xref: /dragonfly/sys/netinet/tcp_syncache.c (revision 222a27c4)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
36  *
37  * License terms: all terms for the DragonFly license above plus the following:
38  *
39  * 4. All advertising materials mentioning features or use of this software
40  *    must display the following acknowledgement:
41  *
42  *	This product includes software developed by Jeffrey M. Hsu
43  *	for the DragonFly Project.
44  *
45  *    This requirement may be waived with permission from Jeffrey Hsu.
46  *    This requirement will sunset and may be removed on July 8 2005,
47  *    after which the standard DragonFly license (as shown above) will
48  *    apply.
49  */
50 
51 /*
52  * All advertising materials mentioning features or use of this software
53  * must display the following acknowledgement:
54  *   This product includes software developed by Jeffrey M. Hsu.
55  *
56  * Copyright (c) 2001 Networks Associates Technologies, Inc.
57  * All rights reserved.
58  *
59  * This software was developed for the FreeBSD Project by Jonathan Lemon
60  * and NAI Labs, the Security Research Division of Network Associates, Inc.
61  * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
62  * DARPA CHATS research program.
63  *
64  * Redistribution and use in source and binary forms, with or without
65  * modification, are permitted provided that the following conditions
66  * are met:
67  * 1. Redistributions of source code must retain the above copyright
68  *    notice, this list of conditions and the following disclaimer.
69  * 2. Redistributions in binary form must reproduce the above copyright
70  *    notice, this list of conditions and the following disclaimer in the
71  *    documentation and/or other materials provided with the distribution.
72  * 3. The name of the author may not be used to endorse or promote
73  *    products derived from this software without specific prior written
74  *    permission.
75  *
76  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
77  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
78  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
79  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
80  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
81  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
82  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
83  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
84  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
85  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
86  * SUCH DAMAGE.
87  *
88  * $FreeBSD: src/sys/netinet/tcp_syncache.c,v 1.5.2.14 2003/02/24 04:02:27 silby Exp $
89  * $DragonFly: src/sys/netinet/tcp_syncache.c,v 1.21 2005/02/08 22:56:19 hsu Exp $
90  */
91 
92 #include "opt_inet6.h"
93 #include "opt_ipsec.h"
94 
95 #include <sys/param.h>
96 #include <sys/systm.h>
97 #include <sys/kernel.h>
98 #include <sys/sysctl.h>
99 #include <sys/malloc.h>
100 #include <sys/mbuf.h>
101 #include <sys/md5.h>
102 #include <sys/proc.h>		/* for proc0 declaration */
103 #include <sys/random.h>
104 #include <sys/socket.h>
105 #include <sys/socketvar.h>
106 #include <sys/in_cksum.h>
107 
108 #include <sys/msgport2.h>
109 
110 #include <net/if.h>
111 #include <net/route.h>
112 
113 #include <netinet/in.h>
114 #include <netinet/in_systm.h>
115 #include <netinet/ip.h>
116 #include <netinet/in_var.h>
117 #include <netinet/in_pcb.h>
118 #include <netinet/ip_var.h>
119 #include <netinet/ip6.h>
120 #ifdef INET6
121 #include <netinet/icmp6.h>
122 #include <netinet6/nd6.h>
123 #endif
124 #include <netinet6/ip6_var.h>
125 #include <netinet6/in6_pcb.h>
126 #include <netinet/tcp.h>
127 #include <netinet/tcp_fsm.h>
128 #include <netinet/tcp_seq.h>
129 #include <netinet/tcp_timer.h>
130 #include <netinet/tcp_var.h>
131 #include <netinet6/tcp6_var.h>
132 
133 #ifdef IPSEC
134 #include <netinet6/ipsec.h>
135 #ifdef INET6
136 #include <netinet6/ipsec6.h>
137 #endif
138 #include <netproto/key/key.h>
139 #endif /*IPSEC*/
140 
141 #ifdef FAST_IPSEC
142 #include <netproto/ipsec/ipsec.h>
143 #ifdef INET6
144 #include <netproto/ipsec/ipsec6.h>
145 #endif
146 #include <netproto/ipsec/key.h>
147 #define	IPSEC
148 #endif /*FAST_IPSEC*/
149 
150 #include <vm/vm_zone.h>
151 
152 static int tcp_syncookies = 1;
153 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
154     &tcp_syncookies, 0,
155     "Use TCP SYN cookies if the syncache overflows");
156 
157 static void	 syncache_drop(struct syncache *, struct syncache_head *);
158 static void	 syncache_free(struct syncache *);
159 static void	 syncache_insert(struct syncache *, struct syncache_head *);
160 struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
161 static int	 syncache_respond(struct syncache *, struct mbuf *);
162 static struct	 socket *syncache_socket(struct syncache *, struct socket *);
163 static void	 syncache_timer(void *);
164 static u_int32_t syncookie_generate(struct syncache *);
165 static struct syncache *syncookie_lookup(struct in_conninfo *,
166 		    struct tcphdr *, struct socket *);
167 
168 /*
169  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
170  * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
171  * the odds are that the user has given up attempting to connect by then.
172  */
173 #define SYNCACHE_MAXREXMTS		3
174 
175 /* Arbitrary values */
176 #define TCP_SYNCACHE_HASHSIZE		512
177 #define TCP_SYNCACHE_BUCKETLIMIT	30
178 
179 struct netmsg_sc_timer {
180 	struct lwkt_msg nm_lmsg;
181 	struct msgrec *nm_mrec;		/* back pointer to containing msgrec */
182 };
183 
184 struct msgrec {
185 	struct netmsg_sc_timer msg;
186 	lwkt_port_t port;		/* constant after init */
187 	int slot;			/* constant after init */
188 };
189 
190 static int syncache_timer_handler(lwkt_msg_t);
191 
192 struct tcp_syncache {
193 	struct	vm_zone *zone;
194 	u_int	hashsize;
195 	u_int	hashmask;
196 	u_int	bucket_limit;
197 	u_int	cache_limit;
198 	u_int	rexmt_limit;
199 	u_int	hash_secret;
200 };
201 static struct tcp_syncache tcp_syncache;
202 
203 struct tcp_syncache_percpu {
204 	struct syncache_head	*hashbase;
205 	u_int			cache_count;
206 	TAILQ_HEAD(, syncache)	timerq[SYNCACHE_MAXREXMTS + 1];
207 	struct callout		tt_timerq[SYNCACHE_MAXREXMTS + 1];
208 	struct msgrec		mrec[SYNCACHE_MAXREXMTS + 1];
209 };
210 static struct tcp_syncache_percpu tcp_syncache_percpu[MAXCPU];
211 
212 static struct lwkt_port syncache_null_rport;
213 
214 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
215 
216 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RD,
217      &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
218 
219 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RD,
220      &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
221 
222 /* XXX JH */
223 #if 0
224 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
225      &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
226 #endif
227 
228 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RD,
229      &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
230 
231 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
232      &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
233 
234 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
235 
236 #define SYNCACHE_HASH(inc, mask)					\
237 	((tcp_syncache.hash_secret ^					\
238 	  (inc)->inc_faddr.s_addr ^					\
239 	  ((inc)->inc_faddr.s_addr >> 16) ^				\
240 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
241 
242 #define SYNCACHE_HASH6(inc, mask)					\
243 	((tcp_syncache.hash_secret ^					\
244 	  (inc)->inc6_faddr.s6_addr32[0] ^				\
245 	  (inc)->inc6_faddr.s6_addr32[3] ^				\
246 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
247 
248 #define ENDPTS_EQ(a, b) (						\
249 	(a)->ie_fport == (b)->ie_fport &&				\
250 	(a)->ie_lport == (b)->ie_lport &&				\
251 	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
252 	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
253 )
254 
255 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
256 
257 static __inline void
258 syncache_timeout(struct tcp_syncache_percpu *syncache_percpu,
259 		 struct syncache *sc, int slot)
260 {
261 	sc->sc_rxtslot = slot;
262 	sc->sc_rxttime = ticks + TCPTV_RTOBASE * tcp_backoff[slot];
263 	TAILQ_INSERT_TAIL(&syncache_percpu->timerq[slot], sc, sc_timerq);
264 	if (!callout_active(&syncache_percpu->tt_timerq[slot])) {
265 		callout_reset(&syncache_percpu->tt_timerq[slot],
266 			      TCPTV_RTOBASE * tcp_backoff[slot],
267 			      syncache_timer,
268 			      &syncache_percpu->mrec[slot]);
269 	}
270 }
271 
272 static void
273 syncache_free(struct syncache *sc)
274 {
275 	struct rtentry *rt;
276 #ifdef INET6
277 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
278 #else
279 	const boolean_t isipv6 = FALSE;
280 #endif
281 
282 	if (sc->sc_ipopts)
283 		m_free(sc->sc_ipopts);
284 	if (isipv6)
285 		rt = sc->sc_route6.ro_rt;
286 	else
287 		rt = sc->sc_route.ro_rt;
288 	if (rt != NULL) {
289 		/*
290 		 * If this is the only reference to a protocol cloned
291 		 * route, remove it immediately.
292 		 */
293 		if (rt->rt_flags & RTF_WASCLONED &&
294 		    !(sc->sc_flags & SCF_KEEPROUTE) &&
295 		    rt->rt_refcnt == 1) {
296 			rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
297 				  rt_mask(rt), rt->rt_flags, NULL);
298 		}
299 		RTFREE(rt);
300 	}
301 	zfree(tcp_syncache.zone, sc);
302 }
303 
304 void
305 syncache_init(void)
306 {
307 	int i, cpu;
308 
309 	tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
310 	tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
311 	tcp_syncache.cache_limit =
312 	    tcp_syncache.hashsize * tcp_syncache.bucket_limit;
313 	tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
314 	tcp_syncache.hash_secret = arc4random();
315 
316 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
317 	    &tcp_syncache.hashsize);
318 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
319 	    &tcp_syncache.cache_limit);
320 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
321 	    &tcp_syncache.bucket_limit);
322 	if (!powerof2(tcp_syncache.hashsize)) {
323 		printf("WARNING: syncache hash size is not a power of 2.\n");
324 		tcp_syncache.hashsize = 512;	/* safe default */
325 	}
326 	tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
327 
328 	lwkt_initport_null_rport(&syncache_null_rport, NULL);
329 
330 	for (cpu = 0; cpu < ncpus2; cpu++) {
331 		struct tcp_syncache_percpu *syncache_percpu;
332 
333 		syncache_percpu = &tcp_syncache_percpu[cpu];
334 		/* Allocate the hash table. */
335 		MALLOC(syncache_percpu->hashbase, struct syncache_head *,
336 		    tcp_syncache.hashsize * sizeof(struct syncache_head),
337 		    M_SYNCACHE, M_WAITOK);
338 
339 		/* Initialize the hash buckets. */
340 		for (i = 0; i < tcp_syncache.hashsize; i++) {
341 			struct syncache_head *bucket;
342 
343 			bucket = &syncache_percpu->hashbase[i];
344 			TAILQ_INIT(&bucket->sch_bucket);
345 			bucket->sch_length = 0;
346 		}
347 
348 		for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
349 			/* Initialize the timer queues. */
350 			TAILQ_INIT(&syncache_percpu->timerq[i]);
351 			callout_init(&syncache_percpu->tt_timerq[i]);
352 
353 			syncache_percpu->mrec[i].slot = i;
354 			syncache_percpu->mrec[i].port = tcp_cport(cpu);
355 			syncache_percpu->mrec[i].msg.nm_mrec =
356 			    &syncache_percpu->mrec[i];
357 			lwkt_initmsg(&syncache_percpu->mrec[i].msg.nm_lmsg,
358 			    &syncache_null_rport, 0,
359 			    lwkt_cmd_func(syncache_timer_handler),
360 			    lwkt_cmd_op_none);
361 		}
362 	}
363 
364 	/*
365 	 * Allocate the syncache entries.  Allow the zone to allocate one
366 	 * more entry than cache limit, so a new entry can bump out an
367 	 * older one.
368 	 */
369 	tcp_syncache.zone = zinit("syncache", sizeof(struct syncache),
370 	    tcp_syncache.cache_limit, ZONE_INTERRUPT, 0);
371 	tcp_syncache.cache_limit -= 1;
372 }
373 
374 static void
375 syncache_insert(sc, sch)
376 	struct syncache *sc;
377 	struct syncache_head *sch;
378 {
379 	struct tcp_syncache_percpu *syncache_percpu;
380 	struct syncache *sc2;
381 	int i;
382 
383 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
384 
385 	/*
386 	 * Make sure that we don't overflow the per-bucket
387 	 * limit or the total cache size limit.
388 	 */
389 	if (sch->sch_length >= tcp_syncache.bucket_limit) {
390 		/*
391 		 * The bucket is full, toss the oldest element.
392 		 */
393 		sc2 = TAILQ_FIRST(&sch->sch_bucket);
394 		sc2->sc_tp->ts_recent = ticks;
395 		syncache_drop(sc2, sch);
396 		tcpstat.tcps_sc_bucketoverflow++;
397 	} else if (syncache_percpu->cache_count >= tcp_syncache.cache_limit) {
398 		/*
399 		 * The cache is full.  Toss the oldest entry in the
400 		 * entire cache.  This is the front entry in the
401 		 * first non-empty timer queue with the largest
402 		 * timeout value.
403 		 */
404 		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
405 			sc2 = TAILQ_FIRST(&syncache_percpu->timerq[i]);
406 			if (sc2 != NULL)
407 				break;
408 		}
409 		sc2->sc_tp->ts_recent = ticks;
410 		syncache_drop(sc2, NULL);
411 		tcpstat.tcps_sc_cacheoverflow++;
412 	}
413 
414 	/* Initialize the entry's timer. */
415 	syncache_timeout(syncache_percpu, sc, 0);
416 
417 	/* Put it into the bucket. */
418 	TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
419 	sch->sch_length++;
420 	syncache_percpu->cache_count++;
421 	tcpstat.tcps_sc_added++;
422 }
423 
424 static void
425 syncache_drop(sc, sch)
426 	struct syncache *sc;
427 	struct syncache_head *sch;
428 {
429 	struct tcp_syncache_percpu *syncache_percpu;
430 #ifdef INET6
431 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
432 #else
433 	const boolean_t isipv6 = FALSE;
434 #endif
435 
436 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
437 
438 	if (sch == NULL) {
439 		if (isipv6) {
440 			sch = &syncache_percpu->hashbase[
441 			    SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
442 		} else {
443 			sch = &syncache_percpu->hashbase[
444 			    SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
445 		}
446 	}
447 
448 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
449 	sch->sch_length--;
450 	syncache_percpu->cache_count--;
451 
452 	/*
453 	 * Remove the entry from the syncache timer/timeout queue.  Note
454 	 * that we do not try to stop any running timer since we do not know
455 	 * whether the timer's message is in-transit or not.  Since timeouts
456 	 * are fairly long, taking an unneeded callout does not detrimentally
457 	 * effect performance.
458 	 */
459 	TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot], sc, sc_timerq);
460 
461 	syncache_free(sc);
462 }
463 
464 /*
465  * Place a timeout message on the TCP thread's message queue.
466  * This routine runs in soft interrupt context.
467  *
468  * An invariant is for this routine to be called, the callout must
469  * have been active.  Note that the callout is not deactivated until
470  * after the message has been processed in syncache_timer_handler() below.
471  */
472 static void
473 syncache_timer(void *p)
474 {
475 	struct netmsg_sc_timer *msg = p;
476 
477 	lwkt_sendmsg(msg->nm_mrec->port, &msg->nm_lmsg);
478 }
479 
480 /*
481  * Service a timer message queued by timer expiration.
482  * This routine runs in the TCP protocol thread.
483  *
484  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
485  * If we have retransmitted an entry the maximum number of times, expire it.
486  *
487  * When we finish processing timed-out entries, we restart the timer if there
488  * are any entries still on the queue and deactivate it otherwise.  Only after
489  * a timer has been deactivated here can it be restarted by syncache_timeout().
490  */
491 static int
492 syncache_timer_handler(lwkt_msg_t msg)
493 {
494 	struct tcp_syncache_percpu *syncache_percpu;
495 	struct syncache *sc, *nsc;
496 	struct inpcb *inp;
497 	int slot;
498 
499 	slot = ((struct netmsg_sc_timer *)msg)->nm_mrec->slot;
500 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
501 
502 	nsc = TAILQ_FIRST(&syncache_percpu->timerq[slot]);
503 	while (nsc != NULL) {
504 		if (ticks < nsc->sc_rxttime)
505 			break;	/* finished because timerq sorted by time */
506 		sc = nsc;
507 		inp = sc->sc_tp->t_inpcb;
508 		if (slot == SYNCACHE_MAXREXMTS ||
509 		    slot >= tcp_syncache.rexmt_limit ||
510 		    inp->inp_gencnt != sc->sc_inp_gencnt) {
511 			nsc = TAILQ_NEXT(sc, sc_timerq);
512 			syncache_drop(sc, NULL);
513 			tcpstat.tcps_sc_stale++;
514 			continue;
515 		}
516 		/*
517 		 * syncache_respond() may call back into the syncache to
518 		 * to modify another entry, so do not obtain the next
519 		 * entry on the timer chain until it has completed.
520 		 */
521 		syncache_respond(sc, NULL);
522 		nsc = TAILQ_NEXT(sc, sc_timerq);
523 		tcpstat.tcps_sc_retransmitted++;
524 		TAILQ_REMOVE(&syncache_percpu->timerq[slot], sc, sc_timerq);
525 		syncache_timeout(syncache_percpu, sc, slot + 1);
526 	}
527 	if (nsc != NULL)
528 		callout_reset(&syncache_percpu->tt_timerq[slot],
529 		    nsc->sc_rxttime - ticks, syncache_timer,
530 		    &syncache_percpu->mrec[slot]);
531 	else
532 		callout_deactivate(&syncache_percpu->tt_timerq[slot]);
533 
534 	lwkt_replymsg(msg, 0);
535 	return (EASYNC);
536 }
537 
538 /*
539  * Find an entry in the syncache.
540  */
541 struct syncache *
542 syncache_lookup(inc, schp)
543 	struct in_conninfo *inc;
544 	struct syncache_head **schp;
545 {
546 	struct tcp_syncache_percpu *syncache_percpu;
547 	struct syncache *sc;
548 	struct syncache_head *sch;
549 
550 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
551 #ifdef INET6
552 	if (inc->inc_isipv6) {
553 		sch = &syncache_percpu->hashbase[
554 		    SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
555 		*schp = sch;
556 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
557 			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
558 				return (sc);
559 	} else
560 #endif
561 	{
562 		sch = &syncache_percpu->hashbase[
563 		    SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
564 		*schp = sch;
565 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
566 #ifdef INET6
567 			if (sc->sc_inc.inc_isipv6)
568 				continue;
569 #endif
570 			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
571 				return (sc);
572 		}
573 	}
574 	return (NULL);
575 }
576 
577 /*
578  * This function is called when we get a RST for a
579  * non-existent connection, so that we can see if the
580  * connection is in the syn cache.  If it is, zap it.
581  */
582 void
583 syncache_chkrst(inc, th)
584 	struct in_conninfo *inc;
585 	struct tcphdr *th;
586 {
587 	struct syncache *sc;
588 	struct syncache_head *sch;
589 
590 	sc = syncache_lookup(inc, &sch);
591 	if (sc == NULL)
592 		return;
593 	/*
594 	 * If the RST bit is set, check the sequence number to see
595 	 * if this is a valid reset segment.
596 	 * RFC 793 page 37:
597 	 *   In all states except SYN-SENT, all reset (RST) segments
598 	 *   are validated by checking their SEQ-fields.  A reset is
599 	 *   valid if its sequence number is in the window.
600 	 *
601 	 *   The sequence number in the reset segment is normally an
602 	 *   echo of our outgoing acknowlegement numbers, but some hosts
603 	 *   send a reset with the sequence number at the rightmost edge
604 	 *   of our receive window, and we have to handle this case.
605 	 */
606 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
607 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
608 		syncache_drop(sc, sch);
609 		tcpstat.tcps_sc_reset++;
610 	}
611 }
612 
613 void
614 syncache_badack(inc)
615 	struct in_conninfo *inc;
616 {
617 	struct syncache *sc;
618 	struct syncache_head *sch;
619 
620 	sc = syncache_lookup(inc, &sch);
621 	if (sc != NULL) {
622 		syncache_drop(sc, sch);
623 		tcpstat.tcps_sc_badack++;
624 	}
625 }
626 
627 void
628 syncache_unreach(inc, th)
629 	struct in_conninfo *inc;
630 	struct tcphdr *th;
631 {
632 	struct syncache *sc;
633 	struct syncache_head *sch;
634 
635 	/* we are called at splnet() here */
636 	sc = syncache_lookup(inc, &sch);
637 	if (sc == NULL)
638 		return;
639 
640 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
641 	if (ntohl(th->th_seq) != sc->sc_iss)
642 		return;
643 
644 	/*
645 	 * If we've rertransmitted 3 times and this is our second error,
646 	 * we remove the entry.  Otherwise, we allow it to continue on.
647 	 * This prevents us from incorrectly nuking an entry during a
648 	 * spurious network outage.
649 	 *
650 	 * See tcp_notify().
651 	 */
652 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
653 		sc->sc_flags |= SCF_UNREACH;
654 		return;
655 	}
656 	syncache_drop(sc, sch);
657 	tcpstat.tcps_sc_unreach++;
658 }
659 
660 /*
661  * Build a new TCP socket structure from a syncache entry.
662  */
663 static struct socket *
664 syncache_socket(sc, lso)
665 	struct syncache *sc;
666 	struct socket *lso;
667 {
668 	struct inpcb *inp = NULL, *linp;
669 	struct socket *so;
670 	struct tcpcb *tp;
671 #ifdef INET6
672 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
673 #else
674 	const boolean_t isipv6 = FALSE;
675 #endif
676 
677 	/*
678 	 * Ok, create the full blown connection, and set things up
679 	 * as they would have been set up if we had created the
680 	 * connection when the SYN arrived.  If we can't create
681 	 * the connection, abort it.
682 	 */
683 	so = sonewconn(lso, SS_ISCONNECTED);
684 	if (so == NULL) {
685 		/*
686 		 * Drop the connection; we will send a RST if the peer
687 		 * retransmits the ACK,
688 		 */
689 		tcpstat.tcps_listendrop++;
690 		goto abort;
691 	}
692 
693 	inp = so->so_pcb;
694 
695 	/*
696 	 * Insert new socket into hash list.
697 	 */
698 	inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
699 	if (isipv6) {
700 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
701 	} else {
702 #ifdef INET6
703 		inp->inp_vflag &= ~INP_IPV6;
704 		inp->inp_vflag |= INP_IPV4;
705 #endif
706 		inp->inp_laddr = sc->sc_inc.inc_laddr;
707 	}
708 	inp->inp_lport = sc->sc_inc.inc_lport;
709 	if (in_pcbinsporthash(inp) != 0) {
710 		/*
711 		 * Undo the assignments above if we failed to
712 		 * put the PCB on the hash lists.
713 		 */
714 		if (isipv6)
715 			inp->in6p_laddr = in6addr_any;
716 		else
717 			inp->inp_laddr.s_addr = INADDR_ANY;
718 		inp->inp_lport = 0;
719 		goto abort;
720 	}
721 	linp = so->so_pcb;
722 #ifdef IPSEC
723 	/* copy old policy into new socket's */
724 	if (ipsec_copy_policy(linp->inp_sp, inp->inp_sp))
725 		printf("syncache_expand: could not copy policy\n");
726 #endif
727 	if (isipv6) {
728 		struct in6_addr laddr6;
729 		struct sockaddr_in6 sin6;
730 		/*
731 		 * Inherit socket options from the listening socket.
732 		 * Note that in6p_inputopts are not (and should not be)
733 		 * copied, since it stores previously received options and is
734 		 * used to detect if each new option is different than the
735 		 * previous one and hence should be passed to a user.
736 		 * If we copied in6p_inputopts, a user would not be able to
737 		 * receive options just after calling the accept system call.
738 		 */
739 		inp->inp_flags |= linp->inp_flags & INP_CONTROLOPTS;
740 		if (linp->in6p_outputopts)
741 			inp->in6p_outputopts =
742 			    ip6_copypktopts(linp->in6p_outputopts, M_INTWAIT);
743 		inp->in6p_route = sc->sc_route6;
744 		sc->sc_route6.ro_rt = NULL;
745 
746 		sin6.sin6_family = AF_INET6;
747 		sin6.sin6_len = sizeof sin6;
748 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
749 		sin6.sin6_port = sc->sc_inc.inc_fport;
750 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
751 		laddr6 = inp->in6p_laddr;
752 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
753 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
754 		if (in6_pcbconnect(inp, (struct sockaddr *)&sin6, &thread0)) {
755 			inp->in6p_laddr = laddr6;
756 			goto abort;
757 		}
758 	} else {
759 		struct in_addr laddr;
760 		struct sockaddr_in sin;
761 
762 		inp->inp_options = ip_srcroute();
763 		if (inp->inp_options == NULL) {
764 			inp->inp_options = sc->sc_ipopts;
765 			sc->sc_ipopts = NULL;
766 		}
767 		inp->inp_route = sc->sc_route;
768 		sc->sc_route.ro_rt = NULL;
769 
770 		sin.sin_family = AF_INET;
771 		sin.sin_len = sizeof sin;
772 		sin.sin_addr = sc->sc_inc.inc_faddr;
773 		sin.sin_port = sc->sc_inc.inc_fport;
774 		bzero(sin.sin_zero, sizeof sin.sin_zero);
775 		laddr = inp->inp_laddr;
776 		if (inp->inp_laddr.s_addr == INADDR_ANY)
777 			inp->inp_laddr = sc->sc_inc.inc_laddr;
778 		if (in_pcbconnect(inp, (struct sockaddr *)&sin, &thread0)) {
779 			inp->inp_laddr = laddr;
780 			goto abort;
781 		}
782 	}
783 
784 	tp = intotcpcb(inp);
785 	tp->t_state = TCPS_SYN_RECEIVED;
786 	tp->iss = sc->sc_iss;
787 	tp->irs = sc->sc_irs;
788 	tcp_rcvseqinit(tp);
789 	tcp_sendseqinit(tp);
790 	tp->snd_wl1 = sc->sc_irs;
791 	tp->rcv_up = sc->sc_irs + 1;
792 	tp->rcv_wnd = sc->sc_wnd;
793 	tp->rcv_adv += tp->rcv_wnd;
794 
795 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH | TF_NODELAY);
796 	if (sc->sc_flags & SCF_NOOPT)
797 		tp->t_flags |= TF_NOOPT;
798 	if (sc->sc_flags & SCF_WINSCALE) {
799 		tp->t_flags |= TF_REQ_SCALE | TF_RCVD_SCALE;
800 		tp->requested_s_scale = sc->sc_requested_s_scale;
801 		tp->request_r_scale = sc->sc_request_r_scale;
802 	}
803 	if (sc->sc_flags & SCF_TIMESTAMP) {
804 		tp->t_flags |= TF_REQ_TSTMP | TF_RCVD_TSTMP;
805 		tp->ts_recent = sc->sc_tsrecent;
806 		tp->ts_recent_age = ticks;
807 	}
808 	if (sc->sc_flags & SCF_CC) {
809 		/*
810 		 * Initialization of the tcpcb for transaction;
811 		 *   set SND.WND = SEG.WND,
812 		 *   initialize CCsend and CCrecv.
813 		 */
814 		tp->t_flags |= TF_REQ_CC | TF_RCVD_CC;
815 		tp->cc_send = sc->sc_cc_send;
816 		tp->cc_recv = sc->sc_cc_recv;
817 	}
818 	if (sc->sc_flags & SCF_SACK_PERMITTED)
819 		tp->t_flags |= TF_SACK_PERMITTED;
820 
821 	tcp_mss(tp, sc->sc_peer_mss);
822 
823 	/*
824 	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
825 	 */
826 	if (sc->sc_rxtslot != 0)
827 		tp->snd_cwnd = tp->t_maxseg;
828 	callout_reset(tp->tt_keep, tcp_keepinit, tcp_timer_keep, tp);
829 
830 	tcpstat.tcps_accepts++;
831 	return (so);
832 
833 abort:
834 	if (so != NULL)
835 		soabort(so);
836 	return (NULL);
837 }
838 
839 /*
840  * This function gets called when we receive an ACK for a
841  * socket in the LISTEN state.  We look up the connection
842  * in the syncache, and if its there, we pull it out of
843  * the cache and turn it into a full-blown connection in
844  * the SYN-RECEIVED state.
845  */
846 int
847 syncache_expand(inc, th, sop, m)
848 	struct in_conninfo *inc;
849 	struct tcphdr *th;
850 	struct socket **sop;
851 	struct mbuf *m;
852 {
853 	struct syncache *sc;
854 	struct syncache_head *sch;
855 	struct socket *so;
856 
857 	sc = syncache_lookup(inc, &sch);
858 	if (sc == NULL) {
859 		/*
860 		 * There is no syncache entry, so see if this ACK is
861 		 * a returning syncookie.  To do this, first:
862 		 *  A. See if this socket has had a syncache entry dropped in
863 		 *     the past.  We don't want to accept a bogus syncookie
864 		 *     if we've never received a SYN.
865 		 *  B. check that the syncookie is valid.  If it is, then
866 		 *     cobble up a fake syncache entry, and return.
867 		 */
868 		if (!tcp_syncookies)
869 			return (0);
870 		sc = syncookie_lookup(inc, th, *sop);
871 		if (sc == NULL)
872 			return (0);
873 		sch = NULL;
874 		tcpstat.tcps_sc_recvcookie++;
875 	}
876 
877 	/*
878 	 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
879 	 */
880 	if (th->th_ack != sc->sc_iss + 1)
881 		return (0);
882 
883 	so = syncache_socket(sc, *sop);
884 	if (so == NULL) {
885 #if 0
886 resetandabort:
887 		/* XXXjlemon check this - is this correct? */
888 		tcp_respond(NULL, m, m, th,
889 		    th->th_seq + tlen, (tcp_seq)0, TH_RST | TH_ACK);
890 #endif
891 		m_freem(m);			/* XXX only needed for above */
892 		tcpstat.tcps_sc_aborted++;
893 	} else {
894 		sc->sc_flags |= SCF_KEEPROUTE;
895 		tcpstat.tcps_sc_completed++;
896 	}
897 	if (sch == NULL)
898 		syncache_free(sc);
899 	else
900 		syncache_drop(sc, sch);
901 	*sop = so;
902 	return (1);
903 }
904 
905 /*
906  * Given a LISTEN socket and an inbound SYN request, add
907  * this to the syn cache, and send back a segment:
908  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
909  * to the source.
910  *
911  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
912  * Doing so would require that we hold onto the data and deliver it
913  * to the application.  However, if we are the target of a SYN-flood
914  * DoS attack, an attacker could send data which would eventually
915  * consume all available buffer space if it were ACKed.  By not ACKing
916  * the data, we avoid this DoS scenario.
917  */
918 int
919 syncache_add(inc, to, th, sop, m)
920 	struct in_conninfo *inc;
921 	struct tcpopt *to;
922 	struct tcphdr *th;
923 	struct socket **sop;
924 	struct mbuf *m;
925 {
926 	struct tcp_syncache_percpu *syncache_percpu;
927 	struct tcpcb *tp;
928 	struct socket *so;
929 	struct syncache *sc = NULL;
930 	struct syncache_head *sch;
931 	struct mbuf *ipopts = NULL;
932 	struct rmxp_tao *taop;
933 	int win;
934 
935 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
936 	so = *sop;
937 	tp = sototcpcb(so);
938 
939 	/*
940 	 * Remember the IP options, if any.
941 	 */
942 #ifdef INET6
943 	if (!inc->inc_isipv6)
944 #endif
945 		ipopts = ip_srcroute();
946 
947 	/*
948 	 * See if we already have an entry for this connection.
949 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
950 	 *
951 	 * XXX
952 	 * The syncache should be re-initialized with the contents
953 	 * of the new SYN which may have different options.
954 	 */
955 	sc = syncache_lookup(inc, &sch);
956 	if (sc != NULL) {
957 		tcpstat.tcps_sc_dupsyn++;
958 		if (ipopts) {
959 			/*
960 			 * If we were remembering a previous source route,
961 			 * forget it and use the new one we've been given.
962 			 */
963 			if (sc->sc_ipopts)
964 				m_free(sc->sc_ipopts);
965 			sc->sc_ipopts = ipopts;
966 		}
967 		/*
968 		 * Update timestamp if present.
969 		 */
970 		if (sc->sc_flags & SCF_TIMESTAMP)
971 			sc->sc_tsrecent = to->to_tsval;
972 
973 		/* Just update the TOF_SACK_PERMITTED for now. */
974 		if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
975 			sc->sc_flags |= SCF_SACK_PERMITTED;
976 		else
977 			sc->sc_flags &= ~SCF_SACK_PERMITTED;
978 
979 		/*
980 		 * PCB may have changed, pick up new values.
981 		 */
982 		sc->sc_tp = tp;
983 		sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
984 		if (syncache_respond(sc, m) == 0) {
985 			TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot],
986 			    sc, sc_timerq);
987 			syncache_timeout(syncache_percpu, sc, sc->sc_rxtslot);
988 			tcpstat.tcps_sndacks++;
989 			tcpstat.tcps_sndtotal++;
990 		}
991 		*sop = NULL;
992 		return (1);
993 	}
994 
995 	/*
996 	 * This allocation is guaranteed to succeed because we
997 	 * preallocate one more syncache entry than cache_limit.
998 	 */
999 	sc = zalloc(tcp_syncache.zone);
1000 
1001 	/*
1002 	 * Fill in the syncache values.
1003 	 */
1004 	sc->sc_tp = tp;
1005 	sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
1006 	sc->sc_ipopts = ipopts;
1007 	sc->sc_inc.inc_fport = inc->inc_fport;
1008 	sc->sc_inc.inc_lport = inc->inc_lport;
1009 #ifdef INET6
1010 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1011 	if (inc->inc_isipv6) {
1012 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1013 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1014 		sc->sc_route6.ro_rt = NULL;
1015 	} else
1016 #endif
1017 	{
1018 		sc->sc_inc.inc_faddr = inc->inc_faddr;
1019 		sc->sc_inc.inc_laddr = inc->inc_laddr;
1020 		sc->sc_route.ro_rt = NULL;
1021 	}
1022 	sc->sc_irs = th->th_seq;
1023 	sc->sc_flags = 0;
1024 	sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
1025 	if (tcp_syncookies)
1026 		sc->sc_iss = syncookie_generate(sc);
1027 	else
1028 		sc->sc_iss = arc4random();
1029 
1030 	/* Initial receive window: clip sbspace to [0 .. TCP_MAXWIN] */
1031 	win = sbspace(&so->so_rcv);
1032 	win = imax(win, 0);
1033 	win = imin(win, TCP_MAXWIN);
1034 	sc->sc_wnd = win;
1035 
1036 	if (tcp_do_rfc1323) {
1037 		/*
1038 		 * A timestamp received in a SYN makes
1039 		 * it ok to send timestamp requests and replies.
1040 		 */
1041 		if (to->to_flags & TOF_TS) {
1042 			sc->sc_tsrecent = to->to_tsval;
1043 			sc->sc_flags |= SCF_TIMESTAMP;
1044 		}
1045 		if (to->to_flags & TOF_SCALE) {
1046 			int wscale = 0;
1047 
1048 			/* Compute proper scaling value from buffer space */
1049 			while (wscale < TCP_MAX_WINSHIFT &&
1050 			    (TCP_MAXWIN << wscale) < so->so_rcv.sb_hiwat)
1051 				wscale++;
1052 			sc->sc_request_r_scale = wscale;
1053 			sc->sc_requested_s_scale = to->to_requested_s_scale;
1054 			sc->sc_flags |= SCF_WINSCALE;
1055 		}
1056 	}
1057 	if (tcp_do_rfc1644) {
1058 		/*
1059 		 * A CC or CC.new option received in a SYN makes
1060 		 * it ok to send CC in subsequent segments.
1061 		 */
1062 		if (to->to_flags & (TOF_CC | TOF_CCNEW)) {
1063 			sc->sc_cc_recv = to->to_cc;
1064 			sc->sc_cc_send = CC_INC(tcp_ccgen);
1065 			sc->sc_flags |= SCF_CC;
1066 		}
1067 	}
1068 	if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
1069 		sc->sc_flags |= SCF_SACK_PERMITTED;
1070 	if (tp->t_flags & TF_NOOPT)
1071 		sc->sc_flags = SCF_NOOPT;
1072 
1073 	/*
1074 	 * XXX
1075 	 * We have the option here of not doing TAO (even if the segment
1076 	 * qualifies) and instead fall back to a normal 3WHS via the syncache.
1077 	 * This allows us to apply synflood protection to TAO-qualifying SYNs
1078 	 * also. However, there should be a hueristic to determine when to
1079 	 * do this, and is not present at the moment.
1080 	 */
1081 
1082 	/*
1083 	 * Perform TAO test on incoming CC (SEG.CC) option, if any.
1084 	 * - compare SEG.CC against cached CC from the same host, if any.
1085 	 * - if SEG.CC > chached value, SYN must be new and is accepted
1086 	 *	immediately: save new CC in the cache, mark the socket
1087 	 *	connected, enter ESTABLISHED state, turn on flag to
1088 	 *	send a SYN in the next segment.
1089 	 *	A virtual advertised window is set in rcv_adv to
1090 	 *	initialize SWS prevention.  Then enter normal segment
1091 	 *	processing: drop SYN, process data and FIN.
1092 	 * - otherwise do a normal 3-way handshake.
1093 	 */
1094 	taop = tcp_gettaocache(&sc->sc_inc);
1095 	if (to->to_flags & TOF_CC) {
1096 		if ((tp->t_flags & TF_NOPUSH) &&
1097 		    sc->sc_flags & SCF_CC &&
1098 		    taop != NULL && taop->tao_cc != 0 &&
1099 		    CC_GT(to->to_cc, taop->tao_cc)) {
1100 			sc->sc_rxtslot = 0;
1101 			so = syncache_socket(sc, *sop);
1102 			if (so != NULL) {
1103 				sc->sc_flags |= SCF_KEEPROUTE;
1104 				taop->tao_cc = to->to_cc;
1105 				*sop = so;
1106 			}
1107 			syncache_free(sc);
1108 			return (so != NULL);
1109 		}
1110 	} else {
1111 		/*
1112 		 * No CC option, but maybe CC.NEW: invalidate cached value.
1113 		 */
1114 		if (taop != NULL)
1115 			taop->tao_cc = 0;
1116 	}
1117 	/*
1118 	 * TAO test failed or there was no CC option,
1119 	 *    do a standard 3-way handshake.
1120 	 */
1121 	if (syncache_respond(sc, m) == 0) {
1122 		syncache_insert(sc, sch);
1123 		tcpstat.tcps_sndacks++;
1124 		tcpstat.tcps_sndtotal++;
1125 	} else {
1126 		syncache_free(sc);
1127 		tcpstat.tcps_sc_dropped++;
1128 	}
1129 	*sop = NULL;
1130 	return (1);
1131 }
1132 
1133 static int
1134 syncache_respond(sc, m)
1135 	struct syncache *sc;
1136 	struct mbuf *m;
1137 {
1138 	u_int8_t *optp;
1139 	int optlen, error;
1140 	u_int16_t tlen, hlen, mssopt;
1141 	struct ip *ip = NULL;
1142 	struct rtentry *rt;
1143 	struct tcphdr *th;
1144 	struct ip6_hdr *ip6 = NULL;
1145 #ifdef INET6
1146 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1147 #else
1148 	const boolean_t isipv6 = FALSE;
1149 #endif
1150 
1151 	if (isipv6) {
1152 		rt = tcp_rtlookup6(&sc->sc_inc);
1153 		if (rt != NULL)
1154 			mssopt = rt->rt_ifp->if_mtu -
1155 			     (sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
1156 		else
1157 			mssopt = tcp_v6mssdflt;
1158 		hlen = sizeof(struct ip6_hdr);
1159 	} else {
1160 		rt = tcp_rtlookup(&sc->sc_inc);
1161 		if (rt != NULL)
1162 			mssopt = rt->rt_ifp->if_mtu -
1163 			     (sizeof(struct ip) + sizeof(struct tcphdr));
1164 		else
1165 			mssopt = tcp_mssdflt;
1166 		hlen = sizeof(struct ip);
1167 	}
1168 
1169 	/* Compute the size of the TCP options. */
1170 	if (sc->sc_flags & SCF_NOOPT) {
1171 		optlen = 0;
1172 	} else {
1173 		optlen = TCPOLEN_MAXSEG +
1174 		    ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1175 		    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) +
1176 		    ((sc->sc_flags & SCF_CC) ? TCPOLEN_CC_APPA * 2 : 0) +
1177 		    ((sc->sc_flags & SCF_SACK_PERMITTED) ?
1178 			TCPOLEN_SACK_PERMITTED_ALIGNED : 0);
1179 	}
1180 	tlen = hlen + sizeof(struct tcphdr) + optlen;
1181 
1182 	/*
1183 	 * XXX
1184 	 * assume that the entire packet will fit in a header mbuf
1185 	 */
1186 	KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1187 
1188 	/*
1189 	 * XXX shouldn't this reuse the mbuf if possible ?
1190 	 * Create the IP+TCP header from scratch.
1191 	 */
1192 	if (m)
1193 		m_freem(m);
1194 
1195 	m = m_gethdr(MB_DONTWAIT, MT_HEADER);
1196 	if (m == NULL)
1197 		return (ENOBUFS);
1198 	m->m_data += max_linkhdr;
1199 	m->m_len = tlen;
1200 	m->m_pkthdr.len = tlen;
1201 	m->m_pkthdr.rcvif = NULL;
1202 
1203 	if (isipv6) {
1204 		ip6 = mtod(m, struct ip6_hdr *);
1205 		ip6->ip6_vfc = IPV6_VERSION;
1206 		ip6->ip6_nxt = IPPROTO_TCP;
1207 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1208 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1209 		ip6->ip6_plen = htons(tlen - hlen);
1210 		/* ip6_hlim is set after checksum */
1211 		/* ip6_flow = ??? */
1212 
1213 		th = (struct tcphdr *)(ip6 + 1);
1214 	} else {
1215 		ip = mtod(m, struct ip *);
1216 		ip->ip_v = IPVERSION;
1217 		ip->ip_hl = sizeof(struct ip) >> 2;
1218 		ip->ip_len = tlen;
1219 		ip->ip_id = 0;
1220 		ip->ip_off = 0;
1221 		ip->ip_sum = 0;
1222 		ip->ip_p = IPPROTO_TCP;
1223 		ip->ip_src = sc->sc_inc.inc_laddr;
1224 		ip->ip_dst = sc->sc_inc.inc_faddr;
1225 		ip->ip_ttl = sc->sc_tp->t_inpcb->inp_ip_ttl;   /* XXX */
1226 		ip->ip_tos = sc->sc_tp->t_inpcb->inp_ip_tos;   /* XXX */
1227 
1228 		/*
1229 		 * See if we should do MTU discovery.  Route lookups are
1230 		 * expensive, so we will only unset the DF bit if:
1231 		 *
1232 		 *	1) path_mtu_discovery is disabled
1233 		 *	2) the SCF_UNREACH flag has been set
1234 		 */
1235 		if (path_mtu_discovery
1236 		    && ((sc->sc_flags & SCF_UNREACH) == 0)) {
1237 		       ip->ip_off |= IP_DF;
1238 		}
1239 
1240 		th = (struct tcphdr *)(ip + 1);
1241 	}
1242 	th->th_sport = sc->sc_inc.inc_lport;
1243 	th->th_dport = sc->sc_inc.inc_fport;
1244 
1245 	th->th_seq = htonl(sc->sc_iss);
1246 	th->th_ack = htonl(sc->sc_irs + 1);
1247 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1248 	th->th_x2 = 0;
1249 	th->th_flags = TH_SYN | TH_ACK;
1250 	th->th_win = htons(sc->sc_wnd);
1251 	th->th_urp = 0;
1252 
1253 	/* Tack on the TCP options. */
1254 	if (optlen == 0)
1255 		goto no_options;
1256 	optp = (u_int8_t *)(th + 1);
1257 	*optp++ = TCPOPT_MAXSEG;
1258 	*optp++ = TCPOLEN_MAXSEG;
1259 	*optp++ = (mssopt >> 8) & 0xff;
1260 	*optp++ = mssopt & 0xff;
1261 
1262 	if (sc->sc_flags & SCF_WINSCALE) {
1263 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1264 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1265 		    sc->sc_request_r_scale);
1266 		optp += 4;
1267 	}
1268 
1269 	if (sc->sc_flags & SCF_TIMESTAMP) {
1270 		u_int32_t *lp = (u_int32_t *)(optp);
1271 
1272 		/* Form timestamp option as shown in appendix A of RFC 1323. */
1273 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1274 		*lp++ = htonl(ticks);
1275 		*lp   = htonl(sc->sc_tsrecent);
1276 		optp += TCPOLEN_TSTAMP_APPA;
1277 	}
1278 
1279 	/*
1280 	 * Send CC and CC.echo if we received CC from our peer.
1281 	 */
1282 	if (sc->sc_flags & SCF_CC) {
1283 		u_int32_t *lp = (u_int32_t *)(optp);
1284 
1285 		*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CC));
1286 		*lp++ = htonl(sc->sc_cc_send);
1287 		*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CCECHO));
1288 		*lp   = htonl(sc->sc_cc_recv);
1289 		optp += TCPOLEN_CC_APPA * 2;
1290 	}
1291 
1292 	if (sc->sc_flags & SCF_SACK_PERMITTED) {
1293 		*((u_int32_t *)optp) = htonl(TCPOPT_SACK_PERMITTED_ALIGNED);
1294 		optp += TCPOLEN_SACK_PERMITTED_ALIGNED;
1295 	}
1296 
1297 no_options:
1298 	if (isipv6) {
1299 		struct route_in6 *ro6 = &sc->sc_route6;
1300 
1301 		th->th_sum = 0;
1302 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1303 		ip6->ip6_hlim = in6_selecthlim(NULL,
1304 		    ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL);
1305 		error = ip6_output(m, NULL, ro6, 0, NULL, NULL,
1306 				sc->sc_tp->t_inpcb);
1307 	} else {
1308 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1309 				       htons(tlen - hlen + IPPROTO_TCP));
1310 		m->m_pkthdr.csum_flags = CSUM_TCP;
1311 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1312 		error = ip_output(m, sc->sc_ipopts, &sc->sc_route, 0, NULL,
1313 				sc->sc_tp->t_inpcb);
1314 	}
1315 	return (error);
1316 }
1317 
1318 /*
1319  * cookie layers:
1320  *
1321  *	|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1322  *	| peer iss                                                      |
1323  *	| MD5(laddr,faddr,secret,lport,fport)             |. . . . . . .|
1324  *	|                     0                       |(A)|             |
1325  * (A): peer mss index
1326  */
1327 
1328 /*
1329  * The values below are chosen to minimize the size of the tcp_secret
1330  * table, as well as providing roughly a 16 second lifetime for the cookie.
1331  */
1332 
1333 #define SYNCOOKIE_WNDBITS	5	/* exposed bits for window indexing */
1334 #define SYNCOOKIE_TIMESHIFT	1	/* scale ticks to window time units */
1335 
1336 #define SYNCOOKIE_WNDMASK	((1 << SYNCOOKIE_WNDBITS) - 1)
1337 #define SYNCOOKIE_NSECRETS	(1 << SYNCOOKIE_WNDBITS)
1338 #define SYNCOOKIE_TIMEOUT \
1339     (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1340 #define SYNCOOKIE_DATAMASK	((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1341 
1342 static struct {
1343 	u_int32_t	ts_secbits[4];
1344 	u_int		ts_expire;
1345 } tcp_secret[SYNCOOKIE_NSECRETS];
1346 
1347 static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1348 
1349 static MD5_CTX syn_ctx;
1350 
1351 #define MD5Add(v)	MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1352 
1353 struct md5_add {
1354 	u_int32_t laddr, faddr;
1355 	u_int32_t secbits[4];
1356 	u_int16_t lport, fport;
1357 };
1358 
1359 #ifdef CTASSERT
1360 CTASSERT(sizeof(struct md5_add) == 28);
1361 #endif
1362 
1363 /*
1364  * Consider the problem of a recreated (and retransmitted) cookie.  If the
1365  * original SYN was accepted, the connection is established.  The second
1366  * SYN is inflight, and if it arrives with an ISN that falls within the
1367  * receive window, the connection is killed.
1368  *
1369  * However, since cookies have other problems, this may not be worth
1370  * worrying about.
1371  */
1372 
1373 static u_int32_t
1374 syncookie_generate(struct syncache *sc)
1375 {
1376 	u_int32_t md5_buffer[4];
1377 	u_int32_t data;
1378 	int idx, i;
1379 	struct md5_add add;
1380 #ifdef INET6
1381 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1382 #else
1383 	const boolean_t isipv6 = FALSE;
1384 #endif
1385 
1386 	idx = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1387 	if (tcp_secret[idx].ts_expire < ticks) {
1388 		for (i = 0; i < 4; i++)
1389 			tcp_secret[idx].ts_secbits[i] = arc4random();
1390 		tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1391 	}
1392 	for (data = sizeof(tcp_msstab) / sizeof(int) - 1; data > 0; data--)
1393 		if (tcp_msstab[data] <= sc->sc_peer_mss)
1394 			break;
1395 	data = (data << SYNCOOKIE_WNDBITS) | idx;
1396 	data ^= sc->sc_irs;				/* peer's iss */
1397 	MD5Init(&syn_ctx);
1398 	if (isipv6) {
1399 		MD5Add(sc->sc_inc.inc6_laddr);
1400 		MD5Add(sc->sc_inc.inc6_faddr);
1401 		add.laddr = 0;
1402 		add.faddr = 0;
1403 	} else {
1404 		add.laddr = sc->sc_inc.inc_laddr.s_addr;
1405 		add.faddr = sc->sc_inc.inc_faddr.s_addr;
1406 	}
1407 	add.lport = sc->sc_inc.inc_lport;
1408 	add.fport = sc->sc_inc.inc_fport;
1409 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1410 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1411 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1412 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1413 	MD5Add(add);
1414 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1415 	data ^= (md5_buffer[0] & ~SYNCOOKIE_WNDMASK);
1416 	return (data);
1417 }
1418 
1419 static struct syncache *
1420 syncookie_lookup(inc, th, so)
1421 	struct in_conninfo *inc;
1422 	struct tcphdr *th;
1423 	struct socket *so;
1424 {
1425 	u_int32_t md5_buffer[4];
1426 	struct syncache *sc;
1427 	u_int32_t data;
1428 	int wnd, idx;
1429 	struct md5_add add;
1430 
1431 	data = (th->th_ack - 1) ^ (th->th_seq - 1);	/* remove ISS */
1432 	idx = data & SYNCOOKIE_WNDMASK;
1433 	if (tcp_secret[idx].ts_expire < ticks ||
1434 	    sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1435 		return (NULL);
1436 	MD5Init(&syn_ctx);
1437 #ifdef INET6
1438 	if (inc->inc_isipv6) {
1439 		MD5Add(inc->inc6_laddr);
1440 		MD5Add(inc->inc6_faddr);
1441 		add.laddr = 0;
1442 		add.faddr = 0;
1443 	} else
1444 #endif
1445 	{
1446 		add.laddr = inc->inc_laddr.s_addr;
1447 		add.faddr = inc->inc_faddr.s_addr;
1448 	}
1449 	add.lport = inc->inc_lport;
1450 	add.fport = inc->inc_fport;
1451 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1452 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1453 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1454 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1455 	MD5Add(add);
1456 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1457 	data ^= md5_buffer[0];
1458 	if (data & ~SYNCOOKIE_DATAMASK)
1459 		return (NULL);
1460 	data = data >> SYNCOOKIE_WNDBITS;
1461 
1462 	/*
1463 	 * This allocation is guaranteed to succeed because we
1464 	 * preallocate one more syncache entry than cache_limit.
1465 	 */
1466 	sc = zalloc(tcp_syncache.zone);
1467 
1468 	/*
1469 	 * Fill in the syncache values.
1470 	 * XXX duplicate code from syncache_add
1471 	 */
1472 	sc->sc_ipopts = NULL;
1473 	sc->sc_inc.inc_fport = inc->inc_fport;
1474 	sc->sc_inc.inc_lport = inc->inc_lport;
1475 #ifdef INET6
1476 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1477 	if (inc->inc_isipv6) {
1478 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1479 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1480 		sc->sc_route6.ro_rt = NULL;
1481 	} else
1482 #endif
1483 	{
1484 		sc->sc_inc.inc_faddr = inc->inc_faddr;
1485 		sc->sc_inc.inc_laddr = inc->inc_laddr;
1486 		sc->sc_route.ro_rt = NULL;
1487 	}
1488 	sc->sc_irs = th->th_seq - 1;
1489 	sc->sc_iss = th->th_ack - 1;
1490 	wnd = sbspace(&so->so_rcv);
1491 	wnd = imax(wnd, 0);
1492 	wnd = imin(wnd, TCP_MAXWIN);
1493 	sc->sc_wnd = wnd;
1494 	sc->sc_flags = 0;
1495 	sc->sc_rxtslot = 0;
1496 	sc->sc_peer_mss = tcp_msstab[data];
1497 	return (sc);
1498 }
1499