1079 static __inline void
1080 tcp_drain_oncpu(struct inpcbinfo *pcbinfo)
1081 {
1082 	struct inpcbhead *head = &pcbinfo->pcblisthead;
1083 	struct inpcb *inpb;
1084 
1085 	/*
1086 	 * Since we run in netisr, it is MP safe, even if
1087 	 * we block during the inpcb list iteration, i.e.
1088 	 * we don't need to use inpcb marker here.
1089 	 */
1090 	ASSERT_IN_NETISR(pcbinfo->cpu);
1091 
1092 	LIST_FOREACH(inpb, head, inp_list) {
1093 		struct tcpcb *tcpb;
1094 		struct tseg_qent *te;
1095 
1096 		if (inpb->inp_flags & INP_PLACEMARKER)
1097 			continue;
1098 
1099 		tcpb = intotcpcb(inpb);
1100 		KASSERT(tcpb != NULL, ("tcp_drain_oncpu: tcpb is NULL"));
1101 
1102 		if ((te = TAILQ_FIRST(&tcpb->t_segq)) != NULL) {
1103 			TAILQ_REMOVE(&tcpb->t_segq, te, tqe_q);
1104 			if (te->tqe_th->th_flags & TH_FIN)
1105 				tcpb->t_flags &= ~TF_QUEDFIN;
1106 			m_freem(te->tqe_m);
1107 			kfree(te, M_TSEGQ);
1108 			atomic_add_int(&tcp_reass_qsize, -1);
1109 			/* retry */
1110 		}
1111 	}
1112 }
1113 
1114 static void
1115 tcp_drain_dispatch(netmsg_t nmsg)
1116 {
1117 	crit_enter();
1118 	lwkt_replymsg(&nmsg->lmsg, 0);  /* reply ASAP */
1119 	crit_exit();
1120 
1121 	tcp_drain_oncpu(&tcbinfo[mycpuid]);
1122 }
1123 
1124 static void
1125 tcp_drain_ipi(void *arg __unused)
1126 {
1127 	int cpu = mycpuid;
1128 	struct lwkt_msg *msg = &tcp_drain_netmsg[cpu].lmsg;
1129 
1130 	crit_enter();
1131 	if (msg->ms_flags & MSGF_DONE)
1132 		lwkt_sendmsg_oncpu(netisr_cpuport(cpu), msg);
1133 	crit_exit();
1134 }
1135 
1136 void
1137 tcp_drain(void)
1138 {
1139 	cpumask_t mask;
1140 
1141 	if (!do_tcpdrain)
1142 		return;
1143 
1144 	/*
1145 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1146 	 * if there is one...
1147 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1148 	 *	reassembly queue should be flushed, but in a situation
1149 	 *	where we're really low on mbufs, this is potentially
1150 	 *	useful.
1151 	 * YYY: We may consider run tcp_drain_oncpu directly here,
1152 	 *      however, that will require M_WAITOK memory allocation
1153 	 *      for the inpcb marker.
1154 	 */
1155 	CPUMASK_ASSBMASK(mask, netisr_ncpus);
1156 	CPUMASK_ANDMASK(mask, smp_active_mask);
1157 	if (CPUMASK_TESTNZERO(mask))
1158 		lwkt_send_ipiq_mask(mask, tcp_drain_ipi, NULL);
1159 }
1160 
1161 /*
1162  * Notify a tcp user of an asynchronous error;
1163  * store error as soft error, but wake up user
1164  * (for now, won't do anything until can select for soft error).
1165  *
1166  * Do not wake up user since there currently is no mechanism for
1167  * reporting soft errors (yet - a kqueue filter may be added).
1168  */
1169 static void
1170 tcp_notify(struct inpcb *inp, int error)
1171 {
1172 	struct tcpcb *tp = intotcpcb(inp);
1173 
1174 	/*
1175 	 * Ignore some errors if we are hooked up.
1176 	 * If connection hasn't completed, has retransmitted several times,
1177 	 * and receives a second error, give up now.  This is better
1178 	 * than waiting a long time to establish a connection that
1179 	 * can never complete.
1180 	 */
1181 	if (tp->t_state == TCPS_ESTABLISHED &&
1182 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1183 	      error == EHOSTDOWN)) {
1184 		return;
1185 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1186 	    tp->t_softerror)
1187 		tcp_drop(tp, error);
1188 	else
1189 		tp->t_softerror = error;
1190 #if 0
1191 	wakeup(&so->so_timeo);
1192 	sorwakeup(so);
1193 	sowwakeup(so);
1194 #endif
1195 }
1196 
1197 static int
1198 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1199 {
1200 	int error, i, n;
1201 	struct inpcb *marker;
1202 	struct inpcb *inp;
1203 	int origcpu, ccpu;
1204 
1205 	error = 0;
1206 	n = 0;
1207 
1208 	/*
1209 	 * The process of preparing the TCB list is too time-consuming and
1210 	 * resource-intensive to repeat twice on every request.
1211 	 */
1212 	if (req->oldptr == NULL) {
1213 		for (ccpu = 0; ccpu < netisr_ncpus; ++ccpu)
1214 			n += tcbinfo[ccpu].ipi_count;
1215 		req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1216 		return (0);
1217 	}
1218 
1219 	if (req->newptr != NULL)
1220 		return (EPERM);
1221 
1222 	marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1223 	marker->inp_flags |= INP_PLACEMARKER;
1224 
1225 	/*
1226 	 * OK, now we're committed to doing something.  Run the inpcb list
1227 	 * for each cpu in the system and construct the output.  Use a
1228 	 * list placemarker to deal with list changes occuring during
1229 	 * copyout blockages (but otherwise depend on being on the correct
1230 	 * cpu to avoid races).
1231 	 */
1232 	origcpu = mycpu->gd_cpuid;
1233 	for (ccpu = 0; ccpu < netisr_ncpus && error == 0; ++ccpu) {
1234 		caddr_t inp_ppcb;
1235 		struct xtcpcb xt;
1236 
1237 		lwkt_migratecpu(ccpu);
1238 
1239 		n = tcbinfo[ccpu].ipi_count;
1240 
1241 		LIST_INSERT_HEAD(&tcbinfo[ccpu].pcblisthead, marker, inp_list);
1242 		i = 0;
1243 		while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1244 			/*
1245 			 * process a snapshot of pcbs, ignoring placemarkers
1246 			 * and using our own to allow SYSCTL_OUT to block.
1247 			 */
1248 			LIST_REMOVE(marker, inp_list);
1249 			LIST_INSERT_AFTER(inp, marker, inp_list);
1250 
1251 			if (inp->inp_flags & INP_PLACEMARKER)
1252 				continue;
1253 			if (prison_xinpcb(req->td, inp))
1254 				continue;
1255 
1256 			xt.xt_len = sizeof xt;
1257 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1258 			inp_ppcb = inp->inp_ppcb;
1259 			if (inp_ppcb != NULL)
1260 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1261 			else
1262 				bzero(&xt.xt_tp, sizeof xt.xt_tp);
1263 			if (inp->inp_socket)
1264 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1265 			if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1266 				break;
1267 			++i;
1268 		}
1269 		LIST_REMOVE(marker, inp_list);
1270 		if (error == 0 && i < n) {
1271 			bzero(&xt, sizeof xt);
1272 			xt.xt_len = sizeof xt;
1273 			while (i < n) {
1274 				error = SYSCTL_OUT(req, &xt, sizeof xt);
1275 				if (error)
1276 					break;
1277 				++i;
1278 			}
1279 		}
1280 	}
1281 
1282 	/*
1283 	 * Make sure we are on the same cpu we were on originally, since
1284 	 * higher level callers expect this.  Also don't pollute caches with
1285 	 * migrated userland data by (eventually) returning to userland
1286 	 * on a different cpu.
1287 	 */
1288 	lwkt_migratecpu(origcpu);
1289 	kfree(marker, M_TEMP);
1290 	return (error);
1291 }
1292 
1293 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1294 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1295 
1296 static int
1297 tcp_getcred(SYSCTL_HANDLER_ARGS)
1298 {
1299 	struct sockaddr_in addrs[2];
1300 	struct ucred cred0, *cred = NULL;
1301 	struct inpcb *inp;
1302 	int cpu, origcpu, error;
1303 
1304 	error = priv_check(req->td, PRIV_ROOT);
1305 	if (error != 0)
1306 		return (error);
1307 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1308 	if (error != 0)
1309 		return (error);
1310 
1311 	origcpu = mycpuid;
1312 	cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1313 	    addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1314 
1315 	lwkt_migratecpu(cpu);
1316 
1317 	inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1318 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1319 	if (inp == NULL || inp->inp_socket == NULL) {
1320 		error = ENOENT;
1321 	} else if (inp->inp_socket->so_cred != NULL) {
1322 		cred0 = *(inp->inp_socket->so_cred);
1323 		cred = &cred0;
1324 	}
1325 
1326 	lwkt_migratecpu(origcpu);
1327 
1328 	if (error)
1329 		return (error);
1330 
1331 	return SYSCTL_OUT(req, cred, sizeof(struct ucred));
1332 }
1333 
1334 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1335     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1336 
1337 #ifdef INET6
1338 static int
1339 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1340 {
1341 	struct sockaddr_in6 addrs[2];
1342 	struct inpcb *inp;
1343 	int error;
1344 
1345 	error = priv_check(req->td, PRIV_ROOT);
1346 	if (error != 0)
1347 		return (error);
1348 	error = SYSCTL_IN(req, addrs, sizeof addrs);
1349 	if (error != 0)
1350 		return (error);
1351 	crit_enter();
1352 	inp = in6_pcblookup_hash(&tcbinfo[0],
1353 	    &addrs[1].sin6_addr, addrs[1].sin6_port,
1354 	    &addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1355 	if (inp == NULL || inp->inp_socket == NULL) {
1356 		error = ENOENT;
1357 		goto out;
1358 	}
1359 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1360 out:
1361 	crit_exit();
1362 	return (error);
1363 }
1364 
1365 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1366 	    0, 0,
1367 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1368 #endif
1369 
1370 struct netmsg_tcp_notify {
1371 	struct netmsg_base base;
1372 	inp_notify_t	nm_notify;
1373 	struct in_addr	nm_faddr;
1374 	int		nm_arg;
1375 };
1376 
1377 static void
1378 tcp_notifyall_oncpu(netmsg_t msg)
1379 {
1380 	struct netmsg_tcp_notify *nm = (struct netmsg_tcp_notify *)msg;
1381 	int nextcpu;
1382 
1383 	in_pcbnotifyall(&tcbinfo[mycpuid], nm->nm_faddr,
1384 			nm->nm_arg, nm->nm_notify);
1385 
1386 	nextcpu = mycpuid + 1;
1387 	if (nextcpu < netisr_ncpus)
1388 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &nm->base.lmsg);
1389 	else
1390 		lwkt_replymsg(&nm->base.lmsg, 0);
1391 }
1392 
1393 inp_notify_t
1394 tcp_get_inpnotify(int cmd, const struct sockaddr *sa,
1395     int *arg, struct ip **ip0, int *cpuid)
1396 {
1397 	struct ip *ip = *ip0;
1398 	struct in_addr faddr;
1399 	inp_notify_t notify = tcp_notify;
1400 
1401 	faddr = ((const struct sockaddr_in *)sa)->sin_addr;
1402 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1403 		return NULL;
1404 
1405 	*arg = inetctlerrmap[cmd];
1406 	if (cmd == PRC_QUENCH) {
1407 		notify = tcp_quench;
1408 	} else if (icmp_may_rst &&
1409 		   (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1410 		    cmd == PRC_UNREACH_PORT ||
1411 		    cmd == PRC_TIMXCEED_INTRANS) &&
1412 		   ip != NULL) {
1413 		notify = tcp_drop_syn_sent;
1414 	} else if (cmd == PRC_MSGSIZE) {
1415 		const struct icmp *icmp = (const struct icmp *)
1416 		    ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1417 
1418 		*arg = ntohs(icmp->icmp_nextmtu);
1419 		notify = tcp_mtudisc;
1420 	} else if (PRC_IS_REDIRECT(cmd)) {
1421 		ip = NULL;
1422 		notify = in_rtchange;
1423 	} else if (cmd == PRC_HOSTDEAD) {
1424 		ip = NULL;
1425 	} else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1426 		return NULL;
1427 	}
1428 
1429 	if (cpuid != NULL) {
1430 		if (ip == NULL) {
1431 			/* Go through all CPUs */
1432 			*cpuid = ncpus;
1433 		} else {
1434 			const struct tcphdr *th;
1435 
1436 			th = (const struct tcphdr *)
1437 			    ((caddr_t)ip + (IP_VHL_HL(ip->ip_vhl) << 2));
1438 			*cpuid = tcp_addrcpu(faddr.s_addr, th->th_dport,
1439 			    ip->ip_src.s_addr, th->th_sport);
1440 		}
1441 	}
1442 
1443 	*ip0 = ip;
1444 	return notify;
1445 }
1446 
1447 void
1448 tcp_ctlinput(netmsg_t msg)
1449 {
1450 	int cmd = msg->ctlinput.nm_cmd;
1451 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1452 	struct ip *ip = msg->ctlinput.nm_extra;
1453 	struct in_addr faddr;
1454 	inp_notify_t notify;
1455 	int arg, cpuid;
1456 
1457 	notify = tcp_get_inpnotify(cmd, sa, &arg, &ip, &cpuid);
1458 	if (notify == NULL)
1459 		goto done;
1460 
1461 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1462 	if (ip != NULL) {
1463 		const struct tcphdr *th;
1464 		struct inpcb *inp;
1465 
1466 		if (cpuid != mycpuid)
1467 			goto done;
1468 
1469 		th = (const struct tcphdr *)
1470 		    ((caddr_t)ip + (IP_VHL_HL(ip->ip_vhl) << 2));
1471 		inp = in_pcblookup_hash(&tcbinfo[mycpuid], faddr, th->th_dport,
1472 					ip->ip_src, th->th_sport, 0, NULL);
1473 		if (inp != NULL && inp->inp_socket != NULL) {
1474 			tcp_seq icmpseq = htonl(th->th_seq);
1475 			struct tcpcb *tp = intotcpcb(inp);
1476 
1477 			if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1478 			    SEQ_LT(icmpseq, tp->snd_max))
1479 				notify(inp, arg);
1480 		} else {
1481 			struct in_conninfo inc;
1482 
1483 			inc.inc_fport = th->th_dport;
1484 			inc.inc_lport = th->th_sport;
1485 			inc.inc_faddr = faddr;
1486 			inc.inc_laddr = ip->ip_src;
1487 #ifdef INET6
1488 			inc.inc_isipv6 = 0;
1489 #endif
1490 			syncache_unreach(&inc, th);
1491 		}
1492 	} else if (msg->ctlinput.nm_direct) {
1493 		if (cpuid != ncpus && cpuid != mycpuid)
1494 			goto done;
1495 		if (mycpuid >= netisr_ncpus)
1496 			goto done;
1497 
1498 		in_pcbnotifyall(&tcbinfo[mycpuid], faddr, arg, notify);
1499 	} else {
1500 		struct netmsg_tcp_notify *nm;
1501 
1502 		ASSERT_IN_NETISR(0);
1503 		nm = kmalloc(sizeof(*nm), M_LWKTMSG, M_INTWAIT);
1504 		netmsg_init(&nm->base, NULL, &netisr_afree_rport,
1505 			    0, tcp_notifyall_oncpu);
1506 		nm->nm_faddr = faddr;
1507 		nm->nm_arg = arg;
1508 		nm->nm_notify = notify;
1509 
1510 		lwkt_sendmsg(netisr_cpuport(0), &nm->base.lmsg);
1511 	}
1512 done:
1513 	lwkt_replymsg(&msg->lmsg, 0);
1514 }
1515 
1516 #ifdef INET6
1517 
1518 void
1519 tcp6_ctlinput(netmsg_t msg)
1520 {
1521 	int cmd = msg->ctlinput.nm_cmd;
1522 	struct sockaddr *sa = msg->ctlinput.nm_arg;
1523 	void *d = msg->ctlinput.nm_extra;
1524 	struct tcphdr th;
1525 	inp_notify_t notify = tcp_notify;
1526 	struct ip6_hdr *ip6;
1527 	struct mbuf *m;
1528 	struct ip6ctlparam *ip6cp = NULL;
1529 	const struct sockaddr_in6 *sa6_src = NULL;
1530 	int off;
1531 	struct tcp_portonly {
1532 		u_int16_t th_sport;
1533 		u_int16_t th_dport;
1534 	} *thp;
1535 	int arg;
1536 
1537 	if (sa->sa_family != AF_INET6 ||
1538 	    sa->sa_len != sizeof(struct sockaddr_in6)) {
1539 		goto out;
1540 	}
1541 
1542 	arg = 0;
1543 	if (cmd == PRC_QUENCH)
1544 		notify = tcp_quench;
1545 	else if (cmd == PRC_MSGSIZE) {
1546 		struct ip6ctlparam *ip6cp = d;
1547 		struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1548 
1549 		arg = ntohl(icmp6->icmp6_mtu);
1550 		notify = tcp_mtudisc;
1551 	} else if (!PRC_IS_REDIRECT(cmd) &&
1552 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1553 		goto out;
1554 	}
1555 
1556 	/* if the parameter is from icmp6, decode it. */
1557 	if (d != NULL) {
1558 		ip6cp = (struct ip6ctlparam *)d;
1559 		m = ip6cp->ip6c_m;
1560 		ip6 = ip6cp->ip6c_ip6;
1561 		off = ip6cp->ip6c_off;
1562 		sa6_src = ip6cp->ip6c_src;
1563 	} else {
1564 		m = NULL;
1565 		ip6 = NULL;
1566 		off = 0;	/* fool gcc */
1567 		sa6_src = &sa6_any;
1568 	}
1569 
1570 	if (ip6 != NULL) {
1571 		struct in_conninfo inc;
1572 		/*
1573 		 * XXX: We assume that when IPV6 is non NULL,
1574 		 * M and OFF are valid.
1575 		 */
1576 
1577 		/* check if we can safely examine src and dst ports */
1578 		if (m->m_pkthdr.len < off + sizeof *thp)
1579 			goto out;
1580 
1581 		bzero(&th, sizeof th);
1582 		m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1583 
1584 		in6_pcbnotify(&tcbinfo[0], sa, th.th_dport,
1585 		    (struct sockaddr *)ip6cp->ip6c_src,
1586 		    th.th_sport, cmd, arg, notify);
1587 
1588 		inc.inc_fport = th.th_dport;
1589 		inc.inc_lport = th.th_sport;
1590 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1591 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1592 		inc.inc_isipv6 = 1;
1593 		syncache_unreach(&inc, &th);
1594 	} else {
1595 		in6_pcbnotify(&tcbinfo[0], sa, 0,
1596 		    (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1597 	}
1598 out:
1599 	lwkt_replymsg(&msg->ctlinput.base.lmsg, 0);
1600 }
1601 
1602 #endif
1603 
1604 /*
1605  * Following is where TCP initial sequence number generation occurs.
1606  *
1607  * There are two places where we must use initial sequence numbers:
1608  * 1.  In SYN-ACK packets.
1609  * 2.  In SYN packets.
1610  *
1611  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1612  * tcp_syncache.c for details.
1613  *
1614  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1615  * depends on this property.  In addition, these ISNs should be
1616  * unguessable so as to prevent connection hijacking.  To satisfy
1617  * the requirements of this situation, the algorithm outlined in
1618  * RFC 1948 is used to generate sequence numbers.
1619  *
1620  * Implementation details:
1621  *
1622  * Time is based off the system timer, and is corrected so that it
1623  * increases by one megabyte per second.  This allows for proper
1624  * recycling on high speed LANs while still leaving over an hour
1625  * before rollover.
1626  *
1627  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1628  * between seeding of isn_secret.  This is normally set to zero,
1629  * as reseeding should not be necessary.
1630  *
1631  */
1632 
1633 #define	ISN_BYTES_PER_SECOND 1048576
1634 
1635 u_char isn_secret[32];
1636 int isn_last_reseed;
1637 MD5_CTX isn_ctx;
1638 
1639 tcp_seq
1640 tcp_new_isn(struct tcpcb *tp)
1641 {
1642 	u_int32_t md5_buffer[4];
1643 	tcp_seq new_isn;
1644 
1645 	/* Seed if this is the first use, reseed if requested. */
1646 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1647 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1648 		< (u_int)ticks))) {
1649 		read_random_unlimited(&isn_secret, sizeof isn_secret);
1650 		isn_last_reseed = ticks;
1651 	}
1652 
1653 	/* Compute the md5 hash and return the ISN. */
1654 	MD5Init(&isn_ctx);
1655 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1656 	MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1657 #ifdef INET6
1658 	if (INP_ISIPV6(tp->t_inpcb)) {
1659 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1660 			  sizeof(struct in6_addr));
1661 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1662 			  sizeof(struct in6_addr));
1663 	} else
1664 #endif
1665 	{
1666 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1667 			  sizeof(struct in_addr));
1668 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1669 			  sizeof(struct in_addr));
1670 	}
1671 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1672 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1673 	new_isn = (tcp_seq) md5_buffer[0];
1674 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1675 	return (new_isn);
1676 }
1677 
1678 /*
1679  * When a source quench is received, close congestion window
1680  * to one segment.  We will gradually open it again as we proceed.
1681  */
1682 void
1683 tcp_quench(struct inpcb *inp, int error)
1684 {
1685 	struct tcpcb *tp = intotcpcb(inp);
1686 
1687 	KASSERT(tp != NULL, ("tcp_quench: tp is NULL"));
1688 	tp->snd_cwnd = tp->t_maxseg;
1689 	tp->snd_wacked = 0;
1690 }
1691 
1692 /*
1693  * When a specific ICMP unreachable message is received and the
1694  * connection state is SYN-SENT, drop the connection.  This behavior
1695  * is controlled by the icmp_may_rst sysctl.
1696  */
1697 void
1698 tcp_drop_syn_sent(struct inpcb *inp, int error)
1699 {
1700 	struct tcpcb *tp = intotcpcb(inp);
1701 
1702 	KASSERT(tp != NULL, ("tcp_drop_syn_sent: tp is NULL"));
1703 	if (tp->t_state == TCPS_SYN_SENT)
1704 		tcp_drop(tp, error);
1705 }
1706 
1707 /*
1708  * When a `need fragmentation' ICMP is received, update our idea of the MSS
1709  * based on the new value in the route.  Also nudge TCP to send something,
1710  * since we know the packet we just sent was dropped.
1711  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1712  */
1713 void
1714 tcp_mtudisc(struct inpcb *inp, int mtu)
1715 {
1716 	struct tcpcb *tp = intotcpcb(inp);
1717 	struct rtentry *rt;
1718 	struct socket *so = inp->inp_socket;
1719 	int maxopd, mss;
1720 #ifdef INET6
1721 	boolean_t isipv6 = INP_ISIPV6(inp);
1722 #else
1723 	const boolean_t isipv6 = FALSE;
1724 #endif
1725 
1726 	KASSERT(tp != NULL, ("tcp_mtudisc: tp is NULL"));
1727 
1728 	/*
1729 	 * If no MTU is provided in the ICMP message, use the
1730 	 * next lower likely value, as specified in RFC 1191.
1731 	 */
1732 	if (mtu == 0) {
1733 		int oldmtu;
1734 
1735 		oldmtu = tp->t_maxopd +
1736 		    (isipv6 ?
1737 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1738 		     sizeof(struct tcpiphdr));
1739 		mtu = ip_next_mtu(oldmtu, 0);
1740 	}
1741 
1742 	if (isipv6)
1743 		rt = tcp_rtlookup6(&inp->inp_inc);
1744 	else
1745 		rt = tcp_rtlookup(&inp->inp_inc);
1746 	if (rt != NULL) {
1747 		if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1748 			mtu = rt->rt_rmx.rmx_mtu;
1749 
1750 		maxopd = mtu -
1751 		    (isipv6 ?
1752 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1753 		     sizeof(struct tcpiphdr));
1754 
1755 		/*
1756 		 * XXX - The following conditional probably violates the TCP
1757 		 * spec.  The problem is that, since we don't know the
1758 		 * other end's MSS, we are supposed to use a conservative
1759 		 * default.  But, if we do that, then MTU discovery will
1760 		 * never actually take place, because the conservative
1761 		 * default is much less than the MTUs typically seen
1762 		 * on the Internet today.  For the moment, we'll sweep
1763 		 * this under the carpet.
1764 		 *
1765 		 * The conservative default might not actually be a problem
1766 		 * if the only case this occurs is when sending an initial
1767 		 * SYN with options and data to a host we've never talked
1768 		 * to before.  Then, they will reply with an MSS value which
1769 		 * will get recorded and the new parameters should get
1770 		 * recomputed.  For Further Study.
1771 		 */
1772 		if (rt->rt_rmx.rmx_mssopt  && rt->rt_rmx.rmx_mssopt < maxopd)
1773 			maxopd = rt->rt_rmx.rmx_mssopt;
1774 	} else
1775 		maxopd = mtu -
1776 		    (isipv6 ?
1777 		     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1778 		     sizeof(struct tcpiphdr));
1779 
1780 	if (tp->t_maxopd <= maxopd)
1781 		return;
1782 	tp->t_maxopd = maxopd;
1783 
1784 	mss = maxopd;
1785 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1786 			   (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1787 		mss -= TCPOLEN_TSTAMP_APPA;
1788 
1789 	/* round down to multiple of MCLBYTES */
1790 #if	(MCLBYTES & (MCLBYTES - 1)) == 0    /* test if MCLBYTES power of 2 */
1791 	if (mss > MCLBYTES)
1792 		mss &= ~(MCLBYTES - 1);
1793 #else
1794 	if (mss > MCLBYTES)
1795 		mss = (mss / MCLBYTES) * MCLBYTES;
1796 #endif
1797 
1798 	if (so->so_snd.ssb_hiwat < mss)
1799 		mss = so->so_snd.ssb_hiwat;
1800 
1801 	tp->t_maxseg = mss;
1802 	tp->t_rtttime = 0;
1803 	tp->snd_nxt = tp->snd_una;
1804 	tcp_output(tp);
1805 	tcpstat.tcps_mturesent++;
1806 }
1807 
1808 /*
1809  * Look-up the routing entry to the peer of this inpcb.  If no route
1810  * is found and it cannot be allocated the return NULL.  This routine
1811  * is called by TCP routines that access the rmx structure and by tcp_mss
1812  * to get the interface MTU.
1813  */
1814 struct rtentry *
1815 tcp_rtlookup(struct in_conninfo *inc)
1816 {
1817 	struct route *ro = &inc->inc_route;
1818 
1819 	if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1820 		/* No route yet, so try to acquire one */
1821 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1822 			/*
1823 			 * unused portions of the structure MUST be zero'd
1824 			 * out because rtalloc() treats it as opaque data
1825 			 */
1826 			bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1827 			ro->ro_dst.sa_family = AF_INET;
1828 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1829 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1830 			    inc->inc_faddr;
1831 			rtalloc(ro);
1832 		}
1833 	}
1834 	return (ro->ro_rt);
1835 }
1836 
1837 #ifdef INET6
1838 struct rtentry *
1839 tcp_rtlookup6(struct in_conninfo *inc)
1840 {
1841 	struct route_in6 *ro6 = &inc->inc6_route;
1842 
1843 	if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1844 		/* No route yet, so try to acquire one */
1845 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1846 			/*
1847 			 * unused portions of the structure MUST be zero'd
1848 			 * out because rtalloc() treats it as opaque data
1849 			 */
1850 			bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1851 			ro6->ro_dst.sin6_family = AF_INET6;
1852 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1853 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1854 			rtalloc((struct route *)ro6);
1855 		}
1856 	}
1857 	return (ro6->ro_rt);
1858 }
1859 #endif
1860 
1861 #ifdef IPSEC
1862 /* compute ESP/AH header size for TCP, including outer IP header. */
1863 size_t
1864 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1865 {
1866 	struct inpcb *inp;
1867 	struct mbuf *m;
1868 	size_t hdrsiz;
1869 	struct ip *ip;
1870 	struct tcphdr *th;
1871 
1872 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1873 		return (0);
1874 	MGETHDR(m, M_NOWAIT, MT_DATA);
1875 	if (!m)
1876 		return (0);
1877 
1878 #ifdef INET6
1879 	if (INP_ISIPV6(inp)) {
1880 		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1881 
1882 		th = (struct tcphdr *)(ip6 + 1);
1883 		m->m_pkthdr.len = m->m_len =
1884 		    sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1885 		tcp_fillheaders(tp, ip6, th, FALSE);
1886 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1887 	} else
1888 #endif
1889 	{
1890 		ip = mtod(m, struct ip *);
1891 		th = (struct tcphdr *)(ip + 1);
1892 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1893 		tcp_fillheaders(tp, ip, th, FALSE);
1894 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1895 	}
1896 
1897 	m_free(m);
1898 	return (hdrsiz);
1899 }
1900 #endif
1901 
1902 /*
1903  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1904  *
1905  * This code attempts to calculate the bandwidth-delay product as a
1906  * means of determining the optimal window size to maximize bandwidth,
1907  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1908  * routers.  This code also does a fairly good job keeping RTTs in check
1909  * across slow links like modems.  We implement an algorithm which is very
1910  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1911  * transmitter side of a TCP connection and so only effects the transmit
1912  * side of the connection.
1913  *
1914  * BACKGROUND:  TCP makes no provision for the management of buffer space
1915  * at the end points or at the intermediate routers and switches.  A TCP
1916  * stream, whether using NewReno or not, will eventually buffer as
1917  * many packets as it is able and the only reason this typically works is
1918  * due to the fairly small default buffers made available for a connection
1919  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1920  * scaling it is now fairly easy for even a single TCP connection to blow-out
1921  * all available buffer space not only on the local interface, but on
1922  * intermediate routers and switches as well.  NewReno makes a misguided
1923  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1924  * then backing off, then steadily increasing the window again until another
1925  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1926  * is only made worse as network loads increase and the idea of intentionally
1927  * blowing out network buffers is, frankly, a terrible way to manage network
1928  * resources.
1929  *
1930  * It is far better to limit the transmit window prior to the failure
1931  * condition being achieved.  There are two general ways to do this:  First
1932  * you can 'scan' through different transmit window sizes and locate the
1933  * point where the RTT stops increasing, indicating that you have filled the
1934  * pipe, then scan backwards until you note that RTT stops decreasing, then
1935  * repeat ad-infinitum.  This method works in principle but has severe
1936  * implementation issues due to RTT variances, timer granularity, and
1937  * instability in the algorithm which can lead to many false positives and
1938  * create oscillations as well as interact badly with other TCP streams
1939  * implementing the same algorithm.
1940  *
1941  * The second method is to limit the window to the bandwidth delay product
1942  * of the link.  This is the method we implement.  RTT variances and our
1943  * own manipulation of the congestion window, bwnd, can potentially
1944  * destabilize the algorithm.  For this reason we have to stabilize the
1945  * elements used to calculate the window.  We do this by using the minimum
1946  * observed RTT, the long term average of the observed bandwidth, and
1947  * by adding two segments worth of slop.  It isn't perfect but it is able
1948  * to react to changing conditions and gives us a very stable basis on
1949  * which to extend the algorithm.
1950  */
1951 void
1952 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1953 {
1954 	u_long bw;
1955 	u_long ibw;
1956 	u_long bwnd;
1957 	int save_ticks;
1958 	int delta_ticks;
1959 
1960 	/*
1961 	 * If inflight_enable is disabled in the middle of a tcp connection,
1962 	 * make sure snd_bwnd is effectively disabled.
1963 	 */
1964 	if (!tcp_inflight_enable) {
1965 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1966 		tp->snd_bandwidth = 0;
1967 		return;
1968 	}
1969 
1970 	/*
1971 	 * Validate the delta time.  If a connection is new or has been idle
1972 	 * a long time we have to reset the bandwidth calculator.
1973 	 */
1974 	save_ticks = ticks;
1975 	cpu_ccfence();
1976 	delta_ticks = save_ticks - tp->t_bw_rtttime;
1977 	if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1978 		tp->t_bw_rtttime = save_ticks;
1979 		tp->t_bw_rtseq = ack_seq;
1980 		if (tp->snd_bandwidth == 0)
1981 			tp->snd_bandwidth = tcp_inflight_start;
1982 		return;
1983 	}
1984 
1985 	/*
1986 	 * A delta of at least 1 tick is required.  Waiting 2 ticks will
1987 	 * result in better (bw) accuracy.  More than that and the ramp-up
1988 	 * will be too slow.
1989 	 */
1990 	if (delta_ticks == 0 || delta_ticks == 1)
1991 		return;
1992 
1993 	/*
1994 	 * Sanity check, plus ignore pure window update acks.
1995 	 */
1996 	if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1997 		return;
1998 
1999 	/*
2000 	 * Figure out the bandwidth.  Due to the tick granularity this
2001 	 * is a very rough number and it MUST be averaged over a fairly
2002 	 * long period of time.  XXX we need to take into account a link
2003 	 * that is not using all available bandwidth, but for now our
2004 	 * slop will ramp us up if this case occurs and the bandwidth later
2005 	 * increases.
2006 	 */
2007 	ibw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
2008 	tp->t_bw_rtttime = save_ticks;
2009 	tp->t_bw_rtseq = ack_seq;
2010 	bw = ((int64_t)tp->snd_bandwidth * 15 + ibw) >> 4;
2011 
2012 	tp->snd_bandwidth = bw;
2013 
2014 	/*
2015 	 * Calculate the semi-static bandwidth delay product, plus two maximal
2016 	 * segments.  The additional slop puts us squarely in the sweet
2017 	 * spot and also handles the bandwidth run-up case.  Without the
2018 	 * slop we could be locking ourselves into a lower bandwidth.
2019 	 *
2020 	 * At very high speeds the bw calculation can become overly sensitive
2021 	 * and error prone when delta_ticks is low (e.g. usually 1).  To deal
2022 	 * with the problem the stab must be scaled to the bw.  A stab of 50
2023 	 * (the default) increases the bw for the purposes of the bwnd
2024 	 * calculation by 5%.
2025 	 *
2026 	 * Situations Handled:
2027 	 *	(1) Prevents over-queueing of packets on LANs, especially on
2028 	 *	    high speed LANs, allowing larger TCP buffers to be
2029 	 *	    specified, and also does a good job preventing
2030 	 *	    over-queueing of packets over choke points like modems
2031 	 *	    (at least for the transmit side).
2032 	 *
2033 	 *	(2) Is able to handle changing network loads (bandwidth
2034 	 *	    drops so bwnd drops, bandwidth increases so bwnd
2035 	 *	    increases).
2036 	 *
2037 	 *	(3) Theoretically should stabilize in the face of multiple
2038 	 *	    connections implementing the same algorithm (this may need
2039 	 *	    a little work).
2040 	 *
2041 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2042 	 *	    be adjusted with a sysctl but typically only needs to be on
2043 	 *	    very slow connections.  A value no smaller then 5 should
2044 	 *	    be used, but only reduce this default if you have no other
2045 	 *	    choice.
2046 	 */
2047 
2048 #define	USERTT	((tp->t_srtt + tp->t_rttvar) + tcp_inflight_adjrtt)
2049 	bw += bw * tcp_inflight_stab / 1000;
2050 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
2051 	       (int)tp->t_maxseg * 2;
2052 #undef USERTT
2053 
2054 	if (tcp_inflight_debug > 0) {
2055 		static int ltime;
2056 		if ((u_int)(save_ticks - ltime) >= hz / tcp_inflight_debug) {
2057 			ltime = save_ticks;
2058 			kprintf("%p ibw %ld bw %ld rttvar %d srtt %d "
2059 				"bwnd %ld delta %d snd_win %ld\n",
2060 				tp, ibw, bw, tp->t_rttvar, tp->t_srtt,
2061 				bwnd, delta_ticks, tp->snd_wnd);
2062 		}
2063 	}
2064 	if ((long)bwnd < tcp_inflight_min)
2065 		bwnd = tcp_inflight_min;
2066 	if (bwnd > tcp_inflight_max)
2067 		bwnd = tcp_inflight_max;
2068 	if ((long)bwnd < tp->t_maxseg * 2)
2069 		bwnd = tp->t_maxseg * 2;
2070 	tp->snd_bwnd = bwnd;
2071 }
2072 
2073 static void
2074 tcp_rmx_iwsegs(struct tcpcb *tp, u_long *maxsegs, u_long *capsegs)
2075 {
2076 	struct rtentry *rt;
2077 	struct inpcb *inp = tp->t_inpcb;
2078 #ifdef INET6
2079 	boolean_t isipv6 = INP_ISIPV6(inp);
2080 #else
2081 	const boolean_t isipv6 = FALSE;
2082 #endif
2083 
2084 	/* XXX */
2085 	if (tcp_iw_maxsegs < TCP_IW_MAXSEGS_DFLT)
2086 		tcp_iw_maxsegs = TCP_IW_MAXSEGS_DFLT;
2087 	if (tcp_iw_capsegs < TCP_IW_CAPSEGS_DFLT)
2088 		tcp_iw_capsegs = TCP_IW_CAPSEGS_DFLT;
2089 
2090 	if (isipv6)
2091 		rt = tcp_rtlookup6(&inp->inp_inc);
2092 	else
2093 		rt = tcp_rtlookup(&inp->inp_inc);
2094 	if (rt == NULL ||
2095 	    rt->rt_rmx.rmx_iwmaxsegs < TCP_IW_MAXSEGS_DFLT ||
2096 	    rt->rt_rmx.rmx_iwcapsegs < TCP_IW_CAPSEGS_DFLT) {
2097 		*maxsegs = tcp_iw_maxsegs;
2098 		*capsegs = tcp_iw_capsegs;
2099 		return;
2100 	}
2101 	*maxsegs = rt->rt_rmx.rmx_iwmaxsegs;
2102 	*capsegs = rt->rt_rmx.rmx_iwcapsegs;
2103 }
2104 
2105 u_long
2106 tcp_initial_window(struct tcpcb *tp)
2107 {
2108 	if (tcp_do_rfc3390) {
2109 		/*
2110 		 * RFC3390:
2111 		 * "If the SYN or SYN/ACK is lost, the initial window
2112 		 *  used by a sender after a correctly transmitted SYN
2113 		 *  MUST be one segment consisting of MSS bytes."
2114 		 *
2115 		 * However, we do something a little bit more aggressive
2116 		 * then RFC3390 here:
2117 		 * - Only if time spent in the SYN or SYN|ACK retransmition
2118 		 *   >= 3 seconds, the IW is reduced.  We do this mainly
2119 		 *   because when RFC3390 is published, the initial RTO is
2120 		 *   still 3 seconds (the threshold we test here), while
2121 		 *   after RFC6298, the initial RTO is 1 second.  This
2122 		 *   behaviour probably still falls within the spirit of
2123 		 *   RFC3390.
2124 		 * - When IW is reduced, 2*MSS is used instead of 1*MSS.
2125 		 *   Mainly to avoid sender and receiver deadlock until
2126 		 *   delayed ACK timer expires.  And even RFC2581 does not
2127 		 *   try to reduce IW upon SYN or SYN|ACK retransmition
2128 		 *   timeout.
2129 		 *
2130 		 * See also:
2131 		 * http://tools.ietf.org/html/draft-ietf-tcpm-initcwnd-03
2132 		 */
2133 		if (tp->t_rxtsyn >= TCPTV_RTOBASE3) {
2134 			return (2 * tp->t_maxseg);
2135 		} else {
2136 			u_long maxsegs, capsegs;
2137 
2138 			tcp_rmx_iwsegs(tp, &maxsegs, &capsegs);
2139 			return min(maxsegs * tp->t_maxseg,
2140 				   max(2 * tp->t_maxseg, capsegs * 1460));
2141 		}
2142 	} else {
2143 		/*
2144 		 * Even RFC2581 (back to 1999) allows 2*SMSS IW.
2145 		 *
2146 		 * Mainly to avoid sender and receiver deadlock
2147 		 * until delayed ACK timer expires.
2148 		 */
2149 		return (2 * tp->t_maxseg);
2150 	}
2151 }
2152 
2153 #ifdef TCP_SIGNATURE
2154 /*
2155  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2156  *
2157  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2158  * When called from tcp_input(), we can be sure that th_sum has been
2159  * zeroed out and verified already.
2160  *
2161  * Return 0 if successful, otherwise return -1.
2162  *
2163  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2164  * search with the destination IP address, and a 'magic SPI' to be
2165  * determined by the application. This is hardcoded elsewhere to 1179
2166  * right now. Another branch of this code exists which uses the SPD to
2167  * specify per-application flows but it is unstable.
2168  */
2169 int
2170 tcpsignature_compute(
2171 	struct mbuf *m,		/* mbuf chain */
2172 	int len,		/* length of TCP data */
2173 	int optlen,		/* length of TCP options */
2174 	u_char *buf,		/* storage for MD5 digest */
2175 	u_int direction)	/* direction of flow */
2176 {
2177 	struct ippseudo ippseudo;
2178 	MD5_CTX ctx;
2179 	int doff;
2180 	struct ip *ip;
2181 	struct ipovly *ipovly;
2182 	struct secasvar *sav;
2183 	struct tcphdr *th;
2184 #ifdef INET6
2185 	struct ip6_hdr *ip6;
2186 	struct in6_addr in6;
2187 	uint32_t plen;
2188 	uint16_t nhdr;
2189 #endif /* INET6 */
2190 	u_short savecsum;
2191 
2192 	KASSERT(m != NULL, ("passed NULL mbuf. Game over."));
2193 	KASSERT(buf != NULL, ("passed NULL storage pointer for MD5 signature"));
2194 	/*
2195 	 * Extract the destination from the IP header in the mbuf.
2196 	 */
2197 	ip = mtod(m, struct ip *);
2198 #ifdef INET6
2199 	ip6 = NULL;     /* Make the compiler happy. */
2200 #endif /* INET6 */
2201 	/*
2202 	 * Look up an SADB entry which matches the address found in
2203 	 * the segment.
2204 	 */
2205 	switch (IP_VHL_V(ip->ip_vhl)) {
2206 	case IPVERSION:
2207 		sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src, (caddr_t)&ip->ip_dst,
2208 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2209 		break;
2210 #ifdef INET6
2211 	case (IPV6_VERSION >> 4):
2212 		ip6 = mtod(m, struct ip6_hdr *);
2213 		sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src, (caddr_t)&ip6->ip6_dst,
2214 				IPPROTO_TCP, htonl(TCP_SIG_SPI));
2215 		break;
2216 #endif /* INET6 */
2217 	default:
2218 		return (EINVAL);
2219 		/* NOTREACHED */
2220 		break;
2221 	}
2222 	if (sav == NULL) {
2223 		kprintf("%s: SADB lookup failed\n", __func__);
2224 		return (EINVAL);
2225 	}
2226 	MD5Init(&ctx);
2227 
2228 	/*
2229 	 * Step 1: Update MD5 hash with IP pseudo-header.
2230 	 *
2231 	 * XXX The ippseudo header MUST be digested in network byte order,
2232 	 * or else we'll fail the regression test. Assume all fields we've
2233 	 * been doing arithmetic on have been in host byte order.
2234 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2235 	 * tcp_output(), the underlying ip_len member has not yet been set.
2236 	 */
2237 	switch (IP_VHL_V(ip->ip_vhl)) {
2238 	case IPVERSION:
2239 		ipovly = (struct ipovly *)ip;
2240 		ippseudo.ippseudo_src = ipovly->ih_src;
2241 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2242 		ippseudo.ippseudo_pad = 0;
2243 		ippseudo.ippseudo_p = IPPROTO_TCP;
2244 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2245 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2246 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2247 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2248 		break;
2249 #ifdef INET6
2250 	/*
2251 	 * RFC 2385, 2.0  Proposal
2252 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2253 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2254 	 * extended next header value (to form 32 bits), and 32-bit segment
2255 	 * length.
2256 	 * Note: Upper-Layer Packet Length comes before Next Header.
2257 	 */
2258 	case (IPV6_VERSION >> 4):
2259 		in6 = ip6->ip6_src;
2260 		in6_clearscope(&in6);
2261 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2262 		in6 = ip6->ip6_dst;
2263 		in6_clearscope(&in6);
2264 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2265 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2266 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2267 		nhdr = 0;
2268 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2269 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2270 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2271 		nhdr = IPPROTO_TCP;
2272 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2273 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2274 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2275 		break;
2276 #endif /* INET6 */
2277 	default:
2278 		return (EINVAL);
2279 		/* NOTREACHED */
2280 		break;
2281 	}
2282 	/*
2283 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2284 	 * The TCP checksum must be set to zero.
2285 	 */
2286 	savecsum = th->th_sum;
2287 	th->th_sum = 0;
2288 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2289 	th->th_sum = savecsum;
2290 	/*
2291 	 * Step 3: Update MD5 hash with TCP segment data.
2292 	 *         Use m_apply() to avoid an early m_pullup().
2293 	 */
2294 	if (len > 0)
2295 		m_apply(m, doff, len, tcpsignature_apply, &ctx);
2296 	/*
2297 	 * Step 4: Update MD5 hash with shared secret.
2298 	 */
2299 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2300 	MD5Final(buf, &ctx);
2301 	key_sa_recordxfer(sav, m);
2302 	key_freesav(sav);
2303 	return (0);
2304 }
2305 
2306 int
2307 tcpsignature_apply(void *fstate, void *data, unsigned int len)
2308 {
2309 
2310 	MD5Update((MD5_CTX *)fstate, (unsigned char *)data, len);
2311 	return (0);
2312 }
2313 #endif /* TCP_SIGNATURE */
2314 
2315 static void
2316 tcp_drop_sysctl_dispatch(netmsg_t nmsg)
2317 {
2318 	struct lwkt_msg *lmsg = &nmsg->lmsg;
2319 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2320 	struct sockaddr_storage *addrs = lmsg->u.ms_resultp;
2321 	int error;
2322 	struct sockaddr_in *fin, *lin;
2323 #ifdef INET6
2324 	struct sockaddr_in6 *fin6, *lin6;
2325 	struct in6_addr f6, l6;
2326 #endif
2327 	struct inpcb *inp;
2328 
2329 	switch (addrs[0].ss_family) {
2330 #ifdef INET6
2331 	case AF_INET6:
2332 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2333 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2334 		error = in6_embedscope(&f6, fin6, NULL, NULL);
2335 		if (error)
2336 			goto done;
2337 		error = in6_embedscope(&l6, lin6, NULL, NULL);
2338 		if (error)
2339 			goto done;
2340 		inp = in6_pcblookup_hash(&tcbinfo[mycpuid], &f6,
2341 		    fin6->sin6_port, &l6, lin6->sin6_port, FALSE, NULL);
2342 		break;
2343 #endif
2344 #ifdef INET
2345 	case AF_INET:
2346 		fin = (struct sockaddr_in *)&addrs[0];
2347 		lin = (struct sockaddr_in *)&addrs[1];
2348 		inp = in_pcblookup_hash(&tcbinfo[mycpuid], fin->sin_addr,
2349 		    fin->sin_port, lin->sin_addr, lin->sin_port, FALSE, NULL);
2350 		break;
2351 #endif
2352 	default:
2353 		/*
2354 		 * Must not reach here, since the address family was
2355 		 * checked in sysctl handler.
2356 		 */
2357 		panic("unknown address family %d", addrs[0].ss_family);
2358 	}
2359 	if (inp != NULL) {
2360 		struct tcpcb *tp = intotcpcb(inp);
2361 
2362 		KASSERT((inp->inp_flags & INP_WILDCARD) == 0,
2363 		    ("in wildcard hash"));
2364 		KASSERT(tp != NULL, ("tcp_drop_sysctl_dispatch: tp is NULL"));
2365 		KASSERT((tp->t_flags & TF_LISTEN) == 0, ("listen socket"));
2366 		tcp_drop(tp, ECONNABORTED);
2367 		error = 0;
2368 	} else {
2369 		error = ESRCH;
2370 	}
2371 #ifdef INET6
2372 done:
2373 #endif
2374 	lwkt_replymsg(lmsg, error);
2375 }
2376 
2377 static int
2378 sysctl_tcp_drop(SYSCTL_HANDLER_ARGS)
2379 {
2380 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2381 	struct sockaddr_storage addrs[2];
2382 	struct sockaddr_in *fin, *lin;
2383 #ifdef INET6
2384 	struct sockaddr_in6 *fin6, *lin6;
2385 #endif
2386 	struct netmsg_base nmsg;
2387 	struct lwkt_msg *lmsg = &nmsg.lmsg;
2388 	struct lwkt_port *port = NULL;
2389 	int error;
2390 
2391 	fin = lin = NULL;
2392 #ifdef INET6
2393 	fin6 = lin6 = NULL;
2394 #endif
2395 	error = 0;
2396 
2397 	if (req->oldptr != NULL || req->oldlen != 0)
2398 		return (EINVAL);
2399 	if (req->newptr == NULL)
2400 		return (EPERM);
2401 	if (req->newlen < sizeof(addrs))
2402 		return (ENOMEM);
2403 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2404 	if (error)
2405 		return (error);
2406 
2407 	switch (addrs[0].ss_family) {
2408 #ifdef INET6
2409 	case AF_INET6:
2410 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2411 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2412 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2413 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2414 			return (EINVAL);
2415 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr) ||
2416 		    IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2417 			return (EADDRNOTAVAIL);
2418 #if 0
2419 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2420 		if (error)
2421 			return (error);
2422 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2423 		if (error)
2424 			return (error);
2425 #endif
2426 		port = tcp6_addrport();
2427 		break;
2428 #endif
2429 #ifdef INET
2430 	case AF_INET:
2431 		fin = (struct sockaddr_in *)&addrs[0];
2432 		lin = (struct sockaddr_in *)&addrs[1];
2433 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2434 		    lin->sin_len != sizeof(struct sockaddr_in))
2435 			return (EINVAL);
2436 		port = tcp_addrport(fin->sin_addr.s_addr, fin->sin_port,
2437 		    lin->sin_addr.s_addr, lin->sin_port);
2438 		break;
2439 #endif
2440 	default:
2441 		return (EINVAL);
2442 	}
2443 
2444 	netmsg_init(&nmsg, NULL, &curthread->td_msgport, 0,
2445 	    tcp_drop_sysctl_dispatch);
2446 	lmsg->u.ms_resultp = addrs;
2447 	return lwkt_domsg(port, lmsg, 0);
2448 }
2449 
2450 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, drop,
2451     CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP, NULL,
2452     0, sysctl_tcp_drop, "", "Drop TCP connection");
2453 
2454 static int
2455 sysctl_tcps_count(SYSCTL_HANDLER_ARGS)
2456 {
2457 	u_long state_count[TCP_NSTATES];
2458 	int cpu;
2459 
2460 	memset(state_count, 0, sizeof(state_count));
2461 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
2462 		int i;
2463 
2464 		for (i = 0; i < TCP_NSTATES; ++i)
2465 			state_count[i] += tcpstate_count[cpu].tcps_count[i];
2466 	}
2467 
2468 	return sysctl_handle_opaque(oidp, state_count, sizeof(state_count), req);
2469 }
2470 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, state_count,
2471     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
2472     sysctl_tcps_count, "LU", "TCP connection counts by state");
2473 
2474 void
2475 tcp_pcbport_create(struct tcpcb *tp)
2476 {
2477 	int cpu;
2478 
2479 	KASSERT((tp->t_flags & TF_LISTEN) && tp->t_state == TCPS_LISTEN,
2480 	    ("not a listen tcpcb"));
2481 
2482 	KASSERT(tp->t_pcbport == NULL, ("tcpcb port cache was created"));
2483 	tp->t_pcbport = kmalloc_cachealign(
2484 	    sizeof(struct tcp_pcbport) * netisr_ncpus, M_PCB, M_WAITOK);
2485 
2486 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
2487 		struct inpcbport *phd;
2488 
2489 		phd = &tp->t_pcbport[cpu].t_phd;
2490 		LIST_INIT(&phd->phd_pcblist);
2491 		/* Though, not used ... */
2492 		phd->phd_port = tp->t_inpcb->inp_lport;
2493 	}
2494 }
2495 
2496 void
2497 tcp_pcbport_merge_oncpu(struct tcpcb *tp)
2498 {
2499 	struct inpcbport *phd;
2500 	struct inpcb *inp;
2501 	int cpu = mycpuid;
2502 
2503 	KASSERT(cpu < netisr_ncpus, ("invalid cpu%d", cpu));
2504 	phd = &tp->t_pcbport[cpu].t_phd;
2505 
2506 	while ((inp = LIST_FIRST(&phd->phd_pcblist)) != NULL) {
2507 		KASSERT(inp->inp_phd == phd && inp->inp_porthash == NULL,
2508 		    ("not on tcpcb port cache"));
2509 		LIST_REMOVE(inp, inp_portlist);
2510 		in_pcbinsporthash_lport(inp);
2511 		KASSERT(inp->inp_phd == tp->t_inpcb->inp_phd &&
2512 		    inp->inp_porthash == tp->t_inpcb->inp_porthash,
2513 		    ("tcpcb port cache merge failed"));
2514 	}
2515 }
2516 
2517 void
2518 tcp_pcbport_destroy(struct tcpcb *tp)
2519 {
2520 #ifdef INVARIANTS
2521 	int cpu;
2522 
2523 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
2524 		KASSERT(LIST_EMPTY(&tp->t_pcbport[cpu].t_phd.phd_pcblist),
2525 		    ("tcpcb port cache is not empty"));
2526 	}
2527 #endif
2528 	kfree(tp->t_pcbport, M_PCB);
2529 	tp->t_pcbport = NULL;
2530 }
2531