xref: /dragonfly/sys/netinet/tcp_syncache.c (revision 19380330)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * All advertising materials mentioning features or use of this software
36  * must display the following acknowledgement:
37  *   This product includes software developed by Jeffrey M. Hsu.
38  *
39  * Copyright (c) 2001 Networks Associates Technologies, Inc.
40  * All rights reserved.
41  *
42  * This software was developed for the FreeBSD Project by Jonathan Lemon
43  * and NAI Labs, the Security Research Division of Network Associates, Inc.
44  * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
45  * DARPA CHATS research program.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. The name of the author may not be used to endorse or promote
56  *    products derived from this software without specific prior written
57  *    permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * $FreeBSD: src/sys/netinet/tcp_syncache.c,v 1.5.2.14 2003/02/24 04:02:27 silby Exp $
72  */
73 
74 #include "opt_inet.h"
75 #include "opt_inet6.h"
76 #include "opt_ipsec.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/sysctl.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/md5.h>
85 #include <sys/proc.h>		/* for proc0 declaration */
86 #include <sys/random.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/in_cksum.h>
90 
91 #include <sys/msgport2.h>
92 #include <net/netmsg2.h>
93 
94 #include <net/if.h>
95 #include <net/route.h>
96 
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/ip.h>
100 #include <netinet/in_var.h>
101 #include <netinet/in_pcb.h>
102 #include <netinet/ip_var.h>
103 #include <netinet/ip6.h>
104 #ifdef INET6
105 #include <netinet/icmp6.h>
106 #include <netinet6/nd6.h>
107 #endif
108 #include <netinet6/ip6_var.h>
109 #include <netinet6/in6_pcb.h>
110 #include <netinet/tcp.h>
111 #include <netinet/tcp_fsm.h>
112 #include <netinet/tcp_seq.h>
113 #include <netinet/tcp_timer.h>
114 #include <netinet/tcp_timer2.h>
115 #include <netinet/tcp_var.h>
116 #include <netinet6/tcp6_var.h>
117 
118 #ifdef IPSEC
119 #include <netinet6/ipsec.h>
120 #ifdef INET6
121 #include <netinet6/ipsec6.h>
122 #endif
123 #include <netproto/key/key.h>
124 #endif /*IPSEC*/
125 
126 #ifdef FAST_IPSEC
127 #include <netproto/ipsec/ipsec.h>
128 #ifdef INET6
129 #include <netproto/ipsec/ipsec6.h>
130 #endif
131 #include <netproto/ipsec/key.h>
132 #define	IPSEC
133 #endif /*FAST_IPSEC*/
134 
135 static int tcp_syncookies = 1;
136 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
137     &tcp_syncookies, 0,
138     "Use TCP SYN cookies if the syncache overflows");
139 
140 static void	 syncache_drop(struct syncache *, struct syncache_head *);
141 static void	 syncache_free(struct syncache *);
142 static void	 syncache_insert(struct syncache *, struct syncache_head *);
143 struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
144 static int	 syncache_respond(struct syncache *, struct mbuf *);
145 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
146 		    struct mbuf *);
147 static void	 syncache_timer(void *);
148 static u_int32_t syncookie_generate(struct syncache *);
149 static struct syncache *syncookie_lookup(struct in_conninfo *,
150 		    struct tcphdr *, struct socket *);
151 
152 /*
153  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
154  * 4 retransmits corresponds to a timeout of (3 + 3 + 3 + 3 + 3 == 15) seconds
155  * or (1 + 1 + 2 + 4 + 8 == 16) seconds if RFC6298 is used, the odds are that
156  * the user has given up attempting to connect by then.
157  */
158 #define SYNCACHE_MAXREXMTS		4
159 
160 /* Arbitrary values */
161 #define TCP_SYNCACHE_HASHSIZE		512
162 #define TCP_SYNCACHE_BUCKETLIMIT	30
163 
164 struct netmsg_sc_timer {
165 	struct netmsg_base base;
166 	struct msgrec *nm_mrec;		/* back pointer to containing msgrec */
167 };
168 
169 struct msgrec {
170 	struct netmsg_sc_timer msg;
171 	lwkt_port_t port;		/* constant after init */
172 	int slot;			/* constant after init */
173 };
174 
175 static void syncache_timer_handler(netmsg_t);
176 
177 struct tcp_syncache {
178 	u_int	hashsize;
179 	u_int	hashmask;
180 	u_int	bucket_limit;
181 	u_int	cache_limit;
182 	u_int	rexmt_limit;
183 	u_int	hash_secret;
184 };
185 static struct tcp_syncache tcp_syncache;
186 
187 TAILQ_HEAD(syncache_list, syncache);
188 
189 struct tcp_syncache_percpu {
190 	struct syncache_head	*hashbase;
191 	u_int			cache_count;
192 	struct syncache_list	timerq[SYNCACHE_MAXREXMTS + 1];
193 	struct callout		tt_timerq[SYNCACHE_MAXREXMTS + 1];
194 	struct msgrec		mrec[SYNCACHE_MAXREXMTS + 1];
195 };
196 static struct tcp_syncache_percpu tcp_syncache_percpu[MAXCPU];
197 
198 static struct lwkt_port syncache_null_rport;
199 
200 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
201 
202 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RD,
203      &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
204 
205 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RD,
206      &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
207 
208 /* XXX JH */
209 #if 0
210 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
211      &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
212 #endif
213 
214 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RD,
215      &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
216 
217 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
218      &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
219 
220 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
221 
222 #define SYNCACHE_HASH(inc, mask)					\
223 	((tcp_syncache.hash_secret ^					\
224 	  (inc)->inc_faddr.s_addr ^					\
225 	  ((inc)->inc_faddr.s_addr >> 16) ^				\
226 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
227 
228 #define SYNCACHE_HASH6(inc, mask)					\
229 	((tcp_syncache.hash_secret ^					\
230 	  (inc)->inc6_faddr.s6_addr32[0] ^				\
231 	  (inc)->inc6_faddr.s6_addr32[3] ^				\
232 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
233 
234 #define ENDPTS_EQ(a, b) (						\
235 	(a)->ie_fport == (b)->ie_fport &&				\
236 	(a)->ie_lport == (b)->ie_lport &&				\
237 	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
238 	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
239 )
240 
241 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
242 
243 static __inline int
244 syncache_rto(int slot)
245 {
246 	if (tcp_low_rtobase)
247 		return (TCPTV_RTOBASE * tcp_syn_backoff_low[slot]);
248 	else
249 		return (TCPTV_RTOBASE * tcp_syn_backoff[slot]);
250 }
251 
252 static __inline void
253 syncache_timeout(struct tcp_syncache_percpu *syncache_percpu,
254 		 struct syncache *sc, int slot)
255 {
256 	int rto;
257 
258 	if (slot > 0) {
259 		/*
260 		 * Record the time that we spent in SYN|ACK
261 		 * retransmition.
262 		 *
263 		 * Needed by RFC3390 and RFC6298.
264 		 */
265 		sc->sc_rxtused += syncache_rto(slot - 1);
266 	}
267 	sc->sc_rxtslot = slot;
268 
269 	rto = syncache_rto(slot);
270 	sc->sc_rxttime = ticks + rto;
271 
272 	TAILQ_INSERT_TAIL(&syncache_percpu->timerq[slot], sc, sc_timerq);
273 	if (!callout_active(&syncache_percpu->tt_timerq[slot])) {
274 		callout_reset(&syncache_percpu->tt_timerq[slot], rto,
275 		    syncache_timer, &syncache_percpu->mrec[slot]);
276 	}
277 }
278 
279 static void
280 syncache_free(struct syncache *sc)
281 {
282 	struct rtentry *rt;
283 #ifdef INET6
284 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
285 #else
286 	const boolean_t isipv6 = FALSE;
287 #endif
288 
289 	if (sc->sc_ipopts)
290 		m_free(sc->sc_ipopts);
291 
292 	rt = isipv6 ? sc->sc_route6.ro_rt : sc->sc_route.ro_rt;
293 	if (rt != NULL) {
294 		/*
295 		 * If this is the only reference to a protocol-cloned
296 		 * route, remove it immediately.
297 		 */
298 		if ((rt->rt_flags & RTF_WASCLONED) && rt->rt_refcnt == 1)
299 			rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
300 				  rt_mask(rt), rt->rt_flags, NULL);
301 		RTFREE(rt);
302 	}
303 	kfree(sc, M_SYNCACHE);
304 }
305 
306 void
307 syncache_init(void)
308 {
309 	int i, cpu;
310 
311 	tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
312 	tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
313 	tcp_syncache.cache_limit =
314 	    tcp_syncache.hashsize * tcp_syncache.bucket_limit;
315 	tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
316 	tcp_syncache.hash_secret = karc4random();
317 
318 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
319 	    &tcp_syncache.hashsize);
320 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
321 	    &tcp_syncache.cache_limit);
322 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
323 	    &tcp_syncache.bucket_limit);
324 	if (!powerof2(tcp_syncache.hashsize)) {
325 		kprintf("WARNING: syncache hash size is not a power of 2.\n");
326 		tcp_syncache.hashsize = 512;	/* safe default */
327 	}
328 	tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
329 
330 	lwkt_initport_replyonly_null(&syncache_null_rport);
331 
332 	for (cpu = 0; cpu < ncpus2; cpu++) {
333 		struct tcp_syncache_percpu *syncache_percpu;
334 
335 		syncache_percpu = &tcp_syncache_percpu[cpu];
336 		/* Allocate the hash table. */
337 		syncache_percpu->hashbase = kmalloc(tcp_syncache.hashsize * sizeof(struct syncache_head),
338 						    M_SYNCACHE, M_WAITOK);
339 
340 		/* Initialize the hash buckets. */
341 		for (i = 0; i < tcp_syncache.hashsize; i++) {
342 			struct syncache_head *bucket;
343 
344 			bucket = &syncache_percpu->hashbase[i];
345 			TAILQ_INIT(&bucket->sch_bucket);
346 			bucket->sch_length = 0;
347 		}
348 
349 		for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
350 			/* Initialize the timer queues. */
351 			TAILQ_INIT(&syncache_percpu->timerq[i]);
352 			callout_init_mp(&syncache_percpu->tt_timerq[i]);
353 
354 			syncache_percpu->mrec[i].slot = i;
355 			syncache_percpu->mrec[i].port = netisr_portfn(cpu);
356 			syncache_percpu->mrec[i].msg.nm_mrec =
357 				    &syncache_percpu->mrec[i];
358 			netmsg_init(&syncache_percpu->mrec[i].msg.base,
359 				    NULL, &syncache_null_rport,
360 				    0, syncache_timer_handler);
361 		}
362 	}
363 }
364 
365 static void
366 syncache_insert(struct syncache *sc, struct syncache_head *sch)
367 {
368 	struct tcp_syncache_percpu *syncache_percpu;
369 	struct syncache *sc2;
370 	int i;
371 
372 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
373 
374 	/*
375 	 * Make sure that we don't overflow the per-bucket
376 	 * limit or the total cache size limit.
377 	 */
378 	if (sch->sch_length >= tcp_syncache.bucket_limit) {
379 		/*
380 		 * The bucket is full, toss the oldest element.
381 		 */
382 		sc2 = TAILQ_FIRST(&sch->sch_bucket);
383 		sc2->sc_tp->ts_recent = ticks;
384 		syncache_drop(sc2, sch);
385 		tcpstat.tcps_sc_bucketoverflow++;
386 	} else if (syncache_percpu->cache_count >= tcp_syncache.cache_limit) {
387 		/*
388 		 * The cache is full.  Toss the oldest entry in the
389 		 * entire cache.  This is the front entry in the
390 		 * first non-empty timer queue with the largest
391 		 * timeout value.
392 		 */
393 		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
394 			sc2 = TAILQ_FIRST(&syncache_percpu->timerq[i]);
395 			while (sc2 && (sc2->sc_flags & SCF_MARKER))
396 				sc2 = TAILQ_NEXT(sc2, sc_timerq);
397 			if (sc2 != NULL)
398 				break;
399 		}
400 		sc2->sc_tp->ts_recent = ticks;
401 		syncache_drop(sc2, NULL);
402 		tcpstat.tcps_sc_cacheoverflow++;
403 	}
404 
405 	/* Initialize the entry's timer. */
406 	syncache_timeout(syncache_percpu, sc, 0);
407 
408 	/* Put it into the bucket. */
409 	TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
410 	sch->sch_length++;
411 	syncache_percpu->cache_count++;
412 	tcpstat.tcps_sc_added++;
413 }
414 
415 void
416 syncache_destroy(struct tcpcb *tp)
417 {
418 	struct tcp_syncache_percpu *syncache_percpu;
419 	struct syncache_head *bucket;
420 	struct syncache *sc;
421 	int i;
422 
423 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
424 	sc = NULL;
425 
426 	for (i = 0; i < tcp_syncache.hashsize; i++) {
427 		bucket = &syncache_percpu->hashbase[i];
428 		TAILQ_FOREACH(sc, &bucket->sch_bucket, sc_hash) {
429 			if (sc->sc_tp == tp)
430 				sc->sc_tp = NULL;
431 		}
432 	}
433 }
434 
435 static void
436 syncache_drop(struct syncache *sc, struct syncache_head *sch)
437 {
438 	struct tcp_syncache_percpu *syncache_percpu;
439 #ifdef INET6
440 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
441 #else
442 	const boolean_t isipv6 = FALSE;
443 #endif
444 
445 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
446 
447 	if (sch == NULL) {
448 		if (isipv6) {
449 			sch = &syncache_percpu->hashbase[
450 			    SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
451 		} else {
452 			sch = &syncache_percpu->hashbase[
453 			    SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
454 		}
455 	}
456 
457 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
458 	sch->sch_length--;
459 	syncache_percpu->cache_count--;
460 
461 	/*
462 	 * Cleanup
463 	 */
464 	if (sc->sc_tp)
465 		sc->sc_tp = NULL;
466 
467 	/*
468 	 * Remove the entry from the syncache timer/timeout queue.  Note
469 	 * that we do not try to stop any running timer since we do not know
470 	 * whether the timer's message is in-transit or not.  Since timeouts
471 	 * are fairly long, taking an unneeded callout does not detrimentally
472 	 * effect performance.
473 	 */
474 	TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot], sc, sc_timerq);
475 
476 	syncache_free(sc);
477 }
478 
479 /*
480  * Place a timeout message on the TCP thread's message queue.
481  * This routine runs in soft interrupt context.
482  *
483  * An invariant is for this routine to be called, the callout must
484  * have been active.  Note that the callout is not deactivated until
485  * after the message has been processed in syncache_timer_handler() below.
486  */
487 static void
488 syncache_timer(void *p)
489 {
490 	struct netmsg_sc_timer *msg = p;
491 
492 	lwkt_sendmsg(msg->nm_mrec->port, &msg->base.lmsg);
493 }
494 
495 /*
496  * Service a timer message queued by timer expiration.
497  * This routine runs in the TCP protocol thread.
498  *
499  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
500  * If we have retransmitted an entry the maximum number of times, expire it.
501  *
502  * When we finish processing timed-out entries, we restart the timer if there
503  * are any entries still on the queue and deactivate it otherwise.  Only after
504  * a timer has been deactivated here can it be restarted by syncache_timeout().
505  */
506 static void
507 syncache_timer_handler(netmsg_t msg)
508 {
509 	struct tcp_syncache_percpu *syncache_percpu;
510 	struct syncache *sc;
511 	struct syncache marker;
512 	struct syncache_list *list;
513 	struct inpcb *inp;
514 	int slot;
515 
516 	slot = ((struct netmsg_sc_timer *)msg)->nm_mrec->slot;
517 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
518 
519 	list = &syncache_percpu->timerq[slot];
520 
521 	/*
522 	 * Use a marker to keep our place in the scan.  syncache_drop()
523 	 * can block and cause any next pointer we cache to become stale.
524 	 */
525 	marker.sc_flags = SCF_MARKER;
526 	TAILQ_INSERT_HEAD(list, &marker, sc_timerq);
527 
528 	while ((sc = TAILQ_NEXT(&marker, sc_timerq)) != NULL) {
529 		/*
530 		 * Move the marker.
531 		 */
532 		TAILQ_REMOVE(list, &marker, sc_timerq);
533 		TAILQ_INSERT_AFTER(list, sc, &marker, sc_timerq);
534 
535 		if (sc->sc_flags & SCF_MARKER)
536 			continue;
537 
538 		if (ticks < sc->sc_rxttime)
539 			break;	/* finished because timerq sorted by time */
540 		if (sc->sc_tp == NULL) {
541 			syncache_drop(sc, NULL);
542 			tcpstat.tcps_sc_stale++;
543 			continue;
544 		}
545 		inp = sc->sc_tp->t_inpcb;
546 		if (slot == SYNCACHE_MAXREXMTS ||
547 		    slot >= tcp_syncache.rexmt_limit ||
548 		    inp == NULL ||
549 		    inp->inp_gencnt != sc->sc_inp_gencnt) {
550 			syncache_drop(sc, NULL);
551 			tcpstat.tcps_sc_stale++;
552 			continue;
553 		}
554 		/*
555 		 * syncache_respond() may call back into the syncache to
556 		 * to modify another entry, so do not obtain the next
557 		 * entry on the timer chain until it has completed.
558 		 */
559 		syncache_respond(sc, NULL);
560 		tcpstat.tcps_sc_retransmitted++;
561 		TAILQ_REMOVE(list, sc, sc_timerq);
562 		syncache_timeout(syncache_percpu, sc, slot + 1);
563 	}
564 	TAILQ_REMOVE(list, &marker, sc_timerq);
565 
566 	if (sc != NULL) {
567 		callout_reset(&syncache_percpu->tt_timerq[slot],
568 			      sc->sc_rxttime - ticks, syncache_timer,
569 			      &syncache_percpu->mrec[slot]);
570 	} else {
571 		callout_deactivate(&syncache_percpu->tt_timerq[slot]);
572 	}
573 	lwkt_replymsg(&msg->base.lmsg, 0);
574 }
575 
576 /*
577  * Find an entry in the syncache.
578  */
579 struct syncache *
580 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
581 {
582 	struct tcp_syncache_percpu *syncache_percpu;
583 	struct syncache *sc;
584 	struct syncache_head *sch;
585 
586 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
587 #ifdef INET6
588 	if (inc->inc_isipv6) {
589 		sch = &syncache_percpu->hashbase[
590 		    SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
591 		*schp = sch;
592 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
593 			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
594 				return (sc);
595 	} else
596 #endif
597 	{
598 		sch = &syncache_percpu->hashbase[
599 		    SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
600 		*schp = sch;
601 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
602 #ifdef INET6
603 			if (sc->sc_inc.inc_isipv6)
604 				continue;
605 #endif
606 			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
607 				return (sc);
608 		}
609 	}
610 	return (NULL);
611 }
612 
613 /*
614  * This function is called when we get a RST for a
615  * non-existent connection, so that we can see if the
616  * connection is in the syn cache.  If it is, zap it.
617  */
618 void
619 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
620 {
621 	struct syncache *sc;
622 	struct syncache_head *sch;
623 
624 	sc = syncache_lookup(inc, &sch);
625 	if (sc == NULL) {
626 		return;
627 	}
628 	/*
629 	 * If the RST bit is set, check the sequence number to see
630 	 * if this is a valid reset segment.
631 	 * RFC 793 page 37:
632 	 *   In all states except SYN-SENT, all reset (RST) segments
633 	 *   are validated by checking their SEQ-fields.  A reset is
634 	 *   valid if its sequence number is in the window.
635 	 *
636 	 *   The sequence number in the reset segment is normally an
637 	 *   echo of our outgoing acknowlegement numbers, but some hosts
638 	 *   send a reset with the sequence number at the rightmost edge
639 	 *   of our receive window, and we have to handle this case.
640 	 */
641 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
642 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
643 		syncache_drop(sc, sch);
644 		tcpstat.tcps_sc_reset++;
645 	}
646 }
647 
648 void
649 syncache_badack(struct in_conninfo *inc)
650 {
651 	struct syncache *sc;
652 	struct syncache_head *sch;
653 
654 	sc = syncache_lookup(inc, &sch);
655 	if (sc != NULL) {
656 		syncache_drop(sc, sch);
657 		tcpstat.tcps_sc_badack++;
658 	}
659 }
660 
661 void
662 syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
663 {
664 	struct syncache *sc;
665 	struct syncache_head *sch;
666 
667 	/* we are called at splnet() here */
668 	sc = syncache_lookup(inc, &sch);
669 	if (sc == NULL)
670 		return;
671 
672 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
673 	if (ntohl(th->th_seq) != sc->sc_iss)
674 		return;
675 
676 	/*
677 	 * If we've rertransmitted 3 times and this is our second error,
678 	 * we remove the entry.  Otherwise, we allow it to continue on.
679 	 * This prevents us from incorrectly nuking an entry during a
680 	 * spurious network outage.
681 	 *
682 	 * See tcp_notify().
683 	 */
684 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
685 		sc->sc_flags |= SCF_UNREACH;
686 		return;
687 	}
688 	syncache_drop(sc, sch);
689 	tcpstat.tcps_sc_unreach++;
690 }
691 
692 /*
693  * Build a new TCP socket structure from a syncache entry.
694  *
695  * This is called from the context of the SYN+ACK
696  */
697 static struct socket *
698 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
699 {
700 	struct inpcb *inp = NULL, *linp;
701 	struct socket *so;
702 	struct tcpcb *tp, *ltp;
703 	lwkt_port_t port;
704 #ifdef INET6
705 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
706 #else
707 	const boolean_t isipv6 = FALSE;
708 #endif
709 	struct sockaddr_in sin_faddr;
710 	struct sockaddr_in6 sin6_faddr;
711 	struct sockaddr *faddr;
712 
713 	if (isipv6) {
714 		faddr = (struct sockaddr *)&sin6_faddr;
715 		sin6_faddr.sin6_family = AF_INET6;
716 		sin6_faddr.sin6_len = sizeof(sin6_faddr);
717 		sin6_faddr.sin6_addr = sc->sc_inc.inc6_faddr;
718 		sin6_faddr.sin6_port = sc->sc_inc.inc_fport;
719 		sin6_faddr.sin6_flowinfo = sin6_faddr.sin6_scope_id = 0;
720 	} else {
721 		faddr = (struct sockaddr *)&sin_faddr;
722 		sin_faddr.sin_family = AF_INET;
723 		sin_faddr.sin_len = sizeof(sin_faddr);
724 		sin_faddr.sin_addr = sc->sc_inc.inc_faddr;
725 		sin_faddr.sin_port = sc->sc_inc.inc_fport;
726 		bzero(sin_faddr.sin_zero, sizeof(sin_faddr.sin_zero));
727 	}
728 
729 	/*
730 	 * Ok, create the full blown connection, and set things up
731 	 * as they would have been set up if we had created the
732 	 * connection when the SYN arrived.  If we can't create
733 	 * the connection, abort it.
734 	 *
735 	 * Set the protocol processing port for the socket to the current
736 	 * port (that the connection came in on).
737 	 */
738 	so = sonewconn_faddr(lso, SS_ISCONNECTED, faddr);
739 	if (so == NULL) {
740 		/*
741 		 * Drop the connection; we will send a RST if the peer
742 		 * retransmits the ACK,
743 		 */
744 		tcpstat.tcps_listendrop++;
745 		goto abort;
746 	}
747 
748 	/*
749 	 * Insert new socket into hash list.
750 	 */
751 	inp = so->so_pcb;
752 	inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
753 	if (isipv6) {
754 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
755 	} else {
756 #ifdef INET6
757 		inp->inp_vflag &= ~INP_IPV6;
758 		inp->inp_vflag |= INP_IPV4;
759 		inp->inp_flags &= ~IN6P_IPV6_V6ONLY;
760 #endif
761 		inp->inp_laddr = sc->sc_inc.inc_laddr;
762 	}
763 	inp->inp_lport = sc->sc_inc.inc_lport;
764 	if (in_pcbinsporthash(inp) != 0) {
765 		/*
766 		 * Undo the assignments above if we failed to
767 		 * put the PCB on the hash lists.
768 		 */
769 		if (isipv6)
770 			inp->in6p_laddr = kin6addr_any;
771 		else
772 			inp->inp_laddr.s_addr = INADDR_ANY;
773 		inp->inp_lport = 0;
774 		goto abort;
775 	}
776 	linp = lso->so_pcb;
777 #ifdef IPSEC
778 	/* copy old policy into new socket's */
779 	if (ipsec_copy_policy(linp->inp_sp, inp->inp_sp))
780 		kprintf("syncache_expand: could not copy policy\n");
781 #endif
782 	if (isipv6) {
783 		struct in6_addr laddr6;
784 		/*
785 		 * Inherit socket options from the listening socket.
786 		 * Note that in6p_inputopts are not (and should not be)
787 		 * copied, since it stores previously received options and is
788 		 * used to detect if each new option is different than the
789 		 * previous one and hence should be passed to a user.
790 		 * If we copied in6p_inputopts, a user would not be able to
791 		 * receive options just after calling the accept system call.
792 		 */
793 		inp->inp_flags |= linp->inp_flags & INP_CONTROLOPTS;
794 		if (linp->in6p_outputopts)
795 			inp->in6p_outputopts =
796 			    ip6_copypktopts(linp->in6p_outputopts, M_INTWAIT);
797 		inp->in6p_route = sc->sc_route6;
798 		sc->sc_route6.ro_rt = NULL;
799 
800 		laddr6 = inp->in6p_laddr;
801 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
802 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
803 		if (in6_pcbconnect(inp, faddr, &thread0)) {
804 			inp->in6p_laddr = laddr6;
805 			goto abort;
806 		}
807 	} else {
808 		struct in_addr laddr;
809 
810 		inp->inp_options = ip_srcroute(m);
811 		if (inp->inp_options == NULL) {
812 			inp->inp_options = sc->sc_ipopts;
813 			sc->sc_ipopts = NULL;
814 		}
815 		inp->inp_route = sc->sc_route;
816 		sc->sc_route.ro_rt = NULL;
817 
818 		laddr = inp->inp_laddr;
819 		if (inp->inp_laddr.s_addr == INADDR_ANY)
820 			inp->inp_laddr = sc->sc_inc.inc_laddr;
821 		if (in_pcbconnect(inp, faddr, &thread0)) {
822 			inp->inp_laddr = laddr;
823 			goto abort;
824 		}
825 	}
826 
827 	/*
828 	 * The current port should be in the context of the SYN+ACK and
829 	 * so should match the tcp address port.
830 	 *
831 	 * XXX we may be running on the netisr thread instead of a tcp
832 	 *     thread, in which case port will not match
833 	 *     curthread->td_msgport.
834 	 */
835 	if (isipv6) {
836 		port = tcp6_addrport();
837 	} else {
838 		port = tcp_addrport(inp->inp_faddr.s_addr, inp->inp_fport,
839 				    inp->inp_laddr.s_addr, inp->inp_lport);
840 	}
841 	if (port != &curthread->td_msgport) {
842 		print_backtrace(-1);
843 		kprintf("TCP PORT MISMATCH %p vs %p\n",
844 			port, &curthread->td_msgport);
845 	}
846 	/*KKASSERT(port == &curthread->td_msgport);*/
847 
848 	tp = intotcpcb(inp);
849 	tp->t_state = TCPS_SYN_RECEIVED;
850 	tp->iss = sc->sc_iss;
851 	tp->irs = sc->sc_irs;
852 	tcp_rcvseqinit(tp);
853 	tcp_sendseqinit(tp);
854 	tp->snd_wnd = sc->sc_sndwnd;
855 	tp->snd_wl1 = sc->sc_irs;
856 	tp->rcv_up = sc->sc_irs + 1;
857 	tp->rcv_wnd = sc->sc_wnd;
858 	tp->rcv_adv += tp->rcv_wnd;
859 
860 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH | TF_NODELAY);
861 	if (sc->sc_flags & SCF_NOOPT)
862 		tp->t_flags |= TF_NOOPT;
863 	if (sc->sc_flags & SCF_WINSCALE) {
864 		tp->t_flags |= TF_REQ_SCALE | TF_RCVD_SCALE;
865 		tp->snd_scale = sc->sc_requested_s_scale;
866 		tp->request_r_scale = sc->sc_request_r_scale;
867 	}
868 	if (sc->sc_flags & SCF_TIMESTAMP) {
869 		tp->t_flags |= TF_REQ_TSTMP | TF_RCVD_TSTMP;
870 		tp->ts_recent = sc->sc_tsrecent;
871 		tp->ts_recent_age = ticks;
872 	}
873 	if (sc->sc_flags & SCF_SACK_PERMITTED)
874 		tp->t_flags |= TF_SACK_PERMITTED;
875 
876 #ifdef TCP_SIGNATURE
877 	if (sc->sc_flags & SCF_SIGNATURE)
878 		tp->t_flags |= TF_SIGNATURE;
879 #endif /* TCP_SIGNATURE */
880 
881 	tp->t_rxtsyn = sc->sc_rxtused;
882 	tcp_mss(tp, sc->sc_peer_mss);
883 
884 	/*
885 	 * Inherit some properties from the listen socket
886 	 */
887 	ltp = intotcpcb(linp);
888 	tp->t_keepinit = ltp->t_keepinit;
889 	tp->t_keepidle = ltp->t_keepidle;
890 	tp->t_keepintvl = ltp->t_keepintvl;
891 	tp->t_keepcnt = ltp->t_keepcnt;
892 	tp->t_maxidle = ltp->t_maxidle;
893 
894 	tcp_create_timermsg(tp, port);
895 	tcp_callout_reset(tp, tp->tt_keep, tp->t_keepinit, tcp_timer_keep);
896 
897 	tcpstat.tcps_accepts++;
898 	return (so);
899 
900 abort:
901 	if (so != NULL)
902 		soabort_oncpu(so);
903 	return (NULL);
904 }
905 
906 /*
907  * This function gets called when we receive an ACK for a
908  * socket in the LISTEN state.  We look up the connection
909  * in the syncache, and if its there, we pull it out of
910  * the cache and turn it into a full-blown connection in
911  * the SYN-RECEIVED state.
912  */
913 int
914 syncache_expand(struct in_conninfo *inc, struct tcphdr *th, struct socket **sop,
915 		struct mbuf *m)
916 {
917 	struct syncache *sc;
918 	struct syncache_head *sch;
919 	struct socket *so;
920 
921 	sc = syncache_lookup(inc, &sch);
922 	if (sc == NULL) {
923 		/*
924 		 * There is no syncache entry, so see if this ACK is
925 		 * a returning syncookie.  To do this, first:
926 		 *  A. See if this socket has had a syncache entry dropped in
927 		 *     the past.  We don't want to accept a bogus syncookie
928 		 *     if we've never received a SYN.
929 		 *  B. check that the syncookie is valid.  If it is, then
930 		 *     cobble up a fake syncache entry, and return.
931 		 */
932 		if (!tcp_syncookies)
933 			return (0);
934 		sc = syncookie_lookup(inc, th, *sop);
935 		if (sc == NULL)
936 			return (0);
937 		sch = NULL;
938 		tcpstat.tcps_sc_recvcookie++;
939 	}
940 
941 	/*
942 	 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
943 	 */
944 	if (th->th_ack != sc->sc_iss + 1)
945 		return (0);
946 
947 	so = syncache_socket(sc, *sop, m);
948 	if (so == NULL) {
949 #if 0
950 resetandabort:
951 		/* XXXjlemon check this - is this correct? */
952 		tcp_respond(NULL, m, m, th,
953 		    th->th_seq + tlen, (tcp_seq)0, TH_RST | TH_ACK);
954 #endif
955 		m_freem(m);			/* XXX only needed for above */
956 		tcpstat.tcps_sc_aborted++;
957 	} else {
958 		tcpstat.tcps_sc_completed++;
959 	}
960 	if (sch == NULL)
961 		syncache_free(sc);
962 	else
963 		syncache_drop(sc, sch);
964 	*sop = so;
965 	return (1);
966 }
967 
968 /*
969  * Given a LISTEN socket and an inbound SYN request, add
970  * this to the syn cache, and send back a segment:
971  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
972  * to the source.
973  *
974  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
975  * Doing so would require that we hold onto the data and deliver it
976  * to the application.  However, if we are the target of a SYN-flood
977  * DoS attack, an attacker could send data which would eventually
978  * consume all available buffer space if it were ACKed.  By not ACKing
979  * the data, we avoid this DoS scenario.
980  */
981 int
982 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
983 	     struct socket *so, struct mbuf *m)
984 {
985 	struct tcp_syncache_percpu *syncache_percpu;
986 	struct tcpcb *tp;
987 	struct syncache *sc = NULL;
988 	struct syncache_head *sch;
989 	struct mbuf *ipopts = NULL;
990 	int win;
991 
992 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
993 	tp = sototcpcb(so);
994 
995 	/*
996 	 * Remember the IP options, if any.
997 	 */
998 #ifdef INET6
999 	if (!inc->inc_isipv6)
1000 #endif
1001 		ipopts = ip_srcroute(m);
1002 
1003 	/*
1004 	 * See if we already have an entry for this connection.
1005 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1006 	 *
1007 	 * XXX
1008 	 * The syncache should be re-initialized with the contents
1009 	 * of the new SYN which may have different options.
1010 	 */
1011 	sc = syncache_lookup(inc, &sch);
1012 	if (sc != NULL) {
1013 		tcpstat.tcps_sc_dupsyn++;
1014 		if (ipopts) {
1015 			/*
1016 			 * If we were remembering a previous source route,
1017 			 * forget it and use the new one we've been given.
1018 			 */
1019 			if (sc->sc_ipopts)
1020 				m_free(sc->sc_ipopts);
1021 			sc->sc_ipopts = ipopts;
1022 		}
1023 		/*
1024 		 * Update timestamp if present.
1025 		 */
1026 		if (sc->sc_flags & SCF_TIMESTAMP)
1027 			sc->sc_tsrecent = to->to_tsval;
1028 
1029 		/* Just update the TOF_SACK_PERMITTED for now. */
1030 		if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
1031 			sc->sc_flags |= SCF_SACK_PERMITTED;
1032 		else
1033 			sc->sc_flags &= ~SCF_SACK_PERMITTED;
1034 
1035 		/* Update initial send window */
1036 		sc->sc_sndwnd = th->th_win;
1037 
1038 		/*
1039 		 * PCB may have changed, pick up new values.
1040 		 */
1041 		sc->sc_tp = tp;
1042 		sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
1043 		if (syncache_respond(sc, m) == 0) {
1044 			TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot],
1045 				     sc, sc_timerq);
1046 			syncache_timeout(syncache_percpu, sc, sc->sc_rxtslot);
1047 			tcpstat.tcps_sndacks++;
1048 			tcpstat.tcps_sndtotal++;
1049 		}
1050 		return (1);
1051 	}
1052 
1053 	/*
1054 	 * Fill in the syncache values.
1055 	 */
1056 	sc = kmalloc(sizeof(struct syncache), M_SYNCACHE, M_WAITOK|M_ZERO);
1057 	sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
1058 	sc->sc_ipopts = ipopts;
1059 	sc->sc_inc.inc_fport = inc->inc_fport;
1060 	sc->sc_inc.inc_lport = inc->inc_lport;
1061 	sc->sc_tp = tp;
1062 #ifdef INET6
1063 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1064 	if (inc->inc_isipv6) {
1065 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1066 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1067 		sc->sc_route6.ro_rt = NULL;
1068 	} else
1069 #endif
1070 	{
1071 		sc->sc_inc.inc_faddr = inc->inc_faddr;
1072 		sc->sc_inc.inc_laddr = inc->inc_laddr;
1073 		sc->sc_route.ro_rt = NULL;
1074 	}
1075 	sc->sc_irs = th->th_seq;
1076 	sc->sc_flags = 0;
1077 	sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
1078 	if (tcp_syncookies)
1079 		sc->sc_iss = syncookie_generate(sc);
1080 	else
1081 		sc->sc_iss = karc4random();
1082 
1083 	/* Initial receive window: clip ssb_space to [0 .. TCP_MAXWIN] */
1084 	win = ssb_space(&so->so_rcv);
1085 	win = imax(win, 0);
1086 	win = imin(win, TCP_MAXWIN);
1087 	sc->sc_wnd = win;
1088 
1089 	if (tcp_do_rfc1323) {
1090 		/*
1091 		 * A timestamp received in a SYN makes
1092 		 * it ok to send timestamp requests and replies.
1093 		 */
1094 		if (to->to_flags & TOF_TS) {
1095 			sc->sc_tsrecent = to->to_tsval;
1096 			sc->sc_flags |= SCF_TIMESTAMP;
1097 		}
1098 		if (to->to_flags & TOF_SCALE) {
1099 			int wscale = TCP_MIN_WINSHIFT;
1100 
1101 			/* Compute proper scaling value from buffer space */
1102 			while (wscale < TCP_MAX_WINSHIFT &&
1103 			    (TCP_MAXWIN << wscale) < so->so_rcv.ssb_hiwat) {
1104 				wscale++;
1105 			}
1106 			sc->sc_request_r_scale = wscale;
1107 			sc->sc_requested_s_scale = to->to_requested_s_scale;
1108 			sc->sc_flags |= SCF_WINSCALE;
1109 		}
1110 	}
1111 	if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
1112 		sc->sc_flags |= SCF_SACK_PERMITTED;
1113 	if (tp->t_flags & TF_NOOPT)
1114 		sc->sc_flags = SCF_NOOPT;
1115 #ifdef TCP_SIGNATURE
1116 	/*
1117 	 * If listening socket requested TCP digests, and received SYN
1118 	 * contains the option, flag this in the syncache so that
1119 	 * syncache_respond() will do the right thing with the SYN+ACK.
1120 	 * XXX Currently we always record the option by default and will
1121 	 * attempt to use it in syncache_respond().
1122 	 */
1123 	if (to->to_flags & TOF_SIGNATURE)
1124 		sc->sc_flags = SCF_SIGNATURE;
1125 #endif /* TCP_SIGNATURE */
1126 	sc->sc_sndwnd = th->th_win;
1127 
1128 	if (syncache_respond(sc, m) == 0) {
1129 		syncache_insert(sc, sch);
1130 		tcpstat.tcps_sndacks++;
1131 		tcpstat.tcps_sndtotal++;
1132 	} else {
1133 		syncache_free(sc);
1134 		tcpstat.tcps_sc_dropped++;
1135 	}
1136 	return (1);
1137 }
1138 
1139 static int
1140 syncache_respond(struct syncache *sc, struct mbuf *m)
1141 {
1142 	u_int8_t *optp;
1143 	int optlen, error;
1144 	u_int16_t tlen, hlen, mssopt;
1145 	struct ip *ip = NULL;
1146 	struct rtentry *rt;
1147 	struct tcphdr *th;
1148 	struct ip6_hdr *ip6 = NULL;
1149 #ifdef INET6
1150 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1151 #else
1152 	const boolean_t isipv6 = FALSE;
1153 #endif
1154 
1155 	if (isipv6) {
1156 		rt = tcp_rtlookup6(&sc->sc_inc);
1157 		if (rt != NULL)
1158 			mssopt = rt->rt_ifp->if_mtu -
1159 			     (sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
1160 		else
1161 			mssopt = tcp_v6mssdflt;
1162 		hlen = sizeof(struct ip6_hdr);
1163 	} else {
1164 		rt = tcp_rtlookup(&sc->sc_inc);
1165 		if (rt != NULL)
1166 			mssopt = rt->rt_ifp->if_mtu -
1167 			     (sizeof(struct ip) + sizeof(struct tcphdr));
1168 		else
1169 			mssopt = tcp_mssdflt;
1170 		hlen = sizeof(struct ip);
1171 	}
1172 
1173 	/* Compute the size of the TCP options. */
1174 	if (sc->sc_flags & SCF_NOOPT) {
1175 		optlen = 0;
1176 	} else {
1177 		optlen = TCPOLEN_MAXSEG +
1178 		    ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1179 		    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) +
1180 		    ((sc->sc_flags & SCF_SACK_PERMITTED) ?
1181 			TCPOLEN_SACK_PERMITTED_ALIGNED : 0);
1182 #ifdef TCP_SIGNATURE
1183 		optlen += ((sc->sc_flags & SCF_SIGNATURE) ?
1184 		    (TCPOLEN_SIGNATURE + 2) : 0);
1185 #endif /* TCP_SIGNATURE */
1186 	}
1187 	tlen = hlen + sizeof(struct tcphdr) + optlen;
1188 
1189 	/*
1190 	 * XXX
1191 	 * assume that the entire packet will fit in a header mbuf
1192 	 */
1193 	KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1194 
1195 	/*
1196 	 * XXX shouldn't this reuse the mbuf if possible ?
1197 	 * Create the IP+TCP header from scratch.
1198 	 */
1199 	if (m)
1200 		m_freem(m);
1201 
1202 	m = m_gethdr(MB_DONTWAIT, MT_HEADER);
1203 	if (m == NULL)
1204 		return (ENOBUFS);
1205 	m->m_data += max_linkhdr;
1206 	m->m_len = tlen;
1207 	m->m_pkthdr.len = tlen;
1208 	m->m_pkthdr.rcvif = NULL;
1209 
1210 	if (isipv6) {
1211 		ip6 = mtod(m, struct ip6_hdr *);
1212 		ip6->ip6_vfc = IPV6_VERSION;
1213 		ip6->ip6_nxt = IPPROTO_TCP;
1214 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1215 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1216 		ip6->ip6_plen = htons(tlen - hlen);
1217 		/* ip6_hlim is set after checksum */
1218 		/* ip6_flow = ??? */
1219 
1220 		th = (struct tcphdr *)(ip6 + 1);
1221 	} else {
1222 		ip = mtod(m, struct ip *);
1223 		ip->ip_v = IPVERSION;
1224 		ip->ip_hl = sizeof(struct ip) >> 2;
1225 		ip->ip_len = tlen;
1226 		ip->ip_id = 0;
1227 		ip->ip_off = 0;
1228 		ip->ip_sum = 0;
1229 		ip->ip_p = IPPROTO_TCP;
1230 		ip->ip_src = sc->sc_inc.inc_laddr;
1231 		ip->ip_dst = sc->sc_inc.inc_faddr;
1232 		ip->ip_ttl = sc->sc_tp->t_inpcb->inp_ip_ttl;   /* XXX */
1233 		ip->ip_tos = sc->sc_tp->t_inpcb->inp_ip_tos;   /* XXX */
1234 
1235 		/*
1236 		 * See if we should do MTU discovery.  Route lookups are
1237 		 * expensive, so we will only unset the DF bit if:
1238 		 *
1239 		 *	1) path_mtu_discovery is disabled
1240 		 *	2) the SCF_UNREACH flag has been set
1241 		 */
1242 		if (path_mtu_discovery
1243 		    && ((sc->sc_flags & SCF_UNREACH) == 0)) {
1244 		       ip->ip_off |= IP_DF;
1245 		}
1246 
1247 		th = (struct tcphdr *)(ip + 1);
1248 	}
1249 	th->th_sport = sc->sc_inc.inc_lport;
1250 	th->th_dport = sc->sc_inc.inc_fport;
1251 
1252 	th->th_seq = htonl(sc->sc_iss);
1253 	th->th_ack = htonl(sc->sc_irs + 1);
1254 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1255 	th->th_x2 = 0;
1256 	th->th_flags = TH_SYN | TH_ACK;
1257 	th->th_win = htons(sc->sc_wnd);
1258 	th->th_urp = 0;
1259 
1260 	/* Tack on the TCP options. */
1261 	if (optlen == 0)
1262 		goto no_options;
1263 	optp = (u_int8_t *)(th + 1);
1264 	*optp++ = TCPOPT_MAXSEG;
1265 	*optp++ = TCPOLEN_MAXSEG;
1266 	*optp++ = (mssopt >> 8) & 0xff;
1267 	*optp++ = mssopt & 0xff;
1268 
1269 	if (sc->sc_flags & SCF_WINSCALE) {
1270 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1271 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1272 		    sc->sc_request_r_scale);
1273 		optp += 4;
1274 	}
1275 
1276 	if (sc->sc_flags & SCF_TIMESTAMP) {
1277 		u_int32_t *lp = (u_int32_t *)(optp);
1278 
1279 		/* Form timestamp option as shown in appendix A of RFC 1323. */
1280 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1281 		*lp++ = htonl(ticks);
1282 		*lp   = htonl(sc->sc_tsrecent);
1283 		optp += TCPOLEN_TSTAMP_APPA;
1284 	}
1285 
1286 #ifdef TCP_SIGNATURE
1287 	/*
1288 	 * Handle TCP-MD5 passive opener response.
1289 	 */
1290 	if (sc->sc_flags & SCF_SIGNATURE) {
1291 		u_int8_t *bp = optp;
1292 		int i;
1293 
1294 		*bp++ = TCPOPT_SIGNATURE;
1295 		*bp++ = TCPOLEN_SIGNATURE;
1296 		for (i = 0; i < TCP_SIGLEN; i++)
1297 			*bp++ = 0;
1298 		tcpsignature_compute(m, 0, optlen,
1299 				optp + 2, IPSEC_DIR_OUTBOUND);
1300 		*bp++ = TCPOPT_NOP;
1301 		*bp++ = TCPOPT_EOL;
1302 		optp += TCPOLEN_SIGNATURE + 2;
1303 	}
1304 #endif /* TCP_SIGNATURE */
1305 
1306 	if (sc->sc_flags & SCF_SACK_PERMITTED) {
1307 		*((u_int32_t *)optp) = htonl(TCPOPT_SACK_PERMITTED_ALIGNED);
1308 		optp += TCPOLEN_SACK_PERMITTED_ALIGNED;
1309 	}
1310 
1311 no_options:
1312 	if (isipv6) {
1313 		struct route_in6 *ro6 = &sc->sc_route6;
1314 
1315 		th->th_sum = 0;
1316 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1317 		ip6->ip6_hlim = in6_selecthlim(NULL,
1318 		    ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL);
1319 		error = ip6_output(m, NULL, ro6, 0, NULL, NULL,
1320 				sc->sc_tp->t_inpcb);
1321 	} else {
1322 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1323 				       htons(tlen - hlen + IPPROTO_TCP));
1324 		m->m_pkthdr.csum_flags = CSUM_TCP;
1325 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1326 		m->m_pkthdr.csum_thlen = sizeof(struct tcphdr) + optlen;
1327 		error = ip_output(m, sc->sc_ipopts, &sc->sc_route,
1328 				  IP_DEBUGROUTE, NULL, sc->sc_tp->t_inpcb);
1329 	}
1330 	return (error);
1331 }
1332 
1333 /*
1334  * cookie layers:
1335  *
1336  *	|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1337  *	| peer iss                                                      |
1338  *	| MD5(laddr,faddr,secret,lport,fport)             |. . . . . . .|
1339  *	|                     0                       |(A)|             |
1340  * (A): peer mss index
1341  */
1342 
1343 /*
1344  * The values below are chosen to minimize the size of the tcp_secret
1345  * table, as well as providing roughly a 16 second lifetime for the cookie.
1346  */
1347 
1348 #define SYNCOOKIE_WNDBITS	5	/* exposed bits for window indexing */
1349 #define SYNCOOKIE_TIMESHIFT	1	/* scale ticks to window time units */
1350 
1351 #define SYNCOOKIE_WNDMASK	((1 << SYNCOOKIE_WNDBITS) - 1)
1352 #define SYNCOOKIE_NSECRETS	(1 << SYNCOOKIE_WNDBITS)
1353 #define SYNCOOKIE_TIMEOUT \
1354     (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1355 #define SYNCOOKIE_DATAMASK	((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1356 
1357 static struct {
1358 	u_int32_t	ts_secbits[4];
1359 	u_int		ts_expire;
1360 } tcp_secret[SYNCOOKIE_NSECRETS];
1361 
1362 static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1363 
1364 static MD5_CTX syn_ctx;
1365 
1366 #define MD5Add(v)	MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1367 
1368 struct md5_add {
1369 	u_int32_t laddr, faddr;
1370 	u_int32_t secbits[4];
1371 	u_int16_t lport, fport;
1372 };
1373 
1374 #ifdef CTASSERT
1375 CTASSERT(sizeof(struct md5_add) == 28);
1376 #endif
1377 
1378 /*
1379  * Consider the problem of a recreated (and retransmitted) cookie.  If the
1380  * original SYN was accepted, the connection is established.  The second
1381  * SYN is inflight, and if it arrives with an ISN that falls within the
1382  * receive window, the connection is killed.
1383  *
1384  * However, since cookies have other problems, this may not be worth
1385  * worrying about.
1386  */
1387 
1388 static u_int32_t
1389 syncookie_generate(struct syncache *sc)
1390 {
1391 	u_int32_t md5_buffer[4];
1392 	u_int32_t data;
1393 	int idx, i;
1394 	struct md5_add add;
1395 #ifdef INET6
1396 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1397 #else
1398 	const boolean_t isipv6 = FALSE;
1399 #endif
1400 
1401 	idx = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1402 	if (tcp_secret[idx].ts_expire < ticks) {
1403 		for (i = 0; i < 4; i++)
1404 			tcp_secret[idx].ts_secbits[i] = karc4random();
1405 		tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1406 	}
1407 	for (data = NELEM(tcp_msstab) - 1; data > 0; data--)
1408 		if (tcp_msstab[data] <= sc->sc_peer_mss)
1409 			break;
1410 	data = (data << SYNCOOKIE_WNDBITS) | idx;
1411 	data ^= sc->sc_irs;				/* peer's iss */
1412 	MD5Init(&syn_ctx);
1413 	if (isipv6) {
1414 		MD5Add(sc->sc_inc.inc6_laddr);
1415 		MD5Add(sc->sc_inc.inc6_faddr);
1416 		add.laddr = 0;
1417 		add.faddr = 0;
1418 	} else {
1419 		add.laddr = sc->sc_inc.inc_laddr.s_addr;
1420 		add.faddr = sc->sc_inc.inc_faddr.s_addr;
1421 	}
1422 	add.lport = sc->sc_inc.inc_lport;
1423 	add.fport = sc->sc_inc.inc_fport;
1424 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1425 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1426 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1427 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1428 	MD5Add(add);
1429 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1430 	data ^= (md5_buffer[0] & ~SYNCOOKIE_WNDMASK);
1431 	return (data);
1432 }
1433 
1434 static struct syncache *
1435 syncookie_lookup(struct in_conninfo *inc, struct tcphdr *th, struct socket *so)
1436 {
1437 	u_int32_t md5_buffer[4];
1438 	struct syncache *sc;
1439 	u_int32_t data;
1440 	int wnd, idx;
1441 	struct md5_add add;
1442 
1443 	data = (th->th_ack - 1) ^ (th->th_seq - 1);	/* remove ISS */
1444 	idx = data & SYNCOOKIE_WNDMASK;
1445 	if (tcp_secret[idx].ts_expire < ticks ||
1446 	    sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1447 		return (NULL);
1448 	MD5Init(&syn_ctx);
1449 #ifdef INET6
1450 	if (inc->inc_isipv6) {
1451 		MD5Add(inc->inc6_laddr);
1452 		MD5Add(inc->inc6_faddr);
1453 		add.laddr = 0;
1454 		add.faddr = 0;
1455 	} else
1456 #endif
1457 	{
1458 		add.laddr = inc->inc_laddr.s_addr;
1459 		add.faddr = inc->inc_faddr.s_addr;
1460 	}
1461 	add.lport = inc->inc_lport;
1462 	add.fport = inc->inc_fport;
1463 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1464 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1465 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1466 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1467 	MD5Add(add);
1468 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1469 	data ^= md5_buffer[0];
1470 	if (data & ~SYNCOOKIE_DATAMASK)
1471 		return (NULL);
1472 	data = data >> SYNCOOKIE_WNDBITS;
1473 
1474 	/*
1475 	 * Fill in the syncache values.
1476 	 * XXX duplicate code from syncache_add
1477 	 */
1478 	sc = kmalloc(sizeof(struct syncache), M_SYNCACHE, M_WAITOK|M_ZERO);
1479 	sc->sc_ipopts = NULL;
1480 	sc->sc_inc.inc_fport = inc->inc_fport;
1481 	sc->sc_inc.inc_lport = inc->inc_lport;
1482 #ifdef INET6
1483 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1484 	if (inc->inc_isipv6) {
1485 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1486 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1487 		sc->sc_route6.ro_rt = NULL;
1488 	} else
1489 #endif
1490 	{
1491 		sc->sc_inc.inc_faddr = inc->inc_faddr;
1492 		sc->sc_inc.inc_laddr = inc->inc_laddr;
1493 		sc->sc_route.ro_rt = NULL;
1494 	}
1495 	sc->sc_irs = th->th_seq - 1;
1496 	sc->sc_iss = th->th_ack - 1;
1497 	wnd = ssb_space(&so->so_rcv);
1498 	wnd = imax(wnd, 0);
1499 	wnd = imin(wnd, TCP_MAXWIN);
1500 	sc->sc_wnd = wnd;
1501 	sc->sc_flags = 0;
1502 	sc->sc_rxtslot = 0;
1503 	sc->sc_peer_mss = tcp_msstab[data];
1504 	return (sc);
1505 }
1506